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EXPLICIT ESTIMATES ON SEVERAL SUMMATORY

FUNCTIONS INVOLVING THE MOEBIUS FUNCTION

OLIVIER RAMARÉ

Abstract. We prove that |
∑

d≤x μ(d)/d| log x ≤ 1/69 when x ≥ 96 955 and

deduce from that:
∣
∣
∣
∣
∑{

d≤x,
(d,q)=1

μ(d)/d

∣
∣
∣
∣ log(x/q) ≤

4
5
q/ϕ(q)

for every x > q ≥ 1. We also give better constants when x/q is larger. Fur-

thermore we prove that |1 −
∑

d≤x μ(d) log(x/d)/d| ≤ 3
14

/ log x and several

similar bounds, from which we also prove corresponding bounds when sum-
ming the same quantity, but with the additional condition (d, q) = 1. We
prove similar results for

∑
d≤x μ(d) log2(x/d)/d, among which we mention the

bound |
∑

d≤x μ(d) log2(x/d)/d − 2 log x + 2γ0| ≤ 5
24

/ log x, where γ0 is the

Euler constant. We complete this collection by bounds such as
∣
∣
∣
∣
∑{

d≤x,
(d,q)=1

μ(d)

∣
∣
∣
∣/x ≤ q

ϕ(q)
/ log(x/q).

We also provide all these bounds with variations where 1/ log x is replaced by
1/(1 + log x).

1. Introduction

Explicit estimates in multiplicative number theory have a long history. Concern-
ing prime-related questions, one can distinguish between two main lines of inquiry:
estimates on the Chebyshev ψ-function and estimates for the summatory function
M of the Moebius function. In the first case the explicit formula for the ψ-function
enables us to introduce in the argument the result of heavy computations regard-
ing the zeros of the Riemann ζ-function; see for instance [22] and [23]. This is so
because the residues of the Mellin transform of the ψ-function, i.e., −ζ ′(s)/ζ, are
known: they are simply equal to 1 counted with multiplicity. No such fact happens
in the case of the Moebius function, the Mellin transform that appears being 1/ζ.
No one has yet obtained an explicit error term for the function M from the Mellin
transform / Perron formula machinery, though there are no theoretical obstructions.
The implied constants are, however, expected to be too large for any decent use.

Once the analytical path is discarded, two distinct paths of inquiries have been
used for the summatory function M(x) =

∑
d≤x μ(d): either follow the idea of

Chebyshev, (see [13], [6], [8]) or follow an idea of Landau: Landau proved that
ψ(x) ∼ x is equivalent to M(x) = o(x) and we need a quantitative version of it.
See also [12] for these kind of questions. This path is followed in [24] and continued
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in [9]. Recently in [20], I trode a similar path but relied on a more efficient set of
identities.

In practice, one needs estimates for families of functions that are derived from
the Moebius function, with as small a loss as one can manage. There are three
main variations, and we deal here with two of them; see [21] for the third family.
The first problem is to go from M(x) to m(x) =

∑
n≤x μ(d)/d and the second one

is to add a coprimality condition (d, q) = 1 for some fixed q. Let us introduce some
actors before continuing the description of the present work. We define

(1.1) mq(x) =
∑
n≤x,

(n,q)=1

μ(n)/n, m(x) = m1(x)

Note that [11, Lemma 10.2] already proposed explicit wide ranging estimates. This
investigation is extended in [21] to the second family

(1.2) m̌q(x) =
∑
n≤x,

(n,q)=1

μ(n) log(x/n)/n, m̌(x) = m̌1(x),

and, with some applications in mind, we also cover the family

(1.3) ˇ̌mq(x) =
∑
n≤x,

(n,q)=1

μ(n) log2(x/n)/n, ˇ̌m(x) = ˇ̌m1(x).

The general problem consists in getting estimates for m(x) and m̌(x) from M(x) =∑
d≤x μ(d). A summation by parts loses a factor of log x. As kindly pointed out to

me by H. Diamond and is clear in [3], a method of A. Axer from [1] already provides
an answer to this problem. This method can be found presented in an elementary
way in [25, Theorem 2.5], and in [15, Theorem 8.1] and in a more refined setting in
[7, Lemma 3.1] (see also [4, Lemma 5.7]).

As an extension of the method of Axer, M. Balazard in [3], furthering work of
R.A. MacLeod [14], developed a line of work that led to good identities linking
m(x) to M(x) and m̌(x) also to M(x). A consequence is the following theorem.

Theorem 1.1 (Balazard). We have, when x ≥ 1:

|m(x)| ≤ |M(x)|
x

+
1

x2

∫ x

1

|M(t)|dt+ 8

3x
.

One of the advantages of the method and identity used in [3] is that it implies a
differentiable function instead of the fractional-part-function as in Axer’s work and
this leads to a much smoother treatment.

We readily deduce from the above that

(1.4) |m(x)| ≤
(
3
2 + o(1)

)
exp

(
− max

x7/8≤t≤x
log

2 + |M(t)|
t

)
+O(x−1/4).

This is an excellent quantitative link between the error term of m(x) and the one
of M(x), though it is not perfect: if we assume that M(t) � t3/4 we deduce from
the above that m(x) � x−7/32, while one would like to infer that m(x) � x−1/4.
This kind of identity is used in [20, Corollary 1.2], where I relied on an identity due
to El Marraki in [10]. By using the new identity above we improve on this work.
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Theorem 1.2. We have∣∣∣∣∑
n≤x

μ(n)/n

∣∣∣∣ ≤ 0.0144 log x− 0.1

(log x)2
(x ≥ 463 421).

The following simpler bounds also hold true:

(log x)

∣∣∣∣∑
n≤x

μ(n)/n

∣∣∣∣ ≤
⎧⎪⎨
⎪⎩
1/69 when x ≥ 96 955,

1/65 when x ≥ 60 298,

1/40 when x ≥ 24 270,

⎧⎪⎨
⎪⎩
1/25 when x ≥ 3 470,

1/20 when x ≥ 1 426,

1/12 when x ≥ 687.

We can also replace 1/69 by 0.0144.

This result improves by a factor a bit larger than 2 the previous estimate of [20]
and by a factor a bit more than 31/2 the estimate of [10].

Corollary 1.3.

∣∣∣∑
n≤x

μ(n)/n
∣∣∣ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 when x ≥ 1,

1/10 when x ≥ 7,

1/20 when x ≥ 41,

1/100 when x ≥ 694.

By studying the proof of Theorem 1.1 and another identity by the same author
concerning m̌(x), I obtained the following result.

Theorem 1.4. We have, when x ≥ 1:

|m̌(x)− 1| ≤
7
4 − γ0

x2

∫ x

1

|M(t)|dt+ 2

x
.

Here γ0 is the Euler constant.

This second very simple inequality (in particular, the term |M(x)|/x does not
appear) leads to a much more surprising result. Sections 2 and 3 contain somewhat
more precise versions (i.e., identities) and it is in fact these forms that we use
(enabling us in practice to reduce the coefficient 7

4 − γ0 = 1.172 · · · to 0.321, see
Section 4).

Theorem 1.5. We have

|m̌(x)− 1| ≤ 0.00257 log x− 0.0077

(log x)2
(x ≥ 3 846).

The following simpler bound also holds:

|m̌(x)− 1| log x ≤

⎧⎪⎨
⎪⎩
0.213 < 3/14 when x ≥ 1,

0.0203 < 4/197 when x ≥ 16,

1/389 when x ≥ 3 155.

Corollary 1.6.

∣∣∣∣−1 +
∑
n≤x

μ(n) log(x/n)/n

∣∣∣∣ ≤
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 when x ≥ 1,

1/125 when x ≥ 7,

1/500 when x ≥ 44,

1/1250 when x ≥ 222.
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We follow a similar path with ˇ̌m, the relevant identities being much more cum-
bersome (see Lemma 5.1). We get the following.

Theorem 1.7. We have, when x ≥ 1:

| ˇ̌m(x)− 2 log x+ 2γ0| ≤ 2(γ0 − 1
2 )

2 |M(x)|
x

+
3/2

x2

∫ x

1

|M(t)|dt+ 4 + 2γ0
x

.

The good surprise is that the term |M(x)|/x is affected with a very small coeffi-
cient. Section 5 contains a more precise identity that led to this inequality. Lacking,
however, a positivity argument we used in the case of m(x) and m̌(x), we cannot
proceed as with those: the coefficient 3/2 has to be taken at flat value (well, 1.46
is available).

Theorem 1.8. We have

| ˇ̌m(x)− 2 log x+ 2γ0| ≤
0.00965 log x− 0.0818

(log x)2
(x ≥ 10).

The following simpler bounds also hold:

| ˇ̌m(x)− 2 log x+ 2γ0| log x ≤
{
0.2062 < 5/24 when x > 1,

1/103 when x ≥ 9.

More surprisingly, it numerically seems that the function ˇ̌m(x)− 2 log x+ 2γ0 is
non-increasing. We formulate that formally in the form of a conjecture:

Conjecture. The function ˇ̌m(x)− 2 log x+ 2γ0 is positive decreasing.

One would need a representation for this difference that exhibits some positivity.
The representation we have contains oscillating terms, typically M(t). Similarly,
Section 13 contains an equally surprising question whose veracity is sustained by
numerical results. The function m̌(x) − 2 does not exhibit such a behaviour; for
instance, it changes its sign of variations around x = 5.

The coprimality condition is somewhat difficult to handle from a numerical point
of view. The classical path (used for instance in [16, near (7)]) consists in determin-
ing a function gq such that �(n,q)=1μ(n) = gq � μ(n), where � denotes the arithmetic
convolution product. The drawback of this method is that the support of gq is not
bounded, and indeed, we have

(1.5)

{
gq(p

k) = 1 when p|q and k ≥ 0,

gq(p
k) = 0 when (p, q) = 1 and k ≥ 1.

We proposed in [19] an approach via the Liouville function λ(n) (the completely
multiplicative function that is 1 on integers that have an even number of prime
factors, counted with multiplicity, and −1 otherwise). Such an approach splits the
evaluation into three steps: expressing mq(x) in terms of �q, where

(1.6) �q(x) =
∑
n≤x,

(n,q)=1

λ(n)/n, �(x) = �1(x);

then expressing �q(x) in terms of �(y); and finally expressing �(x) in terms of m(y).
It turns out that we can combine the first and the third step in a single one, allowing
for some non-trivial savings. This time, the drawback of this new method is that
the intermediate computations required are heavier and require much more RAM
memory than in the previous method (see section 7). Here is our starting lemma.
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Lemma 1.9. We have

mq(x) =
∑
d|q

μ2(d)

d

∑
w≤

√
x/d,

w|q∞

m
( x

dw2

)
/w2

where w|q∞ means that every prime factor of w divides q. The same identity holds
with m̌q (resp. ˇ̌mq) and m̌ (resp. ˇ̌m) instead respectively of mq and m.

Proof. We use the decomposition �(n,q)=1μ(n) = gq �μ(n) where gq is defined in
(1.5) and get

mq(x) =
∑
a≤x

gq(a)

a
m(x/a).

Next we decompose a in the form a = dw2 where d is squarefree. The lemma
follows readily. �

An alternative proof consists in combining [19, Lemmas 1.1–1.3] and binding
the two squares in a single variable w. This identity has an almost immediate
consequence.

Corollary 1.10. For any real number x ≥ 1 and any positive integer q, we have

0 ≤ m̌q(x) =
∑
n≤x,

(n,q)=1

μ(n) log(x/n)/n ≤ 1.00303 · q/ϕ(q).

The constant 1.00303 can be replaced by the optimal one: m̌(30). Indeed, Bal-
azard established this for m̌(x) in [2] and Lemma 1.9 enables us to extend it. These
kinds of wide-ranging estimate is useful. We proceed in the same way with ˇ̌m(x).
We first establish that 0 ≤ ˇ̌m(x) ≤ 2 log x by combining numerical verifications and
Theorem 1.8, from which we infer the following.

Corollary 1.11. For any real number x ≥ 1 and any positive integer q, we have

0 ≤ ˇ̌mq(x) =
∑
n≤x,

(n,q)=1

μ(n) log2(x/n)/n ≤ 2 log x · q/ϕ(q).

In both corollaries, q is not bounded with respect to x. The factor q/ϕ(q) is
shown to be necessary by selecting q to be the product of every prime not more
than x. With some more work, this method leads to the following theorem:

Theorem 1.12. We have, when 1 ≤ q < x, where q is an integer and x a real
number,

ϕ(q)

q
log(x/q)|mq(x)| ≤

⎧⎪⎨
⎪⎩
0.78 < 4/5 when x/q > 1,

5/16 when x/q ≥ 687,

17/125 when x/q ≥ 24 233.

In these estimates, we can replace ϕ(q)/q by 1/
∏

p|q(1 + p−1).

We specify for clarity that one cannot, at least from our proofs, replace ϕ(q)/q
by 1/

∏
p|q(1+ p−1) in Corollaries 1.10 and 1.11. It is sometimes better in usage to

have 1 + log x instead of log x.
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Theorem 1.13. We have, when 1 ≤ q < x, where q is an integer and x a real
number,

ϕ(q)

q
(1 + log(x/q))|mq(x)| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1.694 < 17/10 when x/q > 1,

1/2 when x/q ≥ 296,

5/38 when x/q ≥ 882,

1/7 when x/q ≥ 11 811.

In these estimates, we can replace ϕ(q)/q by 1/
∏

p|q(1 + p−1).

This improves on the corresponding estimates proved in [19]. Prior to this paper,
the sole estimate on mq(x) seems to be [11, Lemma 10.2] which bounds |mq(x)|
uniformly by 1. Some numerical investigations produced the example

(1.7) |m2(10)| =
31

105
≥ 0.260

2

log(10/2)

and I have not been able to get any example with a lower bound larger than 0.260 . . .

for |mq(x)|ϕ(q)q log(x/r) when x ≥ 3. It thus seems likely that

(1.8) |mq(x)|
?
≤ 0.261 q

ϕ(q) log(x/q)
, (x ≥ 3, x > q ≥ 1).

The inequality (9.1) obtained below shows that (1.8) holds true when x/q ≥ 2 438,
but this leaves still infinitely many cases to cover.

Theorem 1.14. We have, when 1 ≤ q < x, where q is an integer and x a real
number,

q

ϕ(q)
log(x/q)

∣∣m̌q(x)− m̌�
q(x)

∣∣ ≤
⎧⎪⎨
⎪⎩
1/4 when x/q > 1,

1/5 when x/q ≥ 100,

0.0538 < 2/37 when x/q ≥ 3 158,

where we use the notation

(1.9) m̌�
q(x) =

∑
d|q,w|q∞,

dw2≤x

μ2(d)

dw2
.

In these estimates, we can replace ϕ(q)/q by 1/
∏

p|q(1 + p−1).

Using the same notations, we get the following variations.

Theorem 1.15. We have, when 1 ≤ q < x, where q is an integer and x a real
number,

q

ϕ(q)
(1 + log(x/q))

∣∣m̌q(x)− m̌�
q(x)

∣∣ ≤
⎧⎪⎨
⎪⎩
1 when x/q > 1,

1/5 when x/q ≥ 171,

0.066 < 1/15 when x/q ≥ 3 150.

At this level of generality, it is not possible to simplify the main term m̌�
q(x).

We proceed in a similar fashion for ˇ̌mq
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Theorem 1.16. We have, when 1 ≤ q < x, where q is an integer and x a real
number,

ϕ(q)

q
log(x/q)

∣∣ ˇ̌mq(x)− m̌�
q(x)

∣∣ ≤
{
4/19 when x/q > 1,

1/48 when x/q ≥ 5.

We have used the notation

(1.10) ˇ̌m�
q(x) = 2

∑
d|q,w|q∞,

dw2≤x

μ2(d)(γ0 − log(x/(dw2))

dw2
.

In these estimates, we can replace ϕ(q)/q by 1/
∏

p|q(1 + p−1).

Theorem 1.17. We have, when 1 ≤ q < x, where q is an integer and x a real
number,

ϕ(q)

q
(1 + log(x/q))

∣∣ ˇ̌mq(x)− m̌�
q(x)

∣∣ ≤
⎧⎪⎨
⎪⎩
1.155 < 7/6 when x/q > 1,

3/17 when x/q ≥ 2,

1/22 when x ≥ 6.

In these estimates, we can replace ϕ(q)/q by 1/
∏

p|q(1 + p−1).

We finally complete this series of results with one concerning Mq(x), where we
follow the previous convention:

(1.11) Mq(x) =
∑
n≤x,

(n,q)=1

μ(n), M(x) = M1(x).

We adapt Lemma 1.9 in (16.1) and a similar routine leads to the following.

Theorem 1.18. We have, when 1 ≤ q < x, where q is an integer and x a real
number,

ϕ(q)

q
log(x/q)

∣∣Mq(x)
∣∣/x ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.997 when x/q > 1,

0.429 < 9/20 when x/q ≥ 490,

1/5 when x/q ≥ 4 536,

0.0918 < 9/98 when x/q ≥ 48 513.

In these estimates, we can replace ϕ(q)/q by 1/
∏

p|q(1 + p−1).

Theorem 1.19. We have, when 1 ≤ q < x, where q is an integer and x a real
number,

ϕ(q)

q
(1 + log(x/q))

∣∣Mq(x)
∣∣/x ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 when x/q > 1,

1/2 when x/q ≥ 490,

1/5 when x/q ≥ 7 100,

39/400 when x/q ≥ 48 645.

In these estimates, we can replace ϕ(q)/q by 1/
∏

p|q(1 + p−1).
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Scripts. All the computations used have been achieved via GP/PARI (see [18]) of-
ten sped up by using gp2c as described for instance in [5]. To give a flavor, we have
used for instance the command gp-run -g AsymptoticBoundsFor M.gp. The flag
“-g” enables automatic memory management and garbage collection. The compu-
tations have been run on a 64-bit dual core running at 3.0GHz and having 8 Gbytes
of RAM. One also wants to increase the heap size via allocatemem(7500000000).
The amount of RAM available was decided on all the ranges of initial computation;
we did not rely on any swapping capacity, as this slows dramatically the computa-
tions. Practically we increased the range of the bound under inspection until most
of the RAM was used. I am indebted to Bill Alombert for helping me in writing
many scripts in a near optimal way. The important scripts are available online at

http://math.univ-lille1.fr~ramare/index.html#GP

2. An identity for m(x), proof of Theorem 1.2 and of Lemma 1.3

Here is the main identity we use, taken from [2, Proof of proposition 6]:

(2.1) m(x) =
M(x)

x
+

4(1− x−1)2

x
− 4(1− x−1)3

3x2
+

1

x

∫ x

1

M(x/t)ε′1(t)dt

where

(2.2) ε′1(t) =

(
(2{t} − 1)t+ {t} − {t}2

t2

)2

is the derivative at every non-integer point of

(2.3) ε1(t) =
1

3
− 1

3t
+

4

3

{t}3 − 3
2{t}2 +

1
2{t}

t2
− 1

3

{t}4 − 2{t}3 + {t}2
t4

.

Moreover, 0 ≤ ε′1(t) ≤ 1/t2. Let us recall [20, Theorem 1.1]

Lemma 2.1. For D ≥ 1 078 853, we have∣∣∣∣∣∣
∑
d≤D

μ(d)

∣∣∣∣∣∣ ≤
0.0130 logD − 0.118

(logD)2
D.

We use the following computations.

Lemma 2.2. We have, with D0 = 1078 853∫
1≤t≤D0,
M(t)≥0

M(t)dt = 58 909 800,

∫
1≤t≤D0,
M(t)≤0

M(t)dt = −54 647 032.

We use the file CompIntM.gp whose main function is getintM. Since we have this
script at hand, we also prove the following version that will be of use in Section 4.

Lemma 2.3. We have, with D0 = 464 402,∫
1≤t≤D0,
M(t)≥0

M(t)dt = 15 512 101,

∫
1≤t≤D0,
M(t)≤0

M(t)dt = −14 504 264.

Lemma 2.4. The function

x �→ log x

3

∫ x/2

xD0/(x+D0)

0.0130 log u− 0.118

(log u)2
udu

(x− u)2
+

58 909 800 log x

x2

is increasing to 1
30.0130(1 − log 2) = 0.00132 · · · . As a conclusion, it is ≤ 0.00134

when 1 078 853 = D0 ≤ x.

http://math.univ-lille1.fr~ramare/index.html#GP
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Proof. Let us denote by x �→ f(x) log x the function to be studied. In practice, it
would be enough to plot the function and check that it is “numerically” increasing.
Here we can show that it is indeed increasing and as a matter of fact, the function
x �→ f(x) is increasing. We recall that

(2.4)
d

dx

∫ h(x)

a

H(x, u)dx =

∫ h(x)

a

∂

∂x
H(x, u)du+ h′(X)H(x, h(x))

provided that the integrals
∫ h(x)

a

∣∣ ∂
∂xH(x, u)

∣∣du and
∫ h(x)

a

∣∣H(x, u)
∣∣du are uniformly

bounded in a neighborhood of the point where we take the derivative. Here, this
formula yields

f ′(x) =
1

6

0.0130 log(x/2)− 0.118

(log(x/2))2
x

(x− x/2)2

+
D2

0

3(x+D0)2
0.0130 log(xD0/(x+D0))− 0.118

(log(xD0/(x+D0)))2
xD0/(x+D0)

(x− xD0/(x+D0))2

− 2

3

∫ x/2

xD0/(x+D0)

0.0130 log u− 0.118

(log u)2
udu

(x− u)3
− 58 909 800

x3
.

The sum of the two last terms is larger than

−2

3

0.0130 log x− 0.118

(log x)2
(x/2)2

x3/8
− 58 909 800

x3
≥ −0.00682

x log x

provided that x ≥ D0 = 1078 853. The reader will easily conclude the proof that
f is indeed increasing. Regarding the value at infinity, by using equivalents, we
deduce that it is

lim
x→∞

log x

3

∫ x/2

1

0.0130

log u

udu

(x− u)2
= lim

x→∞

0.0130

3

∫ x/2

1

udu

(x− u)2

which is also 0.0130
3

∫ 1/2

0
vdv

(1−v)2 = 0.0130(1− log 2)/3. �

To use (2.1), we have to handle the last term. We note that, when n is an integer,
we have∫ n+1

n

|M(x/t)|ε′1(t)dt = max
n≤t≤n+1

|M(x/t)|(ε1(n+ 1)− ε1(n))

= max
n≤t≤n+1

|M(x/t)|
(

1

3n
− 1

3(n+ 1)

)
= 1

3

∫ n+1

n

max
n≤t≤n+1

|M(x/t)|dt/t2.

Thus∫ x

1

|M(x/t)|ε′1(t)dt ≤
∫ x/D0

1

|M(x/t)|ε′1(t)dt+
58 909 800

x

≤ x

3

∫ x/D0

1

0.0146 log(x/(t+ 1))− 0.1098

(log(x/(t+ 1)))2
dt

t2(t+ 1)
+

58 909 800

x

≤ x

3

∫ x/2

xD0/(x+D0)

0.0146 log u− 0.1098

(log u)2
udu

(x− u)2
+

58 909 800

x

≤ 0.00134x/ log x
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by Lemma 2.4. This yields

|m(x)| ≤ 0.0130 log x− 0.118

(log x)2
+

4

x
+

0.00134

log x
≤ 0.0144 log x− 0.118

(log x)2

when x ≥ D0. We checked it numerically for 619 000 ≤ x ≤ 3 · 107. Theorem 1.2
and Corollary 1.3 follow readily. The script used is AsymptoticBoundsFor m.gp

whose main function is getboundsbis. The function modelmult has to be chosen
based on need.

3. An identity for m̌(x) and proof of Theorem 1.4

As a preparation for the next section, we prove more than is strictly required
here (only case � = 0 of what follows is needed in this section). A simple use of the
Euler-MacLaurin summation formula gives, when � is a non-negative integer that

H�(x) =
∑
n≤x

log� n

n

=
(log x)�+1

�+ 1
+ γ� −B1(x)f�(x) +

B2(x)

2
f ′
�(x) + ε6,�(x)(3.1)

with f�(t) = (log t)�/t and the classical notation B1(t) = {t}− 1
2 , b2(x) = x2−x+ 1

6 ,
B2(t) = b2({t}) as well as

(3.2) ε6,�(x) =
1
2

∫ ∞

x

B2(t)f
′′
� (t)dt.

The constant γ� is the Euler-Stieltjes constant, and γ0 is the classical Euler constant,
while γ1 = −0.07281584548 · · · .
Lemma 3.1. When m is a non-negative integer and y ≥ 1 a real number we have∫ y

1

t logm tdt/m! =
y2

2

∑
a+b=m,
a,b≥0

(−1)b(log y)a

a!2b
+

(−1)m+1

2m+1
.

Proof. The proof goes by generating series. We consider∑
n≥0

zn

n!

∫ y

1

t logn tdt =

∫ y

1

t1+zdt =
y2yz − 1

2 + z

=
y2

2

∑
a≥0

za(log y)a

a!

∑
b≥0

(−z/2)b − 1
2

∑
b≥0

(−z/2)b.

Identification leads to the lemma. �
Furthermore, still following Balazard’s notation from [3] and [2] in case � = 0,

β2,�(x) =
2

x

∫ x

0

∑
n≤t

t

n
log�(t/n)dt(3.3)

=
2

x

∑
n≤x

n

∫ x/n

1

u log� udu

=
∑
n≤x

(
x

n

∑
a+b=�,
a,b≥0

(−1)b loga(x/n)

a!2b
− (−1)�

2�
n

x

)
.(3.4)
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We specialize to � = 0 from now on:

β2,0(x) =
∑
n≤x

(x/n− n/x) = xH0(x)− x+ {x}+ b2(x)− b2({x})
2x

= x log x+ x(γ0 − 1
2 )−

1

12x
− {x}2 − {x}

x
+ xε6,0(x).

This equation implies that ε6,0(1)− 1
12 = 1

2 − γ0. We thus have∑
n≤x

μ(n)
(x log(x/n)

n
+
x

n
(γ0− 1

2 )−
n

12x
−{x/n}2 − {x/n}

x/n
+
x

n
ε6,0(x/n)

)
= x−x−1.

Recall [2, (8)]:

(3.5)
∑
n≤x

μ(n)
(x
n
− 1− {x/n}2 − {x/n}

x/n

)
= 2− 2x−1 (x ≥ 1)

and get∑
n≤x

μ(n)
(x log(x/n)

n
+

x

n
(γ0 − 3

2 ) + 1− n

12x
+

x

n
ε6,0(x/n)

)
= x− 2 + x−1.

Let us continue the main proof. We get

Lemma 3.2. When x ≥ 1, we have

m̌(x)− 1 =
6− 8γ0

3x
− 6− 4γ0

x2
+

6− 4γ0
3x4

− 1

x

∫ x

1

M(x/t)h′(t)dt

where h′(t) = ( 32 −γ0)ε
′
1(t)+g′(t) is continuous and differentiable except at integers

where it has left and right derivatives. It satisfies

(3.6) 0 ≤ t2h′(t) ≤ 7
4 − γ0.

Theorem 1.4 is a straightforward consequence of this lemma. Let us specify that
h′ is typically not continuous at integer points.

Proof. Indeed, we have already reached

m̌(x)− 1 = ( 32 − γ0)m(x)− ( 32 − γ0)
M(x)

x
− 2

x
+

1

x2
− 1

x

∫ x

1

M(x/t)g′(t)dt

where the continuous and piecewise differentiable function g is defined by

(3.7) g(x) =
−1

12x
+ xε6,0(x) (g(1) = 1

2 − γ0).

We further recall (2.1):

m(x) =
M(x)

x
+

4(1− x−1)2

x
− 4(1− x−1)3

3x
+

1

x

∫ x

1

M(x/t)ε′1(t)dt.

This leads to

x(m̌(x)− 1) = 2− 8
3γ0 −

2(3− 2γ0)

x
+

2− 4
3γ0

x3

−
∫ x

1

M(x/t)(( 32 − γ0)ε
′
1(t) + g′(t))dt.

With the notation
h′(t) = ( 32 − γ0)ε

′
1(t) + g′(t),
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we find that (with u = {x})

t2h′(t) = −u2 + u− 1
2 + ( 32 − γ0)(2u− 1)2

+ t2
∫ ∞

t

B2(v)dt

v3
+ (3− 2γ0)

(2u− 1)(u− u2)

t
+ ( 32 − γ0)

(u− u2)2

t2
.

The polynomial in u of the first line is positive between 0 and 1, while the second
part is � 1/x. Some straightforward numerical work yields h′(t) > 0. On the other
hand we recalled after (2.3) that 0 ≤ ε′(t) ≤ 1/t2. Concerning g′(t), we first notice
that |B2(v)| ≤ 1/6, so that

|t2g′(t)| ≤
∣∣∣{t}2 − {t}+ 1

12

∣∣∣+ 1

6× 2
≤ 1/4.

The lemma readily follows. �

4. Proof of Theorem 1.5 and of Corollary 1.6

Lemma 4.1. For any positive integer k we have∫ k+1

k

B4(t)dt/t
4 ≤ 0.

Proof. We have, by using the shortcut u = {t},
B4(t) = u4 − 2u3 + u2 − 1

30

= t4 − (4k + 2)t3 + (6k2 + 6k + 1)t2 − (4k + 2)(k2 + k)t+ (k2 + k)2 − 1
30 .

As a consequence and on denoting by Ik the integral to be computed, we find that

Ik = 1− 2(2k + 1) log
k + 1

k
+

6k2 + 6k + 1

k(k + 1)
− (2k + 1)2

k(k + 1)

+
(k4 + 2k3 + k2 − 1

30 )(3k
2 + 3k + 1)

3k3(k + 1)3

= − 1

63k6
− 19

42k7
+

49

90k8
+O(1/k9).

We readily convert this asymptotic expression into an explicit inequality. It finally
remains to check the inequality for the first few k’s, and this is readily done. �

Lemma 3.2 puts us in the same position as when majorising m(x) in Section 3.
We thus proceed in a similar way. We first notice that, when n is a positive integer,∫ n+1

n

|M(x/t)|h′(t)dt = max
n≤t≤n+1

|M(x/t)|(h(n+ 1)− h(n))

= max
n≤t≤n+1

|M(x/t)|
(
3− 2γ0

6n
− 3− 2γ0

6(n+ 1)
+ g(n+ 1)− g(n)

)
and the coefficient of maxn≤t≤n+1 |M(x/t)| also reads

3− 1
2 − 2γ0

6n
−

3− 1
2 − 2γ0

6(n+ 1)
− n

∫ ∞

n

B2(t)
dt

t3
+ (n+ 1)

∫ ∞

n+1

B2(t)
dt

t3

=
3− 1

2 − 2γ0

6n(n+ 1)
− n log

n+ 1

n
+

2n+ 1

2(n+ 1)
− 2n+ 1

12n(n+ 1)2
+

∫ ∞

n+1

B2(t)
dt

t3
.
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We now notice that∫ ∞

n+1

B2(t)
dt

t3
=

∫ ∞

n+1

B3(t)
dt

t3
=

1

30(n+ 1)3
+

∫ ∞

n+1

B4(t)
dt

t4
≤ 1

30(n+ 1)3

by Lemma 4.1. We finally show that, when n ≥ 60,

5
2 − 2γ0

6n(n+ 1)
− n log

n+ 1

n
+

2n+ 1

2(n+ 1)
− 2n+ 1

12n(n+ 1)2

+
1

30(n+ 1)3
≤ 0.321

∫ n+1

n

dt

t2
.

(The constant is decreasing in the lower bound for n, provided this lower bound be
≥ 3, the optimal constant being (5− 2γ0)/12 = 0.32046 · · · ).

Lemma 4.2. The function to which x ≥ D0 = 464 402 associates,

0.321 · log x
∫ x/2

xD0/(x+D0)

0.0146 log u− 0.1098

(log u)2
udu

(x− u)2
+

18 192 350 log x

x2
,

is decreasing between D0 and D1 = 1.60510 · · · 106 and increasing afterwards to
0.321 · 0.0146(1 − log 2) = 0.001438 · · · . As a conclusion, it is ≤ 0.00144 when
x ≥ D0.

Proof. We simply plot the function via

{f(x) = intnum(u = x*D0/(x+D0), x/2,

(0.0146*log(u)-0.1098)*u/( (log(u))^2*(x-u)^2) )

*log(x)*0.321 + 18192350*log(x)/x^2}

default(realprecision, 10);

plot(t=10^6, 10^8, f(t));

�

Thus, when x ≥ D0 and recalling Lemma 2.3 we have:∫ x

1

|M(x/t)|h′(t)dt ≤
∫ x/D0

1

|M(x/t)|h′(t)dt+ ( 74 − γ0)
15 512 101

x

≤ 0.321 · x
∫ x/D0

1

0.0146 log(x/(t+ 1))− 0.1098

(log(x/(t+ 1)))2
dt

t2(t+ 1)
+

18 192 350

x

≤ 0.321 · x
∫ x/2

xD0/(x+D0)

0.0146 log u− 0.1098

(log u)2
udu

(x− u)2
+

18 192 350

x

≤ 0.00144x/ log x

by Lemma 4.2. We then use Lemma 3.2 (notice that 1
2 − γ0 < 0). This yields

|m̌(x)− 1| ≤ (γ0 − 1
2 )

0.0146 log x− 0.1098

(log x)2
+

2

x
+

0.00144

log x

≤ 0.00257 log x− 0.0077

(log x)2

when x ≥ D0. We then appeal to Lemma 10.2 to extend the range to x ≥ 13 950
and checked numerically its extension to the range 3 846 ≤ x ≤ 106. Theorem 1.5
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follows readily. The GP-script is called AsymptoticBoundsFor checkm.gp and the
main function is getboundsbisaux.

The proof of Corollary 1.6 is immediate.

5. An identity for ˇ̌m(x) and proof of Theorem 1.7

We start with (3.4) with the choice � = 1 and using (3.1) we have:

β2,1(x) =
∑
n≤x

(x
n
(log(x/n)− 1

2 ) +
n

2x

)

= x log(x/e)H0(x) +
x

2
H0(x)− xH1(x) +

x

4
− B1(x)

2
+

B2(x)

4x
− 1

24x

=
x log2 x

2
+ x(γ0 − 1

2 ) log x+ x(− 1
2γ0 − γ1 +

1
4 )

+
B2(x)

4x
− 1

24x
+ x(log x− 1

2 )ε6,0(x)− xε6,1(x).

We note here, that by construction, (cf. (3.3)), the error term above is continuous
all over, and continuously differentiable except maybe at the integer point, where it
has left and right derivatives. Furthermore, − 1

2ε6,0(1)− ε6,1(1)− 1
2γ0 − γ1+

1
4 = 0.

The above equation implies that

∑
n≤x

μ(n)
(x log2(x/n)

2n
+

x

n
(γ0 − 1

2 ) log
x

n
− x

n
( 12γ0 + γ1 − 1

4 )

+
{x/n}2 − {x/n}

4x/n
+

x(log(x/n)− 1
2 )

n
ε6,0(x/n)−

x

n
ε6,1(x/n)

)

= x log x− x

2
+

1

2x
.

We again use (3.5) in the form∑
n≤x

μ(n)
{x/n}2 − {x/n}

x/n
= −2 + 2x−1

∑
n≤x

μ(n)
(x
n
− 1

)

to get

∑
n≤x

μ(n)
(x log2(x/n)

2n
+

x

n
(γ0 − 1

2 ) log
x

n
− x

n
( 12γ0 + γ1 +

1
4 )

+
1

2
+

x(log(x/n)− 1
2 )

n
ε6,0(x/n)−

x

n
ε6,1(x/n)

)
= x log x− x

2
+

1

x
− 1

2
.

Here is our main lemma:

Lemma 5.1. When x ≥ 1, we have

ˇ̌m(x)− 2 log x+ 2γ0 = 2(γ0 − 1
2 )

2M(x)

x
+

1

x

∫ x

1

M(x/t)k′2(t)dt+
K2(1/x)

x

where

(5.1) K2(v) = 1 + 4γ0 + (3− 2γ0)v − (8γ2
0 − 12γ0 + 2γ1 + 2)

(1− v)(2 + v)

3



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

EXPLICIT ESTIMATES CONCERNING THE MOEBIUS FUNCTION 1373

satisfies 4.5 ≤ K2(v) ≤ 4 + 2γ0 when 0 ≤ v ≤ 1 and

(5.2) k′2(t) = (2γ2
0 −3γ0+2γ1+

1
2 )ε1(t)+2(γ0− log t)tε6,0(t)+2tε6,1(t)−

2γ0 − 1

12t

is continuous and differentiable except at integers where it has left and right deriva-
tives. It satisfies

(5.3) t2|k′2(t)| ≤ 1.46.

Theorem 1.7 is a straightforward consequence of this lemma. Let us specify that
h′ is typically not continuous at integer points.

Proof. Indeed, we have already reached

1
2
ˇ̌m(x) + (γ0 − 1

2 )(m̌(x)− 1)− ( 12γ0 + γ1 +
1
4 )(m(x)−M(x)x−1)

+
1

x

∫ x

1

M(x/t)q′(t)dt = log x− γ0 +
1

x2
− 1

2x

with the notation

(5.4) q(t) = t(log t− 1
2 )ε6,0(t)− tε6,1(t), (q(1) = − 1

2γ0 + γ1).

During the proof of Lemma (3.2), we have noticed that

m̌(x)− 1 = ( 32 − γ0)m(x)− M(x)

x
− 2

x
+

1

x2
− 1

x

∫ x

1

M(x/t)g′(t)dt

where the function g is defined by

(5.5) g(t) =
−1

12t
+ tε6,0(t).

Combining both identities leads to

(5.6) 1
2
ˇ̌m(x) + (−γ2

0 + 3
2γ0 − γ1 − 1

4 )(m(x)−M(x)x−1)− (γ0 − 1
2 )

2M(x)

x

+
1

x

∫ x

1

M(x/t)(q′(t)− (γ − 1
2 )g

′(t))dt = log x− γ0 +
1 + 4γ0

2x
+

3− 2γ0
2x2

.

We further recall (2.1):

m(x)− M(x)

x
=

4(1− x−1)2

x
− 4(1− x−1)3

3x
+

1

x

∫ x

1

M(x/t)ε′1(t)dt

and thus

ˇ̌m(x)− 2 log x+ 2γ0 = 2(γ0 − 1
2 )

2M(x)

x
+

1

x

∫ x

1

M(x/t)k′2(t)dt+
K2(1/x)

x

where

k′2(t) = −2(−γ2
0 + 3

2γ0 − γ1 − 1
4 )ε

′
1(t)− 2q′(t) + (2γ0 − 1)g′(t)

and K2 is defined in (5.1). We have

k2(t) = (2γ2
0 − 3γ0 + 2γ1 +

1
2 )ε1(t) + 2(γ0 − log t)tε6,0(t) + 2tε6,1(t)−

2γ0 − 1

12t
.

Let us recall the definitions of ε6,0 and ε6,1:

ε6,0(x) =

∫ ∞

x

B2(t)
dt

t3
, ε6,1(x) =

1
2

∫ ∞

x

B2(t)
(2 log t+ 1)dt

t3
.
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We deduce from that (when x is not an integer):

ε′6,0(x) = −B2(x)

x3
, ε′6,1(x) = −B2(x)(2 log x+ 1)

2x3
.

This leads to the following expression for k′2(t):

t2k′2(t) = (2γ2
0 − 3γ0 + 2γ1 +

1
2 )t

2ε′1(t)− 2(2γ0 + 1)B2(t) +
2γ0 − 1

12

+ 2(γ0 − log t)t2
∫ ∞

t

B2(u)
du

u3
+ t2

∫ ∞

t

B2(u)
(2 log u+ 1)du

u3
.

An integration by parts using B′
3(t) = 3B2(t) (where b3(x) = x3 − 3

2x
2 + 1

2x and
B3(t) = b3({t})) gives us

t2k′2(t) = (2γ2
0 − 3γ0 + 2γ1 +

1
2 )t

2ε′1(t)− 2(2γ0 + 1)B2(t) +
2γ0 − 1

12

− (1 + 2γ0)
B3(t)

3t
+

6γ0 + 1

3
t2
∫ ∞

t

B3(u)
du

u4
+ 2t2

∫ ∞

t

B3(u)
log(u/t)

u4
du.

We find that the part without the last two integrals equals (on using u = {t})

(2γ2
0 − 3γ0 + 2γ1 +

1
2 )

((2u− 1)t+ u− u2)2

t2
− (4γ0 + 2)(u2 − u+ 1

6 )

+
2γ0 − 1

12
− (1 + 2γ0)

2u3 − 3u2 + u

6t

with γ1 = −0.07281584548 · · · . Some numerical analysis tells us that this function
is increasing then decreasing between two consecutive integers. It takes its minimal
value there and this value is:

2γ2
0 − 3γ0 + 2γ1 +

1
2 − 2γ0 + 1

3
+

2γ0 − 1

12
= 2γ2

0 − 7

2
γ0 + 2γ1 +

1
12 = −1.41687 · · · .

The local maxima are all not more than 0.38. The function B3 satisfies B3(1− t) =

−B3(t). It attains its maximum at (3−
√
3)/6 and minimum at (3 +

√
3)/6. The

value of this maximum is
√
3/36 = 0.04811 · · · . As a consequence

6γ0 + 1

3
t2
∫ ∞

t

|B3(u)|
du

u4
+ 2t2

∫ ∞

t

|B3(u)|
log(u/t)

u4
du

≤ 6γ0 + 1

3

√
3

36

1

3t
+

√
3

36

2

t

∫ ∞

1

log v

v4
dv = (2γ0 + 1)

√
3

108t
.

The part concerning k′2 follows readily. It is easy to study K2(u) and show the
bounds claimed. The maximum is attained at u = 1. �

6. Proof of Theorem 1.8

By using Lemma 5.1 together with Lemma 2.1, we find that with D0 = 1078 853,

| ˇ̌m(x)− 2 log x+ 2γ0| ≤ 2(γ0 − 1
2 )

2 |M(x)|
x

+
1.46

x2

∫ x

1

|M(t)|dt+ 5.2

x

≤ 2(γ0 − 1
2 )

2 0.0130 log x− 0.118

(log x)2
+

1.46

x2

∫ D0

1

|M(t)|dt

+
1.46

x2

∫ x

D0

0.0130 log t− 0.118

(log t)2
tdt+

5.2

x
.
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We have∫ x

D0

0.0130 log t− 0.118

(log t)2
tdt =

0.0130x2

2 log x
− 0.0130D2

0

2 logD0
−
∫ x

D0

0.118− 0.0130
2

(log t)2
tdt

=
0.0130x2

2 log x
− 0.0130D2

0

2 logD0
− 0.1115x2

2(log x)2
− 0.1115D2

0

2(logD0)2
−
∫ x

D0

0.1115t

(log t)3
dt

≤ 0.0130x2

2 log x
− 0.0130D2

0

2 logD0
− 0.1115x2

2(log x)2
− 0.1115D2

0

2(logD0)2
.

Moreover, GP/PARI tells us (see script CompIntM.gp of Lemma 2.2) that∫ 1 100 000

1

|M(t)|dt = 118577036

and

118577036− 0.0130D2
0

2 logD0
− 0.1115D2

0

2(logD0)2
≤ −109.

We have thus reached:

| ˇ̌m(x)− 2 log x+ 2γ0| ≤ 2(γ0 − 1
2 )

2 0.0130 log x− 0.118

(log x)2

+ 1.46
0.0130 log x− 0.1115

2(log x)2
+

5.2

x

≤ 0.00965 log x− 0.0818

(log x)2
.

We check numerically this bound with Gp/Pari for 10 ≤ x ≤ 107. The script used
is AsymptoticBoundsFor checkcheckm.gp, function getboundsteraux.

7. An intermediate function for m

In this part, we produce upper bounds for

(7.1) m∗(y) =
∑

w≤
√
y+1

max
y/w2≤z<(y+1)/w2

|m(z)|/w2.

We have taken the maximum so that we may restrict our attention to integer values
of y. Notice that the interval [y/w2, (y + 1)/w2) contains at most one integer.

Lemma 7.1. For integer x, we have

m∗(x)
√
x/

√
1 + log x ≤

⎧⎪⎨
⎪⎩
0.5 when x ∈ [171 454, 33 000 000],

0.557 when x ∈ [100, 33 000 000],

0.578 when x ∈ [1, 33 000 000].

We precomputed the values of μ(n) for n up to 3.3 · 107, then the values of m(x)
for x up to 3.3 ·107. The script is called AsymptoticBoundsFor mstar.gp, its main
function being getboundsmstar and the total run time has been about 25 hours
on the material specified in the introduction.

We compared |m∗(x)| with
√
1 + log x/

√
x as this seems coherent with the nu-

merical outputs: the successive maxima seemed to be oscillating in the neighbour-
hood 0.5

√
1 + log x/

√
x and slightly dipping when x grows. The numerical data is,

however, way too thin to allow any conjecture. It seems clear that the work [17]
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can be adapted to m(x), but no such straightforward heuristic can be deduced for
m∗(x).

Here is a generalization of [19, Lemma 2.2]:

Lemma 7.2. Let A > e be a given parameter. The function

T (y) : y �→ log y

y

∫ y

A

dv

log v

is first increasing and then decreasing. It reaches its maximum at y0(A) where
y0(A) is the unique solution of y = (log y − 1)

∫ y

A
dv/log v. Moreover, we have

T (y0(A)) = (log y0(A))/(log y0(A)− 1).

Proof. We compute its derivative and get

y2

log y − 1
T ′(y) =

y

log y − 1
−
∫ y

A

dv

log v
= h(y),

say. We check that h′(y) = −1/[log y (log y − 1)2]. We have h(A) > 0 and h tends
to be negative in the vicinity of infinity. Indeed, after several integration by parts,
we reach

h(y) =
y

log y − 1
− y

log y
− y

log2 y
− 2y

log3 y

+
A

logA
+

A

log2 A
+

2A

log3 A
− 6

∫ y

A

dv

log4 v
.

�

Lemma 7.3. With X0 = 1426, the function

T (y) : y �→ log y

y

∫ y

√
X0

dv

log v

is increasing and then decreasing, reaching a maximum around 144.803 with value
1.251 548 +O∗(10−6). Moreover, T (

√
3.3 · 107) ≤ 1.139.

Lemma 7.4. For x ≥ 11 808, we have |m∗(x)| ≤ 0.132/ log x.
For x ≥ 687, we have |m∗(x)| ≤ 0.320/ log x.
For x > 1, we have |m∗(x)| ≤ 0.779/ log x.

Proof. The initial step is provided by Theorem 1.2:

(7.2) |m(x)| ≤ 1/(20 log x) (x ≥ X0 = 1426).

Thus, for x/U2 = X0,

|m∗(x)| ≤ 1

20

∑
u≤U

1

u2 log(x/u2)
+

maxU<u≤U+1 |m(x/u2)|
U2

+

∫ ∞

U

|m(x/u2)|du
u2

.
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We appeal to Corollary 1.3 and get that the sum of the last terms is bounded above
by

1

100U2
+

∫ √
x/694

U

du

100u2
+

∫ √
x/41

√
x/694

du

20u2
+

∫ ∞

√
x/41

du

u2

≤ 1

U

( 1

100U
+

1

100
+

U

20
√
x/694

+
U√
x/41

)

≤ 1

U

( 1

100
√
x/X0

+
1

100
+

1

20
√
X0/694

+
1√

X0/41

)
≤ 0.215/U.

We continue by using a comparison with an integral

|m∗(x)| ≤ 1

20

∑
u≤U

1

u2 log(x/u2)
+

0.215

U

≤ 1

20 log x
+

1

20
√
x

∫ √
x

√
x/U2

dv

2 log v
+

0.205

U

≤ 1

20 log x
+

1

20
√
x

∫ √
x

√
X0

dv

2 log v
+

0.215√
x/X0

.

We employ Lemma 7.3 at this level. Hence, when x ≥ 3.3 · 107,

(7.3) |m∗(x)| ≤ 1

20 log x
+

1.139

20 log x
+

0.215√
x/X0

≤ 0.132

log x
.

We extend it to x ≥ 21 500 by using Lemma 7.1. We reduce this bound by di-
rect verification by adapting the script AsymptoticBoundsFor mstar.gp, function
getboundsmstar. �

8. An intermediate function for m, bis repetita

The previous section was dedicated to getting bounds of the shape 1/ log x and
we aim here at bounds of the shape 1/(1+ log x). There are no difficulties, but the
computations need to be written down.

Here is another version of Lemma 8.1.

Lemma 8.1. Let A > e be a given parameter. The function

T ∗(y) : y �→ 1 + log y

y

∫ y

A

dv

log v

is first increasing and then decreasing. It has a maximum at y∗(A) where y∗(A)
is the solution of (1 + log y)y = (log y)2

∫ y

A
dv/log v and we have T ∗(y∗(A)) =

(1 + log y∗(A))2/(log y∗(A))2.

Proof. We compute its derivative and get

y2

log y
T ∗′(y) =

y(1 + log y)

(log y)2
−
∫ y

A

dv

log v
= h∗(y),

say. We check that h∗′(y) = −2/(log y)3. We have h∗(A) > 0 and h∗ tends to be
negative in the vicinity of infinity. Indeed, after several integrations by parts, we
reach

h∗(y) =
A

logA
+

A

log2 A
− 2

∫ y

A

dv

log3 v
. �
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Lemma 8.2. With X0 = 1426, the function

T ∗(y) : y �→ 1 + log y

y

∫ y

√
X0

dv

log v

is increasing and then decreasing, reaching a maximum around 1613.183 with value
1.289 114 +O∗(10−6). Moreover, T ∗(

√
3.3 · 107) ≤ 1.28.

Lemma 8.3. For x ≥ 11 811, we have |m∗(x)| ≤ 0.143/(1 + log x).
For x ≥ 882, we have |m∗(x)| ≤ 0.320/(1 + log x).
For x ≥ 296, we have |m∗(x)| ≤ 0.5/(1 + log x).
For x > 1, we have |m∗(x)| ≤ 1.694/(1 + log x).

Proof. We follow the proof of Lemma 7.4 until (7.3) which we modify into

(8.1) |m∗(x)| ≤ 1

20 log x
+

1.28

25(1 + log x)
+

0.215√
x/X0

≤ 0.143

1 + log x
.

We extend it to x ≥ 22 100 by using Lemma 7.1. We reduce this bound by direct
verification by again adapting the script AsymptoticBoundsFor mstar.gp, function
getboundsmstar. �

9. Proof of Theorems 1.12 and 1.13

We proceed to prove the estimate concerning mq(x). Lemmas 1.9 and 7.4 give
us, for a real parameter U such that x/q ≥ X1,

|mq(x)| ≤
∑
d|q

μ2(d)

d
m∗(x/d)

≤ q

ϕ(q) log(x/q)

⎧⎪⎨
⎪⎩
0.132 when x/q ≥ 11 808,

0.320 when x/q ≥ 687,

0.779 when x/q > 1.

(9.1)

Theorem 1.12 follows readily. We proceed in a similar way with Theorem 1.13 but
on using Lemma 8.3.

10. An intermediate function for m̌

In this part, we produce upper bounds for

(10.1) m̌∗(y) =
∑

w≤
√
y+1

max
y/w2≤z<(y+1)/w2

|m̌(z)− 1|/w2.

We have again taken the maximum so that we may restrict our attention to integer
values of y. With such a definition, our script will spend most of its time computing
logarithms, which are costly. Let us investigate somewhat further what happens.
The interval is [y/w2, (y + 1)/w2). If there are no integers lying in this interval,
then let us set

A =
∑

n≤y/w2

μ(n)/n, B = −1 +
∑

n≤y/w2

μ(n)(logn)/n.

The function |A log z − B| is maximized at log z = log y − 2 logw or at log z =
log(y + 1) − 2 logw. If there is an integer, say m lying in this interval, then we
have to maximize |A log z − B| when z ∈ [y/w2,m) and a similar expression when
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z ∈ [n, y/(w+1)2). In both cases, we can recover the relevant log z in terms of the
logarithms of integers ≤ y. It is thus enough to precompute these.

Lemma 10.1. For integer x, we have

m̌∗(x)
√
x ≤

⎧⎪⎨
⎪⎩
0.440 when x ∈ [64, 12 000 000],

0.504 when x ∈ [16, 12 000 000],

1 when x ∈ [1, 12 000 000].

We precomputed the values of μ(n) and log n for n up to 1.2 ·107, then the values
of m(x) and of −1+

∑
n≤x μ(n)(logn)/n for x up to 1.2·107. The total run time has

been about 8 hours. The constant 0.440 comes from the behaviour of m̌∗(x) for x ∈
[9 400 000, 9 600 000]. The script is called AsymptoticBoundsFor checkmstar.gp,
and its main function is called getboundscheckmstar

We compared |m̌∗(x)| to 1/
√
x as this seems coherent with the numerical outputs;

the quantity m̌∗(x)
√
x oscillates between 0.425 and 0.439, this maximum increasing

slightly with x.
We used a very similar scheme to show that

Lemma 10.2. We have, for real x,

|m̌(x)− 1|
√
x ≤

⎧⎪⎨
⎪⎩
0.0192 when 340 000 ≤ x ≤ 12 000 000,

0.0218 when 11 ≤ x ≤ 12 000 000,

1 when 1 ≤ x ≤ 12 000 000.

Another numerical application of Lemma 7.2 yields:

Lemma 10.3. With Y0 = 16, the function

T (y) : y �→ log y

y

∫ y

√
Y0

dv

log v

is increasing and then decreasing, reaching a maximum around 139.45 with value
1.253951 +O∗(10−6).

Lemma 10.4. We have, for real x,

|m̌∗(x)| log x ≤

⎧⎪⎨
⎪⎩
0.0538 when x ≥ 3 158,

0.200 when x ≥ 101,

0.250 when x > 1.

Proof. The initial step is provided by Theorem 1.5:

(10.2) |m̌(x)− 1| ≤ 1/(389 log x) (x ≥ Y0 = 16).

For smaller x, we use 0 ≤ m̌(x) ≤ 1.004 which implies that |m̌(x)− 1| ≤ 1. Thus,
for x/U2 = Y0,

|m̌∗(x)| ≤
∑
u≤U

0.0203

u2 log(x/u2)
+

max
U<u≤U+1

|m̌(x/u2)− 1|

U2
+

∫ ∞

U

|m̌(x/u2)− 1|du
u2

.
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We appeal to Corollary 1.3 and get that the sum of the last terms is bounded above
by

1

125U2
+

∫ √
x/7

U

du

125u2
+

∫ ∞

√
x/7

du

u2

≤ 1

U

( 1

125U
+

1

125
+

U√
x

)

≤ 1

U

( 1

125
√
x/Y0

+
1

125
+

1√
Y0/7

)
≤ 0.667/U.

We continue by using a comparison with an integral

|m̌∗(x)| ≤
∑
u≤U

0.0203

u2 log(x/u2)
+

0.667

U

≤ 0.0203

log x
+

0.0203√
x

∫ √
x

√
x/U2

dv

2 log v
+

0.667

U
.

≤ 0.0203

log x
+

0.0203√
x

∫ √
x

√
Y0

dv

2 log v
+

0.667√
x/Y0

.

We again employ Lemma 10.3 at this level. Hence, when x ≥ 1.2 · 107,

(10.3) |m̌∗(x)| ≤ 0.0203

log x
+

1.254× 0.0203

log x
+

0.667√
x/Y0

≤ 0.0584

log x
.

We extend it to x ≥ 3 900 by using Lemma 10.1 and to x ≥ 3 158 by direct checking
done by modifying suitably AsymptoticBoundsFor checkmstar.gp. �

11. An intermediate function for m̌, bis repetita

The previous section was dedicated to getting bounds of the shape 1/ log x and
we aim here at bounds of the shape 1/(1+ log x). There are no difficulties, but the
computations need to be written down.

Another numerical application of Lemma 8.1 yields:

Lemma 11.1. With Y0 = 16, the function

T ∗(y) : y �→ 1 + log y

y

∫ y

√
Y0

dv

log v

is increasing and then decreasing, reaching a maximum around 68.49 with value
1.529154 +O∗(10−6).

Lemma 11.2. We have, for real x,

|m̌∗(x)|(1 + log x) ≤

⎧⎪⎨
⎪⎩
0.0660 when x ≥ 3 150,

0.200 when x ≥ 171,

1 when x > 1.

Proof. We follow the proof of Lemma 7.4 until (10.3) which we modify into

(11.1) |m̌∗(x)| ≤ 0.0203

log x
+

1.530× 0.0203

1 + log x
+

0.667√
x/Y0

≤ 0.0660

1 + log x
.
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We extend it to x ≥ 3 800 by using Lemma 7.1. We reduce this bound by direct veri-
fication, again realised by modifying suitably AsymptoticBoundsFor checkmstar.gp.

�

12. Proof of Theorem 1.14 and 1.15

We proceed to prove the estimate concerning m̌q(x). Lemma 1.9 gives us,

m̌q(x) =
∑
d|q

μ2(d)

d

∑
w≤

√
x/d,

w|q∞

m̌(x/(dw2))/w2

=
∑
d|q

μ2(d)

d

∑
w≤

√
x/d,

w|q∞

m̌(x/(dw2))− 1

w2
+ m̌�

q(x)

for a real parameter U such that x/q ≥ X1,∣∣m̌q(x)− m̌�
q(x)

∣∣ ≤ ∑
d|q

μ2(d)

d
m∗(x/d)

≤ q

ϕ(q) log(x/q)

⎧⎪⎨
⎪⎩
0.0538 when x ≥ 3 158,

0.200 when x ≥ 101,

0.250 when x > 1.

13. An intermediate function for ˇ̌m

In this part, we produce upper bounds for

(13.1) ˇ̌m∗(y) =
∑

w≤
√
y+1

max
y/w2≤z<(y+1)/w2

| ˇ̌m(z)− 2 log z + 2γ0|/w2

by following closely Section 10. We have again taken the maximum so that we may
restrict our attention to integer values of y. With such a definition, our script will
spend most of its time computing logarithms, which are costly. Let us investigate
somewhat further what happens. The interval is [y/w2, (y + 1)/w2). If there are
no integers lying in this interval, then let us set

A =
∑

n≤y/w2

μ(n)

n
, B =

∑
n≤y/w2

μ(n) logn

n
, C = 2γ0 +

∑
n≤y/w2

μ(n)(logn)2

n
.

The function |A(log z)2 − 2(B + 1) log z + C| is maximum at log z = log(y/w2),
log z = log((y+1)/w2) or log z = (B+1)/A if this latter value falls within the proper
bounds. If there is an integer, say m lying in this interval, then we have to maximize
|A log z−B| when z ∈ [y/w2,m) and a similar expression when z ∈ [m, y/(w+1)2).
In both cases, we can recover the relevant log z in terms of the logarithms of integers
≤ y. It is thus enough to precompute these.

Lemma 13.1. For integer x, we have

ˇ̌m∗(x)
√
x ≤

⎧⎪⎨
⎪⎩
0.333 when x ∈ [16 900, 12 000 000],

0.474 when x ∈ [10, 12 000 000],

1.16 when x ∈ [1, 12 000 000].
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We precomputed the values of μ(n) and log n for n up to 1.2 · 107, then the
values of m(x), of −1 +

∑
n≤x μ(n)(logn)/n and of 2γ0 +

∑
n≤x μ(n)(logn)

2/n

for x up to 1.2 · 107. The total run time has been about 16 hours. The script is
called AsymptoticBoundsFor checkcheckmstar.gp and its main function is named
getboundscheckcheckmstar.

We compared | ˇ̌m∗(x)| with 1/
√
x as this seems coherent with the numerical

outputs. These outputs vary minimally, as shown by the following sample:

beginning end maximal constant
6800000 7000000 0.3318. . .
7000000 7200000 0.3313. . .
7200000 7400000 0.3318. . .
7400000 7600000 0.3318. . .
7600000 7800000 0.3316. . .

.

Question. Does there exist a constant c such that lim
x→∞

√
x | ˇ̌m∗(x)| = c ?

We report also the results of a slight modification of the script used above.

Lemma 13.2. We have

| ˇ̌m(x)− 2 log x+ 2γ0|
√
x ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.00234 when 3 393 ≤ x ≤ 12 000 000,

0.00650 when 10 ≤ x ≤ 12 000 000,

0.0717 when 4 ≤ x ≤ 12 000 000,

1.155 when 1 ≤ x ≤ 12 000 000.

Lemma 13.3. We have

| ˇ̌m∗(x)| log x ≤
{
0.0408 when x ≥ 5,

0.206 when x > 1.

Proof. The proof follows closely that of Lemma 10.4, but relies on Theorem 1.8
instead of Theorem 1.5, namely:

(13.2) | ˇ̌m(x)− 2 log x+ 2γ0| ≤ 1/(103 log x) (x ≥ 9).

We also have 0 ≤ ˇ̌m(x) − 2 log x + 2γ0 ≤ 2γ0 when x ≤ Y0 = 16, in agreement to
the conjecture. Thus, for x/U2 = Y0,

| ˇ̌m∗(x)| ≤ 1

103

∑
u≤U

1

u2 log(x/u2)
+ 2γ0

1 + U−1

U
.

We continue by using a comparison with an integral

| ˇ̌m∗(x)| ≤ 1

103

∑
u≤U

1

u2 log(x/u2)
+ 2γ0

1 + U−1

U

≤ 1

103 log x
+

1

103
√
x

∫ √
x

√
x/U2

dv

2 log v
+ 2γ0

1 + U−1

U

≤ 1

103 log x
+

1

103
√
x

∫ √
x

√
Y0

dv

2 log v
+ 2γ0

1 +
√
Y0/x√

x/Y0

.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

EXPLICIT ESTIMATES CONCERNING THE MOEBIUS FUNCTION 1383

We again employ Lemma 10.3 at this level. Hence, when x ≥ 1.2 · 107,

(13.3) | ˇ̌m∗(x)| ≤ 1

103 log x
+

1.254

103 log x
+ 2γ0

1 +
√
Y0/x√

x/Y0

≤ 0.0408

log x
.

We extend it to x ≥ 10 by using Lemma 13.1, and to x ≥ 5 by direct check, by
modifying AsymptoticBoundsFor checkcheckmstar.gp. We also have

| ˇ̌m∗(x)| ≤ 0.207/log x (x > 1). �

14. An intermediate function for ˇ̌m, bis repetita

The previous section was dedicated to getting bounds of the shape 1/ log x and
we aim here at bounds of the shape 1/(1+ log x). There are no difficulties, but the
computations need to be put down.

Lemma 14.1. We have, for real x,

| ˇ̌m∗(x)|(1 + log x) ≤

⎧⎪⎨
⎪⎩
0.0452 when x ≥ 6,

0.172 when x ≥ 2,

1.155 when x > 1.

Proof. We follow the proof of Lemma 13.3 until (13.3) which we modify via
Lemma 11.1 into

(14.1) | ˇ̌m∗(x)| ≤ 1

103 log x
+

1.530

103(1 + log x)
+ 2γ0

1 +
√
Y0/x√

x/Y0

≤ 0.0452

1 + log x
.

We extend it to x ≥ 540 by using Lemma 7.1. We reduce this bound by direct
verification, again by modifying AsymptoticBoundsFor checkcheckmstar.gp . �

15. Proof of Theorems 1.16 and 1.17

We proceed to prove the estimate concerning ˇ̌mq(x). Lemma 1.9 gives us,

ˇ̌mq(x) =
∑
d|q

μ2(d)

d

∑
w≤

√
x/d,

w|q∞

ˇ̌m(x/(dw2))/w2

=
∑
d|q

μ2(d)

d

∑
w≤

√
x/d,

w|q∞

ˇ̌m(x/(dw2))− 2 log(x/(dw2) + 2γ0
w2

+ ˇ̌m�
q(x).

Then, for a real parameter U such that x/q ≥ X1, we have

∣∣ ˇ̌mq(x)− ˇ̌m�
q(x)

∣∣ ≤ ∑
d|q

μ2(d)

d
m∗(x/d) ≤ q/ϕ(q)

log(x/q)

{
0.0408 when x ≥ 5,

0.206 when x > 1.
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16. Proof of Theorems 1.18 and 1.19

We prove in this section estimates relative to Mq. As in the case of mq, m̌q and
ˇ̌mq, we rely on an identity that links this quantity with its counterpart with no
coprimality condition. Indeed, we readily modify the proof of Lemma 1.9 to get

(16.1) Mq(x) =
∑
d|q

μ2(d)
∑

w≤
√

x/d,

w|q∞

M
( x

dw2

)
.

We recall [20, Theorem 1]:

Lemma 16.1. For D ≥ 1 078 853, we have∣∣∣∣∑
d≤D

μ(d)

∣∣∣∣ ≤ 0.0130 logD − 0.118

(logD)2
D.

We extend this bound to get the simpler∣∣∣∣∑
d≤D

μ(d)

∣∣∣∣/D ≤ 0.0130

logD
(D ≥ D1 = 97 067),(16.2)

∣∣∣∣∑
d≤D

μ(d)

∣∣∣∣/D ≤ 0.0950

logD
(D ≥ D0 = 688).(16.3)

∣∣∣∣∑
d≤D

μ(d)

∣∣∣∣/D ≤ 0.644

logD
(D > 1).(16.4)

The script we used is called AsymptoticBoundsFor M.gp and its main function is
getboundsM. But as in the previous cases of mq, m̌q and ˇ̌mq, simply plugging these
estimates into (16.1) and estimating the tail via Rankin’s trick leads to bad numer-
ical results. We again take another path that requires many more computations
but is numerically much better. We define

(16.5) M∗(y) =
∑

w≤√
y

max
y/w2<z≤(y+1)/w2

|M(z)|.

Lemma 16.2. For an n integer satisfying 99 000 ≤ n ≤ 80 000 000, we have

M∗(n) ≤ 0.574
√
n(1 + log n).

It is enough to replace the constant 0.574 by 0.595 to extend this result to x ≥ 9 933.
Furthermore, for n integer satisfying 1 ≤ n ≤ 80 000 000, we have

M∗(n) ≤ 2.403
√
n.

As it turns out, the quantity M∗(n)/
√
n(1 + log n) tends to oscillate slowly and

dips somewhat when x increases while the quantity M∗(n)/
√
n tends to rise slowly,

still in an oscillating manner of course. Since we have to precompute only M(n)
which happens to be an integer of type small, the requirement in memory space
is much less acute, when compared with the other computations of this kind we
had to carry up to now. This is why we have been able to increase significantly
the upper bound for n. The running time is, however, much larger, as it increases
quadratically: on the same machine as before, it took about three days. The script is
called AsymptoticBoundsFor Mstar.gp and its main function is getboundsMstar.

Yet another numerical application of Lemma 7.2 yields:
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Lemma 16.3. With D1 = 97 067, the function

T (y) : y �→ log y

y

∫ y

√
D1

dv

log v

is increasing and then decreasing, reaching a maximum around 45 443.09 with value
1.102836 +O∗(10−7).

All this has prepared the ground for estimating |M∗(x)| log x.
Lemma 16.4. We have

|M∗(x)| log x ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.0918 when x ≥ 48 513,

0.199 when x ≥ 4 536,

0.429 when x ≥ 490,

0.997 when x > 1.

Proof. The proof is patterned on the one of Lemma 10.4. We find that, for x/U2
0 =

D0 = 688 and x/U2
1 = D1 = 97 067,

M∗(x)/x ≤
∑

w≤U1

0.0130

w2 log(x/w2)
+

∑
U1<w≤U0

0.0950

w2 log(x/w2)
+

1 + U−1
0

U0

≤ 0.0130

log x
+

0.0130√
x

∫ √
x

√
D1

dv

2 log v
+

0.0950
√
D1√

x logD1

+
0.0950√

x

∫ √
D1

√
D0

dv

2 log v
+

1 +
√

D0/x√
x/D0

≤ 0.0130(1 + 1.102836)

log x
+

2.578√
x

+
2.777√

x
+

1 +
√
D0/x√

x/D0

≤ 0.0918

log x

when x ≥ 80 000 000. We use Lemma 16.2 to extend this bound to x ≥ 61 408 and
to x ≥ 48 513 by direct inspection; this is done by modifying suitably the script
AsymptoticBoundsFor Mstar.gp �

We can thus write ∣∣Mq(x)
∣∣ ≤ ∑

d|q
μ2(d)M∗

(x
d

)

and conclude as before.

Variation. We start with an application of Lemma 8.1:

Lemma 16.5. With D1 = 97 067, the function

T ∗(y) : y �→ 1 + log y

y

∫ y

√
D1

dv

log v

is increasing and then decreasing, reaching a maximum around 22 545.85 with value
1.209 488 +O∗(10−6).

Lemma 16.6. We have

|M∗(x)|(1 + log x) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.0975 when x ≥ 48 645,

0.198 when x ≥ 7 100,

0.498 when x ≥ 490,

1 when x > 1.
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Proof. We adapt the proof of Lemma 16.4 and get

M∗(x)/x ≤ 0.0130

log x
+

1.210× 0.0130

1 + log x
+

2.578√
x

+
2.777√

x
+

1 +
√
D0/x√

x/D0

≤ 0.0975

1 + log x

when x ≥ 80 000 000. We use Lemma 16.2 to extend this bound to x ≥ 66 000
and to x ≥ 48 645 by direct inspection, again by modifying suitably the script
AsymptoticBoundsFor Mstar.gp. �
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[5] D. Berkane, O. Bordellès, and O. Ramaré, Explicit upper bounds for the remainder term in
the divisor problem, Math. Comp. 81 (2012), no. 278, 1025–1051, DOI 10.1090/S0025-5718-
2011-02535-4. MR2869048

[6] N. Costa Pereira, Elementary estimates for the Chebyshev function ψ(x) and for the Möbius
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