Addendum to Modified truncated Perron formulae

Olivier Ramaré

September 5, 2021

Abstract

We add a corollary to the results from [1]. File TruncatedPerron-5-Addendum-01.tex.

1 Introduction and results

Theorem 1.1 (The MT Perron summation formula, special form). Let (a_n) be a sequence of complex numbers such that $|a_n| \leq 1$ and let $F(s) = \sum_{n\geq 1} a_n/n^s$ be the corresponding Dirichlet series. We select real parameters $\kappa \in (1, 3/2]$, $\delta \in [0, 1/2], \epsilon > 0$ and $x \geq T \geq 2$. There exists a subset I^* of $[T, (1 + \delta)T]$ of measure $\geq (1 - \epsilon)\delta T$ such that for every $T^* \in I^*$, we have

$$\sum_{n \le x} a_n = \frac{1}{2i\pi} \int_{\kappa - iT^*}^{\kappa + iT^*} F(z) \frac{x^z dz}{z} + \mathcal{O}^* \left(\frac{\delta}{\epsilon} \frac{2x}{T} e^{1/\delta} \left(23 + 2x^{\kappa - 1} \right) \right).$$

Note: It is better to multiply the error terms of [1, Theorem 1.2] and [1, Theorem 5.3] by the factor δ/ϵ . As such, the results are correct since the \mathcal{O} may depend on ϵ and δ is bounded. It would be however clearer.

2 Recall of previous result

We recall here part of [1, Section 5]. We define

(2.1)
$$f_k(v) = \begin{cases} (v(1-v))^k & \text{when } v \in [0,1], \\ 0 & \text{else} \end{cases}$$

 $^{2010\} Mathematics\ Subject\ Classification:\ Primary\ ,\ ; Secondary\ . Key\ words\ and\ phrases:$

and we further define $w_{k,\xi}$ by

(2.2)
$$w_{k,\xi}(u) = \frac{(2k+1)!}{k!^2(\xi-1)} f_k\left(\frac{u-1}{\xi-1}\right)$$

which satisfies $\int_{1}^{\xi} w_{k,\xi}(u) du = 1.$

Corollary 2.1 (ex-Corollary 5.1). Let $k \ge 1$ be an integer and let $\xi > 1$ be a real number. Let $F(z) = \sum_{n} a_n/n^z$ be a Dirichlet series that converges absolutely for $\Re z > \kappa_a$, and let $\kappa > 0$ be strictly larger than κ_a . For $x \ge 1$ and $T \ge 1$, we have

$$\sum_{n \le x} a_n = \frac{1}{2i\pi} \int_T^{\xi T} \int_{\kappa-it}^{\kappa+it} F(z) \frac{x^z dz}{z} \frac{w_{k,\xi}(t/T) dt}{T} + \mathcal{O}^* \left(\frac{7\xi}{10} \int_{1/T}^{\infty} \sum_{|\log(x/n)| \le u} \frac{|a_n|}{n^{\kappa}} \frac{(k+1)x^{\kappa} du}{T^{k+1}u^{k+2}} \exp \frac{2/e}{\xi - 1} \right).$$

3 Proof of Theorem 1.1

Let us handle the remainder term in Corollary 2.1 under the assumption that $|a_n| \leq 1$ and $\kappa \leq 3/2$. We also set $\xi = 1 + \delta \leq 3/2$. We split the integral in u at 1. We get

• When $u \ge U$, we use $\sum_{|\log(x/n)| \le u} \frac{|a_n|}{n^{\kappa}} \le \zeta(\kappa)$, whence the contribution is bounded above by

$$x^{\kappa} \frac{7\xi}{10} \frac{\zeta(\kappa)}{T^{k+1}} \exp \frac{2/e}{\xi - 1} = \frac{7\xi}{10} \frac{x^{\kappa} \zeta(\kappa)}{T^{k+1}} \exp \frac{2/e}{\xi - 1} \le 1.6 \frac{x^{\kappa}}{T^{k+1}(\kappa - 1)} \exp \frac{1}{\delta}$$

on recalling that $\zeta(\kappa) \leq \kappa/(\kappa-1)$.

• When $1/T \le u \le 1$, we use $\sum_{|\log(x/n)|\le u} \frac{|a_n|}{n^{\kappa}} \le x^{1-\kappa} e^{\kappa u} (e^u - e^{-u} + 1/x)$. Next some easy manipulation shows that $e^u - e^{-u} = 2 \sinh u \le 2u \sinh 1 \le 2.36 u$. Since we assumed that $T \le x$, we get

$$\sum_{|\log(x/n)| \le u} \frac{|a_n|}{n^{\kappa}} \le 3.36 \, x^{1-\kappa} e^{\kappa} u.$$

The corresponding contribution is thus bounded above by

$$3.36 x e^{\kappa} \frac{7\xi}{10} \frac{k+1}{kT} \exp \frac{2/e}{\xi - 1} \le \frac{46 x}{T} \exp \frac{1}{\delta}.$$

We thus get

$$\int_{T}^{\xi T} \left| \sum_{n \le x} a_n - \frac{1}{2i\pi} \int_{T}^{\xi T} \int_{\kappa - it}^{\kappa + it} F(z) \frac{x^z dz}{z} \right| \frac{w_{k,\xi}(t/T) dt}{T} \le \frac{46x}{T} e^{1/\delta} + \frac{2x^{\kappa}}{T^{k+1}(\kappa - 1)} e^{1/\delta}.$$

Let us select $k = \left[-\log(\kappa - 1)/\log T\right] + 1$, so that $T^k(\kappa - 1) \ge 1$. We call \Re the right-hand side of this inequality. For such a k, we find that

$$\int_{T}^{\xi T} \left| \sum_{n \le x} a_n - \frac{1}{2i\pi} \int_{T}^{\xi T} \int_{\kappa-it}^{\kappa+it} F(z) \frac{x^z dz}{z} \right| \frac{w_{k,\xi}(t/T) dt}{T} \le \frac{2x}{T} e^{1/\delta} (23 + 2x^{\kappa-1}).$$

.

For any parameter $\epsilon > 0$, the set I(x,k) of $t \in [T,\xi T]$ for which

$$\left|\sum_{n\leq x} a_n - \frac{1}{2i\pi} \int_{\kappa-it}^{\kappa+it} F(z) \frac{x^z dz}{z}\right| \geq \epsilon^{-1} (\xi - 1) T \cdot \Re$$

verifies $|I| \leq \epsilon(\xi - 1)T$.

References

[1] O. Ramaré. Modified truncated Perron formulae. Ann. Blaise Pascal, 23(1):109-128, 2016.