The TME-EMT project: the bibliography
Navigation
Back to top
  • Ahn, Jeoung-Hwan, & Kwon, Soun-Hi. 2014
       Some explicit zero-free regions for Hecke {$L$}-functions. J. Number Theory, 145, 433--473.
  • Axler, Christian. 2016
       New bounds for the prime counting function. Integers, 16, Paper No. A22, 15.
  • Axler, Christian. 2019
       On the sum of the first {$n$} prime numbers. J. Théor. Nombres Bordeaux, 31(2), 293--311.
  • Bach, E., & Sorenson, J. 1996
       Explicit bounds for primes in residue classes. Math. Comp., 65(216), 1717--1735.
  • Bachman, Gennady, & Rachakonda, Leelanand. 2001
       On a problem of Dobrowolski and Williams and the Pólya-Vinogradov inequality. Ramanujan J., 5(1), 65--71.
  • Backlund, R. J. 1918
       Über die Nullstellen der {\it Riemannschen Zetafunktion.} . Acta Math., 41, 345--375.
  • Backlund, R.J. 1914
       Sur les zéros de la fonction $\zeta(s)$ de Riemann. C. R. Acad. Sci., 158, 1979--1981.
  • Baker, R., Harman, G., & Pintz, J. 2001
       The difference between consecutive primes, III. Proc. London Math. Soc., 83(3), 532--562.
  • Balazard, M. 2012
       Elementary Remarks on Möbius' Function. Proceedings of the Steklov Intitute of Mathematics, 276, 33--39.
  • Bastien, G., & Rogalski, M. 2002
       Convexité, complète monotonie et inégalités sur les fonctions z\^eta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques. Canad. J. Math., 54(5), 916--944.
  • Bennett, M. 2001
       Rational approximation to algebraic numbers of small height: the Diophantine equation $|ax^n-by^n|=1$. J. reine angew. Math., 535, 1--49.
  • Bennett, Michael A., Martin, Greg, O'Bryant, Kevin, & Rechnitzer, Andrew. 2018
       Explicit bounds for primes in arithmetic progressions. Illinois J. Math., 62(1-4), 427--532.
  • Bennett, Michael A., Martin, Greg, O'Bryant, Kevin, & Rechnitzer, Andrew. 2021
       Counting zeros of Dirichlet {$L$}-functions. Math. Comp., 90(329), 1455--1482.
  • Berkane, D., Bordellès, O., & Ramaré, O. 2012
       Explicit upper bounds for the remainder term in the divisor problem. Math. of Comp., 81(278), 1025--1051.
  • Berment, P., & Ramaré, O. 2012
       Ordre moyen d'une fonction arithmétique par la méthode de convolution. Revue de la filière mathématiques (RMS), 122(1), 1--15.
  • Bombieri, E., & Pila, J. 1989
       The number of integral points on arcs and ovals. Duke Math. J., 59, 337--357.
  • Booker, A.R. 2006
       Quadratic class numbers and character sums. Math. Comp., 75(255), 1481--1492 (electronic).
  • Bordellès, O. 2002
       Explicit upper bounds for the average order of {$d_n(m)$} and application to class number. JIPAM. J. Inequal. Pure Appl. Math., 3(3), Article 38, 15 pp. (electronic).
  • Bordellés, O. 2005
       An explicit Mertens' type inequality for arithmetic progressions. J. Inequal. Pure Appl. Math., 6(3), paper no 67 (10p).
  • Bordellès, O. 2006
       An inequality for the class number. JIPAM. J. Inequal. Pure Appl. Math., 7(3), Article 87, 8 pp. (electronic).
  • Bordellès, O. 2012
       Arithmetic Tales. Universitext. Springer London Heidelberg New York Dordrecht.
  • Bordellès, Olivier. 2015
       Some explicit estimates for the Möbius function. J. Integer Seq., 18(11), Article 15.11.1, 13.
  • Bordignon, Matteo. 2021
       A Pólya-Vinogradov inequality for short character sums. Canad. Math. Bull., 64(4), 906--910.
  • Bordignon, Matteo, & Kerr, Bryce. 2020
       An explicit Pólya-Vinogradov inequality via partial Gaussian sums. Trans. Amer. Math. Soc., 373(9), 6503--6527.
  • Borwein, P., Ferguson, R., & Mossinghoff, M.J. 2008
       Sign changes in sums of the Liouville function. Math. Comp., 77(263), 1681--1694.
  • Brillhart, J., Lehmer, D.H., & Selfridge, J.L. 1975
       New primality crietria and factorizations for $2^m \pm 1$. Math. Comp., 29(130), 620--647.
  • Büthe, J. 2014
       A Brun-Titchmarsh inequality for weighted sums over prime numbers. Acta Arith., 166(3), 289--299.
  • Büthe, Jan. 2016
       Estimating {$\pi(x)$} and related functions under partial RH assumptions. Math. Comp., 85(301), 2483--2498.
  • Büthe, Jan. 2018
       An analytic method for bounding {$\psi(x)$}. Math. Comp., 87(312), 1991--2009.
  • Carneiro, Emanuel, Milinovich, Micah, & Soundararajan, Kannan. 2019
       Fourier optimization and prime gaps.
  • Cazaran, J., & Moree, P. 1999
       On a claim of Ramanujan in his first letter to Hardy. Expositiones Mathematicae, 17, 289--312. based on a lecture given 01-12-1997 by J. Cazaran at the Hardy symposium in Sydney.
  • Chen, Jingrun, & Wang, Tianze. 1989
       On the distribution of zeros of Dirichlet L-functions. J. Sichuan Univ., Nat. Sci. Ed., 26.
  • Cheng, Y., & Graham, S.W. 2004
       Explicit estimates for the Riemann zeta function. Rocky Mountain J. Math., 34(4), 1261--1280.
  • Chua, Kok Seng. 2005
       Real zeros of Dedekind zeta functions of real quadratic field. Math. Comput., 74(251), 1457--1470.
  • Cipolla, M. 1902
       La determinatzione assintotica dell`$n^{imo}$ numero primo. Matematiche Napoli, 3, 132--166.
  • Cipu, Mihai. 2015
       Further remarks on Diophantine quintuples. Acta Arith., 168(3), 201--219.
  • Coffey, M.W. 2006
       New results on the Stieltjes constants: asymptotic and exact evaluation. J. Math. Anal. Appl., 317(2), 603--612.
  • Cohen, H., & Dress, F. 1988
       Estimations numériques du reste de la fonction sommatoire relative aux entiers sans facteur carré. Prépublications mathématiques d'Orsay : Colloque de théorie analytique des nombres, Marseille, 73--76.
  • Cohen, H., Dress, F., & El Marraki, M. 1996
       Explicit estimates for summatory functions linked to the Möbius $\mu$-function. Univ. Bordeaux 1, Pré-publication(96-7).
  • Cohen, H., Dress, F., & El Marraki, M. 2007
       Explicit estimates for summatory functions linked to the Möbius {$\mu$}-function. Funct. Approx. Comment. Math., 37, 51--63.
  • Costa Pereira, N. 1989
       Elementary estimates for the Chebyshev function $\psi(X)$ and for the Möbius function $M(X)$. Acta Arith., 52, 307--337.
  • Cramer, H. 1936
       On the order of magnitude of the difference between consecutive prime numbers. Acta Arith., 2, 23--46.
  • Cully-Hugill, Michaela. 2021
       Primes between consecutive powers. arXiv preprint arXiv:2107.14468.
  • Cully-Hugill, Michaela, & Trudgian, Tim. 2021
       Two explicit divisor sums. Ramanujan J., 56(1), 141--149.
  • Daboussi, H., & Rivat, J. 2001
       Explicit upper bounds for exponential sums over primes. Math. Comp., 70(233), 431--447.
  • Daublebsky von Sterneck, R. 1902
       Ein Analogon zur additiven Zahlentheorie. Wien. Ber., 111, 1567--1601.
  • Davenport, H. 1937
       On some infinite series involving arithmetical functions. Quart. J. Math., Oxf. Ser., 8, 8--13.
  • De Koninck, Jean-Marie, & Letendre, Patrick. 2020
       New upper bounds for the number of divisors function. Colloq. Math., 162(1), 23--52.
  • Delange, Hubert. 1987
       Une remarque sur la dérivée logarithmique de la fonction z\^eta de Riemann. Colloq. Math., 53(2), 333--335.
  • Deléglise, M., & Rivat, J. 1996a
       Computing $\pi (x)$ : The Meissel, Lehmer, Lagarias, Miller, Odlyzko method. Math. Comp., 65(213), 235--245.
  • Deléglise, M., & Rivat, J. 1996b
       Computing the summation of the Möbius function. Exp. Math., 5(4), 291--295.
  • Deléglise, M., & Rivat, J. 1998
       Computing $\psi(x)$. Math. Comp., 67(224), 1691--1696.
  • Deléglise, Marc, & Nicolas, Jean-Louis. 2019a
       An arithmetic equivalence of the Riemann hypothesis. J. Aust. Math. Soc., 106(2), 235--273.
  • Deléglise, Marc, & Nicolas, Jean-Louis. 2019b
       The Landau function and the Riemann Hypothesis. J. Combinatorics and Numb. Th., 11(2), 45--95.
  • Deshouillers, J.-M, & Dress, F. 1988
       Sommes de diviseurs et structure multiplicative des entiers. Acta Arith., 49(4), 341--375.
  • Deshouillers, J.-M., te Riele, H.J.J., & Saouter, Y. 1998
       New experimental results concerning the Goldbach conjecture. In: Buhler, J.P. (ed), Algorithmic number theory. Lect. Notes Comput. Sci., no. 1423.
  • Diamond, H.G., & Erdös, P. 1980
       On sharp elementary prime number estimates. Enseign. Math., 26(3-4), 313--321.
  • Dress, F. 1983/84
       Théorèmes d'oscillations et fonction de Möbius. URL Sémin. Théor. Nombres, Univ. Bordeaux I, Exp. No 33, 33pp. .
  • Dress, F. 1993
       Fonction sommatoire de la fonction de Möbius 1. Majorations expérimentales. Exp. Math., 2(2).
  • Dress, F. 1999
       Discrépance des suites de Farey. J. Théor. Nombres Bordx., 11(2), 345--367.
  • Dress, F., & El Marraki, M. 1993
       Fonction sommatoire de la fonction de Möbius 2. Majorations asymptotiques élémentaires. Exp. Math., 2(2), 99--112.
  • Dudek, Adrian W. 2015
       On the Riemann hypothesis and the difference between primes. Int. J. Number Theory, 11(3), 771--778.
  • Dudek, Adrian W. 2016
       An explicit result for primes between cubes. Functiones et Approximatio Commentarii Mathematici, 55(2), 177--197.
  • Duras, J.-L. 1993
       Etude de la fonction nombre de façons de représenter un entier comme produit de k facteurs. URL Ph.D. thesis, Université de Limoges. .
  • Duras, J.-L., Nicolas, J.-L., & Robin, G. 1999
       Grandes valeurs de la fonction {$d_k$}. Pages 743--770 of: Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997). Berlin: de Gruyter.
  • Dusart, P. 1998
       Autour de la fonction qui compte le nombre de nombres premiers. URL Ph.D. thesis, Limoges, . 173 pp.
  • Dusart, P. 1999a
       Inégalités explicites pour $\psi(X)$, $\theta(X)$, $\pi(X)$ et les nombres premiers. C. R. Math. Acad. Sci., Soc. R. Can., 21(2), 53--59.
  • Dusart, P. 1999b
       The $k$th prime is greater than $k(\ln k+\ln\ln k-1)$ for $k\geq 2$. Math. Comp., 68(225), 411--415.
  • Dusart, P. 2002
       Estimates for $\theta(x;k,\ell)$ for large values of $x$. Math. Comp., 71(239), 1137--1168.
  • Dusart, P. 2018
       Estimates of some functions over primes. Ramanujan J., 45(1), 227--251.
  • Dusart, Pierre. 2016
       Estimates of {$\psi,\theta$} for large values of {$x$} without the Riemann hypothesis. Math. Comp., 85(298), 875--888.
  • El Marraki, M. 1995
       Fonction sommatoire de la fonction $\mu$ de Möbius, majorations asymptotiques effectives fortes. J. Théor. Nombres Bordeaux, 7(2), 407–433.
  • El Marraki, M. 1996
       Majorations de la fonction sommatoire de la fonction $\frac{\mu(n)}n$. Univ. Bordeaux 1, Pré-publication(96-8).
  • Eum, Ick Sun, & Koo, Ja Kyung. 2015
       The Riemann hypothesis and an upper bound of the divisor function for odd integers. J. Math. Anal. Appl., 421(1), 917--924.
  • Faber, L., & Kadiri, H. 2015
       New bounds for $\psi(x)$. Math. Comp., 84(293), 1339--1357.
  • Fan, Kai. 2022
       An inequality for the distribution of numbers free of small prime factors. Integers, 22, Paper No. A26, 12.
  • Filaseta, M. 1990
       Short interval results for squarefree numbers. J. Number Theory, 35, 128--149.
  • Filaseta, M., & Trifonov, O. 1996
       The distribution of fractional parts with applications to gap results in number theory. Proc. Lond. Math. Soc., III. Ser., 73(2), 241--278.
  • Ford, K. 2000
       Zero-free regions for the Riemann zeta function. Proceedings of the Millenial Conference on Number Theory, Urbana, IL.
  • Ford, K. 2002
       Vinogradov's integral and bounds for the Riemannn zeta function. Proc. London Math. Soc., 85, 565--633.
  • Frolenkov, D. 2011
       A numerically explicit version of the Pólya-Vinogradov inequality. Mosc. J. Comb. Number Theory, 1(3), 25--41.
  • Frolenkov, D. A., & Soundararajan, K. 2013
       A generalization of the Pólya--Vinogradov inequality. Ramanujan J., 31(3), 271--279.
  • Gabcke, W. 1979
       Neue Herleitung und explizite Restabschaetzung der Riemann-Siegel-Formel. Ph.D. thesis, Mathematisch-Naturwissenschaftliche Fakultät der Georg-August-Universität zu Göttingen.
  • Gallagher, P.X. 1970
       A large sieve density estimate near $\sigma =1$. Invent. Math., 11, 329--339.
  • Gourdon, X., & Demichel, P. 2004
       The $10^{13}$ first zeros of the Riemann Zeta Function and zeros computations at very large height . URL http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
  • Graham, S. W., & Kolesnik, G. 1991
       Van der Corput's Method of Exponential Sums. London Math. Soc. Lect. Note, no. 126. Cambridge University Press.
  • Granville, A., & Ramaré, O. 1996
       Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients. Mathematika, 43(1), 73--107.
  • Granville, A., & Soundararajan, K. 2003
       The distribution of values of $L(1,\chi)$. URL Geom. Func. Anal., 13(5), 992--1028. .
  • Granville, A., & Soundararajan, K. 2004
       Errata to: The distribution of values of $L(1,\chi)$, in GAFA 13:5 (2003). Geom. Func. Anal., 14(1), 245--246.
  • Granville, A., & Soundararajan, K. 2007
       Large character sums: pretentious characters and the Pólya-Vinogradov theorem. J. Amer. Math. Soc., 20(2), 357--384 (electronic).
  • Hall, R., & Tenenbaum, G. 1988
       Divisors. Cambridge Tracts in Mathematics, vol. 90. Cambridge: Cambridge University Press.
  • Hasanalizade, Elchin, Shen, Quanli, & Wong, Peng-Jie. 2021
       Counting zeros of Dedekind zeta functions. Math. Comp., 91(333), 277--293.
  • Hasanalizade, Elchin, Shen, Quanli, & Wong, Peng-Jie. 2022
       Counting zeros of the Riemann zeta function. J. Number Theory, 235, 219--241.
  • Helfgott, H.A. 2017
       $L^2$ bounds for tails of $\zeta(s)$ on a vertical line. URL .
  • Hiary, Ghaith A. 2016a
       An explicit hybrid estimate for {$L(1/2+it,\chi)$}. Acta Arith., 176(3), 211--239.
  • Hiary, Ghaith A. 2016b
       An explicit van der Corput estimate for {$\zeta(1/2+it)$}. Indag. Math. (N.S.), 27(2), 524--533.
  • Hurst, Greg. 2018
       Computations of the Mertens function and improved bounds on the Mertens conjecture. Math. Comp., 87(310), 1013--1028.
  • Huxley, M.N. 1996
       Area, Lattice Points and Exponential Sums. Oxford Science Pub.
  • Huxley, M.N., & Sargos, P. 1995
       Integer points close to a plane curve of class $C^n$. (Points entiers au voisinage d'une courbe plane de classe $C^n$.). Acta Arith., 69(4), 359--366.
  • Huxley, M.N., & Sargos, P. 2006
       Integer points in the neighborhood of a plane curve of class $C^n$. II. (Points entiers au voisinage d'une courbe plane de classe $C^n$. II.). Funct. Approximatio, Comment. Math., 35, 91--115.
  • Huxley, M.N., & Trifonov, O. 1996
       The square-full numbers in an interval. Math. Proc. Camb. Phil. Soc., 119, 201--208.
  • Ivić, A. 1977
       Two inequalities for the sum of the divisors functions. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak., 7, 17--21.
  • Jaeschke, G. 1993
       On strong pseudoprimes to several bases. Math. Comp., 61(204), 915--926.
  • Jain-Sharma, Niraek, Khale, Tanmay, & Liu, Mengzhen. 2021
       Explicit Burgess bound for composite moduli. Int. J. Number Theory, 17(10), 2207--2219.
  • Jang, Woo-Jin, & Kwon, Soun-Hi. 2014
       A note on Kadiri's explicit zero free region for Riemann zeta function. J. Korean Math. Soc., 51(6), 1291--1304.
  • Jarník, V. 1925
       Über die Gitterpunkte auf konvexen Kurven. Math. Z., 24, 500--518.
  • Kadiri, H. 2002
       Une région explicite sans zéros pour les fonctions {$L$ de Dirichlet}. URL Ph.D. thesis, Université Lille 1. .
  • Kadiri, H. 2005
       Une région explicite sans zéros pour la fonction $\zeta$ de Riemann. Acta Arith., 117(4), 303--339.
  • Kadiri, H. 2008
       Short effective intervals containing primes in arithmetic progressions and the seven cube problem. Math. Comp., 77(263), 1733--1748.
  • Kadiri, H. 2009
       An explicit zero-free region for the Dirichlet {$L$}-functions. URL Being processed... .
  • Kadiri, H. 2012
       Explicit zero-free regions for Dedekind zeta functions. URL Int. J. Number Theory, 8(1), 125--147. .
  • Kadiri, H. 2013
       A zero density result for the Riemann zeta function. Acta Arith., 160(2), 185--200.
  • Kadiri, H., & Ng, N. 2012
       Explicit zero density theorems for Dedekind zeta functions. J. Number Theory, 132(4), 748--775.
  • Kadiri, Habiba, Lumley, Allysa, & Ng, Nathan. 2018
       Explicit zero density for the Riemann zeta function. J. Math. Anal. Appl., 465(1), 22--46.
  • Kotnik, Tadej, & van de Lune, Jan. 2004
       On the order of the Mertens function. Experiment. Math., 13(4), 473--481.
  • Kreminski, R. 2003
       Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants. Math. Comp., 72(243), 1379--1397 (electronic).
  • Kulas, M. 1994
       Some effective estimation in the theory of the Hurwitz-zeta function. Funct. Approx. Comment. Math., 23, 123--134 (1995).
  • Landau, E. 1918
       Abschätzungen von Charaktersummen, Einheiten und Klassenzahlen. Gött. Nachr., 2, 79--97.
  • Lapkova, Kostadinka. 2016
       Explicit upper bound for an average number of divisors of quadratic polynomials. Arch. Math. (Basel), 106(3), 247--256.
  • Lapkova, Kostadinka. 2017
       On the average number of divisors of reducible quadratic polynomials. J. Number Theory, 180, 710--729.
  • Lehman, R. Sherman. 1966a
       On the difference {$\pi (x)-{\rm li}(x)$}. Acta Arith., 11, 397--410.
  • Lehman, R.S. 1966b
       Separation of zeros of the Riemann zeta-function. Math. Comp., 20, 523--541.
  • Lehman, R.S. 1970
       On the distribution of zeros of the Riemann zeta-function. Proc. London Math. Soc. (3), 20, 303--320.
  • Levin, B.V., & Fainleib, A.S. 1967
       Application of some integral equations to problems of number theory. Russian Math. Surveys, 22, 119--204.
  • Liu, Ming-Chit, & Wang, Tianze. 2002
       Distribution of zeros of Dirichlet $L$-functions and an explicit formula for $\psi(t,\chi)$. Acta Arith., 102(3), 261--293.
  • Logan, B. F. 1988
       An interference problem for exponentials. Michigan Math. J., 35(3), 369--393.
  • Louboutin, S. 1993
       Majorations explicites de $|L(1,\chi)|$. C. R. Acad. Sci. Paris, 316, 11--14.
  • Louboutin, S. 1996
       Majorations explicites de $|L(1,\chi)|$ (suite). C. R. Acad. Sci. Paris, 323, 443--446.
  • Louboutin, S. 1998
       Majorations explicites du résidu au point 1 des fonctions z\^eta. J. Math. Soc. Japan, 50, 57--69.
  • Louboutin, S. 2000
       Explicit bounds for residues of Dedekind zeta functions, values of {$L$}-functions at {$s=1$}, and relative class numbers. J. Number Theory, 85(2), 263--282.
  • Louboutin, S. 2001
       Explicit upper bounds for residues of Dedekind zeta functions and values of {$L$}-functions at {$s=1$}, and explicit lower bounds for relative class numbers of CM-fields. Canad. J. Math., 53(6), 1194--1222.
  • Louboutin, S. 2003
       Explicit lower bounds for residues at {$s=1$} of Dedekind zeta functions and relative class numbers of CM-fields. Trans. Amer. Math. Soc., 355(8), 3079--3098 (electronic).
  • Louboutin, S. 2013
       An explicit lower bound on moduli of Dichlet {$L$}-functions at $s=1$. preprint.
  • Louboutin, S.R. 2005
       On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes. J. Théor. Nombres Bordeaux, 17(2), 559--573.
  • Louboutin, Stéphane R. 2015
       An explicit lower bound on moduli of Dirichlet {$L$}-functions at {$s=1$}. J. Ramanujan Math. Soc., 30(1), 101--113.
  • Mac Leod, R.A. 1967
       A new estimate for the sum $M(x)=\sum_{n\le x}\mu(n)$. Acta Arith., 13. Erratum, ibid. 16 (1969), 99-100.
  • Mardjanichvili, C. 1939
       Estimation d'une somme arithmétique. Comptes Rendus Acad. Sciences URSS, N. s. 22, 387--389.
  • Massias, J.-P., & Robin, G. 1996
       Bornes effectives pour certaines fonctions concernant les nombres premiers. J. Théor. Nombres Bordeaux, 8(1), 215--242.
  • Maurer, U. 1995
       Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters. Journal of Cryptology, 8(3), 123--156.
  • Mawia, Ramdin. 2017
       Explicit estimates for some summatory functions of primes. Integers, 17, 18pp. A11.
  • McCurley, K.S. 1984a
       Explicit estimates for the error term in the prime number theorem for arithmetic progressions. Math. Comp., 42, 265--285.
  • McCurley, K.S. 1984b
       Explicit estimates for $\theta(x;3,\ell)$ and $\psi(x;3,\ell)$. Math. Comp., 42, 287--296.
  • McCurley, K.S. 1984c
       Explicit zero-free regions for Dirichlet $L$-functions. J. Number Theory, 19, 7--32.
  • McGown, Kevin J. 2012
       Norm-Euclidean cyclic fields of prime degree. Int. J. Number Theory, 8(1), 227--254.
  • Montgomery, H.L. 1994
       Ten lectures on the interface between analytic number theory and harmonic analysis. CBMS Regional Conference Series in Mathematics, vol. 84. Published for the Conference Board of the Mathematical Sciences, Washington, DC.
  • Montgomery, H.L., & Vaughan, R.C. 1973
       The large sieve. Mathematika, 20(2), 119--133.
  • Montgomery, H.L., & Vaughan, R.C. 1974
       Hilbert's inequality. J. Lond. Math. Soc., II Ser., 8, 73--82.
  • Moree, P. 2000
       Approximation of singular series constant and automata. With an appendix by Gerhard Niklasch. Manuscripta Matematica, 101(3), 385--399.
  • Moree, P. 2004
       Chebyshev's bias for composite numbers with restricted prime divisors. Math. Comp., 73(245), 425--449.
  • Moree, P., & te Riele, H.J.J. 2004
       The hexagonal versus the square lattice. Math. Comp., 73(245), 451--473.
  • Moser, L., & MacLeod, R. A. 1966
       The error term for the squarefree integers. Canad. Math. Bull., 9, 303--306.
  • Mossinghoff, Michael J., & Trudgian, Timothy S. 2015
       Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function. J. Number Theory, 157, 329--349.
  • Nathanson, Melvyn B. 1996
       Additive number theory -- The classical bases. Graduate Texts in Mathematics, vol. 164. Springer-Verlag, New York.
  • Nicely, T.R. 1999
       New maximal primes gaps and first occurences. Math. Comp., 68(227), 1311--1315.
  • Nicolas, J.-L. 2008
       Quelques inégalités effectives entre des fonctions arithmétiques. Functiones et Approximatio, 39, 315--334.
  • Nicolas, J.-L., & Robin, G. 1983
       Majorations explicites pour le nombre de diviseurs de $n$. Canad. Math. Bull., 39, 485--492.
  • Odlyzko, A.M. 1987
       On the distribution of spacings between zeros of the zeta function. Math. Comp., 48(177), 273--308.
  • Omar, S. 2001
       Localization of the first zero of the Dedekind zeta function. Math. Comp., 70(236), 1607--1616.
  • P., Akhilesh, & Ramaré, O. 2017
       Explicit averages of non-negative multiplicative functions: going beyond the main term. Coll. Math., 147, 275--313.
  • Panaitopol, L. 2000
       A formula for {$\pi(x)$} applied to a result of Koninck-Ivić. Nieuw Arch. Wiskd. (5), 1(1), 55--56.
  • Platt, Dave, & Trudgian, Tim. 2021a
       The Riemann hypothesis is true up to {$3\cdot10^{12}$}. Bull. Lond. Math. Soc., 53(3), 792--797.
  • Platt, David J. 2017
       Isolating some non-trivial zeros of zeta. Math. Comp., 86(307), 2449--2467.
  • Platt, David J., & Trudgian, Timothy S. 2021b
       The error term in the prime number theorem. Math. Comp., 90(328), 871--881.
  • Platt, D.J. 2011
       Computing degree 1 L-function rigorously. Ph.D. thesis, Mathematics. arXiv:1305.3087.
  • Platt, D.J. 2013
       Numerical computations concerning the GRH. URL Ph.D. thesis. .
  • Platt, D.J., & Ramaré, O. 2017
       Explicit estimates: from ${\Lambda}(n)$ in arithmetic progressions to ${\Lambda}(n)/n$. Exp. Math., 26, 77--92.
  • Pohst, M., & Zassenhaus, H. 1989
       Algorithmic algebraic number theory. Encyclopedia of Mathematics and its Applications, vol. 30. Cambridge: Cambridge University Press.
  • Pomerance, C. 2011
       Remarks on the Pólya-Vinogradov inequality. Integers (Proceedings of the Integers Conference, October 2009), 11A, Article 19, 11pp.
  • Preissmann, E. 1984
       Sur une inégalité de Montgomery et Vaughan. Enseign. Math., 30, 95--113.
  • Qiu, Zhuo Ming. 1991
       An inequality of Vinogradov for character sums. Shandong Daxue Xuebao Ziran Kexue Ban, 26(1), 125--128.
  • Rademacher, H. 1959
       On the Phragmén-Lindelöf theorem and some applications. Math. Z., 72, 192--204.
  • Ramaré, O. 1995
       On Snirel'man's constant. Ann. Scu. Norm. Pisa, 21, 645--706.
  • Ramaré, O. 2001
       Approximate Formulae for $L(1,\chi)$. Acta Arith., 100, 245--266.
  • Ramaré, O. 2002
       Sur un théorème de Mertens. Manuscripta Math., 108, 483--494.
  • Ramaré, O. 2004
       Approximate Formulae for $L(1,\chi)$, II. Acta Arith., 112, 141--149.
  • Ramaré, O. 2007
       Eigenvalues in the large sieve inequality. Funct. Approximatio, Comment. Math., 37, 7--35.
  • Ramaré, O. 2009
       Arithmetical aspects of the large sieve inequality. Harish-Chandra Research Institute Lecture Notes, vol. 1. New Delhi: Hindustan Book Agency. With the collaboration of D. S. Ramana.
  • Ramaré, O. 2012
       On long $\kappa$-tuples with few prime factors. Proc. of the London Math. Soc., 104(1), 158--196.
  • Ramaré, O. 2013a
       Explicit estimates for the summatory function of ${\Lambda}(n)/n$ from the one of ${\Lambda}(n)$. Acta Arith., 159(2), 113--122.
  • Ramaré, O. 2013b
       From explicit estimates for the primes to explicit estimates for the Moebius function. Acta Arith., 157(4), 365--379.
  • Ramaré, O. 2013c
       Some elementary explicit bounds for two mollifications of the Moebius function. Functiones et Approximatio, 49(2), 229--240.
  • Ramaré, O. 2014
       Explicit estimates on the summatory functions of the Moebius function with coprimality restrictions. Acta Arith., 165(1), 1--10.
  • Ramaré, O. 2015
       Explicit estimates on several summatory functions involving the Moebius function. Math. Comp., 84(293), 1359--1387.
  • Ramaré, O. 2016
       An explicit density estimate for Dirichlet $L$-series. Math. Comp., 85(297), 335--356.
  • Ramaré, O. 2016
       Modified truncated Perron formulae. Ann. Blaise Pascal, 23(1), 109--128.
  • Ramaré, O., & Rumely, R. 1996
       Primes in arithmetic progressions. Math. Comp., 65, 397--425.
  • Ramaré, O., & Saouter, Y. 2003
       Short effective intervals containing primes. J. Number Theory, 98, 10--33.
  • Robin, G. 1983a
       Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombres premiers et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de $n$. Acta Arith., 42, 367--389.
  • Robin, G. 1983b
       Grandes valeurs de fonctions arithmétiques et problèmes d'optimisation en nombres entiers. Ph.D. thesis, Université de Limoges.
  • Rosser, J.B. 1938
       The $n$-th prime is greater than $n\log n$. Proc. Lond. Math. Soc., II. Ser., 45, 21--44.
  • Rosser, J.B. 1941
       Explicit bounds for some functions of prime numbers. Amer. J. Math., 63, 211--232.
  • Rosser, J.B. 1949
       Real roots of Dirichlet $L$-series. Bull. Amer. Math. Soc., 55, 906--913.
  • Rosser, J.B. 1950
       Real roots of Dirichlet $L$-series. J. Res. Nat. Bur. Standards, 505--514.
  • Rosser, J.B., & Schoenfeld, L. 1962
       Approximate formulas for some functions of prime numbers. Illinois J. Math., 6, 64--94.
  • Rosser, J.B., & Schoenfeld, L. 1975
       Sharper bounds for the Chebyshev Functions $\vartheta(X)$ and $\psi(X)$. Math. Comp., 29(129), 243--269.
  • Rumely, R. 1993
       Numerical Computations Concerning the ERH. Math. Comp., 61, 415--440.
  • Saouter, Y., & Demichel, P. 2010
       A sharp region where {$\pi(x)-{\rm li}(x)$} is positive. Math. Comp., 79(272), 2395--2405.
  • Schoenfeld, L. 1969
       An improved estimate for the summatory function of the Möbius function. Acta Arith., 15, 223--233.
  • Schoenfeld, L. 1976
       Sharper bounds for the Chebyshev Functions $\vartheta(X)$ and $\psi(X)$ II. Math. Comp., 30(134), 337--360.
  • Selberg, A. 1943
       On the normal density of primes in small intervals, and the difference between consecutive primes. Archiv Math. Naturv., B.47(6), 82--105.
  • Siebert, H. 1976
       Montgomery's weighted sieve for dimension two. Monatsh. Math., 82(4), 327--336.
  • Spira, R. 1969
       Calculation of Dirichlet {$L$}-functions. Math. Comp., 23, 489--497.
  • Stechkin, S.B. 1970
       Zeros of Riemann zeta-function. Math. Notes, 8, 706--711.
  • Stechkin, S.B. 1989
       Rational inequalities and zeros of the Riemann zeta-function. Trudy Mat. Inst. Steklov (english translation: in Proc. Steklov Inst. Math. 189 (1990)), 189, 127--134.
  • Swinnerton-Dyer, H.P.F. 1974
       The number of lattice points on a convex curve. J. Number Theory, 6, 128--135.
  • Titchmarsh, E.C. 1947
       On the zeros of the Riemann zeta function. Quart. J. Math., Oxford Ser., 18, 4--16.
  • Treviño, Enrique. 2012
       The least inert prime in a real quadratic field. Math. Comp., 81(279), 1777--1797.
  • Treviño, Enrique. 2015a
       The Burgess inequality and the least {$k$}th power non-residue. Int. J. Number Theory, 11(5), 1653--1678.
  • Treviño, Enrique. 2015b
       The least {$k$}-th power non-residue. J. Number Theory, 149, 201--224.
  • Trudgian, T. 2011
       Improvements to Turing's method. Math. Comp., 80(276), 2259--2279.
  • Trudgian, T. 2012
       A new upper bound for $|\zeta(1+it)|$. URL .
  • Trudgian, T. 2015a
       An improved upper bound for the error in the zero-counting formulae for Dirichlet $L$-function and Dedekind zeta-function on the critical line. Math. Comp., 84(293), 1439--1450.
  • Trudgian, Tim. 2015b
       Bounds on the number of Diophantine quintuples. J. Number Theory, 157, 233--249.
  • Trudgian, Tim. 2016
       Updating the error term in the prime number theorem. Ramanujan J., 39(2), 225--234.
  • Trudgian, Timothy S. 2014
       An improved upper bound for the argument of the Riemann zeta-function on the critical line II. J. Number Theory, 134, 280--292.
  • Van de Lune, J., te Riele, H.J.J., & D.T.Winter. 1986
       On the zeros of the Riemann zeta-function in the critical strip. IV. Math. Comp., 46(174), 667--681.
  • van Lint, J.E., & Richert, H.E. 1965
       On primes in arithmetic progressions. Acta Arith., 11, 209--216.
  • Vinogradov, I.M. 2004
       The method of trigonometrical sums in the theory of numbers. Mineola, NY: Dover Publications Inc. Translated from the Russian, revised and annotated by K. F. Roth and Anne Davenport, Reprint of the 1954 translation.
  • von Sterneck, R.D. 1898
       Bemerkung über die Summierung einiger zahlentheorischen Funktionen. Monatsh. Math. Phys., 9, 43--45.
  • Ward, D. R. 1927
       Some Series Involving Euler's Function. J. London Math. Soc., S1-2(4), 210--214.
  • Washington, Lawrence C., & Yang, Ambrose. 2021
       Analogues of the Robin-Lagarias criteria for the Riemann hypothesis. Int. J. Number Theory, 17(4), 843--870.
  • Watkins, M. 2004
       Real zeros of real odd Dirichlet L-functions. Math. Comp., 73(245), 415--423.
  • Wedeniwski, S. 2002
       On the Riemann hypothesis. http://www.zetagrid.net/zeta/announcements.html
  • Wolke, D. 1983
       On the explicit formula of Riemann-von Mangoldt, II. J. London Math. Soc., 2(28).
  • Young, A., & Potler, J. 1989
       First occurence prime gaps. Math. Comp., 52(185), 221--224.

  • There are 225 references.