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Abstract. Let f and g be two multiplicative functions that are periodic, non-vanishing

at their period and with bounded partial sums. We prove that
∑

n≤x(f ∗g)(n) = Ω(x1/4)

when the periods of f and g, say M1 and M2, are squarefree.

1. Introduction

Solving the Erdős-Coons-Tao conjecture and building upon work of Tao [?], Klurman

[?] proved that the only multiplicative functions f taking ±1 values and such that

sup
x

∣∣∣∣∣∑
n≤x

f(n)

∣∣∣∣∣ < ∞

are the periodic multiplicative functions with bounded partial sums.

Building upon the referred work of Klurman, the first author proved [?] that if we

allow values outside the unit disk, a m-periodic multiplicative function f with bounded

partial sums such that f(m) ̸= 0 satisfies

i. For some prime q|m,
∑∞

k=0
f(qk)
qk

= 0.

ii. For each pa∥m, f(pk) = f(pa) for all k ≥ a.

iii. For each gcd(p,m) = 1, f(pk) = 1, for all k ≥ 1.

Conversely, if f : N → C is multiplicative and the three conditions above are satisfied,

then f has period m and has bounded partial sums. Therefore, these three conditions

above give examples of multiplicative functions with values outside the unit disk with

bounded partial sums, despite of the fact that f(m) is zero or not.

Here we are interested in the convolution f ∗g for f and g satisfying i-ii-iii. If M1 and

M2 are the periods of f and g respectively, then it was proved [?]∑
n≤x

(f ∗ g)(n) ≪ xα+ϵ,
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where α is the infimum over the exponents a > 0 such that ∆(x) ≪ xa, where ∆(x) is

the classical error term in the Dirichlet divisor problem:∑
n≤x

τ(n) = x log x+ (2γ − 1)x+∆(x).

It was conjectured in [?] that these sums are Ω(x1/4). Here we establish this conjecture

in some particular cases.

Theorem 1.1. Let f and g be periodic multiplicative functions satisfying i-ii-iii above,

with periods M1 and M2 respectively. Assume that M1 and M2 are squarefree. Then∑
n≤x

(f ∗ g)(n) = Ω(x1/4).

To proof this result, our starting point is the following formula from [?]:

(1)
∑
n≤x

(f ∗ g)(n) =
∑

n|M1M2

(f ∗ g ∗ µ ∗ µ)(n)∆(x/n),

where µ is the Möbius function.

Our proof of Theorem 1.1 is inspired by an elegant result of Tong [?]:∫ X

1

∆(x)2dx = (1 + o(1))

(
∞∑
n=1

τ(n)2

n3/2

)
X3/2.

By Equation (1), the limit

lim
X→∞

1

X3/2

∫ X

1

∣∣∣∣∣∑
n≤x

(f ∗ g)(n)

∣∣∣∣∣
2

dx

can be expressed as a quadratic form with matrix (an,m)n,m|M1M2 where

an,m := lim
X→∞

1

X3/2

∫ X

1

∆(x/n)∆(x/m)dx.

In the case that M1 and M2 are squarefree, we prove that the associated quadratic

form is positive. For general values of periods M1 and M2 the matrix analysis become very

hard and we were not able to describe the eigenvalues of the associated matrix, although

we believe that all of them are positive.

2. Notation

We employ both Vinogradov’s notation f ≪ g or f = O(g) whenever there exists a

constant C > 0 such that |f(x)| ≤ C|g(x)|, for all x in a set of parameters. When not

specified, this set of parameters is x ∈ (a,∞) for sufficiently large a > 0. We employ
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f = o(g) when limx→a
f(x)
g(x)

= 0. In this case a can be a complex number or ±∞. Finally,

f = Ω(g) when lim supx→a
|f(x)|
g(x)

> 0, where a is as in the previous notation.

3. Multiplicative auxiliaries

We begin the proof with the following Lemma.

Lemma 3.1. Let a, b be positive integers, λ = gcd(a, b), c = a/λ and d = b/λ. Then

lim
X→∞

∫ X

1

∆(x/a)∆(x/b)
dx

X3/2
=

1

2π2
√
λcd

∞∑
n=1

τ(cn)τ(dn)

n3/2
.

Proof. Let N > 0 and ϵ > 0 be a small number that may change from line after line. We

proceed with Voronöı’s formula for ∆(x) in the following form (see [?])

∆(x) =
x1/4

π
√
2

∑
n≤N

τ(n)

n3/4
cos(

√
nx− π/4) +RN(x),

where, for every positive ϵ, we have

RN(x) ≪ xϵ +
x1/2+ϵ

N1/2
.

We select N = X3/4. This choice is not optimal but will suffice. This implies that in

the range 1 ≤ x ≤ X,

∆(x/a) =
(x/a)1/4

π
√
2

∑
n≤N

τ(n)

n3/4
cos(

√
nx/a− π/4) +RN(x/a) = UN(x/a) +RN(x/a)

say, where RN(x/a) ≪ X1/8+ϵ.

Now,

∫ X

1

∆(x/a)∆(x/b)dx =

∫ X

1

UN(x/a)UN(x/b)dx+

∫ X

1

UN(x/a)RN(x/b)dx

+

∫ X

1

UN(x/b)RN(x/a)dx+

∫ X

1

RN(x/a)RN(x/b)dx

=

∫ X

1

UN(x/a)UN(x/b)dx+O(X3/2−1/8+ϵ),
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where we used the Cauchy-Schwarz inequality in the last equality. Let now λ = gcd(a, b),

c = a/λ and d = b/λ. By making the change of variable u = x/λ, we reach

∫ X

1

UN(x/a)UN(x/b)dx = λ

∫ X/λ

1

UN(x/c)UN(x/d)dx

=
λ

2π2(cd)1/4

∑
n,m≤N

τ(n)τ(m)

(nm)3/4

∫ X/λ

1

x1/2 cos(
√
nx/c− π/4) cos(

√
mx/d− π/4)

=
λ

π2(cd)1/4

∑
n,m≤N

τ(n)τ(m)

(nm)3/4

∫ X1/2/λ1/2

1

x2 cos(
√
n/cx− π/4) cos(

√
m/dx− π/4),

where in the last equality above we made a change of variable u =
√
x. We claim now

that the main contribution comes when n/c = m/d. Since c and d are coprime, the sum

over these n and m can be written as

(2)
λ

π2cd

∞∑
n=1

τ(cn)τ(dn)

n3/2

∫ X1/2/λ1/2

1

x2 cos2(
√
nx− π/4)2dx+O(X3/2−3/8+ϵ).

We recall now that cos2(u) = 1+cos(2u)
2

, and hence the integral above is

(3)

∫ X1/2/λ1/2

1

x2 cos2(
√
nx− π/4)dx =

X3/2

2λ3/2
+O(X),

where the big-oh term is uniform in n. Now we will show that the sum over those n and m

such that n/c ̸= m/d will be o(X3/2). With this the proof will be complete by combining

(2) and (3).

We recall the identity 2 cos(u) cos(v) = cos(u − v) + cos(u + v). Thus, for
√

n/c ̸=√
m/d, we find that

∫ X1/2/λ1/2

1

x2 cos(
√
n/cx− π/4) cos(

√
m/dx− π/4)dx

=

∫ X1/2/λ1/2

1

x2 cos((
√

n/c−
√

m/d)x)dx+

∫ X1/2/λ1/2

1

x2 sin((
√
n/c+

√
m/d)x)dx

≪ X√
n/c−

√
m/d

≪
√

n/c+
√

m/d

nd−mc
X.
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Let 1P (n) be the indicator that n has property P . We find that∑
n,m≤N

nd−mc̸=0

τ(n)τ(m)

(nm)3/4

∫ X/λ

1

x1/2 cos(
√

nx/c− π/4) cos(
√
mx/d− π/4)dx

≪ XN ϵ
∑

n,m≤N
nd−mc̸=0

√
n/c+

√
m/d

(nm)3/4|nd−mc|

= XN ϵ
∑

n,m≤N
nd−mc ̸=0

√
n/c+

√
m/d

(nm)3/4|nd−mc|

N max(c,d)∑
k=−N max(c,d)

k ̸=0

1nd−mc=k.

On calling this sum S, we readily continue with

S ≪ XN ϵ

N max(c,d)∑
k=1

1

k

∑
m≤N

√
m+

√
k

((k +mc)m)3/4

≪ XN ϵ

(
O(logN)2 +

N∑
k=1

1√
k

∑
m≤N

1

(km+m2)3/4

)

≪ XN ϵ

(
O(logN)2 +

N∑
k=1

1√
k

∫ ∞

0

dx

(k + x2)3/4

)

≪ XN ϵ

(
O(logN)2 +

N∑
k=1

1√
k

1

k1/4

)
≪ XN1/4+ϵ = X1+3/16+ϵ.

The proof is complete. □

Our next task is to evaluate
∞∑
n=1

τ(cn)τ(dn)

n3/2
,

for coprime positive integers c and d.

Lemma 3.2. Let c be fixed positive number and f(n) be a multiplicative function with

f(c) ̸= 0. Then n 7→ f(cn)
f(c)

is multiplicative.

Proof. We have that for positive integers u, v, we have

f(u)f(v) = f(gcd(u, v))f(lcm(u, v)).

Let u = cn, v = cm with gcd(n,m) = 1. Then f(cn)f(cm) = f(c)f(cnm).

Therefore, we obtained
f(cm)

f(c)

f(cn)

f(c)
=

f(cnm)

f(c)
.

□
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Lemma 3.3. Let c, d be two fixed positive integers with gcd(c, d) = 1. Then

∑
n≥1

τ(cn)τ(dn)

ns
= τ(cd)

ζ(s)4

ζ(2s)

∏
pk∥cd

(
1 + p−s

)−1
(
1− (k−1)

(k+1)
p−s
)
.

Proof. Note that τ(cn)
τ(c)

is a multiplicative function in the variable n, and so is τ(cn)τ(dn)
τ(c)τ(d)

.

Therefore, for ℜ(s) > 1 we have the following Euler factorization

∑
n≥1

τ(cn)τ(dn)

τ(c)τ(d)ns
=
∏
p∤cd

(
1 +

∑
ℓ≥1

τ(pℓ)2

pℓs

)∏
p|cd

(
1 +

∑
ℓ≥1

τ(cpℓ)τ(dpℓ)

τ(c)τ(d)pℓs

)
.

For |x| < 1, we know that

∑
ℓ≥0

(ℓ+ 1)xℓ =
1

(1− x)2
,

∑
ℓ≥0

(ℓ+ 1)2xℓ =
(1 + x)

(1− x)3
,

from which we also derive that∑
ℓ≥0

ℓ(ℓ+ 1)xℓ =
2x

(1− x)3
.

Now,

∏
p∤cd

(
1 +

∑
ℓ≥1

τ(pℓ)2

pℓs

)
=
∏
p

(
1 +

∑
ℓ≥1

(ℓ+ 1)2

pℓs

)∏
p|cd

(
1 +

∑
ℓ≥1

(ℓ+ 1)2

pℓs

)−1

=
∏
p

(1 + p−s)

(1− p−s)3

∏
p|cd

(1− p−s)
3

(1 + p−s)

=
ζ(s)4

ζ(2s)

∏
p|cd

(1− p−s)
3

(1 + p−s)
.

If gcd(c, d) = 1

∏
p|cd

(
1 +

∑
ℓ≥1

τ(cpℓ)2τ(dpℓ)2

τ(c)τ(d)pℓs

)
=
∏
pk∥cd

(
1 +

∑
ℓ≥1

(k + 1 + ℓ)(ℓ+ 1)

(k + 1)pℓs

)

=
∏
pk∥cd

(
1 +

∑
ℓ≥1

(ℓ+ 1)

pℓs
+

1

k + 1

∑
ℓ≥1

ℓ(ℓ+ 1)

pℓs

)

=
∏
pk∥cd

(
1− p−s

)−3
(
1− (k−1)

(k+1)
p−s
)
.

□
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4. Quadratic forms auxiliaries

The main proof will lead to considering the quadratic form attached with a matrix of

the form

(4) MS,f =

(
f

(
lcm(a, b)

gcd(a, b)

))
a,b∈S

where S is some finite set of integers while f is a non-negative multiplicative function such

that f(pk) ≤. So we stray somewhat from the main line and investigate this situation.

Our initial aim is to find conditions under which the associated quadratic form is positive

definite, but we shall finally restrict our scope. GCD-matrices have received quite some

attention, but it seems the matrices occuring in (4) have not been explored. We obtain

results in two specific contexts.

Completely multiplicative case. Here is our first result.

Lemma 4.1. When f is completely multiplicative, the matrix MS,f is non-negative. When

f(p) ∈ (0, 1) and S is divisor closed, this matrix is positive definite. The determinant in

that case is given by the formula

det

(
f

(
lcm(a, b)

gcd(a, b)

))
a,b∈S

=
∏
d∈S

f(d)2
(
µ ∗ 1

f 2

)
(d).

By divisor closed, we mean that every divisor of an element of S also belongs to S.

Proof. We write f(lcm(a, b)/ gcd(a, b)) = f(ab/ gcd(a, b)2) = f(a)f(b)g(gcd(a, b)2) where

g(n) = f(1/n)2 is another non-negative multiplicative function. We use introduce the

auxiliary function h = µ ∗ g. Please notice that this function is multiplicative and non-

negative, as g(p) ≥ 1. We use Selberg’s diagonalization process to write∑
a,b∈S

f

(
lcm(a, b)

gcd(a, b)

)
xaxb =

∑
a,b∈S

g(gcd(a, b))f(a)xaf(b)xb

=
∑
a,b∈S

∑
d|(a,b)

h(d)f(a)xaf(b)xb =
∑
d

h(d)

(∑
a∈S
d|a

f(a)xa

)2

from which the non-negativity follows readily. When f verifies the more stringent con-

dition that f(p) ∈ (0, 1), we know that both f and h are strictly positive. Let us define

yd =
∑

a∈S
d|a

f(a)xa. The variable d varies in the set D of divisors of S. We assume that S

is divisor closed, so that D = S. We can readily invert the triangular system giving the

yd’s as functions of the xa’s into

f(a)xa =
∑
a|b

µ(b/a)yb
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Indeed, the fact that the mentioned system is triangular ensures that a solution y is unique

if it exists. We next verify that the proposed expression is indeed a solution by:∑
a∈S
d|a

f(a)xa =
∑
a∈S
d|a

∑
a|b

µ(b/a)yb =
∑
b∈S
d|b

yb
∑
d|a|b

µ(b/a) = yd

as the last inner sum vanishes when d ̸= b. We thus have a writing as a linear combination

of squares of independant linear forms. In a more pedestrian manner, if our quadratic

form vanishes, then all yd’s do vanish, hence so do the xa’s. □

Here is a corollary.

Lemma 4.2. When the set S contains solely squarefree integers, the matrix MS,f is non-

negative.

Proof. Simply apply Lemma 4.1 to completely multiplicative function f ′ that have the

same values on primes as f . □

An additive-like situation. Here, we restrict our attention to the case when S = {1, p, p2, · · · , pK}.
In that case, the matrix we get is simply a symmetric Toeplitz matrix. These have been

thoroughly studied and we cannot get general results like Lemma 4.2 is that case. We

may however work out some criterium that is simple to verify in our case. We first recall

the following lemma of Frobenius.

Lemma 4.3. A hermitian complex valued matrix M = (mi,j) defines a positive definite

form if and only if all its principal minors

det(mi,j)i,j≤m

are positive

So in our case, here is the list of conditions to verify:

• 1− f(p)2 > 0

• (1− f(p2))(f(p2)− 2f(p)2 + 1) > 0.

• (f(p)2− (1−2f(p2)+f(p3))(1+f(p)))(f(p)2+(1−2f(p2)−f(p3))(1+f(p))) > 0.

We conclude to the next lemma.

Lemma 4.4. Recall that f(1) = 1, that f(p) ∈ (0, 1) and that f(p2) ∈ (0, 1). we have

(1) The matrix (f(pmax(i,j)−min(i,j)))i,j≤1 is positive definite.

(2) The matrix (f(pmax(i,j)−min(i,j)))i,j≤2 is positive definite if and only if f(p
2)−2f(p)2+

1.
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(3) The matrix (f(pmax(i,j)−min(i,j)))i,j≤3 is positive definite if and only if f(p
2)−2f(p)2+

1 and[
f(p)2

1 + f(p)
− f(p3)− 1 + 2f(p2)

][
f(p)2

1 + f(p)
− f(p3) + 1− 2f(p2)

]
> 0.

A tensor product-like situation. Lemma 4.2 is enough to solve our main problem when

M1 and M2 are coprime. We need to go somewhat further. Let S be a divisor closed set.

We consider the quadratic form

(5)
∑
a,b∈S

f

(
lcm(a, b)

gcd(a, b)

)
xaxb

where the variables xa’s are also multiplicatively split, i.e.

(6) xa =
∏
pk∥a

xpk .

Let S(p) the subset of S made only of 1 and of prime powers. We extend S so that it

contains every products of integers from any collection of distinct S(p)∗. We then find

that

(7)
∑
a,b∈S

f

(
lcm(a, b)

gcd(a, b)

)
xaxb =

∏
p∈S

( ∑
pk,pℓ∈S(p)

f
(
pmax(k,ℓ)−min(k,ℓ)

)
xpkxpℓ

)
.

We check this identity simply by opening the right-hand side and seeing that every sum-

mand from the left-hand side appears one and only one time. Then Lemma 4.4 applies.

5. Proof of the main result
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Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.

Email address: aymone.marco@gmail.com

Email address: g.gopaltamluk@gmail.com
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