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Université de Lille I
F-59655 - Villeneuve d’Ascq - France

Daniel.Tanre@univ-lille1.fr

March 25, 2008

Abstract

Starting from a non-oriented graph G and an integer s, we define
the graph tower G(s). In the linear graph G = Lr case, this results
in the classical square on r × s vertices. The aim of this paper is
to describe an effective method to compute this dichromatic polyno-
mial ZG(s)(q, v) and to prove rationality of the series ΣG(q, v)[X] =∑

s≥1 ZG(s)(q, v)Xs−1. The functionals created for this purpose are
implemented using MuPAD and may be obtained under GPL licence.

1 Dichromatic Polynomial.

Let us begin with the definition of the dichromatic polynomial as can be
found in [3, Chapter X] or [2].

Connection-contraction principle: The dichromatic polynomial of a (non ori-
ented) graph G = (V,E) is a two variables polynomial, denoted by Z(G) or
ZG(q, v) if we need this specification. It is entirely characterised by{

Z(G) = Z(G− e) + vZ(G/e),

Z(Er) = qr,
(1)

where
– e is any edge of G
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– G− e is the graph obtained from G by canceling e,
– G/e is the graph obtained from G by canceling e and by gluing

together the two ends of e. This construction is called connection-contraction
of the edge e.

– Er is the graph on r vertices without edges.

Directly from definition, we get

ZG(q, 0) = q|V |,

where |V | denotes the number of vertices of G. The classical chromatic
polynomial is obtained by specializing v = −1 in the dichromatic polynomial.

Determining Z(G) can be done by proceeding edge after edge, following
the above definition. One can also write Z(G) as the sum over all possible
states where a state is the choice for each edge between cancelation and
connection-contraction. In this latter case, we say we are proceeding by
“clusters”.

Partition function: The dichromatic polynomial can be interpreted in Statis-
tical Mechanics as the partition function PG of a Potts model with q states
on G, through the relation

PG(q, β) = e−β|E|ZG(q, v) , (2)

where |E| denotes the number of edges of G and v = eβ − 1. We do not
give more details here, refering the reader to [3, Section X.3]. Within the
framework of Statistical Mechanics, one of the most important open problem
is the solvability of the partition function for particular graphs like the graph
on the infinite regular lattice of dimension 2. The graph towers we introduce
below were motivated by this problem, quoted by V.F.R. Jones in [4]. We
also may observe that case q = 2, called Ising model, has been solved by L.
Onsager [5]. An explicit presentation of Potts models on different lattices
can be found in [1].

Tutte Polynomial: The Tutte polynomial TG(x, y) of a graph G is related to
its dichromatic polynomial by the formula:

TG(x, y) = (x− 1)−m(y − 1)−|V |ZG((x− 1)(y − 1), (y − 1)) (3)

where m is the number of connected components of G and |V | the number of
its vertices, cf. [3, Section X.2]. Tutte and dichromatic polynomial contain
many informations on the nature of the graph G, cf. [3, Section X.4].
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Graph Towers: Let s be an integer and G = (E, V ) be a non-oriented graph
with r vertices. Denote by x1, . . . , xr the vertices of G. We consider s copies
of G built on the vertices x1,j, . . . , xr,j (j = 1, . . . , s) such that the number
of edges between xa,j and xb,j is exactly the number of edges between xa and
xb in G. We add one edge between xa,j and xa,j+1 for j = 1, . . . , s− 1. The
graph we obtain by this process is called a graph tower and denoted by G(s).
For instance, we have G(1) = G, up to the name of its vertices.

The edges of the copies of G (between xa,j and xb,j) are called vertical
while the edges between xa,j and xa,j+1are called horizontal.

In this paper we describe an effective method to compute the dichromatic
polynomial of G(s). We also prove that the series

ΣG(q, v)[X] =
∑
s≥1

ZG(s)(q, v)Xs−1 (4)

is rational in q and v and we compute it.

Denote by Lr the “linear graph on r vertices”, meaning the graph with
{1, . . . , r} as set of vertices and having one and only one edge between a and
a + 1 if a ∈ {1, . . . , r − 1}. The graph tower Lr(s) is the squaring Hr,s with
r lines and s columns built on r × s points. The dichromatic polynomial
Z(Hr,s) is the main motivation of this work.

Generalised graph tower: We could have chosen for this study a more general
framework which we describe here. Let s be an integer, G = (E, V ) a non-
oriented graph on r vertices and Γ a bipartite graph, on two sets of r elements.

We define G⊗ Γs as follows:
– we consider s copies of G (the “columns” whose edges are “vertical”),
– we link these columns with the graph Γ adding “horizontal edges” by

this process.
The graph tower G(s) is the particular case G⊗ Γs with

Γ = {(i, i), 1 ≤ i ≤ r}. (5)

In the rest of this paper we restrict our attention to this case.

2 Presentation of the library.

The script of this library may be obtained (under a GPL licence) at

http://www-gat.univ-lille1.fr/~ramare/ServeurPerso/
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under the names Dichromate.mu et Dichromate.help.

An elementary example: In our program, a graph is a list whose first element
is the set of vertices and the second one the list of edges. Each edge is the
list of its two adjacent vertices. For instance

G := [{1, 2, 3}, [[1, 1], [1, 2], [2, 3], [3, 1]]] (6)

is the complete graph on three vertices with a loop around vertex 1:

1

2
��

��
��

�

3
??

??
??

?

Functionals and variables : The vertices are expressions whose equality is
checked with “=”. We first have a functional Dichromate :: DiChromatic(G)
which uses the connection-contraction principle. For the previous example,
we get:

Dichromate :: DiChromatic(G) = q3 + 3qv2 + 3q2v+ 4qv3 + q3v+ qv4 + 3q2v2.

Since variables q and v could be reserved for another use, we use DiChromateq
and DiChromatev internally and substitute q and v only for the output.

As for the usual chromatic polynomial, if we wish MuPAD to work with
one variable polynomials, we are simply to specify:

DiChromatev := −1. (7)

Such an explicit specification can also be done for the variable DiChromateq.
Output variables q and v are defined in DiChromateqvxyDefault whose de-
fault value is

DiChromateqvxyDefault := [hold(q), hold(v), hold(x), hold(y)]. (8)

Variables x and y are DiChromatex and DiChromatey internally and are
treated like q and v. They appear in the Tutte polynomial.
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Dichromatic polynomial of a graph tower: Let G be the following graph

21

encoded by G := [{1, 2}, [[1, 1], [1, 2]]]. The polynomial ZG(2)(q, v) can be
determined using

Dichromate :: RectDiChromatic([{1, 2}, [[1, 1], [1, 2]]], 2) (9)

which gives

24qv4 + q4v+ 68qv5 + 71qv6 + 35qv7 + 9qv8 + qv9 + 21q2v3 + 8q3v2 + 51q2v4

+ 18q3v3 + 2q4v2 + 40q2v5 + 12q3v4 + q4v3 + 11q2v6 + 2q3v5 + q2v7 (10)

The series ΣG(q, v)[X] (cf. 4) can be computed by

Dichromate :: RectDiChromatic([{1, 2}, [[1, 1], [1, 2]]], hold(All)) (11)

which gives

qv(1 + v) + q2(1 + v)−Xq2v2(1 + v)3

1−X(1 + v)(v2(4 + v) + 3qv + q2) +X2v2(1 + v)3(v2 + 2qv + q2)
(12)

We can specialise q and/or v for this computation but not X which stays
hold(X) all along the evaluation.

Moreover since the linear graph on r vertices Lr is of special interest
to us, we can denote it by r in Dichromate :: RectDiChromatic (but not in
Dichromate :: DiChromatic) in such a way that

Dichromate :: RectDiChromatic(2, 3)

= Dichromate :: RectDiChromatic([{1, 2}, [[1, 2]]], 3).
(13)

This function owns a third optional argument whose special value is TRUE.
Indeed, we have two ways to compute

Dichromate :: RectDiChromatic(r, s).

We can iterate s times the functional ψG described below, or we can
compute the corresponding power series and take its s-coefficient. As it is,
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Dichromate :: RectDiChromatic(r, s) chooses the first procedure if s ≤ r2 and
the second one otherwise. Still, the user can prefer iteration, in which case
he should use Dichromate :: RectDiChromatic(r, s,TRUE). This is because
if the computation of ZL4(1000)(q, v) is clearly faster using the series, the case
ZL4(15)(q, v) is unclear. Observe that

Dichromate :: RectDiChromatic(G, 1) = Dichromate :: DiChromatic(G)

though the two procedures are distinct: Dichromate :: DiChromatic uses the
connection-contraction principle, while Dichromate :: RectDiChromatic works
with cluster expansion in case s = 1.

The Tutte polynomial can be obtained by Dichromate :: RectTutte with
the same parameters than Dichromate :: RectDiChromatic.

By calling

Dichromate :: RectDiChromatic(G, hold(All))

with G = [{1, 2, 3}, [[1, 1], [1, 2], [2, 3], [3, 1]]] already considered in (6), the
reader will discover how intricate our results can be.

3 Graph tower dichromatic polynomial: the

problematic.

Let s be an integer and G = (E, V ) a non-oriented graph on r vertices. Recall
that we are interested in computing Z(G(s)) where G(s) is the graph tower
built on G.

We describe now an algorithm working column by column starting from
the right hand. There are three steps: an initialisation process, a repetitive
step (iteration of the operator ψG) and a way-out. This algorithm uses
partitions on the set V of vertices of G. We view these partitions as a
peculiar kind of graph and reciproquely will treat this kind of graphs like
partitions whenever needed. Here is the correspondence:

Partition of V and associated graph: Start with a non-oriented graph G =
(V,E) endowed with a partition C = (C1, . . . , Ck) of its set V of vertices.
We construct a new graph G[C] obtained from the following completion of
the graph G:

(H)
For each element Ci of the partition, we create a point `i and we
connect it by an edge to each vertex belonging to Ci.
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Reciprocally, consider a graph H of the following shape: H is obtained
from G by adding new vertices, connected to one or more vertices of G by
one and only one edge and such that each vertex of G is reached by such
edge. Then such a graph H gives a partition of V .

Later on, we shall use regularly this correspondence.
Initialisation: Consider the vertical edges of the first column (on the right).
For each edge, we decide first if we delete it or if we contract it by using
the connection-contraction principle. This is equivalent to choosing a subset
W ⊆ E of edges which will be contracted. We have now to determine Z(H)
for a collection of graphs H constituted of G(s− 1) and of a certain number
of points (located on the right) and connected to some vertices of the right
column of G(s−1). This gives us a partition, Part(W ) of the set V of vertices
of the column s − 1 by using the procedure described above. This can be
done for instance by identifying the two vertices of each edge in W . Here
ends the initialisation procedure. Let us describe an example.
Initialisation of a squarring: Consider the following squarring:

. . . (1, s− 1) (1, s)
1

. . . (2, s− 1) (2, s)
2

. . . (3, s− 1) (3, s)
3

. . . (4, s− 1) (4, s)
4

. . . (5, s− 1) (5, s)

The choice W = {1, 2, 4} gives the new graph

. . . (1, s− 1)

JJJJJJ

. . . (2, s− 1) `1

. . . (3, s− 1)

tttttt

. . . (4, s− 1) `2

. . . (5, s− 1)

tttttt
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with the partition {{(1, s− 1), (2, s− 1), (3, s− 1)}, {(4, s− 1), (5, s− 1)} on
column s− 1.
Repetitive Step: From the initialisation process, we get a collection of graphs,
H, formed of the tower G(s−1) and of some new vertices `i connected at the
right column of G(s − 1). Recall that such a data is equivalent to G(s − 1)
together with a partition of V . At this moment, we will consider first edges
adjacent to `i and later the vertical edges of the last right hand side column
of G(s− 1). At the end of this procedure, we will get situation to the initial
one, where tower G(s− 2) replaces tower G(s− 1), namely, G(s− 2) and a
partition of V .

Denote by P(r) the set of all partitions on a set of r elements corre-
sponding to the set of vertices of the graph G or of one of its copies. The
iterative step can be describe as a linear operator ψG : Z[P(r)] → Z[P(r)].
The determination of ψG is the main part of this work, see Theorem 1.

Way-out: The previous procedure ends after (s−1) iterations of ψG. At this
moment, we get a set of vertices without edges. Define the function σ on the
set of graphs by σ(G) = qn, where n is the number of connected components
of G. The last step is the application of σ.

Finally, we have:

Z(G(s)) =
∑
W⊆V

σ(ψs−1
G (Part(W )))v|W |. (14)

where Part(W ) is described in the initialisation procedure. As for the series
defined in (4), we get:

ΣG(q, v)[X] =
∑
W⊆V

v|W |σ

(
1

Id−XψG
(Part(W ))

)
(15)

= σ

[
1

Id−XψG

(∑
W⊆V

v|W | Part(W )

)]
. (16)

For instance, in the case of the linear graph with r vertices, we find

ΣLr(q, 0) =
∑
s≥1

qr(s−1)+rXs−1 =
qr

1− qrX
. (17)
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4 Partitions and Hats.

The linear operator ψG : Z[P(r)] → Z[P(r)] allows the determination of the
dichromatic polynomial of any graph G. In case of the linear graph G = Lr
(more generally when G ⊗ Γs is a planar graph), we can restrict the set of
partitions P(r) to a smaller set denoted by C(r). The elements of C(r), called
hats, are the partitions C such that the associated graph G[C] is planar. We
keep the same notation for this operator ψG : Z[C(r)]→ Z[C(r)].

Recall that the set of partitions P(r) is of cardinality the Bell number,
p(r) whose exponential generating series is∑

n≥0

p(n)
xn

n!
= ee

x−1 . (18)

We readily to see that cardinal c(r) of C(r) is Catalan number characterised
by

c(r) =
r−1∑
i=0

c(i) c(r − i− 1) , c(0) = 1 , (19)

whose values are 5 if r = 3, 14 if r = 4, 42 if r = 5, 132 si r = 6, . . .. A
closed formula is given by

c(r) =

(
2r + 1

r

)
/(2r + 1). (20)

Using hats instead of partitions reduces the dimension of the involved
spaces but these remain rather large. For instance, p(12) = 4 213 597 while
c(12) = 58 786.

An ordering: Let C and C ′ be two partitions. We denote by C ′ ≤ C the
usual ordering: for any component C ′j of C ′, there exists a component Ci of
C such that C ′j ⊆ Ci.

To keep more compact expressions in some formulae, we need a second
ordering. If C and C ′ are two partitions of {1 . . . r} where r is a fixed integer,
we set C ′ 4 C when the two following conditions are satisfied:

(a) C ′ ≤ C.

(b) By (a), each component Ci of C splits into components of C ′, Ci∩C ′ =
∪jMi,j. For every Ci, we require that at most one of the components
Mi,j contains more than a point.
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5 Möbius function “à la Rota”.

In this section, A represents P(r), or C(r). We are interested in functions f
on A×A such that f(x, y) = 0 if x 6≤ y. We define a convolution product of
two such functions is by

(f ? g)(x, y) =
∑
z∈[x,y]

f(x, z)g(z, y) (21)

where [x, y] is the interval connecting x and y. This product is associative,
has a neutral element ∆ (whose value is 1 on the diagonal and 0 otherwise)
and the inversible elements are exactly the functions f such that f(x, x) 6= 0
for every x.

Möbius function : Define the function 1 by

1(x, y) =

{
1 si x ≤ y

0 sinon.
(22)

Its inverse is called Möbius function µ(x, y). The matrix of µ(x, y) is the in-
verse of the matrix of 1(x, y). At this point, we recall a classical result saying
that there exists an ordering on A, C1, . . . , C|A|, such that Ci ≤ Cj =⇒ i ≤
j. With this ordering, the matrix of 1 is triangular with 1 on the diagonal.
Observe this proves the existence of µ and give a way to compute it if r is
small.

Let us also the existence of a closed formula for µ in the case of partitions.
In the case of hats, we observe that the product of µ and of 1 is equal to the
unit ∆. This gives us the relation∑

C≤B≤C′

µ(B,C ′) = 0 if C 6= C ′ (23)

and if C ≤ C ′ (otherwise the sum is empty). This relation allows a compu-
tation of µ step by step. A hat C such that C ≤ C ′ can be decomposed into
components of C ′, it is therefore sufficient to consider the case where C ′ is
the maximal hat Cmax.

In the case of the series ΣG, we shall show later how we can avoid com-
pletely the determination of µ.

We end this section with some remarks concerning the ordering. If C
is a hat, we can find all the hats which are less than C (for the relation
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≤) easily: for any component Ci of C, simply partition it in hats in every
possible fashion. This process gives us the number of divisors of C as the
product

∏
i c(|Ci|) where the Ci are the components of C.

As for the description of the multiples of a hat, it is more delicate not
only because we have to construct the hats on the components but because
these components are not naturally ordered.

6 The operator ψG.

Theorem 1 Let G = (V,E) be a non-oriented graph on r vertices and
C = (C1, . . . , Ck) ∈ P(r) be a partition of V . The operator ψG : Z[P(r)] →
Z[P(r)], introduced in the repetitive step of Section 3, can be written as

ψG(C) =
∑

C′′∈P(r)

(C : C ′′) C ′′

where (C : C ′′) is determined by

(C : C ′′) =
∑
C′≤C′′

µ(C ′, C ′′) γ[v,q(C,C
′) (v + 1)κG(C′).

In this formula,
– κG(C ′) is the number of edges of G that connect two points belonging

to the same component of C ′

– and

γ[v,q(C,C
′) =

k∏
i=1

{
q +

∑
j

[
(v + 1)|Mi,j | − 1

]}
where the Mi,j are the components of C ′ cut out along Ci, i.e. Ci ∩ C ′ =
∪jMi,j.

Proof: Let C = (C1, . . . , Ck) ∈ P(r) be a partition of the set of vertices
V . Denote by G[C] the graph associated to the partition C, as described in
Section 3. Recall that, for each component Ci (even for the singletons) of the
partition C, we have a point `i, outside G and connected by an edge (qij, `i)
at any point qij of Ci. These edges are called horizontal.

Destruction of the horizontal edges: In the set of horizontal edges (qij, `i)
of G[C], we choose a set HorSupp of edges to cancel and a set HorContr of edges
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to connect. We denote by α(HorSupp) (resp. α(HorContr)) the set of vertices
qij ∈ V of the edges (qij, `i) ∈ HorSupp (resp. (qij, `i) ∈ HorContr).

We execute now the operations corresponding to our choices, including
the suppression of the vertex `i if HorContr∩Ci = ∅. A new partition C ′ ∈ P(r)
arises :

– the edges (qij, `i) ∈ HorSupp bring a component reduced to a singleton
{qij} ;

– the edges (qij, `i) ∈ HorContr bring a new component

Mij = {qij | (qij, `i) ∈ HorContr} .

Denote by Ci = ∪Mij the decomposition of Ci along elements of C ′ and
observe that at most one component of Mij has more than one point, i.e.
C ′ 4 C. Let us fix C ′ and determine the choices which give this partition
C ′. We argue according to the components Mij:

– the configuration where Mij is reduced to a singleton for any j can be
obtained by following two ways:

— either we have cancelled all edges of Ci (i.e. α(HorContr)∩Ci = ∅).
There is only one way for that and the contribution is q, corresponding to
the suppression of the point `i;

— or we have cancelled all edges of Ci but one which has been
connected (i.e. α(HorContr) ∩ Ci is a singleton). There are |Ci| possibilities
for the choice of this edge and each has a contribution in v.

– if C ′ contains a component Mij that is not reduced to a singleton,
there is only one manner to reach this situation: α(HorContr) ∩ Ci = Mij.
Its contribution is v|Mij |. Recall that the other components are reduced to a
point corresponding to the suppression of an edge.

If we denote by ψ1
G : Z[P(r)]→ Z[P(r)] the operation “suppression of the

horizontal edges”, we have proved

ψ1
G(C) =

∑
C′4C

γ̃#
v,q(C,C

′) C ′

where γ̃#
v,q(C,C

′) is determined by

γ̃#
v,q(C,C

′) =
∏
i


v|

fMij | si |M̃ij| ≥ 2

q + |Ci|v si |M̃ij| = 1,

(24)

12



where Ci ∩ C ′ = ∪jMij and the M̃ij are the components containing the

greatest number of elements if it exists or | M̃ij| = 1.

Destruction of the vertical edges: Among the edges of G, let us fix a
choice, VertSupp and W = VertContr, of edges which must be, respectively,
cancelled or connected. We execute now the operations corresponding to
theses choices, once ψ1

G has been applied. We denote by C” the new partition
and we are interested in the different ways of reaching C ′′.

Recall that Part(W ) is the partition of V obtained from the identifi-
cation of the two vertices of any edge in W . The partition C” satisfies
C ′ ∨ Part(W ) = C ′′ and therefore ψG(C) =

∑
C′′∈P(r)(C : C ′′) C ′′ with

(C : C ′′) =
∑
C′4C
W⊆V

C′∨Part(W )=C′′

v|W | γ̃#
v,q(C,C

′). (25)

The inversion formula of Möbius will lead to a separation of the variables
C ′ and W . We have

(C : C”) =
∑
C′≤C”

µ(C ′, C”)[C : C ′] (26)

with
[C : C ′] =

∑
C14C
C1≤C′

W⊆V
Part(W )≤C′

v|W | γ̃#
v,q(C,C1). (27)

This last expression is determined by:

[C : C ′] =
∑
C14C
C1≤C′

W⊂V
Part(W )≤C′

v|W |γ̃#
v,q(C,C1) =

∑
C14C
C1≤C′

γ̃#
v,q(C,C1)

∑
W⊂V

Part(W )≤C′

v|W |. (28)

The last term is easy to compute if we introduce κG(C ′) the number of edges
of V which are connecting two points belonging to the same component of
C ′. We get

[C : C ′] = (1 + v)κG(C′)
∑
C14C
C1≤C′

γ̃#
v,q(C,C1) = (1 + v)κG(C′)γ[v,q(C,C

′) (29)
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(with the convention 00 = 1). It now is sufficient now to compute this last
sum component by component. Recall that Ci ∩ C ′ = ∪jMij where the Mij

are distinct. We get

γ[v,q(C,C
′) =

∏
i

{
q +

∑
j

[
(v + 1)|Mij | − 1

]}
(30)

where the set inducing the product is the set of components Ci of C. Finally,
we have

(C : C ′′) =
∑
C′≤C′′

µ(C ′, C ′′) γ[v,q(C,C
′) (v + 1)κG(C′). (31)

This formula is remarkable in that it allows a perfect determination of the
dependence in V . By gluing (30) and (31), we have a clear expression of ψG.

Warning!!! This is not a product of convolution because γ[v,q(C,C
′) is not

0 if C 6≤ C ′.

Remark: The formula (25) gives us

ψG(C0) = (q + v)r
∑
W⊂V

v|W | Part(W ) (32)

where C0 is the hat with r components.

7 Some results.

We use the equation (15) in the case of the linear graph with r vertices, Lr. This
equation can be simplified if we observe that the expression of ψG takes the shape
φG×M with M(C ′′) =

∑
C′ µ(C ′, C ′′)C ′. To avoid computing M , we observe that

(Id−XφGM)−1 = 1 · (1−XφG)−1 (33)

where 1 is the matrix 1C≤C′′ . This has also another advantage: the coefficients of
the matrix we have to inverse are simpler. We do not even have to inverse this
matrix but to determine a pre-image by it. This can be done by classical Gauss
procedures. The result of these remarks is ... remarkable! In case r = 2, the series
can be computed in a tenth of second. For r = 3, we need about ten seconds.
With the previous algorithm ignoring (33), we had stopped the computation after
14 hours... The case r = 4 is more problematic because of the size of the data.
The particular case r = 4, v = −1 takes 15 seconds.
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Let us detail the cases r = 2, 3 and 4 : First, we compute Σ2(q, v):

qv + q2 +X
(
−q2v2 − q2v3

)
1−X (3qv + q2 + 4v2 + v3) +X2 (v4 + v5 + 2qv3 + 2qv4 + q2v2 + q2v3)

(34)

For v = 0,−1 we have:

Σ2(q, 0) =
q2

1−Xq2
, Σ2(q,−1) =

q2 − q
1− (3− 3q + q2)X

(35)

The corresponding Taylor development is:

Σ2(q, v) = qv + q2 +X(q4 + 4qv3 + 4q3v + qv4 + 6q2v2)

+X2(q6+15qv5+7q5v+7qv6+qv7+33q2v4+35q3v3+21q4v2+6q2v5+2q3v4)+O(X3)

We get Σ3(q, v) = P3(q, v)/Q3(q, v) with

P3(q, v) =q3 + qv2 + 2q2v

+X(qv6 − 9q2v4 − 9q3v3 − 2q4v2 − 7q2v5 − 6q3v4 − q4v3 − 2q2v6 − q3v5)

+X2(−qv8 − qv9 + 3q2v7 + 11q3v6 + 8q4v5 + q5v4 + 5q2v8 + 17q3v7

+ 12q4v6 + q5v5 + 2q2v9 + 7q3v8 + 5q4v7 + q3v9 + q4v8)

+X3(−q3v9 − 2q4v8 − q5v7 − 3q3v10 − 6q4v9 − 3q5v8 − 3q3v11 − 6q4v10

− 3q5v9 − q3v12 − 2q4v11 − q5v10)

where the factor of X is effectively (qv6 − 9q2v4 . . . ) and not (−qv6 − 9q2v4 . . . ).
A similar remark can be done for the factor of X2. Then

Q3(q, v) =1

+X(−q3 − 15v3 − 6v4 − v5 − 12qv2 − 5q2v − qv3)

+X2(32v6 + 30v7 + 10v8 + v9 + 62qv5 + 51qv6 + 14qv7 + qv8

+ 43q2v4 + 15q3v3 + 2q4v2 + 29q2v5 + 9q3v4 + q4v3 + 5q2v6 + q3v5)

+X3(−15v9 − 25v10 − 12v11 − 2v12 − 49qv8 − 79qv9 − 36qv10 − 6qv11

− 62q2v7 − 38q3v6 − 11q4v5 − q5v4 − 96q2v8 − 56q3v7 − 15q4v6

− q5v5 − 41q2v9 − 22q3v8 − 5q4v7 − 7q2v10 − 4q3v9 − q4v8)

+X4(v12 + 3v13 + 3v14 + v15 + 5qv11 + 15qv12 + 15qv13 + 5qv14

+ 10q2v10 + 10q3v9 + 5q4v8 + q5v7 + 30q2v11 + 30q3v10 + 15q4v9

+ 3q5v8 + 30q2v12 + 30q3v11 + 15q4v10 + 3q5v9 + 10q2v13

+ 10q3v12 + 5q4v11 + q5v10)
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We observe that Q is of degree 4 (and not 5 as the dimension of the set of hats)
and

Σ3(q,−1) =
q − 2q2 + q3 +X(q − 4q2 + 4q3 − q4)

1 +X(10− 11q + 5q2 − q3) +X2(11− 24q + 19q2 − 7q3 + q4)
.

This example shows that the polynomials in (q, v) which appear (except the coef-
ficient of 1 in the denominator) are not all divisible by q + v. Then

Σ4(q,−1) =

q − 3q2 + 3q3 − q4 +X(−6q + 32q2 − 56q3 + 43q4 − 15q5 + 2q6)

+X2(7q − 53q2 + 145q3 − 196q4 + 144q5 − 58q6 + 12q7 − q8)

−1 +X(33− 41q + 23q2 − 7q3 + q4)

+X2(−207 + 517q − 553q2 + 329q3 − 116q4 + 23q5 − 2q6)

+X3(279− 1084q + 1858q2 − 1829q3 + 1130q4 − 449q5 + 112q6

− 16q7 + q8)

is still a case of degeneracy because the surrounding set is of dimension 14. With
the same procedure, 41 seconds give us the dichromatic polynomial of a 4x4 squar-
ing:

Z4,4 =q16 + 100352qv15 + 24q15v + 175264qv16 + 151160qv17 + 83956qv18

+ 32888qv19 + 9358qv20 + 1920qv21 + 272qv22 + 24qv23 + qv24

+ 438352q2v14 + 994000q3v13 + 1528336q4v12 + 1760208q5v11

+ 1593044q6v10 + 1161496q7v9 + 690436q8v8 + 335652q9v7 + 132874q10v6

+ 42324q11v5 + 10617q12v4 + 2024q13v3 + 276q14v2 + 591072q2v15

+ 1030872q3v14 + 1206968q4v13 + 1041372q5v12 + 689740q6v11

+ 356536q7v10 + 143948q8v9 + 44807q9v8 + 10440q10v7 + 1722q11v6

+ 180q12v5 + 9q13v4 + 388261q2v16 + 512408q3v15 + 447544q4v14

+ 281632q5v13 + 131628q6v12 + 45832q7v11 + 11654q8v10 + 2060q9v9

+ 228q10v8 + 12q11v7 + 161336q2v17 + 157560q3v16 + 99556q4v15

+ 43736q5v14 + 13464q6v13 + 2816q7v12 + 364q8v11 + 22q9v10

+ 46164q2v18 + 32368q3v17 + 14177q4v16 + 4100q5v15 + 752q6v14 + 80q7v13

+ 4q8v12 + 9248q2v19 + 4424q3v18 + 1236q4v17 + 209q5v16 + 16q6v15

+ 1254q2v20 + 368q3v19 + 52q4v18 + 4q5v17 + 104q2v21 + 14q3v20 + 4q2v22
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