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Abstract
We add a corollary to the results from [1].
Furthermore D. Johnston spotted an error and a typo. The typo is

what is below (3.1) and corrected therein. The same typo exists in the
last displayed equation in page 125 of [1]. The error is more serious: the
statement has a set I∗ of ’measure’ verifying something. A closer look at
the proof shows that this measure is taken with respect of a smooth multi-
ple of the Lebesgue measure. When some parameters vary, this multiplier
may have important consequences, see the present proof below (3.1) for a
full description of the situation.

1 Introduction and results

Theorem 1.1 (The MT Perron summation formula, special form). Let (an) be
a sequence of complex numbers such that |an| ≤ 1 and let F (s) =

∑
n≥1 an/n

s

be the corresponding Dirichlet series. We select real parameters κ ∈ (1, 3/2],
δ ∈ [0, 1/2], ε ∈ (0, δ] and x ≥ T ≥ 2. There exists a subset I∗ of [T, (1 + δ)T ]
of measure

|I∗|
δT
≥ max

(
1
2 ,

log δ
ε

−4 log(κ−1)
log T + 6

)
such that for every T ∗ ∈ I∗, we have∑

n≤x

an =
1

2iπ

∫ κ+iT∗

κ−iT∗
F (z)

xzdz

z
+O∗

(
δ

ε

2x

T
e1/δ

(
23 + 2xκ−1

))
.

Note 1: It is better to multiply the error terms of [1, Theorem 1.2] and [1,
Theorem 5.3] by the factor δ/ε. As such, the results are correct since the O may
depend on ε and δ is bounded. It would be however clearer.
Note 2: A typical situation is δ = 1/2 = 2ε and κ = 1 + 1

log x .
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2 Recall of previous result

We recall here part of [1, Section 5]. We define

(2.1) fk(v) =

{
(v(1− v))k when v ∈ [0, 1],

0 else

and we further define wk,ξ by

(2.2) wk,ξ(u) =
(2k + 1)!

k!2(ξ − 1)
fk

(u− 1

ξ − 1

)
which satisfies

∫ ξ
1
wk,ξ(u)du = 1.

Corollary 2.1 (ex-Corollary 5.1). Let k ≥ 1 be an integer and let ξ > 1 be a real
number. Let F (z) =

∑
n an/n

z be a Dirichlet series that converges absolutely
for <z > κa, and let κ > 0 be strictly larger than κa. For x ≥ 1 and T ≥ 1, we
have∑

n≤x

an =
1

2iπ

∫ ξT

T

∫ κ+it

κ−it
F (z)

xzdz

z

wk,ξ(t/T )dt

T

+O∗
7ξ

10

∫ ∞
1/T

∑
| log(x/n)|≤u

|an|
nκ

(k + 1)xκdu

T k+1uk+2
exp

2/e

ξ − 1

 .

3 Proof of Theorem 1.1

Let us handle the remainder term in Corollary 2.1 under the assumption that
|an| ≤ 1 and κ ≤ 3/2. We also set ξ = 1 + δ ≤ 3/2. We split the integral in u
at 1. We get

� When u ≥ U , we use
∑
| log(x/n)|≤u

|an|
nκ ≤ ζ(κ), whence the contribution

is bounded above by

xκ
7ξ

10

ζ(κ)

T k+1
exp

2/e

ξ − 1
=

7ξ

10

xκζ(κ)

T k+1
exp

2/e

ξ − 1
≤ 1.6

xκ

T k+1(κ− 1)
exp

1

δ

on recalling that ζ(κ) ≤ κ/(κ− 1).

� When 1/T ≤ u ≤ 1, we use
∑
| log(x/n)|≤u

|an|
nκ ≤ x

1−κeκu(eu− e−u + 1/x).

Next some easy manipulation shows that eu−e−u = 2 sinhu ≤ 2u sinh 1 ≤
2.36u. Since we assumed that T ≤ x, we get∑

| log(x/n)|≤u

|an|
nκ
≤ 3.36x1−κeκu.

The corresponding contribution is thus bounded above by

3.36xeκ
7ξ

10

k + 1

kT
exp

2/e

ξ − 1
≤ 46x

T
exp

1

δ
.
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We thus get

∫ ξT

T

∣∣∣∣∣∣
∑
n≤x

an −
1

2iπ

∫ ξT

T

∫ κ+it

κ−it
F (z)

xzdz

z

∣∣∣∣∣∣ wk,ξ(t/T )dt

T

≤ 46x

T
e1/δ +

2xκ

T k+1(κ− 1)
e1/δ.

Let us select k = [− log(κ− 1)/ log T ] + 1, so that T k(κ− 1) ≥ 1. For such a k,
we find that∫ ξT

T

∣∣∣∣∣∣
∑
n≤x

an −
1

2iπ

∫ ξT

T

∫ κ+it

κ−it
F (z)

xzdz

z

∣∣∣∣∣∣ wk,ξ(t/T )dt

T
≤ 2x

T
e1/δ

(
23+2xκ−1

)
= R.

For any parameter ε > 0, the set I(x, k) of t ∈ [T, ξT ] for which

(3.1)

∣∣∣∣∑
n≤x

an −
1

2iπ

∫ κ+it

κ−it
F (z)

xzdz

z

∣∣∣∣ ≥ ε−1(ξ − 1)R

verifies

ε−1(ξ−1)R

∫
I(x,k)

wk,ξ(t/T )dt

T
≤
∫
I(x,k)

∣∣∣∣∑
n≤x

an−
1

2iπ

∫ κ+it

κ−it
F (z)

xzdz

z

∣∣∣∣wk,ξ(t/T )dt

T

≤
∫ ξT

T

∣∣∣∣∑
n≤x

an −
1

2iπ

∫ κ+it

κ−it
F (z)

xzdz

z

∣∣∣∣wk,ξ(t/T )dt

T
≤ R.

We now have to switch from the ’wk,ξ-measure’ of I(k, x) to its usual Lebesgue
measure, which we denote by 2(ξ− 1)ν ·T and which we assume to be less than
(1 − ξ)T = δT . The shape of wk,ξ implies that, when ` ∈ {0, · · · , k − 1}, we
have

2

∫ (1+(1−ξ)ν)T

T

wk,ξ(t/T )dt

T
≤ ε

ξ − 1
,

i.e., on recalling the definition (2.2), that

(2k + 1)!

k!2

∫ ν

0

fk(v)dv ≤ ε

2(ξ − 1)
.

We readily check, by repeated integration by parts, that∫ ν

0

fk(v)dv =

∫ ν

0

vk(1− v)kdv

=
νk+1(1− ν)k

k + 1
+
kνk+2(1− ν)k−1

(k + 1)(k + 2)
+ · · ·+ k · · · (k − `+ 1)νk+`+1(1− ν)k−`

(k + 1) · · · (k + `+ 1)

+
k · · · (k − `)

(k + 1) · · · (k + `+ 1)

∫ ν

0

vk+`+1(1− v)k−`−1dv
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from which we infer, with the choice ` = k − 1 and on setting y = ν/(1 − ν),
that∫ ν

0

fk(v)dv = νk+1(1− ν)k
(

1

k + 1
+

ky

(k + 1)(k + 2)
+ · · ·+ k · · · 1yk+1

(k + 1) · · · (2k + 1)

)
= νk+1(1− ν)k

k∑
`=0

k!2

(k − `)!(k + 1 + `)!
y`.

When ν = 1/2, we get y = 1 and this formula yields

1

2

k!2

(2k + 1)!
=

1

22k+1

k∑
`=0

k!2

(k − `)!(k + 1 + `)!
.

Hence ∫ ν

0

fk(v)dv ≥ νk+1(1− ν)k22k
(2k + 1)!

k!2
yk =

1

2
(2ν)2k+1 (2k + 1)!

k!2
.

We thus infer from this argument that

(2ν)2k+1 ≤ ε

ξ − 1
.

Recall that we have assumed that ε ≤ ξ − 1 = δ. The above inequality gives us

2ν ≤ exp
− log δ

ε

2k + 1
.

Because the conclusion of our Theorem reads ’|I∗|/(δT ) ≥ max( 1
2 , · · · )’, we may

assume that

log
δ

ε
≤ −2 log(κ− 1)

log T
+ 3.

This enables us to use the elementary inequality e−u ≤ 1− u/2 when u ∈ [0, 1]
and to get

1− 2u ≥
log δ

ε
−4 log(κ−1)

log T + 6
.

Our Theorem follows readily from this last inequality.
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