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Almost periodicity of some error terms

in prime number theory

by

Jerzy Kaczorowski (Poznań) and Olivier Ramaré (Lille)

1. Introduction and statement of results. The aim of this paper is
to investigate distribution of values of a large class of functions of arithmetic
significance assuming a suitably generalized Riemann Hypothesis. Probably
the simplest example of a member of this class is defined by the following
formula:

φ0(v) =





e−v/2
(
− ψ0(ev) + ev − 12 log(1− e−2v)− log 2π

)
if v > 0,

e−v/2
(
ψ̃0(e

−v) + ev + v +
1

2
log
1− ev
1 + ev

+ C

)
if v < 0,

(1)

where C is the Euler constant and as usual (for x > 1)

ψ(x) =
∑

n≤x
Λ(n), ψ̃(x) =

∑

n≤x
Λ(n)/n,

ψ0(x) =
1
2 (ψ(x+ 0) + ψ(x− 0)), ψ̃0(x) =

1
2(ψ̃(x+ 0) + ψ̃(x− 0)).

This function for positive v is only a mild modification of the normalized
remainder term in the prime number formula, where we take the effect of
the trivial zeros of the zeta function into account. The proper definition of
φ0 for negative values of the argument follows from the work of the first
named author [8] and essentially comes from the functional equation of the
Riemann zeta function. For real y let

Ny(R) =
1

R

logR�
−∞ � {φ0(v)>y}e

v dv.

Our problem is to see how this number and related quantities behave.
Though no real number is known for which π(x) > li x, the first named
author succeeded in [9] in proving under the Riemann Hypothesis that the
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set of such x has a positive asymptotic lower density, which in our setting
is translated into lim infR→∞N−1(R) > 0. Even better, he showed that for
some constant c0 > 1, every interval of the shape [V, c0V ], V > 1, contains a
positive proportion of such points and the same holds when −1 is replaced
by any real number y. In fact the lim sup and lim inf of Ny(R) as R goes to
infinity are > 0 and < 1.

Similar problems related to the distribution of primes in arithmetic pro-
gressions are of interest. The reader is referred to the survey paper [11] and
the literature cited there. The common feature of these results is that they
depend on a kind of almost periodicity (cf. also [13]). It is also clear that
the method used in the proofs is of a general character and can successfully
be applied to many similar problems. The principal aim of this paper is to
consider the whole subject from a general point of view. It seems that the
framework of the Selberg class is appropriate here.

Let s = σ + it and f(s) := f(s). The Selberg class S (cf. [14]) is defined
by the following axioms:

(i) (Dirichlet series) Every F ∈ S is a Dirichlet series

F (s) =

∞∑

n=1

a(n)n−s,

absolutely convergent for σ > 1.

(ii) (Analytic continuation) There exists an integer m ≥ 0 such that
(s− 1)mF (s) is entire of finite order.
(iii) (Functional equation) F ∈ S satisfies a functional equation of type

Φ(s) = ωΦ(1− s), where

Φ(s) = Qs
r∏

j=1

Γ (λjs+ µj)F (s) = γ(s)F (s),

say, with Q > 0, λj > 0, Reµj ≥ 0 and |ω| = 1.
(iv) (Ramanujan hypothesis) For every ε > 0, a(n)� nε.

(v) (Euler product) F ∈ S satisfies log F (s) = ∑∞n=1 b(n)n−s, where
b(n) = 0 unless n = pk with k ≥ 1, and b(n)� nθ for some θ < 1/2.

The Selberg class contains most L-functions used in number theory.
The most obvious examples are the Riemann zeta function and the shifts
L(s+iθ), θ ∈ R, of Dirichlet L-functions with primitive character χ (mod q),
q ≥ 2. Other examples include Dedekind zeta functions of algebraic number
fields, and Hecke L-functions formed with primitive characters. Moreover,
the Artin L-functions L(s, %,K/Q) associated with irreducible representa-
tions of the Galois group Gal(K/Q) belong to S provided a standard con-
jecture holds. The L-functions Lf (s) associated with holomorphic newforms
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f(z) on congruence subgroups of SL(2,Z) belong to S once suitably normal-
ized. The same is true for the non-holomorphic ones, provided certain conjec-
tures hold. The Rankin–Selberg convolution of two normalized L-functions
associated with holomorphic newforms is in S, and the same is true for the
symmetric square L-function associated with a holomorphic newform on
SL(2,Z). Finally, we remark that many other important L-functions would
belong to S, provided certain well known conjectures, such as the Langlands
conjecture, hold.

We refer to [12] for basic facts concerning S. The minimal integer m in
(ii) is called the polar order of F and denoted by mF . We remark that the
function γ(s) in (iii) is defined uniquely up to a multiplicative constant. We
call it the γ-factor of F and denote by γF . It is known that F ∈ S has trivial
zeros at points

− µj + k

λj
, 1 ≤ j ≤ r, k ≥ 0.(2)

Because of a possible pole at s = 1, the trivial zero at s = 0, if it exists, has
multiplicity

#{1 ≤ j ≤ r : µj = 0} −mF .(3)

All other zeros are called non-trivial and lie in the vertical strip 0 ≤ σ ≤ 1.
We expect that all non-trivial zeros lie on the critical line σ = 1/2. In other
words we expect that the Generalized Riemann Hypothesis (GRH) holds in
the Selberg class.

Let F ∈ S and let % = β + iγ denote the generic non-trivial zero of F .
Moreover, let ω denote the generic trivial zero of F . For a complex number
z from the upper half-plane (Im z > 0) we write

k(z, F ) :=
∑

Im %>0

e%z

and for Re z > 0 let

k(z, γF ) :=
∑

ω

eωz.

It is easy to verify that both series converge in the indicated half-planes, the
convergence being uniform on compact subsets. Hence k(·, F ) is holomorphic
for Im z > 0, and k(·, γF ) for Re z > 0.
Moreover, we define

K(z, F ) :=

z�
i∞
k(s, F ) ds,

where the integration is taken along the vertical half-line. For Im z > 0 we
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have K(z, F ) =
∑
Im %>0 e

%z/%. For real x 6= 0 let

K(x, γF ) :=





x�
1

k(t, γF ) dt if x > 0,

x�
−1
etk(−t, γF ) dt if x < 0,

f(x, F ) := lim
y→0+
(K(x+ iy, F ) +K(x+ iy, F )),

F(x, F ) := e−x/2f(x, F ).
We also write

ΛF (n) := b(n) log n, ψ(x, F ) :=
∑

n≤x
ΛF (n), ψ̃(x, F ) :=

∑

n≤x

ΛF (n)

n
,

so that according to (v) we have, for σ > 1,

F ′

F
(s) = −

∞∑

n=1

ΛF (n)

ns
.

Theorem 1. (a) (Analytic continuation of k(z, γF )) The following for-
mula gives meromorphic continuation of k(z, γF ) to the whole complex plane:

k(z, γF ) =

r∑

j=1

e−µjz/λj

1− e−z/λj −mF .

(b) (Analytic continuation of k(z, F )) k(z, F ) has meromorphic contin-
uation to the Riemann surface M of log z. For z ∈M we have

k(z, F ) =
1

2πi
(k(z, γF )− ezk(−z, γF ) + (1− ez)mF ) log z +N1(z, F ),

where N1 is single-valued and meromorphic on C having simple poles at

most at the points z = 0 or z = ± log n for a positive integer n. We have

Resz=lognN1(z, F ) =
1

2πi
ΛF (n), Resz=− lognN1(z, F ) =

1

2πi
· ΛF (n)

n
.

(c) (Functional equation) Write points z ∈ M in the form z = reia,
r > 0, a ∈ R and let M 3 z 7→ zc ∈ M be defined by (reia)c = re−ia. Then
for all z ∈M we have

k(z, F ) + k(zc, F ) = mF e
z − k(z, γF )−

∑

γ=0

eβz,

where the summation is taken over all non-trivial , real zeros of F (if any).
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(d) (Boundary values) For x > 0, x 6= log n we have

f(x, F ) = −ψ(ex, F ) +mF e
x −K(x, γF )−

∑

Im %=0

eβx

β
+ cF ,(4)

whereas for x < 0, x 6= − log n we have

f(x, F ) = −ψ̃(e|x|, F ) +mFx−K(x, γF )−
∑

Im %=0

eβx

β
+ dF ,(5)

where cF and dF are constants depending on F .

(e) (Almost periodicity) Under GRH the function F(·, F ) is almost pe-
riodic in the L2-sense of Stepanov (see Section 4 below for the definition).

Let XS denote the C-subspace spanned by functions F(·, F ), F ∈ S,
and X S its closure in the space of almost periodic functions in the L2-
sense of Stepanov. Due to the fact that the Selberg class contains a lot of
zeta-functions used in number theory, the class X S is sufficiently large to
study many interesting arithmetic problems. Aside from the distribution of
primes in arithmetic progressions we can treat prime ideals in ideal classes,
Chebotarev type questions, distribution of Fourier coefficients of newforms
and many others. In most cases the smaller class XS is already sufficient.
For example in [11] the following φ-function has been used extensively:

φ(x, a, q) =
1

ϕ(q)

∑

χ (mod q)

χ(a)F(x,L(s, χ′)),

where q ≥ 1, (a, q) = 1 and χ′ denotes the primitive Dirichlet character
induced by χ. Here is a less standard example. Let

E : y2 = x3 + ax+ b, a, b ∈ Z,

be an elliptic curve. According to the Shimura–Taniyama–Weil conjecture,
proved in an important special case by A. Wiles and R. Taylor (cf. [18], [16])
and then in full generality in [5], the associated Hasse–Weil L-function LE
is generated by a modular form of weight 2. Hence L̃E(s) = LE(s + 1/2)
belongs to the Selberg class and the corresponding F -function is in XS . Our
study thus applies to the distribution of the numbers aE(p) = #E(Fp) when
p runs over primes.

For a real-valued φ ∈ X S let us write

Ny,φ(R) =
1

R

logR�
−∞ � {φ(v)>y}e

v dv = ∇y,φ(logR).

Looking at numerical data for particular φ ∈ XS (cf. e.g. [10]) together
with some theoretical insight, it seems unlikely that Ny,φ(R) should have a



282 J. Kaczorowski and O. Ramaré

limit at infinity. This quantity will most probably oscillate. We make this
precise in the following conjecture.

Conjecture. For every real-valued function φ ∈ X S and every real
number y, there exists an almost periodic function in the L2-sense of
Stepanov , say ∆y,φ, such that

Ny,φ(R) ∼ ∆y,φ(logR) (R→∞).
Theorem 2. Let f be a real-valued almost periodic function in the L2-

sense of Stepanov. Then there exists a countable set Y such that for real
y 6∈ Y, the function � {f(t)>y} is almost periodic in the L

2-sense of Weyl.

In particular assuming GRH , for every real-valued φ ∈ X S and every real
number y outside an at most countable set Yφ, the corresponding density
∇y,φ is a 1-Lipschitz almost periodic function in the L2-sense of Weyl.
We now introduce a whole bunch of densities. Let w be a non-negative

non-decreasing L2-function on R whose restriction to (−∞, 0] is in L1, and
such that W (T ) = � T−∞w(t) dt → ∞ as T goes to infinity. We also im-
pose that w ∈ C1(R) except maybe at finitely many points. We call such
a function admissible. For real-valued φ ∈ X S we then define the relevant
density by

Ny,φ(R,w) =
1

W (logR)

logR�
−∞ � {φ(v)>y}w(v) dv.

Theorem 3. Assume GRH. Then for every real-valued φ ∈ X S there
exists an at most countable set Yφ such that for any y in R \Yφ we can find
a δy such that for all admissible functions w for which w(t) = o(W (t)) as t
goes to infinity , we have

Ny,φ(R,w)→ δy (R→∞).
Thus, for instance, for almost all y ∈ R, the expression

a+ 1

loga+1R

∑

r≤R,ψ(r)−r>y√r

loga r

r
(a ≥ 0)

has a limit as R goes to infinity. This theorem would be a consequence of
the aforementioned conjecture, and note that it just misses the conjecture.
It is also remarkable that there should (conjecturally) be such a change of
behaviour between the case w(t) = o(W (t)) and the case w(t) =W (t). The
set Y in question is in fact a subset of the set of points where M( � {φ0(t)>y})(cf. (15)) does exist. Recalling a theorem of Jessen [7], this value is also the
derivative of the convex function M((φ0(t)− y)+) and these two quantities
exist simultaneously.
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Almost periodic functions in the sense of Bohr or Stepanov have the
feature that their behaviour at infinity can be deduced from that in finite
time, a feature which is not shared by almost periodic functions in the sense
of Weyl or Besicovitch. We can however prove that ∇y,φ has this property
for every real-valued φ ∈ XS and under GRH. Let R̂(φ) denote the Bohr
compactification relative to φ (cf. Section 4 for a definition). We readily see
that, for v ∈ R, we have ∇y,φ(v) = ∇y,φv(0). Here, and in the following,
φv or in general fv for any function f denotes the shift of argument by v:
fv(x) := f(x+ v). Since ∇y,φτ (0) is well defined for τ ∈ R̂(φ), we thus have

an extension of ∇y,φ(·) to R̂(φ).

Theorem 4. Let y be a real number and assume GRH. Then for ev-
ery real-valued φ ∈ XS the corresponding density ∇y,φ(·) is an upper semi-
continuous function over R̂(φ). For all real y with at most two exceptions
(depending on φ) ∇y,φ(·) is dφ-continuous on R.

In many concrete cases it is easy to show that exceptional values of y do
not exist. This is for example the case for φ0 in (1).

Writing Theorem 4 with Ny,φ instead of ∇y,φ, noticing that ∇y,φ(·)v =
∇y,φv(·) and using only real variables, we get (cf. Section 4 for the definition
of ‖ · ‖S2)
∀v ∈ R, ∀ε > 0, ∃α > 0, ∀v′ ∈ R,

‖φv − φv′‖S2 ≤ α ⇒ |Ny,φ(e
v)−Ny,φ(e

v′)| ≤ ε.
We can prove a more uniform version, namely

∀v ∈ R, ∀bounded interval I of R, ∀ε > 0, ∃α > 0, ∀v ′ ∈ R,

‖φv − φv′‖S2 ≤ α ⇒ max
t∈I
|Ny,φ(e

v+t)−Ny,φ(e
v′+t)| ≤ ε.

We can thus find again the behaviour of φ over a compact interval in fairly
regularly spaced “windows”, the main defect of this result being that these
windows may not overlap. Theorem 2 when applicable is better from this
viewpoint. Translated into similar terms, it says

∀ε > 0, ∃α > 0, ∃V > 0, ∀(v, v′) ∈ R2,

‖φv − φv′‖S2 ≤ α ⇒ max
x∈R

x+V�
x

|Ny,φ(e
v)−Ny,φ(e

v′)|2 dt ≤ εV.

2. Proof of Theorem 1. (a) Using (2) and (3) we have, for Re z > 0,

k(z, γF ) =

r∑

j=1

∞∑

k=0

e
−µj+k
λj

z −mF =

r∑

j=1

e−µjz/λj

1− e−z/λj −mF ,

as required.
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(b) We apply the method used in [8] with some modifications. Let

k0(z, F ) =
∑

Re µj=0, Imµj>0

eµjz/λj

and let C denote the contour consisting of two half-lines s = −b + it, ∞ >
t ≥ 0, and s = 1 + b + it, 0 ≤ t < ∞, where b is positive, and a smooth
curve l joining −b and 1 + b lying on the upper half-plane (except for the
end points). If b is sufficiently small and l sufficiently close to the real axis
we have

2πi(k(z, F ) + k0(z, F )) =
�
C

F ′

F
(s)esz ds=

( −b�
−b+i∞

+
�
l

+

1+b+i∞�
1+b

)F ′
F
(s)esz ds

= k1(z, F ) + k2(z, F ) + h(z, F ),

say. h(z, F ) poses no problems: it is entire of finite order. Using the functional
equation of F we obtain

k1(z, F ) = −2 logQ
1

z
e−bz −

r∑

j=1

λjk11(z, j) −
r∑

j=1

λjk12(z, j) − k13(z, F ),

where

k11(z, j) =

−b�
−b+i∞

Γ ′

Γ
(λjs+ µj)e

sz ds,

k12(z, j) =

−b�
−b+i∞

Γ ′

Γ
(λj(1− s) + µj)esz ds,

k13(z, F ) =

−b�
−b+i∞

F
′

F
(1− s)esz ds.

Let lj denote a smooth path joining −b+ 1/λj and −b lying inside the
set {s = σ + it : −b < σ < −b + 1/λj , 0 < t < 1} ∪ {−b} ∪ {−b + 1/λj}.
When lj is sufficiently close to the real axis we have

k11(z, j) =

−b+1/λj�
−b+1/λj+i∞

Γ ′

Γ
(λjs+ µj)e

sz ds+Hj(z) +Rj(z),

where

Hj(z) =
�
lj

Γ ′

Γ
(λjs+ µj)e

sz ds

and

Rj(z) =





2πi

λj
eµjz if Reµj = 0, Imµj < 0,

0 otherwise.
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Changing variable and using the functional equation of the Γ -function in
the form

Γ ′

Γ
(w + 1) =

1

w
+
Γ ′

Γ
(w)

we obtain

(1− ez/λj )k11(z, j) = ez/λj I(z) +Hj(z) −Rj(z),
where

I(z) =

−b�
−b+i∞

esz

λjs+ µj
ds.

Easy computations show that

I(z) = − 1
λj
e−µjz/λjE1

((
b− µj

λj

)
z

)
+ cje

−µjz/λj ,

where cj is a constant depending on λj and µj and

E1(z) = −Ei(−z) = − log z −C −
∞∑

n=1

(−1)nzn
n! · n(6)

(C denotes the Euler constant). This implies

(7) (1− ez/λj )k11(z, j)

= − 1
λj
e(1/λj−µj/λj)zE1

((
b− µj

λj

)
z

)
+ cje

(1/λj−µj/λj)z +Hj(z)−Rj(z).

Similarly we have

(8) (1− e−z/λj )k12(z, j)

= − 1
λj
e(1−1/λj+µj/λj)zE1

((
1 + b+

µj
λj

)
z

)
− dje(1−1/λj+µj/λj)z + H̃j(z),

where

H̃j(z) = e
z

1+b+1/λj�
1+b

Γ ′

Γ
(λjs+ µj)e

−sz ds.

Computation of k13(z, F ) is straightforward:

k13(z, F ) =

−b�
−b+i∞

F ′

F
(1− s)esz ds = −

∑

n≥2

ΛF (n)

n

−b�
−b+i∞

es(z+log n) ds(9)

= −e−bz
∑

n≥2

ΛF (n)

n1+b(z + log n)
.

Similarly

k2(z, F ) = e
(1+b)z

∑

n≥2

ΛF (n)

n1+b(z − log n) .(10)
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Gathering (6)–(10) we obtain

k(z, F ) =
1

2πi

r∑

j=1

e(1−µj )z/λj + e(1+µj/λj)z

ez/λj − 1 log z +N0(z, F ),

where N0(z, F ) is meromorphic on C. This together with (a) easily im-
plies (b).

(c) We consider the function k−(z, F ), defined for complex z satisfying
Im z < 0, by

k−(z, F ) =
∑

Im %<0

e%z.

The series converges uniformly on every compact subset of the lower half
plane and k−(·, F ) is holomorphic there. Let

k−0 (z, F ) =
∑

Reµj=0, Im µj<0

eiµjz/λj .

Then analogously to the proof of (b) we have

2πi(k−(z, F ) + k−0 (z, F )) = k
−
1 (z, F ) + k

−
2 (z, F ) + h

−(z, F ),

where

k−1 (z, F ) =
1+b�
1+b−i∞

F ′

F
(s)esz ds,

k−2 (z, F ) =
−b−i∞�
−b

F ′

F
(s)esz ds,

h−(z, F ) =
�
l

F ′

F
(s)esz ds,

l being a curve symmetrical to l in (b).

Term by term integration shows that

k−1 (z, F ) = −k2(z, F ).(11)

Let

M = max
1≤j≤r

∣∣∣∣
Imµj
λj

∣∣∣∣+ 1.

Then by the Cauchy integral theorem,

k−2 (z, F ) =
(−b−iM�
−b
+

−∞−iM�
−b−iM

)F ′
F
(s)esz ds.

The first integral is entire in z while the second is holomorphic for Re z > 0.
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Similarly we have

k−2 (z, F ) =
( −b+iM�
−∞+iM

+

−b�
−b+iM

)F ′
F
(s)esz ds.

Hence by the theorem of residues we have, for Re z > 0,

− k1(z, F ) − k−2 (z, F ) = 2πi
∑

Reω<0

eωz.(12)

Similarly

− h−(z, F ) − h(z, F ) = 2πi
( ∑

Reω=0

eωz +
∑

Im %=0

e%z −mF e
z
)
.(13)

Gathering (11)–(13) we obtain

k−(z, F ) = −k(z, F ) +mF e
z − k(z, γF )−

∑

Im %=0

eβz.

This gives meromorphic continuation of k−(·, F ) to the surface M . Since %
is a non-trivial zero of F provided % is a non-trivial zero of F , we have

k(z, F ) =
∑

Im %>0

e%zc = k−(zc, F ) = −k(zc, F ) +mF e
z − k−(z, γF )−

∑

γ=0

e%z .

If we notice that k(z, γF ) = k(z, γF ), the result follows.

(d) Let 0 < a < min(log 2, x) and let l(a, x) denote a smooth curve on
the upper half plane joining a and x. Then the theorem of residues yields

K(x, F ) = K(a, F ) +
�

l(a,x)

k(s, F ) ds.

Moreover, �
l(a,x)

k(s, F ) ds−
�

l(a,x)c

k(s, F ) ds = −ψ(ex, F ).

Applying the functional equation (c), we find�
l(a,x)c

k(s, F ) ds =
�

l(a,x)

k(sc, F ) dsc

= −
�

l(a,x)

k(s, F ) ds+mF e
x −

x�
1

k(t, γF ) dt−
∑

γ=0

eβx

β
+ cF ,

which gives (4). The proof of (5) is similar.

(e) Let

Φ(z, F ) = e−z/2K(z, F ) + e−z/2K(z, F ).
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Then assuming GRH we have, for z = x+ iy, y > 0,

Φ(z, F ) =
∑

γ 6=0
e−|γ|y

eiγx

%
.

Moreover, limy→0+ Φ(z, F ) = F(x, F ) for almost all real x.
For 0 < y′ < y and any real x we have

x+1�
x

|Φ(u+ iy, F )− Φ(u+ iy′, F )|2 du

=

x+1�
x

∣∣∣∣
∑

γ 6=0

e−|γ|y − e−|γ|y′

%
eiuγ
∣∣∣∣
2

du

=
∑

γ 6=0

∑

γ′ 6=0

(e−|γ|y − e−|γ|y′)(e−|γ′|y − e−|γ′|y′)
%%′

x+1�
x

ei(γ−γ
′)u du

�
∑

γ 6=0

∑

γ′ 6=0

(e−|γ|y
′ − e−|γ|y)(e−|γ′|y′ − e−|γ′|y)

|%%′| min

(
1,

1

|γ − γ′|

)
.

Now let y′ → 0:

(14)

x+1�
x

|Φ(u+ iy, F ) −F(u, F )|2 du

�
∑

γ 6=0

∑

γ′ 6=0

(1− e−|γ|y)(1− e−|γ′|y)
|%%′| min

(
1,

1

|γ − γ′|

)
.

Since
∑

γ 6=0

∑

γ′ 6=0

1

|%%′| min
(
1,

1

|γ − γ′|

)
� 1

the RHS of (14) tends to zero as y → 0+. Hence Φ(u+ iy, F )→ F(u, F ) in
the sense of S2-norm. Since Φ(x + iy, F ) is Bohr almost periodic for every
fixed positive y we conclude that F(x, F ) is almost periodic in the L2-sense
of Stepanov and the theorem is proved.

3. Auxiliary results from measure theory

Lemma 1. Let (X,µ) be a measurable space of finite measure and where
µ is non-negative. Let f ∈ L1(X,R) and U be an open subset of R. Let

ε > 0. There exists ε′ such that for any g ∈ L1(X,R) such that ‖f−g‖1 ≤ ε′,
we have

µ(f−1(U)\g−1(U)) ≤ ε.
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Proof. We have ⋃

δ>0

{x : d(f(x), cU) ≥ δ} = f−1(U),

where d(y, V ) denotes the distance between the point y and the set V .
Thus there exists δ0 > 0 such that K = {x : d(f(x), cU) ≥ δ0} satisfies
µ(K) ≥ µ(f−1(U))− ε/2. Let η > 0. We have

µ{x : |f(x)− g(x)| ≥ η} ≤ ‖f − g‖1/η.
Take η = δ0/2 and ε

′ = δ0ε/4. We have

K \ {x : |f(x)− g(x)| ≥ η} ⊂ g−1(U)
while the measure of this set is ≥ µ(f−1(U))− ε as required.
We also need the following simple lemma.

Lemma 2. Let k and N , k ≤ N , be positive integers and let {An}Nn=1 be
a family of µ-measurable sets satisfying the following conditions:

1. For every n1 < . . . < nk ≤ N we have An1 ∩ . . . ∩Ank = ∅.
2. µ(Aj) ≥ δ (> 0) for all j = 1, . . . , N .

Then

µ
( N⋃

j=1

Aj

)
≥ δN/k.

Proof. Let f(x) :=
∑N

j=1 � Aj (x). Then 0 ≤ f(x) ≤ k and therefore
kµ
( N⋃

j=1

Aj

)
≥

�
⋃
Aj

f(x) dµ(x) =

N∑

j=1

�
⋃
Aj � Aj (x) dµ(x) ≥ Nδ

and the lemma follows.

4. Almost periodic functions. We refer to the excellent books by
A. S. Besicovitch [1] and H. Bohr [4] as well as to the original papers [17],
[15], [2] for the standard definitions and facts on almost periodic functions
(see also [3], [6] and [19]). Here we restrict ourselves to some basic remarks
in order to fix notation.
For a complex-valued function f defined on the real axis and a real num-

ber τ we write fτ (t) = f(t+τ) and Γ0(f) = {fτ : τ ∈ R}. Following Bochner,
a continuous function f is called almost periodic in the sense of Bohr if the
set Γ0(f) is relatively compact in the Banach space of bounded continuous
functions with the usual norm ‖f‖∞ = supx∈R

|F (x)|. If we replace bounded
continuous functions by locally L2 integrable ones and the sup-norm by

‖f‖S2 := max
x∈R

( x+1�
x

|g(t)|2 dt
)1/2

,
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we obtain the definition of Stepanov L2-almost periodic functions. This
space is denoted by S2. Finally, taking in L2loc(R) another norm

‖f‖W 2 := lim
V→∞

max
x∈R

(
1

V

x+V�
x

|g(t)|2 dt
)1/2

,

we recover Weyl L2-almost periodic functions, which form a Banach space
denoted by W 2.
For an almost periodic function f (in one of the above senses) we denote

by Γ (f) the closure of Γ0(f) (in the appropriate norm). By definition Γ (f)
is compact. We further recall that for the three kinds of almost periodic
functions we have just defined, classical theorems assert the equivalence for
a function f belonging to the proper space between the compactness of Γ (f),
saying that f is a limit of trigonometric polynomials and the fact that the
set of pseudo-periods is large in an appropriate sense.

Lemma 3. Let f ∈ S2 and g ∈ Γ (f). Then Γ (g) = Γ (f).
Proof. It is enough to prove it is dense. Let h ∈ Γ (f). For ε > 0, there

exist τ0, τ1 such that

‖h− fτ0‖S2 ≤ ε/2, ‖g − fτ1‖S2 ≤ ε/2.
Since ‖g− fτ1‖S2 = ‖gτ0−τ1 − fτ0‖S2 , we get ‖gτ0−τ1 − h‖S2 ≤ ε as required.
Let f be an S2 almost periodic function and consider the following dis-

tance on R:

df (τ1, τ2) = ‖fτ1 − fτ2‖S2 ,
for which addition is continuous (and translations are isometries). Let R̂(f)
be the completion of R for this distance. We can prolong the action of R

on Γ (f) to a continuous action of R̂(f) on the same space. From this we

directly see that R̂(f) is a compact abelian group.
Hence it can be endowed with a unique probability Haar measure λf .

For any continuous function ϕ : R̂(f)→ C, we have

M(ϕ) = lim
T→∞

1

T

T�
−T

ϕ(t) dt =
�

R̂(f)

ϕ(t) dλf (t).(15)

Lemma 4. Let K be a closed subset of R̂(f). Let ε > 0. There exists
V0(ε) > 0 such that for every V ≥ V0(ε) we have

max
τ∈R̂(f)

max
x∈R

1

V
m{[x, x+ V ] ∩ (K + τ)} ≤ λf (K) + ε.

Proof. We only handle the case τ = 0 since λf (K + τ) = λf (K). By

Urysohn’s lemma, there exists ϕ ∈ C0(R̂(f)) such that 0 ≤ ϕ ≤ 1, ϕ|K = 1
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and �
R̂(f)

ϕ(t) dλf (t) ≤ λf (K) + ε/2.

Since

M(ϕ) =
�

R̂(f)

ϕ(t) dλf (t)

we find that there exists V0 > 0 such that for any V > V0 and any α ∈ R,
∣∣∣∣
1

V

α+V�
α

ϕ(t) dt−
�

R̂(f)

ϕ(t) dλf (t)

∣∣∣∣ ≤ ε/2.

The lemma now follows readily.

Lemma 5. Let f be a real-valued S2 almost periodic function. Put

σf (η, y) := m{x ∈ [0, 1] : y + η ≥ f(x) ≥ y},
Gf (η, y, ε) := {τ ∈ R̂(f) : σf (η, y) ≥ ε}, Gf (y, ε) = Gf (0, y, ε).

Then we have:

1. limη→0+ λf (Gf (η, y, ε)) = λf (Gf (y, ε)).
2. For every η, ε ≥ 0 the sets Gf (η, y, ε) are closed.

3. There exists a countable set Yf such that for every ε > 0 and every
y 6∈ Yf we have λf (Gf (y, ε)) = 0.
Proof. The first assertion follows from the equality

⋂

η>0

Gf (η, y, ε) = Gf (y, ε).

The second assertion is a consequence of Lemma 1 applied to a closed set.
Let τ = limn→∞ τn, τn ∈ Gf (η, y, ε). For any ε1 > 0, there exists an N1 such
that for n ≥ N1, the quantity ‖fτ − fτn‖S2 is so small that by Lemma 1,
σfτ (η, y) ≥ σfτn (η, y) − ε1 ≥ ε − ε1. Letting ε1 tend to zero proves that
τ ∈ Gf (η, y, ε) as required.
To prove the last assertion observe that for different y and y ′ the sets

f−1(y) and f−1(y′) are disjoint. Hence a τ can belong to at most [1/ε] + 1
sets G(y, ε) (ε fixed, y varying). Let y1, . . . , yN be different and such that
λf (G(yj , ε)) ≥ δ, j = 1, . . . , N . Then by Lemma 2,

εδN ≤ λf
( N⋃

j=1

G(yj , ε)
)
≤ λf (R̂(f)) = 1.

Hence N ≤ 1/(εδ). Consequently, the set YF (ε, δ) of y satisfying λf (G(y, ε))
≥ δ is finite. Taking a countable set of ε tending to zero and a countable set
of δ tending to zero, we get the stated result.
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Lemma 6. Let w be an admissible function.

1. For T, V ∈ R, V > 0, we have
∑

k≥0
w(T − kV ) ≤ w(T ) +W (T )/V.

2. If w(T ) = o(W (T )) as T → ∞ then for every W 2 almost periodic
function h we have

lim
T→∞

1

W (T )

T�
−∞

h(t)w(t) dt =M(h).(16)

Proof. The first part follows from the inequality

w(T − kV ) ≤ 1
V

T−(k−1)V�
T−kV

w(t) dt.

To prove (16) let us approximate h by trigonometric polynomials for which
the result is clear by the second mean value theorem for Stieltjes integrals.
We bound the error term. Let ε > 0. For r ≥ 0, r ∈ W 1, ‖r‖W 1 < ε/2, we
have, for sufficiently large V0 and all x ∈ R,

x+V�
x

r(t) dt ≤ εV0/2.

Moreover, for T ≥ T0(ε) we have w(T )/W (T ) ≤ 1/V0. Hence by the first
part of the lemma we have

1

W (T )

T�
−∞
|r(t)|w(t) dt ≤ 1

W (T )

∞∑

k=0

T−kV0�
T−(k+1)V0

|r(t)|w(t) dt

≤ 1

W (T )

∞∑

k=0

w(T − kV0)
εV0
2
≤ εV0
2
· w(T )
W (T )

+ ε/2≤ε

and the lemma follows.

Let h be W 2 almost periodic. We consider the integral transform of h
defined by

A(h)(T ) := e−T
T�
−∞

h(t)et dt.(17)

Lemma 7. The integral A(h) exists and is finite for all h ∈ W 2. More-
over A is a linear and continuous operator from W 2 to W 2.



Almost periodicity of error terms 293

Proof. Using the Cauchy–Schwarz inequality we have

(
e−T

T�
−∞
|h(t)|et dt

)2
≤ e−T

T�
−∞
|h(t)|2et dt

≤
∑

k≥0
e−T

T−kV�
T−(k+1)V

|h(t)|2et dt

≤
∑

k≥0
e−kV

T−kV�
T−(k+1)V

|h(t)|2 dt

and the boundedness follows from the fact that ‖h‖W 2 <∞.
It remains to show that A is linear and continuous. The linearity is

obvious. Moreover, we have

1

V

x+V�
x

|A(h)(t)|2 dt ≤ 1
V

x+V�
x

|h(t)|2 dt+ e−x 1
V

x�
−∞
|h(t)|2et dt

≤ max
x∈R

(
1

V

x+V�
x

|h(t)|2 dt
)
+max

x∈R

(
e−x
1

V

x�
−∞
|h(t)|2et dt

)

and

e−x
1

V

x+V�
x

|h(t)|2et dt ≤ 1
V

∞∑

k=0

e−kV
x−kV�

x−(k+1)V
|h(t)|2 dt

≤ 1

1− e−V maxy∈R

1

V

y+V�
y

|h(t)|2 dt.

Letting V →∞ we obtain
‖A(h)‖W 2 ≤

√
2 ‖h‖W 2 .

Hence A is continuous fromW 2 to (L2loc(R), ‖·‖W 2). To prove that A(W 2) ⊂
W 2 observe that A commutes with the action of R, i.e. A(h)t = A(ht) and
therefore the family {A(h)t}t∈R of shifts is relatively compact as a continuous
image of the relatively compact family {ht}t∈R.

Lemma 8. Let h be S2 almost periodic. Then ‖A(h)‖∞ ≤ 1.1‖h‖S2 .
Proof. We have

|A(h)(T )| ≤
0�
−∞
|hT (t)|et dt ≤ ‖h‖S2

∑

k≥0

√
e−2k − e−2k−2

2

and we check that (e+ 1)/(2(e − 1)) ≤ (1.05)2.
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5. Proof of Theorems 2 and 3. Let f be a real-valued S2 almost
periodic function. We write

D(η, f, y)(t) := min(1,max(f(t)− y, 0)/η),
which is S2 almost periodic and tends pointwise to � {f(t)>y} as η → 0

+.

Our aim is to show that this convergence holds in the W 2-sense also, thus
showing that � {f(t)>y} is W

2 almost periodic. Notice that D(η, f, y)(t) is 0
if f(t) ≤ y and 1 if f(t) ≥ y + η. The quantity

I := 1
V

x+V�
x

| � {f>y}(t)−D(η, f, y)(t)|
2 dt

is not more than
1

V
m{t ∈ [x, x+ V ] : y + η ≥ f(t) ≥ y}

and the proof will follow from the estimate

lim
η→0+

lim sup
V→+∞

max
x∈R

1

V
m{t ∈ [x, x+ V ] : y + η ≥ f(t) ≥ y} = 0

which we have to establish.
Let ε be positive and let y 6∈ Yf . By Lemma 5 we have λf (G(y, ε/4)) = 0

and therefore for all sufficiently small positive η we have λf (G(η, y, ε/4)) <
ε/4.
We have

I ≤ 1
V

x+V�
x−1

σ(η, ft, y) dt

since we readily check the general inequality

x+V�
x

g(w) dw ≤
x+V�
x−1

1�
0

gt(v) dv dt (g ≥ 0).

We thus get using Lemma 4 with K = G(η, y, ε/4) that I is not more than
1

V
m{t ∈ [x− 1, x+ V ] : σft(η, y) ≥ ε/4} +

V + 1

V
· ε
4

≤ V + 1

V
(λf (K) + ε/4 + ε/4) < ε

for V ≥ V0(ε) > 3. Consequently, we have proved that � {f>y} is W
2 almost

periodic.
Now it is straightforward to finish the proof of Theorem 2. Indeed, using

the operator A defined by (17) we have

∇y(f, ·) = A( � {f>y}) ∈W
2

and the result follows by Lemma 7.
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Moreover, it is obvious that if in addition h is bounded then A(h) is
1-Lipschitz.

Finally, observe that Theorem 3 is an immediate consequence of the
fact that � {φ>y}, y 6∈ Yφ, is W

2 almost periodic, and of the second part
of Lemma 6. In addition we see that δy is independent of w and equals
M( � {φ>y}).
6. Proof of Theorem 4. Let U be an open subset of R. We apply

Lemma 1 for X = (−∞, T ] and the measure dµ = et−Tdt to obtain

min
g:‖f−g‖1≤ε′

e−T
T�
−∞ � {g(t)∈U}e

t dt ≥ e−T
T�
−∞ � {f(t)∈U}e

t dt− ε,(18)

where the L1-norm is taken with respect to µ, for an ε′ > 0 small enough in
terms of ε > 0, f and U . Note that by Lemma 3, inequality (18) restricted
to S2 almost periodic functions tells us that the function

ΛT,U : Γ (f)→ R, g 7→ e−T
�

(−∞,T ]∩g−1(U)
et dt,

is upper semicontinuous since the L1(µ)-norm is seen to be bounded by
1.1‖ · ‖S2 by Lemma 8. On taking T to be 0, this proves the first part of
Theorem 4.

If U were a closed set the inequality (18) would be reversed and the min
replaced by max, which shows that we cannot replace U by any borelian
set in this statement without proving the functional above to be continuous.
This has the consequence that ∇y,f (·) is continuous at every point τ0 ∈ R̂(f)
for which

0�
−∞ � {fτ0 (t)=y}e

t dt = 0.

Hence we deduce easily that if the set of t ∈ R satisfying

fτ0(t) = y(19)

has the Lebesgue measure zero then ∇y,f (·) is continuous at all points of
τ0 + R.

Let f = φ ∈ XS and τ0 = 0. We can write

φ(x) =

N∑

j=1

cjF(x, Fj)

for some functions Fj ∈ S and complex numbers cj , j = 1, . . . , N .
Suppose that for some y the set of solutions of (19) has a positive

Lebesgue measure. Then also its intersection with (log n0, log(n0 + 1)) or
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(− log(n0+1),− log n0) for some positive integer n0 has a positive measure.
Suppose the former possibility occurs. By Theorem 1(d), for x > 0 we have

φ(x) = −e−x/2
N∑

j=1

cjψ(e
x, Fj) +H+(x),

where H+ is holomorphic on (0,∞). Since in the interval (log n0, log(n0+1))
the sum is constant, equal to α0, say, we see that the set of solutions x of
the equation

H+(x) = y + α0e
−x/2 (x > 0)

has a positive measure. Hence H+(x) = y + α0e
−x/2 identically on (0,∞).

This of course determines y uniquely. Another possible exceptional value of
y occurs when considering negative x. Theorem 4 is therefore proved.

To get the uniform version stated after Theorem 4 we need two ingre-
dients. First notice that the functions ∇y+δ,φv(t) on I are continuous, that
this sequence is non-increasing in δ > 0 and that its limit on δ → 0 is the
continuous function ∇y,φv(t) by our special choice of φ and v. Dini’s lemma
asserts that the convergence is then uniform on I. A similar argument holds
for ∇y−δ,φv(t). The second ingredient is hidden in the proof of Lemmas 1
and 8; we proved there that

∇y+δ,φv(t) ≤ ∇y,φv′ (t) + 1.1‖φv − φv′‖S2/δ (δ > 0).

We can now embark on the proof. Take v ∈ R, a bounded interval I and
a positive ε. We can find δ0 = δ0(v, I, ε) > 0 such that for all δ ≤ δ0 we have

max
t∈I
(|∇y+δ,φv(t)−∇y,φv(t)|+ |∇y−δ,φv(t)−∇y,φv(t)|) < ε/2.

Put α0 = εδ0/4.4. For any v
′ ∈ R satisfying ‖φv − φv′‖ ≤ α0, we have

|∇y,φv′ (t)−∇y,φv(t)|
≤ |∇y+δ0,φv(t)−∇y,φv(t)|+ |∇y−δ0,φv(t)−∇y,φv(t)|+ 2.2α0/δ0 ≤ ε,

which concludes the proof.
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