
ACTA ARITHMETICA
Online First version

An application of counting ideals in ray classes

by

Sanoli Gun (Chennai), Olivier Ramaré (Marseille) and
Jyothsnaa Sivaraman (Bengaluru)

Abstract. We prove a fully explicit generalized Brun–Titchmarsh theorem for an
imaginary quadratic field K. More precisely, for any finite family of linearly independent
linear forms with coefficients in OK, we count the number of integers at which all these
linear forms take prime values in OK.

1. Introduction and statement of the theorem. Throughout this
article, K will denote an imaginary quadratic field with discriminant dK, hK
the class number of OK and |µK| the number of roots of unity in OK. We
will denote by ζK the Dedekind zeta-function of K, and its residue at s = 1
by αK. Further, we use PK to denote the set of prime ideals of OK, and Q
for the set of all prime elements of OK. A non-zero element α of OK which
is not a unit is said to be prime if it generates a prime ideal. Two prime
elements α and β in OK are called associates if there exists a unit u ∈ OK

such that α = uβ. While associate primes generate the same prime ideal,
we will count primes in OK along with their associates. For example, when
K = Q, we will count both the associate primes 3 and −3 in Z. We will
denote by ωK(b) the number of distinct prime ideals of OK which appear
in the factorization of the ideal b in OK, by N the (absolute) norm and by
πK(x) the number of prime ideals of OK with norm at most x.

Our aim is to prove a fully explicit generalization of the Brun–Titchmarsh
theorem for several linear forms taking values in Q. This is a natural gener-
alization of the problem of finding an upper bound for the number of prime
values that can be taken by a set of n linear forms simultaneously. This
question has been addressed in considerable detail in the literature.
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The study of such generalizations finds its origin in the twin prime and
prime k-tuple conjectures. However, the problem has been placed in the more
general context of linear forms by Dickson’s conjecture [5], which states the
following.

Conjecture 1 (Dickson’s conjecture [5]). Let F1, . . . , Fn ∈ Z[x] be dis-
tinct irreducible linear polynomials with positive leading coefficients. Also
suppose that the product

∏n
i=1 Fi(x) has no fixed prime divisor. Then the

polynomials Fi(x) simultaneously take prime values infinitely often.

A quantitative version of Dickson’s conjecture was given by Bateman–
Horn in 1962 (see [1, 2]). For any polynomial F ∈ OK[x] and prime ideal p,
let us first define

ρF (p) = #{m ∈ OK/pOK : F (m) ≡ 0 mod p}.

We now state the Bateman–Horn conjecture.

Conjecture 2 (Bateman–Horn conjecture [1, 2]). Let F1, . . . , Fn ∈ Z[x]
be distinct irreducible linear polynomials with positive leading coefficients.
Also suppose that the product

∏n
i=1 Fi(x) has no fixed prime divisor. Then∑

1≤k≤x
Fi(k) is prime∀i

1 =
∏
p

{(
1− 1

p

)−n(
1− ρF (p)

p

)}
·
x�

2

dt

logn t
(1 + o(1))

as x→ ∞.

The only case in which these conjectures have been resolved is that of
a single linear polynomial, which is same as the prime number theorem for
primes in arithmetic progressions. For other well known cases, finding even a
lower bound in place of the asymptotic is notoriously difficult. For instance,
the case of the polynomials

F1(x) = x and F2(x) = x+ 2

is nothing other than the twin prime conjecture. More generally, for an ap-
propriate choice of a k-tuple (h1, . . . , hk), the polynomials

F1(x) = x+ h1, . . . , Fk(x) = x+ hk

give the Hardy–Littlewood k-tuple conjecture. The case of the polynomials

F1(x) = x and F2(x) = 2x+ 1

amounts to finding Sophie Germain primes.
However, upper bounds close to the one suggested by the asymptotic

are known using Selberg sieve techniques. For instance, one may find the
following theorem in [8, pp. 157–159].
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Theorem 1. Given distinct irreducible linear polynomials F1, . . . , Fn in
Z[x] with positive leading coefficients, let F (x) =

∏n
i=1 Fi(x). If ρF (p) < p

for all primes p, then∑
1≤k≤x

Fi(k) is prime∀i

1

≤
∏
p

{(
1− 1

p

)−n(
1− ρF (p)

p

)}
2nn!x

logn x

(
1 + OF

(
log log 3x

log x

))
.

In this article, we show that an analogous bound can be obtained if
we consider prime elements in an imaginary quadratic field instead of the
rationals. Further, our bounds are fully explicit. An application of such a
bound is presented in [9]. On the other hand, the current paper demonstrates
an application of the main theorems of [7].

Theorem 2. Let u be a positive real number, n > 1 be an integer and
ai ∈ OK \ {0} for 1 ≤ i ≤ n be distinct. Assume that (aiOK, biOK) = OK

for 1 ≤ i ≤ n, (aiOK : 1 ≤ i ≤ n) = OK and

E =
n∏

i=1

ai
∏

1≤i<j≤n

(aibj − ajbi) ̸= 0.

Further, let F =
∏n

i=1(aix+ bi) and let Q denote the set of prime elements
of OK. Then for u ≥ [U(K, a1b1)]

4, we have∑
N((α))≤u

∀i, bi+aiα∈Q

1 ≤ 5n! |µK|
2αn−1

K hK
· S · u

(logCu1/4)n
,

where

U(K, a1b1) =
exp(18(n+ 1)LK)

C
,

C =
n!π

323n3n17nN((a1b1))αn
K

√
|dK|

,

LK = nωK((E)) + nωK

( ∏
N(p)≤n

p
)
+ 10n3 + n

e28|dK|1/3 log |dK|
αK

,

S =

( ∏
N(p)≤n

N(p)

N(p)− 1

)n ∏
N(p)>n

(
1− ρF (p)

N(p)

)(
1− 1

N(p)

)−n

.

The paper is organized as follows. In Section 2, we will state some nota-
tions and preliminaries required for the proof of our main theorem. In the
same section, we will also recall the results used from [7]. In Section 3, we
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will prove some auxiliary lemmas, and finally we will use them in Section 4
to prove our theorem.

2. Notation and preliminaries. Let K be an imaginary quadratic
field and OK be its ring of integers. For an ideal q ∈ OK, let Hq(K) de-
note the ray class group modulo q, and hK,q denote its cardinality. When
q = OK, the ray class group modulo OK is ClK. In this case, we denote
hK,OK

by hK. Throughout the article, p will denote a prime ideal in OK and
p will denote a rational prime number. Further, we use φ(q) to denote the
Euler-phi function:

(1) φ(q) = N(q)
∏
p|q

(
1− 1

N(p)

)
.

Throughout this article, given an arithmetic function f and a positive arith-
metic function g, f(z) = O∗(g(z)) means that |f(z)| ≤ g(z). For any
embedding σ of K, the Minkowski embedding ψ of K to R2 maps x to
(ℜ(σ(x)),ℑ(σ(x))).

Let us begin with a counting theorem proved in [7].

Theorem 3 (Gun, Ramaré and Sivaraman). Let a, q be coprime ideals
of OK, C be the ideal class of aq in the class group of OK, and Λ(aq) be the
lattice ψ(aq) in R2, where ψ is defined above. Also let

Sβ(a, q, t
2) = {α ∈ a : |ψ(α)|2 ≤ t2, α ≡ β mod q}

for some fixed β ∈ OK. Then for any real number t ≥ 1, we have

(2) |Sβ(a, q, t2)| =
(2π)√

|dK|N(aq)
t2 +O∗

(
1013.66N(C−1)

|N(aq)|1/2
t+ 1

)
,

where

N(C−1) = max
b∈C−1

1

|N(b)|1/2
.

One can ignore 1 in the error term when q = OK.

The Dedekind zeta-function. For ℜs = σ > 1, the Dedekind zeta-
function is defined by

ζK(s) =
∑

a⊆OK

1

N(a)s
,

where a ranges over the integral ideals of OK. It has only a simple pole at
s = 1 of residue αK, say. When K is an imaginary quadratic field, we know
from the analytic class number formula that
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(3) αK =
2πhK

|µK|
√

|dK|
,

where hK, dK and |µK| are as before.
The next lemma is used to estimate the error term in Theorem 3.

Lemma 4 (Debaene [3]). Let b1, b2, . . . be integral ideals of OK, ordered
so that N(b1) ≤ N(b2) ≤ · · · . Then for any real number y ≥ 2,

y∑
i=1

N(bi)
−1/2 ≤ 12y1/2(log y)1/2.

Finally, we recall two estimates which will be used in the course of our
proof.

Lemma 5 (Debaene [3]). For any real number y ≥ 16, we have∑
p≤y

1

p
≤ 0.666 + log log y.

Lemma 6 (Rosser and Schoenfeld [12]). For any real number y ≥ 1, we
have ∑

p≤y

1

p
≥ log log y.

3. Some intermediate lemmas. Selberg sieve. Let n ≥ 2 be an
integer, and aix + bi for 1 ≤ i ≤ n be n distinct linear forms with ai, bi ∈
OK \ {0}, (aiOK, biOK) = OK and (aiOK : 1 ≤ i ≤ n) = OK. We further
assume that

E =
n∏

i=1

ai
∏

1≤i<j≤n

(aibj − ajbi) and H =
∏

N(p)≤n

p.

For an integral ideal b, let ρF (b) denote the number of solutions of

F (x) =

n∏
i=1

(aix+ bi) ≡ 0 mod b.

Applying the Chinese remainder theorem, we deduce that ρF (b) is a multi-
plicative function. Further, we observe that for any prime p, ρF (p) < N(p)
when N(p) > n. Let us define the multiplicative functions

(4) f(b) =
N(b)

ρF (b)
and f1(b) =

∑
a|b

a⊆OK

µ(a)f

(
b

a

)
.

Let z be a positive real number. We may assume that ρF (p) < N(p) when
N(p) ≤ z since otherwise no prime of norm greater than z would be counted
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in our sum. We have f1 > 0 on the set of non-zero square-free integral ideals
coprime to H. Also, f(OK) = 1. Further, for an ideal e of OK coprime to H
and an integer n ≥ 2, we define

PK(z) =
∏

n<N(p)≤z

p, Se(z) =
∑

N(a)≤z,
(a,eH)=OK

µ2(a)

f1(a)
,

G(z) = SOK
(z), λe = µ(e)

f(e)Se
(

z
N(e)

)
f1(e)G(z)

.

Proposition 7. For any ideal b | PK(z), we have |λb| ≤ 1.

Proof. For an integral ideal b dividing PK(z), we have

SOK
(z) =

∑
c|b

µ2(c)/f1(c)
∑

N(a)≤z/N(c)
(a,bH)=OK

a⊆OK

µ2(a)

f1(a)

≥
∑
c|b

µ2(c)/f1(c)
∑

N(a)≤z/N(b)
(a,bH)=OK

a⊆OK

µ2(a)

f1(a)

= Sb

(
z

N(b)

)∑
c|b

µ2(c)

f1(c)

=
f(b)

f1(b)
Sb

(
z

N(b)

)
.

The last step follows from the fact that b is square-free and coprime to H.
To see this, note that∑

a|b

µ2(a)

f1(a)
=

∏
p|b

(
1 +

1

f1(p)

)
=

∑
a|b f1(a)

f1(b)
=

f(b)

f1(b)
.

We now recall a special case of a result of Lee [10, Theorem 1.1.3].

Theorem 8. Let K be an imaginary quadratic field and x ≥ 2. We have∑
N(p)≤x

logN(p)

N(p)
= log x+O∗

(
2.52 +

e28|dK|1/3 log |dK|
αK

)
.

Using the above theorem, we can prove the following asymptotic.
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Lemma 9. Let x ≥ 2 be a real number. Then∑
n<N(p)≤x

ρF (p) logN(p)

N(p)

= n log x+O∗
(
n

(
ωK(E) + ωK(H) + 2.52 +

e28|dK|1/3 log |dK|
αK

))
.

Proof. We first note that since aiOK and biOK are coprime, we have
ρF (p) ≤ n. We can replace the sum on the left-hand side of the assertion by∑

N(p)≤x

ρF (p) logN(p)

N(p)

if we add an error term

O∗(nωK(H)), where H =
∏

N(p)≤n

p.

If (ai) is not divisible by p, then the linear congruence aix + bi ≡ 0 mod p
has a unique solution modulo p. Further, two linear congruences aix+ bi ≡
0 mod p and ajx + bj ≡ 0 mod p give the same solution modulo p if and
only if

bi
ai

≡ bj
aj

mod p or in other words, biaj − aibj ≡ 0 mod p.

Therefore if (p, (E)) = OK then ρF (p) = n. Hence,∑
n<N(p)≤x

ρF (p) logN(p)

N(p)
=

∑
N(p)≤x

n logN(p)

N(p)
+ O∗(n(ωK(E) + ωK(H))

)
,

where ωK(E) denotes the number of distinct prime ideals of K dividing the
ideal (E) in K. This proves Lemma 9.

3.1. An estimate to control the error term

Lemma 10. We have∑
b1,b2|PK(z)
N(bi)≤z

|λb1λb2 |
ρF ([b1, b2])√
N([b1, b2])

≤ (3n)4πK(2n)ζK

(
3

2

)8n

z.

Proof. The sum above equals∑
∂|PK(z)
N(∂)≤z

√
N(∂)

ρF (∂)

∑
bi|PK(z)
∂=(b1,b2)
N(bi)≤z

|λb1λb2 |ρF (b1)ρF (b2)√
N(b1b2)

.

From the definition of λb and substituting y = z/N(∂), we get
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∑
N(c)≤y

(c,∂H)=1

|λ∂c|ρF (c)√
N(c)

= G(z)−1
∑

N(c)≤y
(c,∂H)=OK

µ2(c)

√
N(c)N(∂)

ρF (∂)f1(c∂)

∑
N(m)≤y/N(c)
(m,c∂H)=OK

µ2(m)

f1(m)

≤ N(∂)

G(z)ρF (∂)f1(∂)

∑
N(m)≤y

(m,H)=OK

µ2(m)

f1(m)

∑
N(c)≤y/N(m)
(c,H)=OK

µ2(c)
√
N(c)

f1(c)

≤
√
yN(∂)

G(z)ρF (∂)f1(∂)

∑
N(m)≤y

(m,H)=OK

µ2(m)

f1(m)
√
N(m)

G(y)

≤
√
yN(∂)

ρF (∂)f1(∂)

∏
N(p)>n

(
1 +

ρF (p)√
N(p) (N(p)− ρF (p))

)
.

Thus∑
b1,b2|PK(z)
N(bi)≤z

|λb1λb2 |
ρF ([b1, b2])√
N([b1, b2])

≤
∑

∂|PK(z)
N(∂)≤z

ρF (∂)√
N(∂)

( √
zN(∂)

ρF (∂)f1(∂)

∏
N(p)>n

(
1 +

ρF (p)√
N(p) (N(p)− ρF (p))

))2

≤ z
∏

N(p)>n

(
1 +

ρF (p)√
N(p) (N(p)− ρF (p))

)2(
1 +

ρF (p)
√
N(p)

(N(p)− ρF (p))2

)
.

Consider ∏
N(p)>n

(
1 +

ρF (p)√
N(p) (N(p)− ρF (p))

)
.

We break this into two products, one over prime ideals with norm ≤ 2n and
the other with norm above 2n. For the first product, we use

1 +
ρF (p)√

N(p) (N(p)− ρF (p))
≤ 1 + n ≤ 2n.

For the second product, since ρF (p) ≤ n < 2n < N(p), we use

N(p)− ρF (p) ≥ N(p)− n >
N(p)

2
.
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Therefore,

1 +
ρF (p)√

N(p) (N(p)− ρF (p))
≤ 1 +

2n

N(p)3/2
.

Finally, by the binomial theorem we have

1 +
2n

N(p)3/2
≤

(
1 +

1

N(p)3/2

)2n

.

Hence,∏
N(p)>n

(
1 +

ρF (p)√
N(p) (N(p)− ρF (p))

)
≤ (2n)πK(2n)

∏
p

N(p)>2n

(
1 +

2n

N(p)3/2

)

≤ (2n)πK(2n)ζK

(
3

2

)2n

.

Similarly,∏
N(p)>n

(
1 +

ρF (p)
√

N(p)

(N(p)− ρF (p))2

)

≤
∏

n<N(p)≤2n

(1 + n
√
N(p))

∏
N(p)>2n

(
1 +

4n

N(p)3/2

)

≤ (3n)3πK(2n)/2ζK

(
3

2

)4n

.

This completes the proof of Lemma 10.

3.2. Estimating G(z). We repeat the proof of Levin–Făınlĕıb [6] as
described in Halberstam–Richert [8] in the number field setting with the
additional condition ∂ | PK(z). This can also be done using the methods of
[11, Theorem 13.3]. Let

G(x, z) =
∑

∂|PK(z)
N(∂)≤x

µ2(∂)

f1(∂)
and Gp(x, z) =

∑
∂|PK(z)
N(∂)≤x

(∂,p)=OK

µ2(∂)

f1(∂)
.

Lemma 11. For positive real numbers x, z with z ≤ x, we have(
1− ρF (p)

N(p)

)
Gp

(
x

N(p)
, z

)
=

(
1− ρF (p)

N(p)

)
G

(
x

N(p)
, z

)
− ρF (p)

N(p)
Gp

(
x

N(p)2
, z

)
.



10 S. Gun et al.

Proof. For an integral ideal ∂ coprime to H, let

(5) h(∂) =
µ2(∂)

f1(∂)
.

The function h is multiplicative. From the definition of G(x, z), we have

G(x, z) =
∑

∂|PK(z)
N(∂)≤x

h(∂) =
∑

∂|PK(z)
N(∂)≤x

(∂,p)=OK

h(∂) +
∑

∂|PK(z)
N(∂)≤x

p|∂

h(∂)

=
∑

∂|PK(z)
N(∂)≤x

(∂,p)=OK

h(∂) + h(p)
∑

∂|PK(z)
N(∂)≤x/N(p)
(∂,p)=OK

h(∂).

Multiplying both sides by 1− ρF (p)/N(p) we get(
1− ρF (p)

N(p)

)
G(x, z)

=

(
1− ρF (p)

N(p)

)
Gp(x, z) +

(
1− ρF (p)

N(p)

)
h(p)Gp

(
x

N(p)
, z

)
.

From (5) and (4), we know that

h(p) =
1

f1(p)
and f1(p) = f(p)− f(OK) = f(p)− 1.

Therefore, (
1− ρF (p)

N(p)

)
h(p) =

(
1− ρF (p)

N(p)

)
1

f1(p)
(6)

=

(
1− ρF (p)

N(p)

)
1

f(p)− 1
=

1

f(p)
.

This gives(
1− ρF (p)

N(p)

)
G(x, z) =

(
1− ρF (p)

N(p)

)
Gp(x, z) +

1

f(p)
Gp

(
x

N(p)
, z

)
.

Replacing x by x
N(p) in G(x, z), we get(

1− ρF (p)

N(p)

)
G

(
x

N(p)
, z

)
=

(
1− ρF (p)

N(p)

)
Gp

(
x

N(p)
, z

)
+

1

f(p)
Gp

(
x

N(p)2
, z

)
.

This yields Lemma 11.
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Lemma 12. For an integral ideal ∂ and a real number x > N(∂), we have∑
√

x/N(∂)<N(p)≤x/N(∂)

p∤∂H

h(p) ≤ n(πK(2n) + 9),

where πK(x) denotes the number of prime ideals of OK with norm at most x,
and n ≥ 2 is the number of linear factors of F .

Proof. Let y := x/N(∂). We have∑
√
y<N(p)≤y
p∤∂H

h(p) ≤
∑

√
y<N(p)≤y
p∤∂H

n

N(p)− ρF (p)
=: T.

Then

T ≤
∑

√
y<N(p)≤y
p∤∂H

N(p)<2n

n

N(p)− ρF (p)
+

∑
√
y<N(p)≤y
p∤∂H

N(p)≥2n

n

N(p)− ρF (p)
.

For the second term above we note that ρF (p) ≤ n < 2n ≤ N(p). Hence,∑
√
y<N(p)≤y
p∤∂H

N(p)≥2n

n

N(p)− ρF (p)
≤

∑
√
y<N(p)≤y
p∤∂H

N(p)≥2n

2n

N(p)

≤
∑

√
y<N(p)≤y
p∤∂H

2n

N(p)
.

Therefore,

T ≤
∑
p∤H

N(p)<2n

n

N(p)− ρF (p)
+

∑
√
y<N(p)≤y

p∤∂

2n

N(p)
=: T1 +T2.

For T1, since ρF (p) ≤ n and for p ∤ H, N(p) > n, we see that N(p)− ρF (p)
is an integer greater than or equal to 1. Consequently,∑

√
y<N(p)≤y

p∤H
N(p)<2n

n

N(p)− ρF (p)
< nπK(2n).

For T2, since K is a quadratic field, N(p) is either p or p2. If N(p) = p, then√
y < p ≤ y. On the other hand, if N(p) = p2, then p ≤ √

y. Further, if
N(p) = p, there are at most two primes above pZ, and if N(p) = p2, there is
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exactly one such prime. This gives us∑
√
y<N(p)≤y
p∤∂H

h(p) ≤ nπK(2n) + 2
∑

√
y<p≤y

2n

p
+

∑
p≤√

y

2n

p2
.

Note that ∑
√
y<p≤y

2n

p
=

∑
p≤y

2n

p
−

∑
p≤√

y

2n

p
.

The first sum on the right is estimated using a result of Debaene [3] (see
Lemma 5) and the second using a result of Rosser–Schoenfeld [12] (see
Lemma 6). This shows, for x ≥ 16N(∂), i.e. y ≥ 16, that∑

p≤y

2n

p
−

∑
p≤√

y

2n

p
≤ 2n

(
0.666 + log log

x

N(∂)
− log log

√
x

N(∂)

)
≤ 2n(0.666 + log 2) ≤ 2.8n.

If x < 16N(∂), i.e. y < 16, then∑
p≤y

2n

p
−

∑
p≤√

y

2n

p
≤

∑
p<16

2n

p
≤ 2.7n.

Finally, since

2
∑
p

1

p2
≤ π2

3
≤ 3.29,

we get ∑
√
y<N(p)≤y
p∤∂H

h(p) ≤ nπK(2n) + 5.6n+ 3.29n ≤ n(πK(2n) + 9).

Let

T (x, z) =

x�

1

G(t, z)
dt

t
.

It follows from the definition of G(t, z) that

T (x, z) =

x�

1

∑
N(∂)≤t
∂|PK(z)

h(∂)
dt

t
=

∑
N(∂)≤x
∂|PK(z)

h(∂)

x�

N(∂)

dt

t
=

∑
N(∂)≤x
∂|PK(z)

h(∂) log
x

N(∂)
.
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Lemma 13. Let z ≥ 1 be a real number. Then∑
N(∂)≤x
∂|PK(z)

h(∂) logN(∂) = nT (x, z)− nT

(
x

z
, z

)

+O∗
((

ωK(E) + ωK(H) + 10n2 +
e28|dK|1/3 log |dK|

αK

)
nG(x, z)

)
.

Proof. We have

S =
∑

N(∂)≤x
∂|PK(z)

h(∂)
∑
p|∂

logN(p) =
∑

n<N(p)≤z

h(p) logN(p)
∑

N(m)≤x/N(p)
m|PK(z)
(m,p)=OK

h(m)

=
∑

n<N(p)≤z

h(p)Gp

(
x

N(p)
, z

)
logN(p).

Applying Lemma 11 and using (6), we get

S =
∑

n<N(p)≤z

ρF (p) logN(p)

N(p)
G

(
x

N(p)
, z

)

+
∑

n<N(p)≤z

ρF (p)h(p)

N(p)
logN(p)

∑
x/N(p)2<N(m)≤x/N(p)

m|PK(z)
(m,p)=OK

h(m).

Using the definition of G(x, z) in the first sum and interchanging the sum-
mations, we get

S =
∑

N(∂)≤x
∂|PK(z)

h(∂)
∑

n<N(p)≤min(x/N(∂),z)

ρF (p)

N(p)
logN(p)

+
∑

x/z2<N(∂)≤x
∂|PK(z)

h(∂)
∑

√
x/N(∂)<N(p)≤min(x/N(∂),z)

(p,∂H)=OK

ρF (p)h(p) logN(p)

N(p)
.

Applying Lemma 12, we get∑
√

x/N(∂)<N(p)≤min(x/N(∂),z)

(p,∂H)=OK

ρF (p)h(p) logN(p)

N(p)

≤ n
∑

√
x/N(∂)<N(p)≤min(x/N(∂),z)

p∤∂H

h(p) ≤ n2(πK(2n) + 9).
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Combining the above, we get

S =
∑

N(∂)≤x
∂|PK(z)

h(∂)
∑

n<N(p)≤min(x/N(∂),z)

ρF (p)

N(p)
logN(p)

+ O∗(n2(πK(2n) + 9)G(x, z)
)
.

For the first term, we get∑
N(∂)≤x
∂|PK(z)

h(∂)
∑

n<N(p)≤min(x/N(∂),z)

ρF (p)

N(p)
logN(p)

=
∑

N(∂)≤x/z
∂|PK(z)

h(∂)
∑

n<N(p)≤z

ρF (p)

N(p)
logN(p)

+
∑

x/z<N(∂)≤x
∂|PK(z)

h(∂)
∑

n<N(p)≤x/N(∂)

ρF (p)

N(p)
logN(p).

We now apply Lemma 9 to deduce

1

n

∑
N(∂)≤x
∂|PK(z)

h(∂)
∑

n<N(p)≤min(x/N(∂),z)

ρF (p)

N(p)
logN(p)

=
∑

N(∂)≤x/z
∂|PK(z)

h(∂) log z +
∑

x/z<N(∂)≤x
∂|PK(z)

h(∂) log
x

N(∂)
+ O∗(L1G(x, z)),

where
L1 = ωK(E) + ωK(H) + 2.52 +

e28|dK|1/3 log |dK|
αK

.

Combining the above, we get
S

n
=

∑
N(∂)≤x
∂|PK(z)

h(∂) log
x

N(∂)
−

∑
N(∂)≤x/z
∂|PK(z)

h(∂) log
x/z

N(∂)

+ O∗
((

ωK(E) + ωK(H) + 2.52 + n(πK(2n) + 9)

+
e28|dK|1/3 log |dK|

αK

)
G(x, z)

)
= T (x, z)− T

(
x

z
, z

)
+O∗

((
ωK(E) + ωK(H) + 10n2 +

e28|dK|1/3 log |dK|
αK

)
G(x, z)

)
.
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Note that G(z, z) = G(z) and T (z, z) = T (z).

Corollary 14. For any real number y ≥ 1, we have

G(y) log y = (n+ 1)T (y) +G(y)r(y) log y,

where

|r(y)| ≤
(
ωK(E) + ωK(H) + 10n2 +

e28|dK|1/3 log |dK|
αK

)
n

log y
.

Proof. Using Lemma 13 and adding T (x, z) to both sides, we get

G(x, y) log x = (n+ 1)T (x, y)− nT

(
x

y
, y

)
+O∗

(
n

(
ωK(E) + ωK(H) + 10n2 +

e28|dK|1/3 log |dK|
αK

)
G(x, y)

)
.

Putting x = y, we get the corollary.

From now onwards, for any real number y > 3, we denote

UK(y) = log

(
n+ 1

logn+1 y
T (y)

)
and

(7) LK = n

(
ωK(E) + ωK(H) + 10n2 +

e28|dK|1/3 log |dK|
αK

)
.

Lemma 15. For a real number z with log z ≥ 3(n+ 1)LK, we have

G(z) = cK,F logn z

(
1 + O∗

(
9(n+ 1)LK

log z

))
for some positive constant cK,F depending on K and F .

Proof. We first observe that for log z ≥ 3(n+1)LK and any real number
y ≥ z, we have

|U ′
K(y)| =

∣∣∣∣− n+ 1

y log y
+
T ′(y)

T (y)

∣∣∣∣ = ∣∣∣∣− n+ 1

y log y
+

G(y)

yT (y)

∣∣∣∣ = ∣∣∣∣ r(y)

1− r(y)

n+ 1

y log y

∣∣∣∣
≤ 2(n+ 1)LK

y log2 y
.

This implies that the integral of U ′
K(y) from z to ∞ is convergent. Further,∣∣∣−∞�

z

U ′
K(y) dy

∣∣∣ ≤ 2(n+ 1)LK

log z
< 1.

Recall that
n+ 1

logn+1 z
T (z) = exp(UK(z)) = cK,F exp

(
−

∞�

z

U ′
K(y) dy

)
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for some constant cK,F . We now observe that

exp
(
−

∞�

z

U ′
K(y) dy

)
= 1−

∞�

z

U ′
K(y) dy +

1

2!

(∞�

z

U ′
K(y) dy

)2
− · · ·

and therefore

exp
(
−

∞�

z

U ′
K(y) dy

)
= 1 +O∗

(
2(n+ 1)LK

log z
+

(
2(n+ 1)LK

log z

)2

+ · · ·
)

= 1 +O∗
(

2(n+ 1)LK

log z − 2(n+ 1)LK

)
= 1 +O∗

(
6(n+ 1)LK

log z

)
.

Further, we have

1

1− r(z)
= 1 +

r(z)

1− r(z)
= 1 + O∗

(
LK

log z − LK

)
= 1 +O∗

(
2LK

log z

)
since log z ≥ 3LK. Applying Corollary 14 and combining the above, we get

G(z) =
n+ 1

(1− r(z)) log z
T (z)

= cK,F logn z

(
1 + O∗

(
2LK

log z

))(
1 + O∗

(
6(n+ 1)LK

log z

))
= cK,F logn z

(
1 + O∗

(
9(n+ 1)LK

log z

))
.

Remark 16. If one wants a lower bound forG(z) in the casen = 1, one can
use a simpler method that avoids relying on the sum ρF (p)(logN(p))/N(p)
as in [4, Theorem 30].

We conclude this section by computing the constant cK,F .

Lemma 17. We have

cK,F =
αn
K

n!

∏
N(p)≤n

(
1− 1

N(p)

)n∏
p∤H

(1 + h(p))

(
1− 1

N(p)

)n

.

Proof. For a real parameter s > 0, consider the series

M =
∑

∂⊆OK
∂ ̸=(0)

(∂,H)=OK

h(∂)

N(∂)s
.
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In the region ℜs > 0, we have M =
∏

p∤H(1+h(p)/N(p)s). Applying partial
summation, we obtain

M = lim
x→∞

(∑
N(∂)≤x, (∂,H)=OK

h(∂)

xs
+ s

x�

1

∑
N(∂)≤t, (∂,H)=OK

h(∂)

ts+1
dt

)

= lim
x→∞

(
G(x)

xs
+ s

x�

1

G(t)

ts+1
dt

)
.

By Lemma 15, we have G(x) ≪ logn+1 x and hence M = s
	∞
1

G(t)
ts+1 dt. We

now split the integral into two parts. Let z1 = 3(n + 1)LK, where LK is as
in (7). Then

M = s

z1�

1

G(t)

ts+1
dt+ s

∞�

z1

G(t)

ts+1
dt.

To estimate the first integral, we observe that for real s > 0, we have

s

z1�

1

G(t)

ts+1
dt ≤ s

z1�

1

G(t)

t
dt = sT (z1).

Recall that

T (z1) =
∑

N(∂)≤z1
∂|PK(z1)

h(∂) log
z1

N(∂)
≤ log z1

∑
N(∂)≤z1
∂|PK(z1)

1

f1(∂)
= O(1).

For the second integral, applying Lemma 15, we have

s

∞�

z1

G(t)

ts+1
dt = s

∞�

z1

cK,F logn t+O(logn−1 t)

ts+1
dt

= s

∞�

1

cK,F logn t+O(logn−1 t)

ts+1
dt+O(s).

We now use the fact that for s > 0,

∞�

1

logn t

ts+1
dt =

Γ (n+ 1)

sn+1
.

Therefore

M =
∏
p∤H

(
1 +

h(p)

N(p)s

)
= cK,F

Γ (n+ 1)

sn
+O

(
Γ (n)

sn−1

)
+O(s).
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It immediately follows that

cK,F =
1

Γ (n+ 1)
lim
s→0+

sn
∏
p∤H

(
1 +

h(p)

N(p)s

)

=
αn
K

n!

∏
p|H

(
1− 1

N(p)

)n

lim
s→0+

∏
p∤H

(
1 +

h(p)

N(p)s

)(
1− 1

N(p)s+1

)n

.

This completes the proof of Lemma 17.

4. Proof of the main theorem. Let z be a real number such that
z ≥ 4. We use N((α)) to denote the absolute norm of the principal ideal (α)
and Q to denote the set of all prime elements of OK. Recall that

fi(x) = aix+ bi for 1 ≤ i ≤ n and F (x) =

n∏
i=1

fi(x).

We want to estimate

D =
∑

N((α))≤u
fi(α)∈Q for all i

1 ≤
∑

N((α))≤z
fi(α)∈Q for all i

1 +
n∑

j=1

∑
N((fj(α)))≤z
fi(α)∈Q for all i

1 +
∑

z<N((α))≤u
(F (α),PK(z))=1

1

≤
∑

N((α))≤z
fi(α)∈Q for all i

1 + 2|µK|nz +
∑

z<N((α))≤u
(F (α),PK(z))=1

1,

where |µK| is the number of roots of unity in OK.
To estimate the first sum, we observe that for u, v ∈ OK \{0}, the norms

of u, v are positive and

NK/Q(u+ v) = NK/Q(u) + TrK/Q(uv̄) +NK/Q(v),

where v̄ denotes the complex conjugate of v. If OK = Z[
√
−d] and uv̄ =

a+ b
√
−d, then

TrK/Q(uv̄) = 2a ≤ 2(a2 + b2d) ≤ 2NK/Q(uv̄).

Similarly, if OK = Z
[
1+

√
−d

2

]
and uv̄ = a+ b

2 + b
√
−d
2 , we have

TrK/Q(uv̄) = 2

(
a+

b

2

)
≤ 2

((
a+

b

2

)2

+
b2d

4

)
≤ 2NK/Q(uv̄).

Indeed, this is clearly true when a+ b
2 ≤ 0 or a+ b

2 ≥ 1. Now if 0 < a+ b
2 < 1,

then a+ b
2 = 1

2 and b ̸= 0 and therefore 1 ≤ 2
(
1
4 + b2d

4

)
. Thus in both cases

NK/Q(u + v) ≤ 4NK/Q(uv). Therefore, the first sum under consideration
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satisfies ∑
N((α))≤z

fi(α)∈Q for all i

1 ≤
∑

N((fi0 (α)))≤4N((ai0bi0 ))z

fi(α)∈Q for all i

1 ≤ 8|µK|N((ai0bi0))nz,

where N((ai0bi0)) = min{N((aibi)) : 1 ≤ i ≤ n}. Hence,

D ≤ 10|µK|N((ai0bi0))nz +
∑

z<N((α))≤u
(F (α),PK(z))=1

1.

Let us now consider the sum∑
N((α))≤u

(F (α),PK(z))=1

1 =
∑

N((α))≤u

( ∑
b|(F (α),PK(z))

µ(b)
)
≤

∑
N((α))≤u

( ∑
b|(F (α),PK(z))

λb

)2
.

Rearranging the terms, we get∑
N((α))≤u

( ∑
b|(F (α),PK(z))

λb

)2
=

∑
b1,b2|PK(z)
N(bi)≤z

λb1λb2
∑

N((α))≤u
[b1,b2]|F (α)

1.

Let b = [b1, b2]. To estimate the inner sum, we need to count α ∈ OK such
that α lies in one of the ρF (b) classes in OK/b. If b | PK(z) and b0 is the
largest divisor of b which is coprime to E =

∏n
i=1 ai

∏
1≤i<j≤n(aibj − ajbi),

then we can write ρF (b)=nω(b0)ρF (b/b0). Applying Theorem 3 with a=OK,
q = b, we deduce for z ≤

√
u that

(8)
∑

b1,b2|PK(z)
N(bi)≤z

λb1λb2
∑

N((α))≤u
[b1,b2]|F (α)

1

=
∑

b1,b2|PK(z)
N(bi)≤z

λb1λb2

(
cKρF ([b1, b2])u

N([b1, b2])
+O∗

(
1014ρF ([b1, b2])

√
u

N([b1, b2])

))
,

where cK = 2π/
√

|dK|. Note that the main term is∑
b1,b2|PK(z)

λb1λb2
f([b1, b2])

,

where f is as defined in (4). Hence,∑
b1,b2|PK(z)

λb1λb2f((b1, b2))

f(b1)f(b2)
=

∑
b1,b2|PK(z)

λb1λb2
f(b1)f(b2)

∑
a|(b1,b2)

f1(a)

=
∑

a|PK(z)

f1(a)

( ∑
a|c

c|PK(z)

λc
f(c)

)2

.
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Further, we observe that∑
c|PK(z)

a|c

λc
f(c)

= G(z)−1
∑

c|PK(z)
a|c

µ(c)

f1(c)

∑
N(g)≤z/N(c)
(g,cH)=OK

µ2(g)

f1(g)
.

Writing c = ha with (h, a) = OK, we get

µ(a)

f1(a)
G(z)−1

∑
N(h)≤z/N(a)

h|PK(z)
(h,a)=OK

µ(h)

f1(h)

∑
N(g)≤z/N(ha)
(g,haH)=OK

µ2(g)

f1(g)

=
µ(a)

f1(a)
G(z)−1

∑
N(h)≤z/N(a)

h|PK(z)
(h,a)=OK

∑
N(g)≤z/N(ha)
(g,haH)=OK

µ(h)
µ2(gh)

f1(gh)
.

Setting a1 = gh gives∑
c|PK(z)

a|c

λc
f(c)

=
µ(a)

f1(a)
G(z)−1

∑
N(a1)≤z/N(a)
(a1,aH)=OK

µ2(a1)

f1(a1)

∑
h|a1

µ(h) = G(z)−1 µ(a)

f1(a)
.

Therefore the main term in (8) is cKuG(z)−1. Applying Lemmas 15 and 17,
for log z ≥ 18(n+ 1)LK we have

G(z) =
αn
K

n!

∏
p|H

(
1− 1

N(p)

)n∏
p∤H

(1 + h(p))

(
1− 1

N(p)

)n

× logn z

(
1 + O∗

(
9(n+ 1)LK

log z

))
.

To deal with the error term, we use Lemma 10.
Combining everything, for z ≤

√
u we get

D ≤ cKuG(z)
−1 + 10|µK|N((ai0bi0))nz + 1014(3n)4πK(2n)ζK

(
3

2

)8n

z
√
u.

We now simplify the above expression to get

D ≤ 2π√
|dK|

uG(z)−1 + 361nn16nN((ai0bi0))z
√
u.

Therefore, if we choose

z =
π
√
uG(u)−1

2
√
|dK|361nn16nN((ai0bi0))

≤ π
√
uG(z)−1

2
√
|dK|361nn16nN((ai0bi0))

,

for log z ≥ 18(n+ 1)LK we have

D ≤ 5

4
· 2π√

|dK|
G(z)−1u.
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We now compute the lower bound for u. Note that

(4n)n
√
u

logn u
≥ u1/4.

Hence, for

u1/4 ≥
(4n)n

√
|dK| 362nn16nN((ai0bi0))α

n
K

n!π exp(−18(n+ 1)LK)

×
∏
p|H

(
1− 1

N(p)

)n∏
p∤H

(1 + h(p))

(
1− 1

N(p)

)n

,

we have

D ≤
5
(∏

p|H
(
1− 1

N(p)

)−n∏
p∤H(1 + h(p))−1

(
1− 1

N(p)

)−n)
n!|µK|u

2αn−1
K hK logn

π
√
uG(u)−1

2
√
|dK| 361nn16nN((ai0bi0))

.

Now we consider the product∏
p∤H

(1 + h(p))

(
1− 1

N(p)

)n

=
∏
p∤H

(
1 +

ρF (p)

N(p)− ρF (p)

)(
1− 1

N(p)

)n

≤
∏
p∤H

((
1 +

1

N(p)− ρF (p)

)(
1− 1

N(p)

))n

.

We see that(
1 +

1

N(p)− ρF (p)

)(
1− 1

N(p)

)
=

(
1 +

ρF (p)− 1

N(p)(N(p)− ρF (p))

)
≤

(
1 +

1

N(p)(N(p)− ρF (p))

)n−1

.

This gives∏
p∤H

(1 + h(p))

(
1− 1

N(p)

)n

≤
∏
p∤H

(
1 +

1

N(p)(N(p)− ρF (p))

)n(n−1)

.

Finally,∏
p∤H

(
1 +

1

N(p)(N(p)− ρF (p))

)

≤
∏

N(p)<2n
p∤H

(
1 +

1

N(p)(N(p)− ρF (p))

)∏
p

(
1 +

1

N(p)2

)2

.
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Therefore the constant satisfies∏
p∤H

(1 + h(p))

(
1− 1

N(p)

)n

≤ 2n(n−1)πK(2n)ζK(2)2n(n−1) ≤ 26n
3
.

Thus, for

u1/4 ≥ exp(18(n+ 1)LK)

(√
|dK| 323n3

n17nN((ai0bi0))α
n
K

n!π

)
,

we have

D ≤
5
(∏

p|H
(
1− 1

N(p)

)−n∏
p∤H(1 + h(p))−1

(
1− 1

N(p)

)−n)
n!|µK|u

2αn−1
K hK logn

n!π
√
u√

|dK| 322n3n16nN((ai0bi0))α
n
K logn u

.

Further, since u1/(4n) > log u1/(4n), we get

u1/4 ≥ exp(18(n+ 1)LK)

√
|dK| 323n3

n17nN((ai0bi0))α
n
K

n!π
,

and consequently

D ≤
5
(∏

p|H
(
1− 1

N(p)

)−n∏
p∤H(1 + h(p))−1

(
1− 1

N(p)

)−n)
n!|µK|u

2αn−1
K hK logn

n!πu1/4√
|dK| 323n3n17nN((ai0bi0))α

n
K

.

Note that by relabelling ai’s and bi’s for 1 ≤ i ≤ n, we can choose i0 to
be equal to 1.
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