Addendum to Modified truncated Perron formulae

Olivier Ramaré

October 3, 2021

Abstract

We add a corollary to the results from [1].

Furthermore D. Johnston spotted an error and a typo. The typo is what is below (3.1) and corrected therein. The same typo exists in the last displayed equation in page 125 of [1]. The error is more serious: the statement has a set I^* of 'measure' verifying something. A closer look at the proof shows that this measure is taken with respect of a smooth multiple of the Lebesgue measure. When some parameters vary, this multiplier may have important consequences, see the present proof below (3.1) for a full description of the situation.

1 Introduction and results

Theorem 1.1 (The MT Perron summation formula, special form). Let (a_n) be a sequence of complex numbers such that $|a_n| \leq 1$ and let $F(s) = \sum_{n\geq 1} a_n/n^s$ be the corresponding Dirichlet series. We select real parameters $\kappa \in (1, 3/2]$, $\delta \in [0, 1/2], \epsilon \in (0, \delta]$ and $x \geq T \geq 2$. There exists a subset I^* of $[T, (1 + \delta)T]$ of measure

$$\frac{|I^*|}{\delta T} \ge \max\left(\frac{1}{2}, \frac{\log \frac{\delta}{\epsilon}}{\frac{-4\log(\kappa-1)}{\log T} + 6}\right)$$

such that for every $T^* \in I^*$, we have

$$\sum_{n \le x} a_n = \frac{1}{2i\pi} \int_{\kappa - iT^*}^{\kappa + iT^*} F(z) \frac{x^z dz}{z} + \mathcal{O}^* \left(\frac{\delta}{\epsilon} \frac{2x}{T} e^{1/\delta} \left(23 + 2x^{\kappa - 1}\right)\right).$$

Note 1: It is better to multiply the error terms of [1, Theorem 1.2] and [1, Theorem 5.3] by the factor δ/ϵ . As such, the results are correct since the \mathcal{O} may depend on ϵ and δ is bounded. It would be however clearer. **Note 2:** A typical situation is $\delta = 1/2 = 2\epsilon$ and $\kappa = 1 + \frac{1}{\log x}$.

²⁰¹⁰ Mathematics Subject Classification: Primary , ; Secondary .

Key words and phrases:

2 Recall of previous result

We recall here part of [1, Section 5]. We define

(2.1)
$$f_k(v) = \begin{cases} (v(1-v))^k & \text{when } v \in [0,1], \\ 0 & \text{else} \end{cases}$$

and we further define $w_{k,\xi}$ by

(2.2)
$$w_{k,\xi}(u) = \frac{(2k+1)!}{k!^2(\xi-1)} f_k\left(\frac{u-1}{\xi-1}\right)$$

which satisfies $\int_1^{\xi} w_{k,\xi}(u) du = 1.$

Corollary 2.1 (ex-Corollary 5.1). Let $k \ge 1$ be an integer and let $\xi > 1$ be a real number. Let $F(z) = \sum_{n} a_n/n^z$ be a Dirichlet series that converges absolutely for $\Re z > \kappa_a$, and let $\kappa > 0$ be strictly larger than κ_a . For $x \ge 1$ and $T \ge 1$, we have

$$\sum_{n \le x} a_n = \frac{1}{2i\pi} \int_T^{\xi T} \int_{\kappa - it}^{\kappa + it} F(z) \frac{x^z dz}{z} \frac{w_{k,\xi}(t/T) dt}{T} + \mathcal{O}^* \left(\frac{7\xi}{10} \int_{1/T}^{\infty} \sum_{|\log(x/n)| \le u} \frac{|a_n|}{n^{\kappa}} \frac{(k+1)x^{\kappa} du}{T^{k+1}u^{k+2}} \exp \frac{2/e}{\xi - 1} \right).$$

3 Proof of Theorem 1.1

Let us handle the remainder term in Corollary 2.1 under the assumption that $|a_n| \leq 1$ and $\kappa \leq 3/2$. We also set $\xi = 1 + \delta \leq 3/2$. We split the integral in u at 1. We get

• When $u \ge U$, we use $\sum_{|\log(x/n)| \le u} \frac{|a_n|}{n^{\kappa}} \le \zeta(\kappa)$, whence the contribution is bounded above by

$$x^{\kappa} \frac{7\xi}{10} \frac{\zeta(\kappa)}{T^{k+1}} \exp \frac{2/e}{\xi - 1} = \frac{7\xi}{10} \frac{x^{\kappa} \zeta(\kappa)}{T^{k+1}} \exp \frac{2/e}{\xi - 1} \le 1.6 \frac{x^{\kappa}}{T^{k+1}(\kappa - 1)} \exp \frac{1}{\delta}$$

on recalling that $\zeta(\kappa) \leq \kappa/(\kappa-1)$.

• When $1/T \le u \le 1$, we use $\sum_{|\log(x/n)|\le u} \frac{|a_n|}{n^{\kappa}} \le x^{1-\kappa}e^{\kappa u}(e^u - e^{-u} + 1/x)$. Next some easy manipulation shows that $e^u - e^{-u} = 2\sinh u \le 2u\sinh 1 \le 2.36 u$. Since we assumed that $T \le x$, we get

$$\sum_{|\log(x/n)| \le u} \frac{|a_n|}{n^{\kappa}} \le 3.36 \, x^{1-\kappa} e^{\kappa} u.$$

The corresponding contribution is thus bounded above by

$$3.36 x e^{\kappa} \frac{7\xi}{10} \frac{k+1}{kT} \exp \frac{2/e}{\xi - 1} \le \frac{46 x}{T} \exp \frac{1}{\delta}.$$

We thus get

$$\int_{T}^{\xi T} \left| \sum_{n \le x} a_n - \frac{1}{2i\pi} \int_{T}^{\xi T} \int_{\kappa - it}^{\kappa + it} F(z) \frac{x^z dz}{z} \right| \frac{w_{k,\xi}(t/T) dt}{T} \le \frac{46x}{T} e^{1/\delta} + \frac{2x^\kappa}{T^{k+1}(\kappa - 1)} e^{1/\delta}$$

Let us select $k = \left[-\log(\kappa - 1)/\log T\right] + 1$, so that $T^k(\kappa - 1) \ge 1$. For such a k, we find that

$$\int_{T}^{\xi T} \left| \sum_{n \le x} a_n - \frac{1}{2i\pi} \int_{T}^{\xi T} \int_{\kappa - it}^{\kappa + it} F(z) \frac{x^z dz}{z} \right| \frac{w_{k,\xi}(t/T) dt}{T} \le \frac{2x}{T} e^{1/\delta} \left(23 + 2x^{\kappa - 1} \right) = \Re.$$

For any parameter $\epsilon > 0$, the set I(x,k) of $t \in [T,\xi T]$ for which

(3.1)
$$\left|\sum_{n\leq x} a_n - \frac{1}{2i\pi} \int_{\kappa-it}^{\kappa+it} F(z) \frac{x^z dz}{z}\right| \geq \epsilon^{-1} (\xi-1) \Re$$

verifies

$$\epsilon^{-1}(\xi-1)\Re \int_{I(x,k)} \frac{w_{k,\xi}(t/T)dt}{T} \leq \int_{I(x,k)} \left| \sum_{n \leq x} a_n - \frac{1}{2i\pi} \int_{\kappa-it}^{\kappa+it} F(z) \frac{x^z dz}{z} \right| \frac{w_{k,\xi}(t/T)dt}{T}$$
$$\leq \int_T^{\xi T} \left| \sum_{n \leq x} a_n - \frac{1}{2i\pi} \int_{\kappa-it}^{\kappa+it} F(z) \frac{x^z dz}{z} \right| \frac{w_{k,\xi}(t/T)dt}{T} \leq \Re.$$

We now have to switch from the $w_{k,\xi}$ -measure' of I(k, x) to its usual Lebesgue measure, which we denote by $2(\xi - 1)\nu \cdot T$ and which we assume to be less than $(1 - \xi)T = \delta T$. The shape of $w_{k,\xi}$ implies that, when $\ell \in \{0, \dots, k-1\}$, we have

$$2\int_{T}^{(1+(1-\xi)\nu)T} \frac{w_{k,\xi}(t/T)dt}{T} \le \frac{\epsilon}{\xi-1},$$

i.e., on recalling the definition (2.2), that

$$\frac{(2k+1)!}{k!^2} \int_0^\nu f_k(v) dv \le \frac{\epsilon}{2(\xi-1)}.$$

We readily check, by repeated integration by parts, that

$$\int_0^{\nu} f_k(v) dv = \int_0^{\nu} v^k (1-v)^k dv$$

= $\frac{\nu^{k+1}(1-\nu)^k}{k+1} + \frac{k\nu^{k+2}(1-\nu)^{k-1}}{(k+1)(k+2)} + \dots + \frac{k\cdots(k-\ell+1)\nu^{k+\ell+1}(1-\nu)^{k-\ell}}{(k+1)\cdots(k+\ell+1)}$
+ $\frac{k\cdots(k-\ell)}{(k+1)\cdots(k+\ell+1)} \int_0^{\nu} v^{k+\ell+1}(1-v)^{k-\ell-1} dv$

from which we infer, with the choice $\ell=k-1$ and on setting $y=\nu/(1-\nu),$ that

$$\int_0^{\nu} f_k(v) dv = \nu^{k+1} (1-\nu)^k \left(\frac{1}{k+1} + \frac{ky}{(k+1)(k+2)} + \dots + \frac{k\dots 1y^{k+1}}{(k+1)\dots(2k+1)} \right)$$
$$= \nu^{k+1} (1-\nu)^k \sum_{\ell=0}^k \frac{k!^2}{(k-\ell)!(k+1+\ell)!} y^{\ell}.$$

When $\nu = 1/2$, we get y = 1 and this formula yields

$$\frac{1}{2}\frac{k!^2}{(2k+1)!} = \frac{1}{2^{2k+1}}\sum_{\ell=0}^k \frac{k!^2}{(k-\ell)!(k+1+\ell)!}$$

Hence

$$\int_0^{\nu} f_k(v) dv \ge \nu^{k+1} (1-\nu)^k 2^{2k} \frac{(2k+1)!}{k!^2} y^k = \frac{1}{2} (2\nu)^{2k+1} \frac{(2k+1)!}{k!^2}$$

We thus infer from this argument that

$$(2\nu)^{2k+1} \le \frac{\epsilon}{\xi - 1}.$$

Recall that we have assumed that $\epsilon \leq \xi - 1 = \delta$. The above inequality gives us

$$2\nu \le \exp\frac{-\log\frac{\delta}{\epsilon}}{2k+1}.$$

Because the conclusion of our Theorem reads $|I^*|/(\delta T) \ge \max(\frac{1}{2}, \cdots)$, we may assume that

$$\log \frac{\delta}{\epsilon} \le \frac{-2\log(\kappa - 1)}{\log T} + 3.$$

This enables us to use the elementary inequality $e^{-u} \leq 1-u/2$ when $u \in [0,1]$ and to get

$$1 - 2u \ge \frac{\log \frac{\delta}{\epsilon}}{\frac{-4\log(\kappa - 1)}{\log T} + 6}.$$

Our Theorem follows readily from this last inequality.

References

 O. Ramaré. Modified truncated Perron formulae. Ann. Blaise Pascal, 23(1):109–128, 2016.