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Abstract

We add a corollary to the results from [1].

Furthermore D. Johnston spotted an error and a typo. The typo is
what is below (3.1) and corrected therein. The same typo exists in the
last displayed equation in page 125 of [1]. The error is more serious: the
statement has a set I of 'measure’ verifying something. A closer look at
the proof shows that this measure is taken with respect of a smooth multi-
ple of the Lebesgue measure. When some parameters vary, this multiplier
may have important consequences, see the present proof below (3.1) for a
full description of the situation.

1 Introduction and results

Theorem 1.1 (The MT Perron summation formula, special form). Let (a,) be
a sequence of complex numbers such that |a,| < 1 and let F(s) = >, <, an/n’
be the corresponding Dirichlet series. We select real parameters k € (1,3/2],
0 €100,1/2], e € (0,6] and x > T > 2. There exists a subset I* of [T, (1 + )T

of measure

"] <1 log 2 >
> max| 5 <
- 27 —4log(k—1)

such that for every T™ € I*, we have

1 R z*dz 02z
"= F O [ ===el/%(23 + 22771 ).
;a 20T J i+ (2) z + <e T° ( e )

Note 1: It is better to multiply the error terms of [1, Theorem 1.2] and [1,
Theorem 5.3] by the factor § /e. As such, the results are correct since the O may
depend on € and § is bounded. It would be however clearer.

Note 2: A typical situation is § = 1/2 = 2e and Kk =1+ 10;70'
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2 Recall of previous result

We recall here part of [1, Section 5]. We define

(w1 =w))* whenwv e [0,1],
21) filv) = {O else
and we further define wy ¢ by
_ (2k+1)! u—1
(22) wie(w) = k!2(§—1)fk<g—1)

which satisfies ff w.¢(u)du = 1.

Corollary 2.1 (ex-Corollary 5.1). Let k > 1 be an integer and let § > 1 be a real
number. Let F(z) = Y, a,/n® be a Dirichlet series that converges absolutely
for Rz > Ky, and let k > 0 be strictly larger than ko. For x > 1 and T > 1, we
have

S, o /Wt v*dz wy¢ (t/T)dt
" 2im T

n<x

° 1)x" 2
Lo 75/ lan| (k4 1)a"du /e
/T

10 ne TRARt2. P
|08 (x/m)|<u

3 Proof of Theorem 1.1

Let us handle the remainder term in Corollary 2.1 under the assumption that
lan] <1 and k < 3/2. We also set £ =1+ < 3/2. We split the integral in u
at 1. We get

o When u > U, we use Y| 1o4(z/n)|<u ‘n 1 < ¢(k), whence the contribution
is bounded above by

75 C(k) 2/e 7€ 2" (k) 2/e x” 1
== <16 4/—7—— -
107k P o T g e AP gy S VO g Ty o
on recalling that ((k) < k/(k —1).
o When 1/T' < u <1, we use Y 1o400/n)|<u Inml < glTrert(et —e U +1/1).

Next some easy manipulation shows that e —e™ = 2sinhu < 2usinh 1 <
2.36 u. Since we assumed that T' < x, we get

Z M < 3.36 ' "e"u.
nli

[log(z/n)|<u
The corresponding contribution is thus bounded above by

pTERTL o 2fe 46 1

3.36 .
10 k7 “Pe1>TT 5




We thus get
/sT S er /Wt ¥ dz| wyc(t/T)dt
T 2w T
461’ 1/5 2 1/5
S —€ +'T%ITG;:356 .

Let us select k = [—log(k — 1)/log T + 1, so that T*(x — 1) > 1. For such a k,
we find that

T T

n<x

For any parameter € > 0, the set I(z, k) of ¢t € [T,£T] for which

T T ”‘Ht x?dz | wye(t/T)dt 2x
€ 1/6 k—1) _
/ E an v / < T e (23+2$ ) R.

1 et x*dz _
(3.1) > an - air | Fa)——| ¢ Le— 1M
n<z K—1
verifies
_ wie(t/T)dt I x¥dz | wy e (t/T)dt
1(5—1)9% 76(11/ ) S/ Za”_f/ F(z) g(T/ )
I(z,k) I(z.k) 2y T ) w—it z
H+it z
/ Zan B AT dz | wie(t/T)dt <n
227r it z T

We now have to switch from the ’wy, e-measure’ of I(k,z) to its usual Lebesgue
measure, which we denote by 2(£ —1)v - T and which we assume to be less than
(1 —&)T = 6T. The shape of wy ¢ implies that, when ¢ € {0,--- ,k — 1}, we

have (+1-ew)T
2/ wkﬂg(t/T)dt < €
T T —E-1
i.e., on recalling the definition (2.2), that

(2K + 1)!
H [, h < gy

We readily check, by repeated integration by parts, that

/OV Jr(v)dv = /OU v*(1 —v)*dv

_ At R gt ke (R e R )t
T k1 k+1)(k+2) (k+1)---(k+0+1)
k- (k—20) ke k—t-1
1_
+(k+1)~--(k+£+1)/0 T o)



from which we infer, with the choice £ = k — 1 and on setting y = v/(1 — v),
that

» I 1 ky k---lyk+1

/0 f’“(”)d”_”k+l(1_y)k(k+1 Ty T (k+1)~~~(2k+1)>
k k12 ;
- O\k+ 1+ 017

=M1 - )P
¢

When v = 1/2, we get y = 1 and this formula yields

1 k2 1 & 12
22k +1)! — 22k+1 ez:; (k—=0l(k+1+0)

Hence

! 2%k +1)! 1 2%k + 1)!
/0 fk(v)dv Z I/k+1(]- - V)k22k(kT)yk == 5(21/)2k+l(kT)

We thus infer from this argument that

(2y)2k+1 < €

= 5_71
Recall that we have assumed that € < £ — 1 = §. The above inequality gives us

—logg

2v < exp 1

Because the conclusion of our Theorem reads ’|I*|/(6T) > max(3,---)’, we may
assume that 5 2 log( D

log- < —————= + 3.

o8 €~ logT +
This enables us to use the elementary inequality e < 1 — /2 when u € [0, 1]
and to get
log g

—4log(r—1) :
o~ 16

1—2u>

Our Theorem follows readily from this last inequality.
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