Balazard, M. 2012 Elementary Remarks on Möbius' Function. Proceedings of the Steklov Intitute of Mathematics, 276, 33--39.
Bastien, G., & Rogalski, M. 2002 Convexité, complète monotonie et inégalités sur les fonctions z\^eta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques. Canad. J. Math., 54(5), 916--944.
Bennett, M. 2001 Rational approximation to algebraic numbers of small height: the Diophantine equation $|ax^n-by^n|=1$. J. reine angew. Math., 535, 1--49.
Berment, P., & Ramaré, O. 2012 Ordre moyen d'une fonction arithmétique par la méthode de convolution. Revue de la filière mathématiques (RMS), 122(1), 1--15.
Booker, A.R. 2006 Quadratic class numbers and character sums. Math. Comp., 75(255), 1481--1492 (electronic).
Bordellès, O. 2002 Explicit upper bounds for the average order of {$d_n(m)$} and application to class number. JIPAM. J. Inequal. Pure Appl. Math., 3(3), Article 38, 15 pp. (electronic).
Bordellés, O. 2005 An explicit Mertens' type inequality for arithmetic progressions. J. Inequal. Pure Appl. Math., 6(3), paper no 67 (10p).
Bordellès, O. 2006 An inequality for the class number. JIPAM. J. Inequal. Pure Appl. Math., 7(3), Article 87, 8 pp. (electronic).
Bordellès, O. 2012 Arithmetic Tales.Universitext. Springer London Heidelberg New York Dordrecht.
Bordellès, Olivier. 2015 Some explicit estimates for the Möbius function. J. Integer Seq., 18(11), Article 15.11.1, 13.
Bordignon, Matteo. 2021 A Pólya-Vinogradov inequality for short character sums. Canad. Math. Bull., 64(4), 906--910.
Cazaran, J., & Moree, P. 1999 On a claim of Ramanujan in his first letter to Hardy. Expositiones Mathematicae, 17, 289--312. based on a lecture given 01-12-1997 by J. Cazaran at the Hardy symposium in Sydney.
Cheng, Y., & Graham, S.W. 2004 Explicit estimates for the Riemann zeta function. Rocky Mountain J. Math., 34(4), 1261--1280.
Chua, Kok Seng. 2005 Real zeros of Dedekind zeta functions of real quadratic field. Math. Comput., 74(251), 1457--1470.
Cipolla, M. 1902 La determinatzione assintotica dell`$n^{imo}$ numero primo. Matematiche Napoli, 3, 132--166.
Cipu, Mihai. 2015 Further remarks on Diophantine quintuples. Acta Arith., 168(3), 201--219.
Coffey, M.W. 2006 New results on the Stieltjes constants: asymptotic and exact evaluation. J. Math. Anal. Appl., 317(2), 603--612.
Cohen, H., & Dress, F. 1988 Estimations numériques du reste de la fonction sommatoire relative aux entiers sans facteur carré. Prépublications mathématiques d'Orsay : Colloque de théorie analytique des nombres, Marseille, 73--76.
Dress, F. 1983/84 Théorèmes d'oscillations et fonction de Möbius.URL Sémin. Théor. Nombres, Univ. Bordeaux I, Exp. No 33, 33pp. .
Dress, F. 1993 Fonction sommatoire de la fonction de Möbius 1. Majorations expérimentales. Exp. Math., 2(2).
Dress, F. 1999 Discrépance des suites de Farey. J. Théor. Nombres Bordx., 11(2), 345--367.
Dress, F., & El Marraki, M. 1993 Fonction sommatoire de la fonction de Möbius 2. Majorations asymptotiques élémentaires. Exp. Math., 2(2), 99--112.
Dudek, Adrian W. 2015 On the Riemann hypothesis and the difference between primes. Int. J. Number Theory, 11(3), 771--778.
Dudek, Adrian W. 2016 An explicit result for primes between cubes. Functiones et Approximatio Commentarii Mathematici, 55(2), 177--197.
Duras, J.-L. 1993 Etude de la fonction nombre de façons de représenter un entier comme produit de k facteurs.URLPh.D. thesis, Université de Limoges. .
Duras, J.-L., Nicolas, J.-L., & Robin, G. 1999 Grandes valeurs de la fonction {$d_k$}. Pages 743--770 of: Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997). Berlin: de Gruyter.
Dusart, P. 1998 Autour de la fonction qui compte le nombre de nombres premiers.URLPh.D. thesis, Limoges, . 173 pp.
Dusart, P. 1999a Inégalités explicites pour $\psi(X)$, $\theta(X)$, $\pi(X)$ et les nombres premiers. C. R. Math. Acad. Sci., Soc. R. Can., 21(2), 53--59.
Dusart, P. 1999b The $k$th prime is greater than $k(\ln k+\ln\ln k-1)$ for $k\geq 2$. Math. Comp., 68(225), 411--415.
Dusart, P. 2002 Estimates for $\theta(x;k,\ell)$ for large values of $x$. Math. Comp., 71(239), 1137--1168.
Dusart, P. 2018 Estimates of some functions over primes. Ramanujan J., 45(1), 227--251.
Dusart, Pierre. 2016 Estimates of {$\psi,\theta$} for large values of {$x$} without the Riemann hypothesis. Math. Comp., 85(298), 875--888.
El Marraki, M. 1995 Fonction sommatoire de la fonction $\mu$ de Möbius, majorations asymptotiques effectives fortes. J. Théor. Nombres Bordeaux, 7(2), 407–433.
El Marraki, M. 1996 Majorations de la fonction sommatoire de la fonction $\frac{\mu(n)}n$. Univ. Bordeaux 1, Pré-publication(96-8).
Eum, Ick Sun, & Koo, Ja Kyung. 2015 The Riemann hypothesis and an upper bound of the divisor function for odd integers. J. Math. Anal. Appl., 421(1), 917--924.
Fan, Kai. 2022 An inequality for the distribution of numbers free of small prime factors. Integers, 22, Paper No. A26, 12.
Filaseta, M. 1990 Short interval results for squarefree numbers. J. Number Theory, 35, 128--149.
Filaseta, M., & Trifonov, O. 1996 The distribution of fractional parts with applications to gap results in number theory. Proc. Lond. Math. Soc., III. Ser., 73(2), 241--278.
Ford, K. 2000 Zero-free regions for the Riemann zeta function. Proceedings of the Millenial Conference on Number Theory, Urbana, IL.
Ford, K. 2002 Vinogradov's integral and bounds for the Riemannn zeta function. Proc. London Math. Soc., 85, 565--633.
Frolenkov, D. 2011 A numerically explicit version of the Pólya-Vinogradov inequality. Mosc. J. Comb. Number Theory, 1(3), 25--41.
Gabcke, W. 1979 Neue Herleitung und explizite Restabschaetzung der Riemann-Siegel-Formel.Ph.D. thesis, Mathematisch-Naturwissenschaftliche Fakultät der Georg-August-Universität zu Göttingen.
Gallagher, P.X. 1970 A large sieve density estimate near $\sigma =1$. Invent. Math., 11, 329--339.
Gourdon, X., & Demichel, P. 2004 The $10^{13}$ first zeros of the Riemann Zeta Function and zeros computations at very large height .URLhttp://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
Graham, S. W., & Kolesnik, G. 1991 Van der Corput's Method of Exponential Sums.London Math. Soc. Lect. Note, no. 126. Cambridge University Press.
Granville, A., & Ramaré, O. 1996 Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients. Mathematika, 43(1), 73--107.
Granville, A., & Soundararajan, K. 2007 Large character sums: pretentious characters and the Pólya-Vinogradov theorem. J. Amer. Math. Soc., 20(2), 357--384 (electronic).
Hall, R., & Tenenbaum, G. 1988 Divisors.Cambridge Tracts in Mathematics, vol. 90. Cambridge: Cambridge University Press.
Huxley, M.N., & Sargos, P. 1995 Integer points close to a plane curve of class $C^n$. (Points entiers au voisinage d'une courbe plane de classe $C^n$.). Acta Arith., 69(4), 359--366.
Huxley, M.N., & Sargos, P. 2006 Integer points in the neighborhood of a plane curve of class $C^n$. II. (Points entiers au voisinage d'une courbe plane de classe $C^n$. II.). Funct. Approximatio, Comment. Math., 35, 91--115.
Lehman, R.S. 1966b Separation of zeros of the Riemann zeta-function. Math. Comp., 20, 523--541.
Lehman, R.S. 1970 On the distribution of zeros of the Riemann zeta-function. Proc. London Math. Soc. (3), 20, 303--320.
Levin, B.V., & Fainleib, A.S. 1967 Application of some integral equations to problems of number theory. Russian Math. Surveys, 22, 119--204.
Liu, Ming-Chit, & Wang, Tianze. 2002 Distribution of zeros of Dirichlet $L$-functions and an explicit formula for $\psi(t,\chi)$. Acta Arith., 102(3), 261--293.
Logan, B. F. 1988 An interference problem for exponentials. Michigan Math. J., 35(3), 369--393.
Louboutin, S. 1993 Majorations explicites de $|L(1,\chi)|$. C. R. Acad. Sci. Paris, 316, 11--14.
Louboutin, S. 1996 Majorations explicites de $|L(1,\chi)|$ (suite). C. R. Acad. Sci. Paris, 323, 443--446.
Louboutin, S. 1998 Majorations explicites du résidu au point 1 des fonctions z\^eta. J. Math. Soc. Japan, 50, 57--69.
Louboutin, S. 2000 Explicit bounds for residues of Dedekind zeta functions, values of {$L$}-functions at {$s=1$}, and relative class numbers. J. Number Theory, 85(2), 263--282.
Louboutin, S. 2001 Explicit upper bounds for residues of Dedekind zeta functions and values of {$L$}-functions at {$s=1$}, and explicit lower bounds for relative class numbers of CM-fields. Canad. J. Math., 53(6), 1194--1222.
Louboutin, S. 2003 Explicit lower bounds for residues at {$s=1$} of Dedekind zeta functions and relative class numbers of CM-fields. Trans. Amer. Math. Soc., 355(8), 3079--3098 (electronic).
Louboutin, S. 2013 An explicit lower bound on moduli of Dichlet {$L$}-functions at $s=1$. preprint.
Louboutin, S.R. 2005 On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes. J. Théor. Nombres Bordeaux, 17(2), 559--573.
Louboutin, Stéphane R. 2015 An explicit lower bound on moduli of Dirichlet {$L$}-functions at {$s=1$}. J. Ramanujan Math. Soc., 30(1), 101--113.
Mac Leod, R.A. 1967 A new estimate for the sum $M(x)=\sum_{n\le x}\mu(n)$. Acta Arith., 13. Erratum, ibid. 16 (1969), 99-100.
Mardjanichvili, C. 1939 Estimation d'une somme arithmétique. Comptes Rendus Acad. Sciences URSS, N. s. 22, 387--389.
Massias, J.-P., & Robin, G. 1996 Bornes effectives pour certaines fonctions concernant les nombres premiers. J. Théor. Nombres Bordeaux, 8(1), 215--242.
Maurer, U. 1995 Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters. Journal of Cryptology, 8(3), 123--156.
Mawia, Ramdin. 2017 Explicit estimates for some summatory functions of primes. Integers, 17, 18pp. A11.
McCurley, K.S. 1984a Explicit estimates for the error term in the prime number theorem for arithmetic progressions. Math. Comp., 42, 265--285.
McCurley, K.S. 1984b Explicit estimates for $\theta(x;3,\ell)$ and $\psi(x;3,\ell)$. Math. Comp., 42, 287--296.
McCurley, K.S. 1984c Explicit zero-free regions for Dirichlet $L$-functions. J. Number Theory, 19, 7--32.
McGown, Kevin J. 2012 Norm-Euclidean cyclic fields of prime degree. Int. J. Number Theory, 8(1), 227--254.
Montgomery, H.L. 1994 Ten lectures on the interface between analytic number theory and harmonic analysis.CBMS Regional Conference Series in Mathematics, vol. 84. Published for the Conference Board of the Mathematical Sciences, Washington, DC.
Platt, D.J. 2013 Numerical computations concerning the GRH.URLPh.D. thesis. .
Platt, D.J., & Ramaré, O. 2017 Explicit estimates: from ${\Lambda}(n)$ in arithmetic progressions to ${\Lambda}(n)/n$. Exp. Math., 26, 77--92.
Pohst, M., & Zassenhaus, H. 1989 Algorithmic algebraic number theory.Encyclopedia of Mathematics and its Applications, vol. 30. Cambridge: Cambridge University Press.
Pomerance, C. 2011 Remarks on the Pólya-Vinogradov inequality. Integers (Proceedings of the Integers Conference, October 2009), 11A, Article 19, 11pp.
Preissmann, E. 1984 Sur une inégalité de Montgomery et Vaughan. Enseign. Math., 30, 95--113.
Qiu, Zhuo Ming. 1991 An inequality of Vinogradov for character sums. Shandong Daxue Xuebao Ziran Kexue Ban, 26(1), 125--128.
Rademacher, H. 1959 On the Phragmén-Lindelöf theorem and some applications. Math. Z., 72, 192--204.
Ramaré, O. 1995 On Snirel'man's constant. Ann. Scu. Norm. Pisa, 21, 645--706.
Ramaré, O. 2001 Approximate Formulae for $L(1,\chi)$. Acta Arith., 100, 245--266.
Ramaré, O. 2002 Sur un théorème de Mertens. Manuscripta Math., 108, 483--494.
Ramaré, O. 2004 Approximate Formulae for $L(1,\chi)$, II. Acta Arith., 112, 141--149.
Ramaré, O. 2007 Eigenvalues in the large sieve inequality. Funct. Approximatio, Comment. Math., 37, 7--35.
Ramaré, O. 2009 Arithmetical aspects of the large sieve inequality.Harish-Chandra Research Institute Lecture Notes, vol. 1. New Delhi: Hindustan Book Agency. With the collaboration of D. S. Ramana.
Ramaré, O. 2012 On long $\kappa$-tuples with few prime factors. Proc. of the London Math. Soc., 104(1), 158--196.
Ramaré, O. 2013a Explicit estimates for the summatory function of ${\Lambda}(n)/n$ from the one of ${\Lambda}(n)$. Acta Arith., 159(2), 113--122.
Ramaré, O. 2013b From explicit estimates for the primes to explicit estimates for the Moebius function. Acta Arith., 157(4), 365--379.
Ramaré, O. 2013c Some elementary explicit bounds for two mollifications of the Moebius function. Functiones et Approximatio, 49(2), 229--240.
Ramaré, O. 2014 Explicit estimates on the summatory functions of the Moebius function with coprimality restrictions. Acta Arith., 165(1), 1--10.
Ramaré, O. 2015 Explicit estimates on several summatory functions involving the Moebius function. Math. Comp., 84(293), 1359--1387.
Ramaré, O. 2016 An explicit density estimate for Dirichlet $L$-series. Math. Comp., 85(297), 335--356.
Ramaré, O. 2016 Modified truncated Perron formulae. Ann. Blaise Pascal, 23(1), 109--128.
Robin, G. 1983a Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombres premiers et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de $n$. Acta Arith., 42, 367--389.
Robin, G. 1983b Grandes valeurs de fonctions arithmétiques et problèmes d'optimisation en nombres entiers.Ph.D. thesis, Université de Limoges.
Rosser, J.B. 1938 The $n$-th prime is greater than $n\log n$. Proc. Lond. Math. Soc., II. Ser., 45, 21--44.
Rosser, J.B. 1941 Explicit bounds for some functions of prime numbers. Amer. J. Math., 63, 211--232.
Rosser, J.B. 1949 Real roots of Dirichlet $L$-series. Bull. Amer. Math. Soc., 55, 906--913.
Rosser, J.B. 1950 Real roots of Dirichlet $L$-series. J. Res. Nat. Bur. Standards, 505--514.
Schoenfeld, L. 1969 An improved estimate for the summatory function of the Möbius function. Acta Arith., 15, 223--233.
Schoenfeld, L. 1976 Sharper bounds for the Chebyshev Functions $\vartheta(X)$ and $\psi(X)$ II. Math. Comp., 30(134), 337--360.
Selberg, A. 1943 On the normal density of primes in small intervals, and the difference between consecutive primes. Archiv Math. Naturv., B.47(6), 82--105.
Siebert, H. 1976 Montgomery's weighted sieve for dimension two. Monatsh. Math., 82(4), 327--336.
Spira, R. 1969 Calculation of Dirichlet {$L$}-functions. Math. Comp., 23, 489--497.
Trudgian, T. 2015a An improved upper bound for the error in the zero-counting formulae for Dirichlet $L$-function and Dedekind zeta-function on the critical line. Math. Comp., 84(293), 1439--1450.
Trudgian, Tim. 2015b Bounds on the number of Diophantine quintuples. J. Number Theory, 157, 233--249.
Trudgian, Tim. 2016 Updating the error term in the prime number theorem. Ramanujan J., 39(2), 225--234.
Trudgian, Timothy S. 2014 An improved upper bound for the argument of the Riemann zeta-function on the critical line II. J. Number Theory, 134, 280--292.
Vinogradov, I.M. 2004 The method of trigonometrical sums in the theory of numbers.Mineola, NY: Dover Publications Inc. Translated from the Russian, revised and annotated by K. F. Roth and Anne Davenport, Reprint of the 1954 translation.
von Sterneck, R.D. 1898 Bemerkung über die Summierung einiger zahlentheorischen Funktionen. Monatsh. Math. Phys., 9, 43--45.
Ward, D. R. 1927 Some Series Involving Euler's Function. J. London Math. Soc., S1-2(4), 210--214.