
http://www.elsevier.com/locate/jnt

Journal of Number Theory 98 (2003) 10–33

.

Short effective intervals containing primes
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Abstract

We prove that every interval �xð1� D�1Þ; x� contains a prime number with D ¼ 28 314 000

and provided xX10 726 905 041: The proof combines analytical, sieve and algorithmical

methods.
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1. Introduction

We consider the determination of numerical intervals containing at least one prime
number. The history of this problem can be divided into three parts: asymptotical
properties, conjectures (mainly results assuming Riemann hypothesis) and numerical
results, a part which we shall see as bridging the other two.

The story seems to start in 1845 when Bertrand conjectured after numerical trials
that the interval �n; 2n � 3� contains a prime for nX4: This was proved by Čebyšev in
1852 in a famous work where he got the first good quantitative estimates for the
number of primes less than a given bound, say x: By now, analytical means
combined with sieve methods (and the joint efforts of Baker et al. [4]) ensures us that

each of the intervals ½x; x þ x0:525� for xXx0 contains at least one prime. This
statement concerns only for the (very) large integers.
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It falls very close to what we can get under the assumption of the Riemann

hypothesis: the interval ½x � K
ffiffiffi
x

p
log x; x� contains a prime, where K is an effective

large constant and x is sufficiently large (cf. [25] for an account on this subject and
Theorem 1). A theorem of Schoenfeld [18] also tells us that the interval

½x �
ffiffiffi
x

p
log2 x=ð4pÞ; x� ð1Þ

contains a prime for xX599 under the Riemann hypothesis. These results are still far
from the conjecture Cramer [8] made in 1936 on probabilistic grounds: the interval

½x � K log2 x; x� contains a prime for any K41 and xXx0ðKÞ: Note that this
statement has been proved for almost all intervals in a quadratic average sense by
Selberg [19] in 1943 assuming the Riemann hypothesis and replacing K by a function
KðxÞ tending arbitrarily slowly to infinity.

From a numerical point of view, the Riemann hypothesis is known to hold up to a
very large height. It is possible to use this fact to obtain estimates for pðxÞ; a
development initiated by Rosser [21] in 1941, followed by Rosser and Schoenfeld’s
improvements [18,22] in 1975–1976. Wedeniwski [24] announced in November 2001

that he and others have verified the Riemann hypothesis up to height 3:33	 109;
thus extending the work of Van de Lune et al. [23] who had conducted such a

verification in 1986 till height 5:45	 108: Since then, the height 6:75	 109 has been
reached but we will refrain from using this result since it has been subject to no
formal announcement. However updating our Table 1 below is a simple matter (see
Theorem 4). Such computational results are substantially better than what was

available to Rosser and Schoenfeld, namely that the first 3:6	 106 zeroes verify the
Riemann hypothesis. Furthermore, Rosser and Schoenfeld concentrated on proving
effective bounds for pðxÞ; while we are interested only in proving that short intervals

Table 1

log x0 D a1 a2 a4 a m T

46 81 353 847 0.81 11 22/40 0.39890 48 1 361 250 000

47 127 680 085 0.71 12 22/40 0.40890 48 1 930 500 000

48 160 366 248 0.47 19 22/40 0.42373 48 2 095 500 000

49 178 274 183 0.28 31 22/40 0.43200 48 2 062 500 000

50 190 341 073 0.17 51 23/40 0.43606 48 2 062 500 000

51 197 073 687 0.105 85 23/40 0.43948 50 2 095 500 000

52 201 243 345 0.065 135 23/40 0.44187 52 2 128 500 000

53 204 879 661 0.040 217 24/40 0.44320 53 2 161 500 000

54 206 405 270 0.024 355 24/40 0.44366 53 2 145 000 000

55 207 313 717 0.016 573 24/40 0.44492 55 2 343 000 000

56 207 833 950 0.010 943 24/40 0.44507 55 2 409 000 000

57 208 988 147 0.006 1547 25/40 0.44522 55 2 392 500 000

58 209 026 205 0.004 2548 25/40 0.44522 55 2 607 000 000

59 209 257 759 0.002 4199 25/40 0.44529 55 2 178 000 000

60 209 267 308 0.002 6920 25/40 0.44529 55 3 300 000 000

150 212 215 384 0.00033 23	 1023 34/40 0.44536 55 3 300 000 000
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contain primes. This leads to additional improvements. The third ingredient we use is
new and comes from sieve theory via the Brun–Titchmarsh inequality. To explain it
roughly, let us say that we estimate from below a sum over primes

P
p f ðp=xÞ where

f is a non-negative smooth function with support a compact interval containing 1,
and we seek to find the smallest such interval for which a positive lower bound is
obtainable. The smoothness implies that f and a good number of its derivatives are 0
on the boundary of this interval which in turn implies that f will be small near to this
boundary. Analytical methods can however not tell us that all the primes detected by
this lower estimate are not clustering precisely near this boundary (since we would
otherwise choose a smaller interval) but sieve methods can do that up to some (here)
minor loss. With the test function we chose this phenomenon is at its peak when x is
large when compared to the height (say T0) up to which the Riemann hypothesis is
known to hold. Numerically, the sieve argument shortens the interval by a factor 5
while asymptotically in T0 it yields

maxfDX 1 j 8x X ðT0 log T0Þ2; (p A �xð1� D�1Þ; x�gb T0ðlog T0Þ�1=2: ð2Þ

A similar approach but without the sieve argument gives the lower bound

T0ðlog T0Þ�1: For so small x’s, the infinite zero-free region is of course of no use.
In order to offer a comparison with (1), we mention the following:

Theorem 1. Under the Riemann hypothesis, the interval �x � 8
5

ffiffiffi
x

p
log x; x� contains a

prime for xX2:

Let us recall here that a second line of approach following the original work of
Čebyšev is still under examination though it does not give results as good as
analytical means (see [7] for the latest result).

We prove the following:

Theorem 2. Let x be a real number Xx0X1020: Then the interval �xð1� 1=DÞ; x�
contains at least one prime, where D is a function of x0 defined by Table 1.

Note that logð1020Þ ¼ 46:051y and that all prime gaps have been computed up to

1015 by Nicely [15], extending a result of Young and Potler [26]. The other
parameters given by Table 1 are explained in Section 4.

We thus have to cover the range 1015–1020; which we did via algorithmic means. In

fact, we covered the whole range 1010–1020; so as to offer an independant
verification. The problem of the prime certificate is a crucial issue since, while
general primality checkers can easily establish or disprove the primality of numbers
having 20 decimal digits, they are much too slow for our purpose. Indeed,
approximatively 400 millions of prime numbers were necessary for the derivation of
Theorem 3 and each one would have required about 1 s with the elliptic curve
primality checker ECPP [2], amounting to a quite unrealistic global running time of
about 10 years. Other methods lead to a similar situation as explained in Section 7.
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We thus decided to use prime generation techniques [12]: we only look at families of
numbers whose primality can be established with one or two Fermat-like or
Pocklington’s congruences. This kind of technique has been already used in a quite
similar problem [17]. The generation technique we use relies on a theorem proven by
Brillhart, Lehmer, and Selfridge [6] and enables us to generate dense enough families for
the upper part of the range to be investigated. For the remaining range, we use theorems
of Jaeschke [11] that yield a fast primality test (for this limited range). Finally, we obtain:

Theorem 3. Let x be a real number larger than 10 726 905 041. Then the interval

x 1� 1

28 314 000

� �
; x

� �

contains at least one prime.1

Our theorem should be compared with Schoenfeld’s result [18] which states that
the interval �x; xð1þ 1=16 597Þ� contains a prime, for xX2 010 760: Also note that
the largest prime gap before 10 726 905 041 (which is itself a prime) is 381 by Young
and Potler’s result and that 10 726 905 041=28 314 000 ¼ 378:8y :

The value 10 726 905 041 in the corollary is optimal. In case the reader would want
another kind of interval, let us mention that the above theorem says also that the
interval �x; xð1þ 1=28 313 999Þ� contains a prime for xX10 726 905 041:

As a corollary, and recalling that Richstein [20] extending a work of Deshouillers,

te Riele and Saouter proved that every even integer not more than 4	 1014 is a sum
of two primes at most, we get:

Corollary 1. Every odd integer 41 not more than 1:13256	 1022 is a sum of at most

three primes.

We deduce this corollary from the preceding theorem by using a greedy algorithm.
This result is an improvement of [17] where the second named author with co-

authors proved a similar statement to hold true, but with 1020 instead of 1:13256 	
1022:

As usual, we define for any real number X

cðXÞ ¼
X
npX

LðnÞ; where L is Von Mangold’s function;

WðXÞ ¼
X
ppX

log p; where p denotes a prime;

r ¼ bþ ig is a non-trivial zero of zðsÞ i:e: with 0obo1:

1The reader may wonder on the link between 28 314 000 and 81 353 847 given by Table 1. A first version

of this paper relying only on [23] had the first value instead of the second one, which explains why the

algorithmic part was driven as it was.
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An unusual notation: We assume the Riemann hypothesis to hold up to T0: By

Wedeniwski [24], we can take T0 ¼ 3:33	 109; but we shall only use T0 ¼ 3:3	 109

in numerical applications. However Theorem 4 is valid for any T0:

2. Lemmas

We set

NðTÞ ¼
X
r

0ogpT

1: ð3Þ

In the next two lemmas, by f ðxÞ ¼ OnðgðxÞÞ we mean j f ðxÞjpgðxÞ:

Lemma 1. If T is a real number X103 then

NðTÞ ¼ T

2p
log

T

2p
� T

2p
þ 7

8
þ On 0:67 log

T

2p

� �
:

Proof. This follows easily from Theorem 19 of [21]. &

Lemma 2. If mX1 and TX103 then

X
r

jgj4T

1

jgjmþ1
¼ 1

mpTm
logðT=2pÞ þ 1

m

� �
þ On 1:34

Tmþ1
ð2 logðT=2pÞ þ 1Þ

� �
:

Proof. We have

X
r

jgj4T

1

jgjmþ1
¼ 2

X
r

g4T

1

gmþ1

¼ 2
X
r

g4T

ðm þ 1Þ
Z

N

g

dt

tmþ2

¼ 2ðm þ 1Þ
Z

N

T

NðtÞ dt

tmþ2
� 2

NðTÞ
Tmþ1

;

and an appeal to Lemma 1 concludes. &
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We set

smðTÞ ¼ 1

mp
logðT=2pÞ þ 1

m

� �
þ 1:34

T
ð2 logðT=2pÞ þ 1Þ

� 	
f1þ 10�5g; ð4Þ

the factor 1þ 10�5 is explained in the next lemma.

Lemma 3. If mX1; TX103 and xX105 then

X
r

jgj4T

xb

jgjmþ1
psmðTÞ

ffiffiffi
x

p

Tm
þ smðT0Þ

x

2Tm
0

:

Note: Though the assumption TpT0 is not necessary, the lemma has been patterned

for this case.

Proof. The functional equation implies that if bþ ig is a non-trivial zero of z; then so
is 1� bþ ig: Hence

X
r

jgj4T

xb

jgjmþ1
¼ 1

2

X
r

jgj4T

xb þ x1�b

jgjmþ1
:

Now when g4T0; we use the inequality xb þ x1�bp1þ xpð1þ 10�5Þx for xX1 and
Lemma 2 concludes. &

Lemma 4. Let g be a continuously differentiable function on ½a; b� with 2papboN:
We have

Z b

a

cðtÞgðtÞ dt ¼
Z b

a

tgðtÞ dt �
X
r

Z b

a

tr

r
gðtÞ dt

þ
Z b

a

log 2p� 1

2
logð1� t�2Þ

� �
gðtÞ dt:

Proof. It is enough to prove this lemma when no integer lies between a and b; a
hypothesis we shall henceforth make. We recall that for aoyob and T42;

cðyÞ ¼ y �
X
r

jgjpT

yr

r
þ log 2p� 1

2
logð1� y�2Þ

þ O
y log2 yT

T
þ y log y

/yST

� �
; ð5Þ
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where /yS ¼ minðy � a; b � yÞ (see [9, Chapter 17, formulae (9) and (10)]). We have
for 0oeoðb � aÞ=2

Z b�e

aþe
cðtÞgðtÞ dt ¼

Z b�e

aþe
tgðtÞ dt �

X
r

jgjpT

Z b�e

aþe

tr

r
gðtÞ dt

þ
Z b�e

aþe
log 2p� 1

2
logð1� t�2Þ

� �
gðtÞ dt

þ O
log2 T

T
þ logð1=eÞ

T

� �
;

where the error term depends on a; b and g: Now an integration by parts yields

Z b�e

aþe
trgðtÞ dt51=jrj

uniformly in e: Our lemma follows by letting T tend to N and then e to 0: &

Lemma 5. Let X ; u; d be real numbers satisfying

XX1012; 0pdp0:0001; 0pup0:0001:

We have for all t in ½0; 1�

WðXeuð1þ dtÞÞ � WðXð1þ dtÞÞp2:0004 uX
log X

logðuX Þ:

Proof. Define Y ¼ Xð1þ dtÞ: The Brun–Titchmarsh inequality of Montgomery and
Vaughan [14, Theorem 2] gives us

WðYeuÞ � WðY Þp 2 logðYeuÞ Yðeu � 1Þ
logðYðeu � 1ÞÞ

p 2:00012Yu
u þ logY

logðeu � 1Þ þ log Y

p 2:00012Yu
u þ log X

logðeu � 1Þ þ log X

p 2:00012Yu 1þ u � logðeu � 1Þ
logðeu � 1Þ þ log X

� �

p 2:0004Yu 1� log u

logðuÞ þ log X

� �
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since eu � 1p1:00006u and u � logðeu � 1Þp� 1:00005 log u for uA�0; 0:0001�: This
proves Lemma 5. &

3. The general principle

Let m be a positive integer. A function f over ½0; 1� is called m-admissible if the
following properties hold:

(1) f is a m-times differentiable function.
(2) f ðkÞð0Þ ¼ f ðkÞð1Þ ¼ 0 for 0pkpm � 1:
(3) fX0:
(4) f is non-identically zero.

For such a function, we define

mn

mð f Þ ¼ jj f ðmÞjj1=jj f jj1; mmð f Þ ¼ jj f ðmÞjj2=jj f jj1; ð6Þ

where as usual

jjgjj1 ¼
Z 1

0

jgðtÞj dt and jjgjj2 ¼
Z 1

0

jgðtÞj2 dt

� �1
2

: ð7Þ

We shall use

vð f ; aÞ ¼
Z a

0

f ðtÞ dt þ
Z 1

1�a

f ðtÞ dt

for 0pap1=2; as well as

wð f ; aÞ ¼ vð f ; aÞ=jj f jj1: ð8Þ

We have the following result:

Theorem 4. Let m be an integer X2: Let a140; a2X1; a4A½1
2
; 1� and aA½0; 1

2
� be four

real parameters. Let us select an m-admissible function f : We set

a�1
3 ¼ 0:99� 1:0007a1 �

2:001

a4
wð f ; aÞ � 0:0326=a2

� �
=2:0012

and assume it to be positive. Let YX2	 1012 and TX103 be real numbers such that

2NðTÞpa1
ffiffiffiffi
Y

p
:
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We put

u ¼ 1:0001

T
a3

mn
mð fmÞ
mm

T
smðTÞffiffiffiffi

Y
p þ smðT0Þ

2

T

T0

� �m� �� � 1
mþ1

and we assume that

mup0:0001; a2pu
ffiffiffiffi
Y

p
; Y a4puY ; TpT0:

We have

WðYÞ � W Y
1þ mua

1þ muð1� aÞ e�u

� �
X

uY

101ð1� wð f ; aÞÞ:

Notice that if parameters a1; a2; a and T satisfy the hypothesis of the above
theorem for a given value of Y ; then they satisfy it also for any larger value of Y and
u is decreased.

Proof. We put d ¼ mu and euX ð1þ dð1� aÞÞ ¼ Y so that XX0:999Y : We also set

Y 0 ¼ Y
1þ mua

1þ muð1� aÞ e�u: ð9Þ

The proof begins withZ 1�a

a

ðWðeuð1þ dð1� aÞÞXÞ � WðXð1þ daÞÞÞf ðtÞ dt

X

Z 1�a

a

ðWðeuð1þ dtÞXÞ � Wðð1þ dtÞX ÞÞf ðtÞ dt:

We extend the latter integral to ½0; 1� by using Lemma 5 getting

ðjj f jj1 � vð f ; aÞÞðWðYÞ � WðY 0ÞÞX
Z 1

0

ðWðeuð1þ dtÞX Þ � Wðð1þ dtÞXÞÞf ðtÞ dt

� 2:0004uXvð f ; aÞ log X

logðuX Þ:

We then use log X=logðuX ÞplogY=logðuY Þ and the inequality involving a4 to get
the lower bound

ðjj f jj1 � vð f ; aÞÞðWðY Þ � WðY 0ÞÞ

X

Z 1

0

ðWðeuð1þ dtÞXÞ � Wðð1þ dtÞX ÞÞf ðtÞ dt � 2:001

a4
uXvð f ; aÞ: ð10Þ
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Let us call I this integral divided by jj f jj1 and J a similar expression but with W
replaced by c: We go from c to W by using the following estimates taken from
Schoenfeld’s work [18]:

cðZÞ � WðZÞX0:998 697
ffiffiffiffi
Z

p
ðZX121Þ;

cðZÞ � WðZÞp1:001 093
ffiffiffiffi
Z

p
þ 3Z1=3 ðZ40Þ;

(
ð11Þ

so that for tA½0; 1�:

Wðeuð1þ dtÞXÞ � Wðð1þ dtÞX Þ � ðcðeuð1þ dtÞX Þ � cðð1þ dtÞXÞÞ

X�
ffiffiffiffi
X

p
ð1:001 093

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
euð1þ dÞ

p
þ 3ðeuð1þ dÞÞ1=3X�1=6 � 0:998 697Þ

X� 0:0325
ffiffiffiffi
X

p
:

Thus

IXJ � 0:0325
ffiffiffiffi
X

p
ð12Þ

and we are left with evaluating J: We apply Lemma 4 and the elementary inequality

log 1� 1

ðeuð1þ dtÞX Þ2

 !
� log 1� 1

ðð1þ dtÞXÞ2

 !

p 1� 1

ðeuð1þ dtÞX Þ2

 !,
1� 1

ðð1þ dtÞX Þ2

 !
� 1p

u

X

to get

JXu X � 1

X

� �
� 1

jj f jj1

X
r

eur � 1

r
Xr
Z 1

0

ð1þ dtÞrf ðtÞ dt: ð13Þ

To treat the sum over the zeroes, we distinguish whether jgj is larger or smaller

than T : When jgjpT ; we have b ¼ 1
2
and we use

Z 1

0

ð1þ dtÞrf ðtÞ dt

����
����pð1þ dÞ1=2jj f jj1;

eur � 1

r

����
���� ¼

Z u

0

exr dx

����
����pueu=2puð1þ dÞ1=2

while, if jgj4T ; m integrations by parts give

Z 1

0

ð1þ dtÞrf ðtÞ dt ¼ ð�1Þm

ðrþ 1Þyðrþ mÞdm

Z 1

0

ð1þ dtÞrþm
f ðmÞðtÞ dt
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from which we infer

Z 1

0

ð1þ dtÞrf ðtÞ dt

����
����pð1þ dÞmþ1

jgjmdm jj f ðmÞjj1: ð14Þ

By (13) we have thus proved that J=ðuX Þ is not less than

1� 1

X 2
� ð1þ dÞ2NðTÞffiffiffiffi

X
p � ð1þ dÞmþ1mn

mð f Þe
u þ 1

udm

X
r

jgj4T

Xb�1

jgjmþ1
: ð15Þ

Using Lemma 3, the bound for u and the hypothesis on a1; we can replace this lower
bound by

1� 1

X 2
� 1þ dffiffiffiffiffiffiffiffiffiffiffi

0:999
p a1 � ð1þ dÞmþ1mn

mð f Þ 2:0001
udm

smðTÞffiffiffiffi
X

p
Tm

þ smðT0Þ
2Tm

0

� �
: ð16Þ

We infer that I=ðuX Þ is not less than

1� 1

X 2
� 1:0007a1 �

0:0325

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:999Y

p

� 2:0001ffiffiffiffiffiffiffiffiffiffiffi
0:999

p mn
mð f Þ
mm

1:0001

uT

� �mþ1
smðTÞTffiffiffiffi

Y
p þ smðT0ÞTmþ1

2Tm
0

� �
: ð17Þ

Recalling the hypothesis on a2; (10) and the definition of u; we get

ð1� wð f ; aÞÞðWðYÞ � WðY 0ÞÞXI � 2:001

a4
uXwð f ; aÞ

XuX 1� 2:001

a4
wð f ; aÞ � 1:0007a1 �

0:0326

a2
� 2:0012

a3

� �
� u

X
ð18Þ

and this lower bound is at least ðuX=101Þ by the hypothesis on a3: This proof implies
that 1� wð f ; aÞ40 (it follows from a340). &

4. The test-function

We now have to choose the m-admissible function in order to apply Theorem 4.
We choose

f ðtÞ ¼ fmðtÞ ¼ ð4tð1� tÞÞm ð19Þ

O. Ramaré, Y. Saouter / Journal of Number Theory 98 (2003) 10–3320



which can be shown to be optimal among the ð2m þ 1Þ-times differentiable functions
when we impose a ¼ 0 (we however do not make any claim). We have

Lemma 6.

jj fmjj1 ¼
22mm!2

ð2m þ 1Þ!; jj f ðmÞ
m jj2 ¼ 22m m!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m þ 1
p ; ð20Þ

mn

mð fmÞpmmð fmÞ ¼
ð2m þ 1Þ!

m!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m þ 1

p p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m þ 2

p
e

1
24mð4m=eÞm; ð21Þ

ð2m þ 1Þvð fm; aÞ ¼ 2mvð fm�1; aÞ þ ð2a � 1ÞfmðaÞ: ð22Þ

Proof. The first result is given by integration by parts. The second one follows from

Z 1

0

f ðmÞ
m ðtÞ2 dt ¼ ð�1Þm

Z 1

0

fmðtÞf ð2mÞ
m ðtÞ dt: ð23Þ

The third one follows by using the estimates

ðn=eÞn
ffiffiffiffiffiffiffiffi
2pn

p
pn!pðn=eÞn

ffiffiffiffiffiffiffiffi
2pn

p
e

1
12n ð24Þ

valid for nX1: Finally the recurrence formula for vð fm; aÞ comes from the relation

ð2m þ 1Þfm ¼ 2mfm�1 þ ððt � 1
2
ÞfmÞ0: &

Remarks concerning Tables 1 and 2. (1) For 46plog Xp60; we have given the values
of all the parameters we chose so as to make our results easily verified.

(2) The quantity mn
mð f Þ is the one appearing in the proof but mmð f Þ is easier to

handle and is the one we have used. We have computed values of mn
mð f Þ and checked

numerically that mn
mð f Þ1=ðmþ1Þ and mmð f Þ1=ðmþ1Þ were very close one to another.

(3) Riemann hypothesis is known to hold up to T0 ¼ 3:33	 109 [25], so our results
can be improved.

(4) We looked for optimal values of ðm; a1;T ; a; a4; a2Þ in this order (recursively:
with the first datas fixed, find the best next one). The parameters T ; a; a4 and a2
were easy to get, but a1 turned out to be quite troublesome, due to the fact that D as
a function of a1; with m fixed and the other parameters chosen almost optimally, is
not clearly first increasing and then decreasing. We thus decided to scan a large range
of values for a1: We have assumed that as a function of m; D was increasing and
then decreasing. This optimization process has been carried out with 28 digits of
precision and final datas recomputed to 1000 digits. We can thus claim that the
values of D we give are correct (up to a big blunder) but not that they are optimal,
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though we of course expect them to be close to it. We modified this program several
times, ran it on different machines and the outputs were consistent.

(5) Lowering the value of a1 means lowering the value of T but also enables us to
take a larger a: The way these two mechanisms interfere is highly non-trivial. For
large values of m; we found that it was slightly better to gain on a but a much larger
value of a1 would have yielded results only marginally inferior. This accounts for the
seemingly high instability of the near-optimal parameters we took.

(6) To see that the sieve effect is indeed noticeable, we produced Table 2 where we
took a ¼ 0: the intervals are about 5 times smaller.

5. Proof of (2)

In this section we examine the strength of Theorem 4 asymptotically in T0 and
prove (2).

We evaluate the size of the interval in the following lemma:

Lemma 7. For aA½0; 1
2
�; we have

1� 1þ mua

1þ muð1� aÞ e�upuð1þ ð1� 2aÞmÞ:

Proof.

1� 1þ mua

1þ muð1� aÞ e�u ¼ ð1þ muaÞ
1þ muð1� aÞð1� e�uÞ þ mu

1� 2a

1þ muð1� aÞ
p u þ muð1� 2aÞ;

which concludes the proof. &

Table 2

a ¼ 0

log X D m

46 34 063 443 21

47 35 425 690 22

48 35 958 929 22

49 36 217 784 22

50 36 359 809 22

56 36 390 432 22
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We choose

T ¼ T0; a1 ¼ 1=2; a2 ¼ 1; a4 ¼ 1=2; m ¼ log T0 þ Oð1Þ;

a ¼ 1

2
� bffiffiffiffi

m
p for a large enough positive b:

We first need to evaluate wð fm; aÞ; and we prove below that wð fm; aÞpe�4b2=ð2bÞ:
Assuming this estimate, we choose b so that wð fm; aÞp1=16 and for instance b ¼ 1 is
enough. We find that a3 is of order 1, hence

u^
1

T0
T0

log T0

m

� �1=ðmþ1Þ
^1=T0

(where f^g means f5g and g5f ), from which we infer

D�1
5

1

T0
1þ m

2bffiffiffiffi
m

p
� �

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log T0

p
=T0

as claimed.
We are thus left to prove the inequality concerning wð fm; aÞ: Note first that

jj fmjj1Xð2mÞ�1=2: Elementary transformations yields

vð fm; aÞ ¼ 2

Z 1
2
� bffiffiffi

m
p

0

ð4tð1� tÞÞm
dt

¼
Z 1

2bffiffiffi
m

p
ð1� h2Þm

dh ðt ¼ ð1� hÞ=2Þ ð25Þ

vð fm; aÞ ¼ 1

2
ffiffiffiffi
m

p
Z m

4b2
1� k

m

� �m
dkffiffiffi

k
p ðh2 ¼ k=mÞ ð26Þ

p
1

2
ffiffiffiffi
m

p
Z m

4b2
e�k dkffiffiffi

k
p p

1

2
ffiffiffiffi
m

p
Z

N

4b2
e�k dkffiffiffi

k
p p

e�4b2

4b
ffiffiffiffi
m

p ð27Þ

from which the estimate concerning wð fm; aÞ follows readily.

6. A result under Riemann hypothesis

If YA½599; 108�; the result follows from (1); if YA½108; 1011� it follows from

the theorem of Schoenfeld cited after Theorem 3, while for YA½108; 1018�; it
follows from Theorem 3. A direct verification covers the lower range. We could also
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have employed Nicely’s result [15]. We thus restrict our attention to the case

YX1015:
We use Theorem 4 with T0 ¼ N; m ¼ 2; a1 ¼ 0:63; a2 ¼ 0:5 logY ; a4 ¼ 1=2

and a ¼ 2=25: The list of inequalities below clearly amounts to an algorithm and
these parameters are close to the optimal ones. We use

T ¼ 2a1p
ffiffiffiffi
Y

p
=logY ð28Þ

and prove that the interval ½Y � 8
5

ffiffiffiffi
Y

p
logY ;Y � contains a prime. A short calculation

also shows that mn
2ð f2Þ ¼ 40

ffiffiffi
3

p
=3:

Here is the list of inequalities we verify

a3A½6:189; 6:226�;

2NðTÞpa1
ffiffiffiffi
Y

p
;

S2 ¼
Ts2ðTÞffiffiffiffi

Y
p A½0:25; 0:321�;

u ¼ 1:0001 logY

2a1p
ffiffiffiffi
Y

p ða310
ffiffiffi
3

p
S2=3Þ1=3A 0:525

logYffiffiffiffi
Y

p ; 0:570
logYffiffiffiffi

Y
p

� �
;

2up0:0001;

0:5 logYpu
ffiffiffiffi
Y

p
;

1þ 2ð1� aÞu � ð1þ 2auÞe�u

1þ 2ð1� aÞu p2:68u:

Their proof relies only on standard numerical analysis and is of no great interest. We
display below some of the steps for the reader to be able to check our result.

Bounds for a3: We have wð f2; aÞ ¼ 2a3ð10� 15a þ 6a2Þ: Furthermore,

a�1
3 ¼ ð0:99� 1:0007a1 � 4:002wð f2; aÞ � 0:0326=a2Þ=2:0012

which lies between 1=6:189 and 1=6:226:

2NðTÞ versus a1
ffiffiffiffi
Y

p
: Consider

hðY Þ ¼ 2gðT=ð2pÞÞ � a1
ffiffiffiffi
Y

p
; ð29Þ
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where gðuÞ ¼ u log u � u þ 7
8
þ 0:67 log u: Recall that YX1015: We have

hðYÞ ¼ 2a1

ffiffiffiffi
Y

p

logY
ðlogða1Þ þ 1

2
logY � log logY � 1Þ þ 7

8

þ 0:67 log
a1

ffiffiffiffi
Y

p

logY
� a1

ffiffiffiffi
Y

p

¼ 2a1

ffiffiffiffi
Y

p

logY
ðlogða1Þ � log logY � 1Þ þ 7

8
þ 0:67 log

a1
ffiffiffiffi
Y

p

logY

p � 6:3

ffiffiffiffi
Y

p

logY
þ 0:58þ 0:67 log

ffiffiffiffi
Y

p

logY

which is easily seen to be non-positive.
Bounds for S2: We have

Ts2ðTÞffiffiffiffi
Y

p ¼ 2a1p
logY

1

2p
logða1

ffiffiffiffi
Y

p
Þ � log logY þ 1

2

� ��

þ 1:34 logY

2a1p
ffiffiffiffi
Y

p ð2 logða1
ffiffiffiffi
Y

p
Þ � 2 log logY þ 1Þ

	
f1þ 10�5g

which is easily shown to be between 0:255 and 0:324 (asymptotically a1ð1þ 10�5Þ=2).
Bounds for u:

u ¼ 1:0001 logY

2pa1
ffiffiffiffi
Y

p ða310
ffiffiffi
3

p
S2=3Þ1=3 ð30Þ

is between 0:525ðlogYÞ=
ffiffiffiffi
Y

p
and 0:570ðlogYÞ=

ffiffiffiffi
Y

p
:

An upper bound for the size of the interval: We next have to find an upper bound
for the size of the interval, for which we simply use Lemma 5:

1þ 2ð1� aÞu � ð1þ 2auÞe�u

1þ 2ð1� aÞu Yp2:68uY :

We conclude by noticing that 0:570	 2:68p8=5:

7. The algorithm in the large

While the main result of this paper is established for numbers greater than 1020;
numerical computations have been necessary to compute the least value x0 for
which the property is not true. Informally, the verification amounts to exhibiting

a sequence of prime number p0; p1;y; pN with p041020 and pN ¼ x0 þ 1 and
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such that for any integer X ; x0oXp1020; there exists a prime number pk of the
sequence such that pkA�X :ð1� 1=DÞ;X �: Informally, our algorithm was the
following one:

The problem of the prime certificate is a crucial issue. Indeed, while general primality
checker can easily establish or disprove the primality of numbers with around 20
decimal digits, they are much too slow for our purpose. Indeed, approximatively 400
millions of prime numbers were necessary for the derivation and each one would
have required about 1 s with the elliptic curve primality checker ECPP [2], thus we
would have a global running time of about 10 years which is quite unrealistic except
perhaps by using a large amount of machines. Certificates using cyclotomic fields
[1,5] have nearly the same time performances. We also investigated the problem with
a program using Lehmer’s certificate. Although the global throughput of the
program was better, it was regularly lowered with numbers whose primality was
more difficult (in terms of elementary operations) to establish. The reason for this is
that to establish the primality of a number p with this certificate the entire
factorization of p � 1 has to be known and this factorization can be costly if it
contains only quite large factor. It has to be noted also that Pocklington’s certificate
which is a refinement of Lehmer’s certificate but with only incomplete factorization
of p � 1 is here useless. Indeed, this certificate requires factorization of p � 1 with a
factored part greater or equal to

ffiffiffi
p

p
: But in our implementation, problematic prime

numbers p are the ones such that p � 1 ¼ 2q1q2 where q1 and q2 are prime numbers
of approximatively the same size. Since a factorization to an extent of a least

ffiffiffi
p

p
is

necessary, one of the factors q1 or q2 has to be known to apply Pocklington’s
theorem, but in this case the other one is also immediately known and then Lehmer’s
criterion could be used as well. There exists also a refinement of Pocklington’s
theorem which has been given by Brillhart, Lehmer, and Selfridge [6]. Although, this
certificate is here quite useless, we will see above that it is the cornerstone of our
verification.

As we have seen, a systematic prime certificate is too costly to give an efficient
implementation. However, it is also well known that most of the prime numbers can
be certified quickly. Thus we decided to make implementations which only take into
account the prime numbers which require not too much elementary operations. This
was made by limiting the effort in the factorization of p � 1: Although it gives better
results it is still insufficient since it requires the verification of many congruences,
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similar to the ones of Fermat little’s theorem. Thus we decided to use prime
generation techniques [12]: we interest ourselves only to family of numbers whose
primality can be established with one or two Fermat-like or Pocklington’s
congruences. This kind of technique has been already used in a quite similar
problem [17].

In fact, our generation techniques rely on a theorem proven by Brillhart, Lehmer,
and Selfridge [6] which states:

Lemma 8. Let N ¼ RF þ 1 an odd integer for which the entire factorization of F is

known, F is even and gcdðR;FÞ ¼ 1: We suppose that there exists an integer a such

that aN�1 � 1 ðmod NÞ and, for all prime factor pi of F ; gcdðaðN�1Þ=pi � 1;NÞ ¼ 1:

We pose then R ¼ 2Fs þ r with 0pro2F : We suppose No2F 3; then N is a prime

number if and only if either s ¼ 0 or r2 � 8s is not a perfect square.

This lemma in fact uses Pocklington’s property. Indeed this latter theorem, under
those assumptions, states that any divisor of N is of the form kF þ 1: We have

N ¼ 2F2s þ Fr þ 1 and since No2F3; it can have at most two factors. If s ¼ 0; N is
too small to have two factors and thus is prime and in the general case if N has two

factors, we have N ¼ ðk1F þ 1Þðk2F þ 1Þ ¼ k1k2F2 þ ðk1 þ k2ÞF þ 1 we then have

2s ¼ k1k2 and r ¼ ðk1 þ k2Þ: In this case we have ðk1 � k2Þ2 ¼ ðk1 þ k2Þ2 � 4k1k2 ¼
r2 � 8s which is a perfect square, whence the result.

8. Primes generation techniques

Our verification was split in three intervals. Each step is detailed in subsequent
paragraph and we only give here an overview of the situation. The first interval

starts at 1020 and ends at 18 723 898 090 586 113. There we generate primes of

the shape N ¼ 2kR þ 1 whose primality will be ensured by Pocklington’s test. Only
one congruence is required, and if furthermore N � 3 [8] then the base a ¼ 5 is
enough.

The second interval goes from 18 723 898 090 586 113 to 877 803 410 503. Numbers
of the previous shape are too sparse and we generate primes of the shape N ¼
2pR þ 1 where p is a prime ranges ½209 519; 399 989�; and the primality of N is still
ensured by a Pocklington’s test. For such numbers, two congruences are required
while only one was enough in the previous method. To avoid looking for a proper
base, we only try a ¼ 3: Furthermore we explore all the arithmetic progressions
2	 209 519	 R þ 1;y; 2	 399 989	 R þ 1 successively. It would have been
possible to explore all these sequences simultaneously, and that would have
amounted to a lesser number of generated primes since the present method somehow
overdoes the work. It was however simpler to supervise and control the results the
way we chose. Also, the limitation to a ¼ 3 is questionable, since a prime out of 2
ought to miss this test (i.e. 3ððN � 1Þ=2Þ � 1½N� and not � �1) while the second
congruence will always be satisfied. But the probability of a composed N satisfying
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these conditions looks very small. Thus a number in this situation has still a good
chance to be a prime, and will most probably validate the test with a being some
fairly small number. These remarks are being made to mention that we could most
probably generate a denser sequence with similar techniques. The value
877 803 410 503 arose from practical considerations: the storage disk was full and
the third method was applicable.

This third method is essentially exact and goes from 877 803 410 503 to
10 726 905 041 and uses results of Jaeschke [11].

The softwares were written in C language, using the GMP multiprecision library
[10]. All the computations were performed on the Power Challenge Array of the
Loria (http://www.loria.fr), Nancy, France.

8.1. Upper interval

In this part, intervals in which primes have to be searched are large and

then quite easy to found. As in [17], we take F ¼ 2k and set R ¼ 2kþ1s þ r in
Lemma 8. We note that since N � 3 ðmod 10Þ it is enough to consider the base
5: indeed 5 is not a square modulo N if N happens to be prime. In this way we
derive:

Lemma 9. Let N ¼ 2k:R þ 1 with Np23kþ1; N � 3 ðmod 10Þ and R odd. Suppose

that 5ðN�1Þ=2 � �1 ðmod NÞ: Then N is prime if and only if either s ¼ 0 or r2 � 8s is

not a perfect square, r and s defined as above.

At the beginning since 26741020; the first execution was made with k ¼ 22: With
this value, the search failed after that 168 624 289 prime numbers were generated.
The last prime number generated was 292 579 660 678 561 793. Since this number is

less than 261; a value k ¼ 20 is satisfactory to continue. After 39 738 963 prime
numbers, the search failed again on 75 527 775 596 838 913. We used then k ¼ 19 for
23 508 467 prime numbers down to 35 449 980 491 661 313 and k ¼ 18 for 18 667 460

prime numbers down to 18 723 898 090 586 113. Since this number is greater than 252;
it is impossible to continue with k ¼ 17: while it is quite certain that the obtained
numbers would be prime, they cannot be certified by the previous lemma. Fig. 1
illustrates the execution time of the algorithm for series of 1 million generated
primes. While it is decreasing in a very regular fashion almost everywhere, we
observe a great decrease of execution time near the 50 millionth prime number. The

reason for this is that the R10000 is a 64-bit processor and around 1020; computed
numbers with GMP requires two 64-bit words to be represented, while smaller
numbers encountered further in the verification need only one 64-bit word. Thus
near the 50 millionth prime number, the decrease of execution time corresponds to
the transition between two and one 64-bit words. Other low execution times were
observed for transitions on k values, when an execution ended up with less than 1
million prime numbers.
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8.2. Middle interval

At this point, prime generation techniques can still be used but, since possible
series have a low density with respect to the length of the intervals where prime
numbers have to be found, we needed to consider a large family of series. We focused
on series of the form 2pR þ 1 where p is a prime number and gcdð2p;RÞ ¼ 1: Those
prime numbers, if not too large can be certified with two Pocklington’s congruences.
Here we take F ¼ 2p and set R ¼ 4ps þ r in Lemma 8 to derive:

Lemma 10. Let N ¼ 2pR þ 1 with p prime, gcdð2p;RÞ ¼ 1 and Np16p3: Suppose

that there exists an integer a such that

* aðN�1Þ=2 � �1 ðmod NÞ;
* gcdðaðN�1Þ=p � 1;NÞ ¼ 1:

Then N is prime if and only if either s ¼ 0 or r2 � 8s is not a perfect square, r and s

defined as above.

Since we wanted to limit the search of an eventual primitive root a; we only
focused on prime numbers of this kind which may be certified by a ¼ 3: For the
values of p; the least one was necessarily at least 209 519: this is the least prime

number p such that 16p3 is greater than the value at which the preceding step ends.
As for the greatest value, we arbitrarily decide to consider only prime numbers less
than 400 000, thus 399 989 was the greatest possible prime number p: In our im-
plementation, we consider sequentially each of the possible arithmetic progression.

5000

4500
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3000

2500

2000

1500

1000

500

Execution time of first algorithm

0                      50                      100                   150                    200                   250

Fig. 1. Execution times for the first algorithm by steps of 1 000 000 prime numbers generated. x-axis

denotes the total number of primes generated since the beginning. y-axis is the execution time of a given

step in seconds on a single R10000 processor of the PCA.
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A more efficient way might have been to consider all the arithmetic progressions at
the same time and to explore them concurrently in depth. We considered the first
method for the sake of simplicity, all the more that the second solution requires a
more complicated control which might have degraded performances of the
implementation. Fig. 2 illustrates the execution time of each run of this second
phase. The execution was intentionally stopped at 877 803 410 503 for practical
reasons (disk occupation) and because of the increase of execution time for the runs.
We can see, firstly that the execution time is larger than for the first phase and
secondly that the execution time is no more decreasing. The first point is easily
explained by the facts that the criterion for the second phase is more complicated and
that several candidate families are considered together instead of a single one in the
first phase. The relative growth of execution time is explained, as for itself, by the
decrease of density for candidate families: at the beginning of the phase, the intervals
in which prime numbers have to be found are large and thus the first family
ð2:209519k þ 1Þ whose progression step is fixed can easily give a successful
candidate. At the end of the phase, intervals become shorter and thus more and
more family have to be considered to find a prime number.

8.3. Lower interval

In the last interval of verification, the numbers were below 1012: Many prime
certificates might have been successfully used, in regard to the small number of digits
as well as the small number of primes to certify. We decided to use the Jaeschke’s
results [11] about pseudoprimality, which give easy and fast certificate for such
numbers.

Execution time of the second algorithm
16000

15000

14000

13000

12000

11000

10000

9000
0                     50                     100                  150                   200                  250

Fig. 2. Execution times for the second algorithm by steps of 1 000 000 prime numbers generated. x-axis

denotes the total number of primes generated since the beginning of this phase. y-axis is the execution time

of a given step in seconds on a single R10000 processor of the PCA.
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Definition 1. Let p be an odd integer and a be an integer. Let h be such that p ¼
1þ 2hd with d being odd. Then p is a strong pseudoprime for base a if we have either

ad � 1 ðmod pÞ; or there exists k such that 0pkoh with a2k :d � �1 ðmod pÞ:

This notion was introduced by Miller and Rabin [13]. Every prime number is
strong pseudoprime for any base but there exists also composite numbers that pass
some tests: for instance 2047 ¼ 23	 89 is the smallest composite number strong
pseudoprime for base 2: However, it is known that a composite number cannot be
pseudoprime for all base and even if the GRH is true then it is possible to sketch a
polynomial primality certificate with those tests [3]. Pomerance, Selfridge and
Wagstaff [16] made the exhaustive list of strong pseudoprimes for bases 2, 3, 5 and 7

up to 25	 109: Jaeschke’s designed a new algorithm to search pseudoprimes and

tabulated them up to 3:4	 1014: He obtained in particular two useful results:

Theorem 5. Let p be an odd integer. If p is strong pseudoprime for bases 2, 3, 5, 7, 11,

13 and 17 and po3:4	 1014; then p is a prime number.

Theorem 6. Let p be an odd integer. If p is strong pseudoprime for bases 2, 13, 23 and

1 662 803 and po1012; then p is a prime number.

We used this latter theorem to design our primality certificate but we firstly sieve
the candidates with small prime numbers in order to eliminate most of the composite
numbers. The algorithm produced an output of more than 126 millions of prime
number before ending with 10 726 905 041 for which the search failed. This latter
value is thus the optimal x0 value of the main theorem of this article. Execution times

Execution time of the third algorithm
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Fig. 3. Execution times for the third algorithm by steps of 1 000 000 prime numbers generated. x-axis

denotes the total number of primes generated since the beginning of this phase. y-axis is the execution time

of a given step in seconds on a single R10000 processor of the PCA.
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are depicted in Fig. 3. We can see that execution times regularly decrease. This is
easily explained by the fact that the computational cost of a Miller–Rabin test (this
test is in fact due to Selfridge in the early 1970s but is known as the Miller–Rabin
test), decrease with the size of the integer to check and also since the density of prime
numbers increase while test numbers decrease in size and thus it leads to less
unsuccessful checks.
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