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Abstract

We prove that |
∑{

d≤x,
(d,q)=1

µ(d)/d| ≤ 2.4 (q/ϕ(q))/ log(x/q) for

every x > q ≥ 1 and similar estimates for the Liouville functions. We
give also better constants when x/q is larger.

1 Introduction

In explicit analytic number theory, one needs very often to evaluate the

average of a multiplicative function, say f . The usual strategy is to compare

this function to a more usual model f0, as in [12, Lemma 3.1]. This process

is also well detailed in [2]. When the model is f0 = 1, the situation is readily

cleared out; it is also well studied when this model is the divisor function in

[1, Corollary 2.2]. We signal here that the case of the characteristic function

of the squarefree numbers is specifically handled in [4]. The next problem is

to use the Moebius function as a model. In this case the necessary material

can be found in [13], though of course the saving is much less and may be

insufficient: when the model is 1 or the divisor function, or the characteristic
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function of the squarefree integers, the saving is a power of the size of the

variable, while now it is only a logarithm (or the square of one according to

whether one says that the trivial estimate for
∑

d≤D µ(d)/d is 1 or logD).

One of the consequences is that one has to be more careful, and thrifty,

when it comes to small variations. The variations we consider here is the

addition of a coprimality condition (d, q) = 1, for some fixed q, on the

ranging variable d. Our first aim is thus to show how to get explicit estimates

for the family of functions

mq(x) =
∑
n≤x,

(n,q)=1

µ(n)/n, m(x) = m1(x) (1.1)

from explicit estimates concerning solely m(x). The definition of the Liou-

ville function λ(n) is recalled below in (1.3), while the auxiliary function `q

is defined in (1.4).

Theorem 1.1. We have, when 1 ≤ q < x, where q is an integer and x a

real number,∣∣∣∣ ∑
n≤x,

(n,q)=1

µ(n)

n

∣∣∣∣ ≤ q

ϕ(q)

2.4

log(x/q)
,

∣∣∣∣ ∑
n≤x,

(n,q)=1

λ(n)

n

∣∣∣∣ ≤ q

ϕ(q)

0.79

log(x/q)
.

Moreover log(x/q)|`q(x)| ≤ 0.155 q
ϕ(q)

and log(x/q)|mq(x)| ≤ 3
2

q
ϕ(q)

when

x/q ≥ 3310. We also have log(x/q)|mq(x)| ≤ 7
8

q
ϕ(q)

when x/q ≥ 9960.

The sole previous estimate on mq(x) seems to be [7, Lemma 10.2] which

bounds |mq(x)| uniformly by 1. The estimate for m(x) that will provide the

initial step comes from [13]

|m(x)| ≤ 0.03/ log x (x ≥ X0 = 11 815). (1.2)

Let us first note that the simplest treatment of this condition via the

Moebius function, i.e. writing

1(d,q)=1 =
∑
δ|q,
δ|d

µ(δ),

does not work here. Indeed we get:∑
d≤D,
(d,q)=1

µ(d)

d
=
∑
δ|q

µ(δ)
∑
δ|d≤D

µ(d)

d
=
∑
δ|q

µ(δ)2

δ

∑
d≤D/δ,
(d,δ)=1

µ(d)

d
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and we are back to the initial problem with different parameters. The clas-

sical workaround (used for instance in [10, near (7)] but already known by

Landau) runs as follows: we determine a function gq such that 1(n,q)=1µ(n) =

gq ? µ(n), where ? denotes the arithmetic convolution product. The draw-

back of this method is that the support of g is not bounded (determining

gq by comparing the Dirichlet series is a simple exercise). So if we write∑
d≤D,
(d,q)=1

µ(d)/d =
∑
δ≤D

gq(δ)

δ

∑
d≤D/δ

µ(d)

d
,

we are forced to two things:

1. using estimates for
∑

d≤D/δ µ(d)/d when D/δ can be small,

2. completing the sum over δ to get a decent result.

Both steps introduce quite a loss when q is not specified. We propose here

a different approach by introducing the Liouville function as an interme-

diary. This function λ(n) is the completely multiplicative function that is

1 on integers that have an even number of prime factors – counted with

multiplicity – and −1 otherwise. It satisfies∑
n≥1

λ(n)

ns
=
ζ(2s)

ζ(s)
. (1.3)

We introduce the family of auxiliary functions

`q(x) =
∑
n≤x,

(n,q)=1

λ(n)/n, `(x) = `1(x). (1.4)

Our process runs as follows: we derive bounds for `(x) from bounds on m(x)

and some computations, derive bounds on `q(x) from bounds on `(x), and

finally derive bounds on µq(x) from bounds on `q(x). The theoretical steps

are contained in the three Lemmas 2.3, 2.5 and 3.2.

We complete this introduction by signalling that [14] contains explicit

estimates with a large range of uniformity for sums of the shape∑
d≤x,

(d,r)=1

µ(d)

d1+ε

and for a similar sum but with the summand µ(d) log(x/d)/d1+ε. The path

we followed there is essentially elementary and the saving is less.
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I thank Harald Helfgott for interesting discussions that pushed me into

pulling this note out of its drawer. Special thanks are also due to the referee

for his/her very careful reading: several numerical errors have been corrected

in the process, and the arguments are also now better exposed.

2 From the Moebius function to the Liou-

ville function

Lemma 2.1. For 2 ≤ x ≤ 906 000 000, we have |`(x)| ≤ 1.347/
√
x.

For 2 ≤ x ≤ 1.1 · 1010, we have |`(x)| ≤ 1.41/
√
x.

For 1 ≤ x ≤ 1.1 · 1010, we have |`(x)| ≤
√

2/x.

The computations have been run with PARI/GP (see [11]), speeded by

using gp2c as described for instance in [1]. We mention here that [6] proposes

an algorithm to compute isolated values of M(x). This can most probably

be adapted to compute isolated values of `(x), but does not seem to offer

any improvement for bounding |`(x)| on a large range. In [3], the authors

show that

`(x) ≥ 0, (x < 72 185 376 951 205)

and that

`(x) ≥ −2.0757642× 10−9, (x ≤ 75 000 000 000 000)

This takes care of the lower bound for `(x). The computations we ran

are much less demanding in time and algorithm, but however rely on a

large enough sieve-kind of table to compute values of λ(n) on some very

large range. Harald Helfgott (indirectly) pointed out to me that the RAM-

memory can be very large nowadays, allowing to precompute large quantities

to which one has an almost immediate access. Here is a simplified version

of the main loop:

{getbounds(zmin:small, valini:real, zmax:small) =

my(maxi:real, valuesliouville:vecsmall, gotit:vecsmall,

valuel:real, bound:small, pa:small);

/* Precomputing lambda(n): */

valuesliouville = vectorsmall(zmax-zmin+1, m, 1);

gotit = vectorsmall(zmax-zmin+1, m, 1);

forprime (p:small = 2, floor(sqrt(zmax+0.0)),
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bound = floor(log(zmax+0.0)/log(p+0.0));

pa = 1;

for(a:small = 1, bound,

pa *= p;

for(k:small = 1, floor((zmax+0.0)/pa),

if(k*pa >= zmin,

valuesliouville[k*pa-zmin+1] *= -1;

gotit[k*pa-zmin+1] *= p,))));

/* Correction in case of a large prime factor: */

for(n:small = zmin, zmax,

if(gotit[n-zmin+1] < n,

valuesliouville[n-zmin+1] *= -1,));

valuel = (valini + 0.0) + valuesliouville[1]/zmin;

maxi = max( valini*sqrt(zmin+0.0), abs(valuesl*sqrt(zmin+1.0)));

/* Main loop: */

for(n:small = zmin+1, zmax,

valuel += valuesliouville[n-zmin+1]/n;

maxi = max(maxi, abs(valuel)*sqrt(n+1.0)));

return([maxi, valuel]);

}

We used this loop to compute our maximum on intervals of length 2 ·107.

The main function aggregates these results by making the interval vary. The

computations took about half a day on a 64 bits fast desktop equipped of

8G of RAM. In the actual script, we also checked that the computed value

of `(x) is non-negative in this range. Going farther would improve on the

final constants, but only when x/q is large. We compared |`(x)| with 1/
√
x,

and this seems correct for small values, but the works [9] and [8] suggest

that the maximal order is larger than that.

Lemma 2.2. The function

T (y) : y 7→ log y

y

∫ y

√
X0

dv

log v

satisfies T (y) ≤ 1.119 for y ≥ 105.
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Proof. A repeated integration by parts shows that

T (y) =
log y

y

( y

log y
−
√
X0

log
√
X0

+
y

(log y)2
−

√
X0

(log
√
X0)2

+ 2

∫ y

√
X0

dv

(log v)3

)
≤ log y

y

( y

log y
−
√
X0

log
√
X0

+
y

(log y)2
−

√
X0

(log
√
X0)2

)
+

2T (y)

(log
√
X0)2

from which we deduce that

T (y) ≤ 1.1001 ·
(

1 +
1

log y

)
.

This shows that T (y) ≤ 1.113 when y ≥ 1040. We then check numerically

that the function T is increasing and then decreasing, with a maximum

around 12478.8 with value 1.118 598 + O∗(10−6). But this is only an ob-

servation, since a computer computes only a sample of values. Since the

derivative of T can easily be bounded, we obtain the claimed upper bound.

The reader may also consult [5] where a similar process is fully detailed.

The following lemma is a simple exercise:

Lemma 2.3. We have

`q(x) =
∑
u2≤x,
(u,q)=1

mq

(
x/u2

)
/u2. (2.1)

We shall use it only when q = 1, but it is equally easy to state it in

general.

Lemma 2.4. For x > 1, we have |`(x)| ≤ 0.79/ log x.

For x ≥ 3310, we have |`(x)| ≤ 0.155/ log x.

For x ≥ 8918, we have |`(x)| ≤ 0.099/ log x.

Proof. We appeal to Lemma 2.3 (with q = 1) and separate the sum accord-

ing to u ≤ U or u > U where x/U2 ≥ X0. When u ≤ U we apply (1.2), in

the other case we use that |m(x)| ≤ 1

|`(x)| ≤ 0.03
∑
u≤U

1

u2 log(x/u2)
+

1 + U−1

U

With f(t) = 1/(t2 log(x/t2)), we check that

f ′(t) = − 2

t3 log(x/t2)
+

2

t3 log2(x/t2)
.
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This quantity is negative for 1 ≤ t ≤ U , since then x/t2 ≥ x/U2 ≥ X0 > e.

We thus have∑
u≤U

1

u2 log(x/u2)
≤ f(1) +

∫ U

1

f(t)dt =
1

log x
+

∫ U

1

dt

t2 log(x/t2)
.

Changing variables we get

∑
u≤U

1

u2 log(x/u2)
≤ 1

log x
+

1√
x

∫ √x
√
x/U2

dv

2 log v
.

It follows that

|`(x)| ≤ 0.03

log x
+

0.03√
x

∫ √x
√
X0

dv

2 log v
+

1 +
√
X0/x√

x/X0

.

We apply Lemma 2.2 at this level. Hence, when x ≥ 1010,

|`(x)| ≤ 0.03

log x
+

0.03 · 1.119

log x
+

1 +
√
X0/x√

x/X0

≤ 0.06357

log x
+

(1 +
√
X0/x) log x√
x/X0

1

log x

≤ 0.089

log x
≤ 0.099

log x
.

We extend it to x ≥ 17 715 via Lemma 2.1, part one and two, and to x ≥
8918 by direct inspection. This inequality extends to x ≥ 1 by weakening the

constant 0.099 to 0.79. It is straighforward to use some mild computations

to check the validity of the bound 0.155 when x ≥ 3310.

Adding coprimality conditions

Our tool is provided by the simple elementary lemma.

Lemma 2.5. We have

`q(x) =
∑
d|q

µ2(d)

d
`
(
x/d
)
.

The second part of Theorem 1.1 follows immediately by combining Lemma 2.5

together with Lemma 2.4. Actually, what comes out is the bound

|`q(x)| ≤ 0.79

log(x/q)

∑
d|q

µ2(d)

d
=

0.79

log(x/q)

∏
p|q

p+ 1

p
.
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As the function q/ϕ(q) is easier to remember and
∏

p|q
p+1
p
≤ q/ϕ(q), we

simplify the above into

|`q(x)| ≤ 0.79

log(x/q)

q

ϕ(q)
.

When x/q ≥ 3310, one can replace 0.79 by 0.155, and when x/q ≥ 8918,

by 1/10.

3 Back to the Moebius function with copri-

mality coditions

Let us start with a wide ranging estimate:

Lemma 3.1. We have, for every integer q ≥ 1 and every real number x ≥ 1,

|`q(x)| ≤ π2/6.

Proof. This a direct consequence of Lemma 2.3 and [7, Lemma 10.2].1

The following lemma is again a simple exercise.

Lemma 3.2. We have

mq(x) =
∑
u2≤x,
(u,q)=1

µ(u)

u2
`q
(
x/u2

)
.

Proof of Theorem 1.1. We have to prove several estimates of type

ϕ(q) log(x/q)|mq(x)| ≤ c, x/q ≥ N.

We put x∗ = x/q and y = log x∗ = log(x/q) and separate the proof in two

parts. First we consider the case 1 ≤ y ≤ 8, and later the case y > 8.

Case (A) : 1 ≤ y ≤ 8. We appeal to Lemma 3.2. We have for a real parameter

U such that U2 ≤ x∗

|mq(x)| ≤
∑
u2≤x

µ2(u)

u2
∣∣`q(x/u2)∣∣ (3.1)

≤
∑
u≤U

q

ϕ(q)

0.79µ2(u)

u2 log(x/(u2q))
+
π2

6

∑
u>U

µ2(u)

u2

≤ q/ϕ(q)

log(x/q)

(∑
u≤U

0.79µ2(u)

u2(1− 2 log u
log(x/q)

)
+
π2

6

∑
u>U

µ2(u)

u2
log(x/q)

)
.

1If we were to adapt the proof presented in [7] to the case of λ instead of µ, we would
reach the bound 2 and not π2/6.
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This is our starting inequality. We define

ρ(U, y) = 0.79
∑
u≤U

µ2(u)

u2(1− 2 log u
y

)
+
π2

6

∑
u>U

µ2(u)

u2
y. (3.2)

Note that ρ(U, y) = ρ([U ], y) where [U ] is the integer part of U . For each y we

need to select one U such that ρ(U, y) ≤ 2.4. We choose U = 1 for y ∈ [1, a1];

U = 2 for y ∈ [a1, a2]; U = 3 for y ∈ [a2, a3]; and U = 7 for y ∈ [a3, 8].

Where a1 = 1.8665 · · · is a solution of ρ(1, y) = ρ(2, y) ; a2 = 2.6774 · · · is a

solution of ρ(2, y) = ρ(3, y); a3 = 4.1237 · · · is a solution of ρ(3, y) = ρ(7, y).

Each of these three functions is a sum of a linear term ay and terms of type
Ay

(y−2 logn) with A > 0. These are convex for y > 2 log n. In this way it is very

easy to show that ρ(1, y) is convex in [1, a1], ρ(2, y) is convex in [a1, a2],

ρ(3, y) is convex in [a2, a3] and finally that ρ(7, y) is convex in [a3, 8]. So, for

example, to show the inequality ρ(3, y) ≤ 2.4 in the interval [a2, a3] we only

have to show that ρ(3, a2), and ρ(3, a3) ≤ 2.4. This presents no difficulty.

The maximum value obtained is ρ(2, a2) = 2.38790 · · · with

a2 =
237 + 100π2 log 3

50π2
,

ρ(2, a2) =
237

20π2
+ π2

( 79 log 2

948 + 400π2 log(3/2)
− 5 log 3

12

)
+ log 243.

Case (B) : y > 8.

We start from Lemma 3.2, from which we deduce the simpler bound:

|mq(x)| ≤
∑
u2≤x

∣∣`q(x/u2)∣∣/u2
which we then exploit in the same way as what is done in the proof of

Lemma 2.4, replacing the bound |m(x)| ≤ 1 by Lemma 3.1. With x = eU2q

and x∗ = x/q, we thus get

|mq(x)| ≤ q

ϕ(q)

0.79

log x∗
+

0.79 q

ϕ(q)

∫ √x∗/e

1

du

u2 log(x∗/u2)
+
π2
√
e

6

1 +
√
e/x∗√
x∗

≤ q

ϕ(q)

0.79

log x∗
+

0.79 q

ϕ(q)
√
x∗

∫ √x∗
√
e

dv

2 log v
+
π2
√
e

6

1 +
√
e/x∗√
x∗

≤ c(x∗)
q

ϕ(q) log x∗

with

c(x∗) = 0.79 + 0.79
log x∗√
x∗

∫ √x∗
√
e

dv

2 log v
+
π2
√
e

6

1 +
√
e/x∗√
x∗

log x∗.

9



Some numerical work shows that c(x∗) ≤ 2.4 when x∗ ≥ 1 862, so our

inequality is proved for y > log 1862 = 7.52941 · · · . This with part (A)

proves that ϕ(q) log(x/q)|mq(x)| ≤ 2.4 for 1 ≤ q < x.

When x∗ ≥ 3310, we can single out the term u = 1 in (3.1) and modify

the coefficient of the bound on this term from 0.79 into 0.155, then we treat

the rest of the sum in the same way as before. We get a similar bound with

c(x∗) substituted by:

c1(x
∗) = 0.155 + 0.79

log x∗

4 log(x∗/4)
+ 0.79

log x∗√
x∗

∫ √x∗/4

√
e

dv

2 log v

+
π2
√
e

6

1 +
√
e/x∗√
x∗

log x∗.

This yields a maximum not more than 1.466 < 3/2. When x∗ ≥ 3×3310, we

single out the terms of index 1, 2, and 3 similarly. This means substituting

c2(x
∗) to c1(x

∗) where the c2(x
∗) is defined by

c2(x
∗) = 0.155 + 0.155

log x∗

4 log(x∗/4)
+ 0.155

log x∗

9 log(x∗/9)
+ 0.79

log x∗

25 log(x∗/25)

+ 0.79
log x∗√
x∗

∫ √x∗/25

√
e

dv

2 log v
+
π2
√
e

6

1 +
√
ex∗−1/2√
x∗

log x∗.

This yields a maximum not more than 0.871 < 7/8. The proof of Theo-

rem 1.1 is complete.
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[14] O. Ramaré. Some elementary explicit bounds for two mollifications of

the Moebius function. Functiones et Approximatio, 12p, 2012.

11


