Loading [MathJax]/extensions/jsMath2jax.js

     Home > Projet TME-EMT > Explicit bounds on primes


Explicit bounds on primes

Collecting references: [Dusart, 1998 †Dusart, P. 1998
Autour de la fonction qui compte le nombre de nombres premiers
Ph.D. thesis, Limoges, . 173 pp.
], [Dusart, 2016 †Dusart, Pierre. 2016
Estimates of {$\psi,\theta$} for large values of {$x$} without the Riemann hypothesis
Math. Comp., 85(298), 875--888.
],
1. Bounds on primes, in special ranges
The paper [Rosser & Schoenfeld, 1962 †Rosser, J.B., & Schoenfeld, L. 1962
Approximate formulas for some functions of prime numbers
Illinois J. Math., 6, 64--94.
], contains several bounds valid only when the variable is small enough. In [Büthe, 2016 †Büthe, Jan. 2016
Estimating {$\pi(x)$} and related functions under partial RH assumptions
Math. Comp., 85(301), 2483--2498.
], the author proves the next theorem.
Theorem (2016)
Assume the Riemann Hypothesis has been checked up to height $H_0$. Then when $x$ satisfies $\sqrt{x/\log x}\le H_0/4.92$, we have
  • $|\psi(x)-x|\le \frac{\sqrt{x}}{8\pi}\log^2x$ when $x > 59$,
  • $|\theta(x)-x|\le \frac{\sqrt{x}}{8\pi}\log^2x$ when $x > 599$,
  • $|\pi(x)-\text{li}(x)|\le \frac{\sqrt{x}}{8\pi}\log x$ when $x > 2657$.
If we use the value $H_0=30\,610\,046\,000$ obtained by D. Platt in [Platt, 2017 †Platt, David J. 2017
Isolating some non-trivial zeros of zeta
Math. Comp., 86(307), 2449--2467.
], these bounds are thus valid for $x\le 1.8\cdot 10^{21}$. In [Büthe, 2018 †Büthe, Jan. 2018
An analytic method for bounding {$\psi(x)$}
Math. Comp., 87(312), 1991--2009.
], the following bounds are also obtained.
Theorem (2018)
We have
  • $|\psi(x)-x|\le 0.94\sqrt{x}$ when $11 < x\le 10^{19}$,
  • $0<\text{li}(x)-\pi(x)\le\frac{\sqrt{x}}{\log x}\Bigl(1.95+\frac{3.9}{\log x}+\frac{19.5}{\log^2x}\Bigr)$ when $2\le x\le 10^{19}$.
2. Bounds on primes, without any congruence condition
The subject really started with the four papers [Rosser, 1941 †Rosser, J.B. 1941
Explicit bounds for some functions of prime numbers
Amer. J. Math., 63, 211--232.
], [Rosser & Schoenfeld, 1962 †Rosser, J.B., & Schoenfeld, L. 1962
Approximate formulas for some functions of prime numbers
Illinois J. Math., 6, 64--94.
], [Rosser & Schoenfeld, 1975 †Rosser, J.B., & Schoenfeld, L. 1975
Sharper bounds for the Chebyshev Functions $\vartheta(X)$ and $\psi(X)$
Math. Comp., 29(129), 243--269.
] and [Schoenfeld, 1976 †Schoenfeld, L. 1976
Sharper bounds for the Chebyshev Functions $\vartheta(X)$ and $\psi(X)$ II
Math. Comp., 30(134), 337--360.
]. We recall the usual notation: $\pi(x)$ is the number of primes up to $x$ (so that $\pi(3)=2$), the function $\psi(x)$ is the summatory function of the van Mangold function $\Lambda$, i.e. $\psi(x)=\sum_{n\le x}\Lambda(n)$, while we also define $\vartheta(x)=\sum_{p\le x}\log p$. Here are some elegant bounds that one can find in these papers.
Theorem (1962)
  • For $x > 0$, we have $\psi(x)\le 1.03883 x$ and the maximum of $\psi(x)/x$ is attained at $x=113$.
  • When $x\ge17$, we have $\pi(x) > x/\log x$.
  • When $x > 1$, we have $\displaystyle \sum_{p\le x}1/p > \log\log x$.
  • When $x > 1$, we have $\displaystyle \sum_{p\le x}(\log p)/p < \log x$.
There are many other results in these papers. In [Dusart, 1999a †Dusart, P. 1999a
Inégalités explicites pour $\psi(X)$, $\theta(X)$, $\pi(X)$ et les nombres premiers
C. R. Math. Acad. Sci., Soc. R. Can., 21(2), 53--59.
], on can find among other things the inequality $$ \text{When $x\ge17$, we have } \pi(x) > \frac{x}{\log x -1}. $$ And also
Theorem (1999)
  • When $x\ge e^{22}$, we have $\displaystyle\psi(x)=x+O^*\Bigl(0.006409\frac{x}{\log x}\Bigr)$.
  • When $x\ge 10\,544\,111$, we have $\displaystyle\vartheta(x)=x+O^*\Bigl(0.006788\frac{x}{\log x}\Bigr)$.
  • When $x\ge 3\,594\,641$, we have $\displaystyle\vartheta(x)=x+O^*\Bigl(0.2\frac{x}{\log^2 x}\Bigr)$.
  • When $x > 1$, we have $\displaystyle\vartheta(x)=x+O^*\Bigl(515\frac{x}{\log^3 x}\Bigr)$.
This is improved in [Dusart, 2018 †Dusart, P. 2018
Estimates of some functions over primes
Ramanujan J., 45(1), 227--251.
], and in particular, it is shown that the 515 above can be replaced by 20.83 and also that $$ \text{When $x\ge 89\,967\,803$, we have } \vartheta(x)=x+O^*\Bigl(\frac{x}{\log^3 x}\Bigr). $$ Bounds of the shape $|\psi(x)-x|\le \epsilon x$ have started appearing in [Rosser & Schoenfeld, 1962 †Rosser, J.B., & Schoenfeld, L. 1962
Approximate formulas for some functions of prime numbers
Illinois J. Math., 6, 64--94.
]. The latest paper is [Faber & Kadiri, 2015 †Faber, L., & Kadiri, H. 2015
New bounds for $\psi(x)$
Math. Comp., 84(293), 1339--1357.
] with its corrigendum [undefined †undefined
undefined
undefined
], where the explicit density estimate from [Kadiri, 2013 †Kadiri, H. 2013
A zero density result for the Riemann zeta function
Acta Arith., 160(2), 185--200.
] is put to contribution, even for moderate values of the variable. In particular $$ \text{When $x\ge 485\,165\,196$, we have } \psi(x)=x+O^*(0.00053699\,x). $$ In [Platt & Trudgian, 2021b †Platt, David J., & Trudgian, Timothy S. 2021b
The error term in the prime number theorem
Math. Comp., 90(328), 871--881.
], one find the following estimate
Theorem (2021)
When $x\ge e^{2000}$, we have $\biggl|\frac{\psi(x)-x}{x}\biggr|\le 235\,(\log x)^{0.52}\exp-\sqrt{\frac{\log x}{5.573412}}\;.$
Refined bounds for $\pi(x)$ are to be found in [Panaitopol, 2000 †Panaitopol, L. 2000
A formula for {$\pi(x)$} applied to a result of Koninck-Ivić
Nieuw Arch. Wiskd. (5), 1(1), 55--56.
] and in [Axler, 2016 †Axler, Christian. 2016
New bounds for the prime counting function
Integers, 16, Paper No. A22, 15.
]. By comparing in an efficient manner with $\psi(x)-x$, [Ramaré, 2013a †Ramaré, O. 2013a
Explicit estimates for the summatory function of ${\Lambda}(n)/n$ from the one of ${\Lambda}(n)$
Acta Arith., 159(2), 113--122.
], obtained the next two results. [There was an error in this paper which is corrected below].
Theorem (2013)
For $x > 1$, we have $\sum_{n\le x}\Lambda(n)/n=\log x-\gamma+O^*(1.833/\log^2x)$. When $x\ge 1\,520\,000$, we can replace the error term by $O^*(0.0067/\log x)$. When $x\ge 468\,000$, we can replace the error term by $O^*(0.01/\log x)$. Furthermore, when $1\le x\le 10^{10}$, this error term can be replaced by $O^*(1.31/\sqrt{x})$.

Theorem (2013)
For $x\ge 8950$, we have $$ \sum_{n\le x}\Lambda(n)/n=\log x-\gamma +\frac{\psi(x)-x}{x}+O^*\Bigl(\frac{1}{2\sqrt{x}}+1.75\cdot 10^{-12}\Bigl) $$.
[Mawia, 2017 †Mawia, Ramdin. 2017
Explicit estimates for some summatory functions of primes
Integers, 17, 18pp. A11.
] developed the method to incorporate more functions (and corrected the initial work), extending results of [Rosser & Schoenfeld, 1962 †Rosser, J.B., & Schoenfeld, L. 1962
Approximate formulas for some functions of prime numbers
Illinois J. Math., 6, 64--94.
]. Here are some of his results.
Theorem (2017)
For $x\ge 2$, we have $$ \sum_{p\le x}\frac1p=\log\log x+B+O^*\Bigl(\frac{4}{\log^3x}\Bigr). $$ When $x\ge 1000$, one can replace the 4 in the error term by 2.3, and when $x\ge24284$, by 1. The constant $B$ is the expected one.

Theorem (2017)
For $\log x\ge 4635$, we have $$ \sum_{p\le x}\frac1p=\log\log x+B+O^*\Bigl(1.1\frac{\exp(-\sqrt{0.175\log x})}{(\log x)^{3/4}}\Bigr). $$

When truncating sums over primes, Lemma 3.2 of [Ramaré, 2016 †Ramaré, O. 2016
An explicit density estimate for Dirichlet $L$-series
Math. Comp., 85(297), 335--356.
] is handy.
Theorem (2016)
Let $f$ be a C${}^1$ non-negative, non-increasing function over $[P,\infty[$, where $P\ge 3\,600\,000$ is a real number and such that $\lim_{t\rightarrow\infty}tf(t)=0$. We have \begin{equation*} \sum_{p\ge P} f(p)\log p \le (1+\epsilon) \int_P^\infty f(t) dt + \epsilon P f(P) + P f(P) / (5 \log^2 P) \end{equation*} with $\epsilon=1/914$. When we can only ensure $P\ge2$, then a similar inequality holds, simply replacing the last $1/5$ by a 4.
The above result relies on (5.1*) of [Schoenfeld, 1976 †Schoenfeld, L. 1976
Sharper bounds for the Chebyshev Functions $\vartheta(X)$ and $\psi(X)$ II
Math. Comp., 30(134), 337--360.
] because it is easily accessible. However on using Proposition 5.1 of [Dusart, 2016 †Dusart, Pierre. 2016
Estimates of {$\psi,\theta$} for large values of {$x$} without the Riemann hypothesis
Math. Comp., 85(298), 875--888.
], one has access to $\epsilon=1/36260$.

Here is a result due to [Treviño, 2012 †Treviño, Enrique. 2012
The least inert prime in a real quadratic field
Math. Comp., 81(279), 1777--1797.
].
Theorem (2012)
For $x$ a positive real number. If $x \geq x_0$ then there exist $c_1$ and $c_2$ depending on $x_0$ such that $$ \frac{x^2}{2\log{x}} + \frac{c_1 x^2}{\log^2{x}} \leq \sum_{p \leq x} p \leq \frac{x^2}{2\log{x}} + \frac{c_2 x^2}{\log^2{x}}. $$ The constants $c_1$ and $c_2$ are given for various values of $x_0$ in the next table.
$x_0$ $c_1$ $c_2$
315437 0.205448 0.330479
468577 0.211359 0.32593
486377 0.212904 0.325537
644123 0.21429 0.322609
678407 0.214931 0.322326
758231 0.215541 0.321504
758711 0.215939 0.321489
10544111 0.239818 0.29251

Further estimates can be found in [Axler, 2019 †Axler, Christian. 2019
On the sum of the first {$n$} prime numbers
J. Théor. Nombres Bordeaux, 31(2), 293--311.
] (Proposition 2.7 and Corollary 2.8). In [Deléglise & Nicolas, 2019a †Deléglise, Marc, & Nicolas, Jean-Louis. 2019a
An arithmetic equivalence of the Riemann hypothesis
J. Aust. Math. Soc., 106(2), 235--273.
] (Proposition 2.7 and Corollary 2.8) and [Deléglise & Nicolas, 2019b †Deléglise, Marc, & Nicolas, Jean-Louis. 2019b
The Landau function and the Riemann Hypothesis
J. Combinatorics and Numb. Th., 11(2), 45--95.
] (Proposition 2.5, Corollary 2.6, 2.7 and 2.8), we find among other results the next two.
Theorem (2019)
On setting $\pi_r(x)=\sum_{p\le x}p^r$, we have $$ \frac{3x^2}{20(\log x)^4} \le \pi_1(x)-\biggl( \frac{x^2}{2\log x} +\frac{x^2}{4(\log x)^2} \frac{x^2}{4(\log x)^3} \biggr) \le \frac{107x^2}{160(\log x)^4} $$ where the upper estimate is valid when $x\ge 110117910$ and the lower one when $x\ge905238547$.
We have $$ \frac{-1069x^3}{648(\log x)^4} \le \pi_2(x)-\biggl( \frac{x^3}{3\log x} +\frac{x^3}{9(\log x)^2} \frac{x^3}{27(\log x)^3} \biggr) \le \frac{11181x^3}{648(\log x)^4} $$ where the upper estimate is valid when $x\ge 60173$ and the lower one when $x\ge 1091239$.
$$ \pi_3(x)\le 0.271\frac{x^4}{\log x}\quad\text{for $x\ge 664$},$$ $$ \pi_4(x)\le 0.237\frac{x^5}{\log x}\quad\text{for $x\ge 200$},$$ $$ \pi_5(x)\le 0.226\frac{x^5}{\log x}\quad\text{for $x\ge 44$},$$ For $x\ge 1$ and $r\ge5$, we have $$ \pi_r(x)\le \frac{\log 3}{3}\bigl(1+(2/3)^r\bigr) \frac{x^{r+1}}{\log x}$$.
3. Bounds containing $n$-th prime
Denote by $p_n$ the $n$-th prime. Thus $p_1=2,\;p_2=3,\; p_4=5,\cdots$. The classical form of prime number theorem yields easily $p_n \sim n \log n.$ [Rosser, 1938 †Rosser, J.B. 1938
The $n$-th prime is greater than $n\log n$
Proc. Lond. Math. Soc., II. Ser., 45, 21--44.
] shows that this equivalence does not oscillate by proving that $p_n$ is greater than $n\log n$ for $n\geq 2$. The asymptotic formula for $p_n$ can be developped as shown in [Cipolla, 1902 †Cipolla, M. 1902
La determinatzione assintotica dell`$n^{imo}$ numero primo
Matematiche Napoli, 3, 132--166.
]: $$ p_n\sim n\left(\log n+\log\log n -1+\frac{\log\log n-2}{\log n} -\frac{(\ln\ln n)^2-6\log\log n +11}{2\log^2 n}+\cdots\right). $$ This asymptotic expansion is the inverse of the logarithmic integral $\mbox{Li}(x)$ obtained by series reversion. But [Rosser, 1938 †Rosser, J.B. 1938
The $n$-th prime is greater than $n\log n$
Proc. Lond. Math. Soc., II. Ser., 45, 21--44.
] also proved that for every $n> 1$: $$ n (\log n + \log \log n - 10) < p_n < n (\log n + \log\log n +8). $$ He improves these results in [Rosser, 1941 †Rosser, J.B. 1941
Explicit bounds for some functions of prime numbers
Amer. J. Math., 63, 211--232.
] : for every $n\geq 55$, $$ n (\log n + \log \log n - 4) < p_n < n (\log n + \log\log n +2). $$ This result was subsequently improved by Rosser and Schoenfeld [Rosser & Schoenfeld, 1962 †Rosser, J.B., & Schoenfeld, L. 1962
Approximate formulas for some functions of prime numbers
Illinois J. Math., 6, 64--94.
] in 1962 to $$ n (\log n + \log \log n - 3/2) < p_n < n (\log n + \log\log n -1/2), $$ for $n > 1$ and $n > 19$ respectively. The constants were subsequently reduced by [Robin, 1983a †Robin, G. 1983a
Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombres premiers et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de $n$
Acta Arith., 42, 367--389.
]. In particular, the lower bound $$ n (\log n + \log \log n - 1.0072629) < p_n $$ is valid for $n>1$ and the constant $1.0072629$ can be replaced by 1 for $p_k\leq 10^{11}$. Then [Massias & Robin, 1996 †Massias, J.-P., & Robin, G. 1996
Bornes effectives pour certaines fonctions concernant les nombres premiers
J. Théor. Nombres Bordeaux, 8(1), 215--242.
] showed that the lower bound constant equals to 1 was admissible for $p_k < e^{598}$ and $p_k > e^{1800}$. Finally, [Dusart, 1999b †Dusart, P. 1999b
The $k$th prime is greater than $k(\ln k+\ln\ln k-1)$ for $k\geq 2$
Math. Comp., 68(225), 411--415.
] showed that $$ n(\log n - \log \log n - 1) < p_n $$ for all $n > 1$, and also that $$ p_n < n (\log n + \log\log n - 0.9484) $$ for $n > 39017$ i.e. $p_n > 467\,473$. In [Carneiro et al., 2019 †Carneiro, Emanuel, Milinovich, Micah, & Soundararajan, Kannan. 2019
Fourier optimization and prime gaps
], the authors prove the next result.
Theorem (2019)
Under the Riemann Hypothesis we have $p_{n+1}-p_n\le\frac{22}{25}\sqrt{p_n}\log p_n$.


In [Axler, 2019 †Axler, Christian. 2019
On the sum of the first {$n$} prime numbers
J. Théor. Nombres Bordeaux, 31(2), 293--311.
], we find (Theorem 1.6 and 1.7) the next result.

Theorem (2019)
We have $$ \sum_{i\le k}p_i\ge \frac{k^2}4 +\frac{k^2}{4\log k} -\frac{k^2(\log\log k-2.9)}{4(\log k)^2}\quad(\text{for $k\ge 6309751$}), $$ as well as $$ \sum_{i\le k}p_i\le \frac{k^2}4 +\frac{k^2}{4\log k} -\frac{k^2(\log\log k-4.42)}{4(\log k)^2}\quad(\text{for $k\ge 256376$}), $$


In [De Koninck & Letendre, 2020 †De Koninck, Jean-Marie, & Letendre, Patrick. 2020
New upper bounds for the number of divisors function
Colloq. Math., 162(1), 23--52.
], we find in passing (Lemma 4.8) the next result.

Theorem (2020)
We have $$ \sum_{i\le k}\log p_i\le k\bigl(\log k+\log\log -3/4\Bigr)\quad(\text{for $k\ge 4$}), $$ as well as $$ \sum_{i\le k}\log\log p_i\ge k\biggl(\log\log k+\frac{\log\log -5/4}{\log k}\biggr) \quad(\text{for $k\ge319$}). $$
4. Bounds on primes in arithmetic progressions
Collecting references: [McCurley, 1984a †McCurley, K.S. 1984a
Explicit estimates for the error term in the prime number theorem for arithmetic progressions
Math. Comp., 42, 265--285.
], [McCurley, 1984b †McCurley, K.S. 1984b
Explicit estimates for $\theta(x;3,\ell)$ and $\psi(x;3,\ell)$
Math. Comp., 42, 287--296.
], [Ramaré & Rumely, 1996 †Ramaré, O., & Rumely, R. 1996
Primes in arithmetic progressions
Math. Comp., 65, 397--425.
], [Dusart, 2002 †Dusart, P. 2002
Estimates for $\theta(x;k,\ell)$ for large values of $x$
Math. Comp., 71(239), 1137--1168.
], Lemma 10 of [Moree, 2004 †Moree, P. 2004
Chebyshev's bias for composite numbers with restricted prime divisors
Math. Comp., 73(245), 425--449.
], section 4 of [Moree & te Riele, 2004 †Moree, P., & te Riele, H.J.J. 2004
The hexagonal versus the square lattice
Math. Comp., 73(245), 451--473.
]. A consequence of Theorem 1.1 and 1.2 of [Bennett et al., 2018 †Bennett, Michael A., Martin, Greg, O'Bryant, Kevin, & Rechnitzer, Andrew. 2018
Explicit bounds for primes in arithmetic progressions
Illinois J. Math., 62(1-4), 427--532.
] states that
Theorem (2018)
We have $\displaystyle \max_{3\le q\le 10^4}\max_{ x\ge 8\cdot 10^9}\max_{\substack{1\le a\le q,\\ (a,q)=1}} \frac{\log x}{x}\Bigl| \sum_{\substack{n\le x,\\ n\equiv a[q]}}\Lambda(n) -\frac{x}{\varphi(q)}\Bigr|\le 1/840. $
When $q\in(10^4, 10^5]$, we may replace $1/840$ by $1/160$ and when $q\ge 10^5$, we may replace $1/840$ by $\exp(0.03\sqrt{q}\log^3q)$.
Furthermore, we may replace $\sum_{\substack{n\le x,\\ n\equiv a[q]}}\Lambda(n)$ by $\sum_{\substack{p\le x,\\ p\equiv a[q]}}\log p$ with no changes in the constants.
Similarly, as a consequence of Theorem 1.3 of [Bennett et al., 2018 †Bennett, Michael A., Martin, Greg, O'Bryant, Kevin, & Rechnitzer, Andrew. 2018
Explicit bounds for primes in arithmetic progressions
Illinois J. Math., 62(1-4), 427--532.
] states that
Theorem (2018)
We have $\displaystyle \max_{3\le q\le 10^4}\max_{ x\ge 8\cdot 10^9}\max_{\substack{1\le a\le q,\\ (a,q)=1}} \frac{\log^2 x}{x}\Bigl| \sum_{\substack{p\le x,\\ p\equiv a[q]}}1 -\frac{\textrm{Li}(x)}{\varphi(q)}\Bigr|\le 1/840. $
When $q\in(10^4, 10^5]$, we may replace $1/840$ by $1/160$ and when $q\ge 10^5$, we may replace $1/840$ by $\exp(0.03\sqrt{q}\log^3q)$.

Concerning estimates with a logarithmic density, in [Ramaré, 2002 †Ramaré, O. 2002
Sur un théorème de Mertens
Manuscripta Math., 108, 483--494.
] and in [Platt & Ramaré, 2017 †Platt, D.J., & Ramaré, O. 2017
Explicit estimates: from ${\Lambda}(n)$ in arithmetic progressions to ${\Lambda}(n)/n$
Exp. Math., 26, 77--92.
], estimates for the functions $\displaystyle\sum_{\substack{n\le x,\\ n\equiv a[q]}}\Lambda(n)/n$ are considered. Extending computations from the former, the latter paper Theorem 8.1 reads as follows.
Theorem (2016)
We have $\displaystyle \max_{q\le 1000}\max_{q\le x\le 10^5}\max_{\substack{1\le a\le q,\\ (a,q)=1}} \sqrt{x}\Bigl| \sum_{\substack{n\le x,\\ n\equiv a[q]}}\frac{\Lambda(n)}{n} -\frac{\log x}{\varphi(q)}-C(q,a)\Bigr|\in(0.8533,0.8534) $ and the maximum is attained with $q=17$, $x=606$ and $a=2$.
The constant $C(q,a)$ is the one expected, i.e. such that $\sum_{\substack{n\le x,\\ n\equiv a[q]}}\frac{\Lambda(n)}{n} -\frac{\log x}{\varphi(q)}-C(q,a)$ goes to zero when $x$ goes to infinity.
When $q$ belongs to "Rumely's list", i.e. in one of the following set: Theorem 2 of [Ramaré, 2002 †Ramaré, O. 2002
Sur un théorème de Mertens
Manuscripta Math., 108, 483--494.
] gives the following.
Theorem (2002)
When $q$ belongs to Rumely's list and $a$ is prime to $q$, we have $\displaystyle \sum_{\substack{n\le x,\\ n\equiv a[q]}}\frac{\Lambda(n)}{n} =\frac{\log x}{\varphi(q)}+C(q,a)+O^*(1) $ as soon as $x\ge1$.
More precise bounds are given.
5. Least prime verifying a condition
[Bach & Sorenson, 1996 †Bach, E., & Sorenson, J. 1996
Explicit bounds for primes in residue classes
Math. Comp., 65(216), 1717--1735.
], [Kadiri, 2008 †Kadiri, H. 2008
Short effective intervals containing primes in arithmetic progressions and the seven cube problem
Math. Comp., 77(263), 1733--1748.
],

Last updated on June 3rd, 2022, by Olivier Ramaré