Addendum to Modified truncated Perron formulae

Olivier Ramaré

October 3, 2021

Abstract

We add a corollary to the results from [1]. Furthermore D. Johnston spotted an error and a typo. The typo is what is below (3.1) and corrected therein. The same typo exists in the last displayed equation in page 125 of [1]. The error is more serious: the statement has a set I^{*} of 'measure' verifying something. A closer look at the proof shows that this measure is taken with respect of a smooth multiple of the Lebesgue measure. When some parameters vary, this multiplier may have important consequences, see the present proof below (3.1) for a full description of the situation.

1 Introduction and results

Theorem 1.1 (The MT Perron summation formula, special form). Let (a_{n}) be a sequence of complex numbers such that $\left|a_{n}\right| \leq 1$ and let $F(s)=\sum_{n>1} a_{n} / n^{s}$ be the corresponding Dirichlet series. We select real parameters $\kappa \in(1,3 / 2]$, $\delta \in[0,1 / 2], \epsilon \in(0, \delta]$ and $x \geq T \geq 2$. There exists a subset I^{*} of $[T,(1+\delta) T]$ of measure

$$
\frac{\left|I^{*}\right|}{\delta T} \geq \max \left(\frac{1}{2}, \frac{\log \frac{\delta}{\epsilon}}{\frac{-4 \log (\kappa-1)}{\log T}+6}\right)
$$

such that for every $T^{*} \in I^{*}$, we have

$$
\sum_{n \leq x} a_{n}=\frac{1}{2 i \pi} \int_{\kappa-i T^{*}}^{\kappa+i T^{*}} F(z) \frac{x^{z} d z}{z}+\mathcal{O}^{*}\left(\frac{\delta}{\epsilon} \frac{2 x}{T} e^{1 / \delta}\left(23+2 x^{\kappa-1}\right)\right)
$$

Note 1: It is better to multiply the error terms of [1, Theorem 1.2] and [1, Theorem 5.3] by the factor δ / ϵ. As such, the results are correct since the \mathcal{O} may depend on ϵ and δ is bounded. It would be however clearer.
Note 2: A typical situation is $\delta=1 / 2=2 \epsilon$ and $\kappa=1+\frac{1}{\log x}$.
2010 Mathematics Subject Classification: Primary , ; Secondary .
Key words and phrases:

2 Recall of previous result

We recall here part of [1, Section 5]. We define

$$
f_{k}(v)= \begin{cases}(v(1-v))^{k} & \text { when } v \in[0,1] \tag{2.1}\\ 0 & \text { else }\end{cases}
$$

and we further define $w_{k, \xi}$ by

$$
\begin{equation*}
w_{k, \xi}(u)=\frac{(2 k+1)!}{k!^{2}(\xi-1)} f_{k}\left(\frac{u-1}{\xi-1}\right) \tag{2.2}
\end{equation*}
$$

which satisfies $\int_{1}^{\xi} w_{k, \xi}(u) d u=1$.
Corollary 2.1 (ex-Corollary 5.1). Let $k \geq 1$ be an integer and let $\xi>1$ be a real number. Let $F(z)=\sum_{n} a_{n} / n^{z}$ be a Dirichlet series that converges absolutely for $\Re z>\kappa_{a}$, and let $\kappa>0$ be strictly larger than κ_{a}. For $x \geq 1$ and $T \geq 1$, we have

$$
\begin{aligned}
\sum_{n \leq x} a_{n}=\frac{1}{2 i \pi} \int_{T}^{\xi T} & \int_{\kappa-i t}^{\kappa+i t} F(z) \frac{x^{z} d z}{z} \frac{w_{k, \xi}(t / T) d t}{T} \\
& +\mathcal{O}^{*}\left(\frac{7 \xi}{10} \int_{1 / T}^{\infty} \sum_{|\log (x / n)| \leq u} \frac{\left|a_{n}\right|}{n^{\kappa}} \frac{(k+1) x^{\kappa} d u}{T^{k+1} u^{k+2}} \exp \frac{2 / e}{\xi-1}\right)
\end{aligned}
$$

3 Proof of Theorem 1.1

Let us handle the remainder term in Corollary 2.1 under the assumption that $\left|a_{n}\right| \leq 1$ and $\kappa \leq 3 / 2$. We also set $\xi=1+\delta \leq 3 / 2$. We split the integral in u at 1 . We get

- When $u \geq U$, we use $\sum_{|\log (x / n)| \leq u} \frac{\left|a_{n}\right|}{n^{\kappa}} \leq \zeta(\kappa)$, whence the contribution is bounded above by

$$
x^{\kappa} \frac{7 \xi}{10} \frac{\zeta(\kappa)}{T^{k+1}} \exp \frac{2 / e}{\xi-1}=\frac{7 \xi}{10} \frac{x^{\kappa} \zeta(\kappa)}{T^{k+1}} \exp \frac{2 / e}{\xi-1} \leq 1.6 \frac{x^{\kappa}}{T^{k+1}(\kappa-1)} \exp \frac{1}{\delta}
$$

on recalling that $\zeta(\kappa) \leq \kappa /(\kappa-1)$.

- When $1 / T \leq u \leq 1$, we use $\sum_{|\log (x / n)| \leq u} \frac{\left|a_{n}\right|}{n^{\kappa}} \leq x^{1-\kappa} e^{\kappa u}\left(e^{u}-e^{-u}+1 / x\right)$. Next some easy manipulation shows that $e^{u}-e^{-u}=2 \sinh u \leq 2 u \sinh 1 \leq$ $2.36 u$. Since we assumed that $T \leq x$, we get

$$
\sum_{|\log (x / n)| \leq u} \frac{\left|a_{n}\right|}{n^{\kappa}} \leq 3.36 x^{1-\kappa} e^{\kappa} u
$$

The corresponding contribution is thus bounded above by

$$
3.36 x e^{\kappa} \frac{7 \xi}{10} \frac{k+1}{k T} \exp \frac{2 / e}{\xi-1} \leq \frac{46 x}{T} \exp \frac{1}{\delta}
$$

We thus get

$$
\begin{aligned}
\int_{T}^{\xi T}\left|\sum_{n \leq x} a_{n}-\frac{1}{2 i \pi} \int_{T}^{\xi T} \int_{\kappa-i t}^{\kappa+i t} F(z) \frac{x^{z} d z}{z}\right| & \frac{w_{k, \xi}(t / T) d t}{T} \\
& \leq \frac{46 x}{T} e^{1 / \delta}+\frac{2 x^{\kappa}}{T^{k+1}(\kappa-1)} e^{1 / \delta}
\end{aligned}
$$

Let us select $k=[-\log (\kappa-1) / \log T]+1$, so that $T^{k}(\kappa-1) \geq 1$. For such a k, we find that
$\int_{T}^{\xi T}\left|\sum_{n \leq x} a_{n}-\frac{1}{2 i \pi} \int_{T}^{\xi T} \int_{\kappa-i t}^{\kappa+i t} F(z) \frac{x^{z} d z}{z}\right| \frac{w_{k, \xi}(t / T) d t}{T} \leq \frac{2 x}{T} e^{1 / \delta}\left(23+2 x^{\kappa-1}\right)=\mathfrak{R}$.
For any parameter $\epsilon>0$, the set $I(x, k)$ of $t \in[T, \xi T]$ for which

$$
\begin{equation*}
\left|\sum_{n \leq x} a_{n}-\frac{1}{2 i \pi} \int_{\kappa-i t}^{\kappa+i t} F(z) \frac{x^{z} d z}{z}\right| \geq \epsilon^{-1}(\xi-1) \Re \tag{3.1}
\end{equation*}
$$

verifies

$$
\begin{gathered}
\epsilon^{-1}(\xi-1) \Re \int_{I(x, k)} \frac{w_{k, \xi}(t / T) d t}{T} \leq \int_{I(x, k)}\left|\sum_{n \leq x} a_{n}-\frac{1}{2 i \pi} \int_{\kappa-i t}^{\kappa+i t} F(z) \frac{x^{z} d z}{z}\right| \frac{w_{k, \xi}(t / T) d t}{T} \\
\leq \int_{T}^{\xi T}\left|\sum_{n \leq x} a_{n}-\frac{1}{2 i \pi} \int_{\kappa-i t}^{\kappa+i t} F(z) \frac{x^{z} d z}{z}\right| \frac{w_{k, \xi}(t / T) d t}{T} \leq \mathfrak{R} .
\end{gathered}
$$

We now have to switch from the ' $w_{k, \xi}$-measure' of $I(k, x)$ to its usual Lebesgue measure, which we denote by $2(\xi-1) \nu \cdot T$ and which we assume to be less than $(1-\xi) T=\delta T$. The shape of $w_{k, \xi}$ implies that, when $\ell \in\{0, \cdots, k-1\}$, we have

$$
2 \int_{T}^{(1+(1-\xi) \nu) T} \frac{w_{k, \xi}(t / T) d t}{T} \leq \frac{\epsilon}{\xi-1}
$$

i.e., on recalling the definition (2.2), that

$$
\frac{(2 k+1)!}{k!^{2}} \int_{0}^{\nu} f_{k}(v) d v \leq \frac{\epsilon}{2(\xi-1)} .
$$

We readily check, by repeated integration by parts, that

$$
\begin{aligned}
\int_{0}^{\nu} f_{k}(v) d v= & \int_{0}^{\nu} v^{k}(1-v)^{k} d v \\
= & \frac{\nu^{k+1}(1-\nu)^{k}}{k+1}+\frac{k \nu^{k+2}(1-\nu)^{k-1}}{(k+1)(k+2)}+\cdots+\frac{k \cdots(k-\ell+1) \nu^{k+\ell+1}(1-\nu)^{k-\ell}}{(k+1) \cdots(k+\ell+1)} \\
& \quad+\frac{k \cdots(k-\ell)}{(k+1) \cdots(k+\ell+1)} \int_{0}^{\nu} v^{k+\ell+1}(1-v)^{k-\ell-1} d v
\end{aligned}
$$

from which we infer, with the choice $\ell=k-1$ and on setting $y=\nu /(1-\nu)$, that

$$
\begin{aligned}
\int_{0}^{\nu} f_{k}(v) d v & =\nu^{k+1}(1-\nu)^{k}\left(\frac{1}{k+1}+\frac{k y}{(k+1)(k+2)}+\cdots+\frac{k \cdots 1 y^{k+1}}{(k+1) \cdots(2 k+1)}\right) \\
& =\nu^{k+1}(1-\nu)^{k} \sum_{\ell=0}^{k} \frac{k!^{2}}{(k-\ell)!(k+1+\ell)!} y^{\ell} .
\end{aligned}
$$

When $\nu=1 / 2$, we get $y=1$ and this formula yields

$$
\frac{1}{2} \frac{k!^{2}}{(2 k+1)!}=\frac{1}{2^{2 k+1}} \sum_{\ell=0}^{k} \frac{k!^{2}}{(k-\ell)!(k+1+\ell)!}
$$

Hence

$$
\int_{0}^{\nu} f_{k}(v) d v \geq \nu^{k+1}(1-\nu)^{k} 2^{2 k} \frac{(2 k+1)!}{k!^{2}} y^{k}=\frac{1}{2}(2 \nu)^{2 k+1} \frac{(2 k+1)!}{k!^{2}} .
$$

We thus infer from this argument that

$$
(2 \nu)^{2 k+1} \leq \frac{\epsilon}{\xi-1} .
$$

Recall that we have assumed that $\epsilon \leq \xi-1=\delta$. The above inequality gives us

$$
2 \nu \leq \exp \frac{-\log \frac{\delta}{\epsilon}}{2 k+1}
$$

Because the conclusion of our Theorem reads ' $\left|I^{*}\right| /(\delta T) \geq \max \left(\frac{1}{2}, \cdots\right)^{\prime}$, we may assume that

$$
\log \frac{\delta}{\epsilon} \leq \frac{-2 \log (\kappa-1)}{\log T}+3
$$

This enables us to use the elementary inequality $e^{-u} \leq 1-u / 2$ when $u \in[0,1]$ and to get

$$
1-2 u \geq \frac{\log \frac{\delta}{\epsilon}}{\frac{-4 \log (\kappa-1)}{\log T}+6}
$$

Our Theorem follows readily from this last inequality.

References

[1] O. Ramaré. Modified truncated Perron formulae. Ann. Blaise Pascal, 23(1):109-128, 2016.

