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Abstract

We add a corollary to the results from [1].
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1 Introduction and results

Theorem 1.1 (The MT Perron summation formula, special form). Let (a,) be
a sequence of complex numbers such that |a,| < 1 and let F(s) = >, < an/n’
be the corresponding Dirichlet series. We select real paramaters k € (1,3/2),
6 €10,1/2], € >0 and & > T > 2. There exists a subset I* of [T,(1+ 6)T] of
measure > (1 — €)0T such that for every T* € I'*, we have
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Note: It is better to multiply the error terms of [1, Theorem 1.2] and [I,
Theorem 5.3] by the factor § /e. As such, the results are correct since the O may
depend on € and § is bounded. It would be however clearer.

2 Recall of previous result

We recall here part of [1, Section 5]. We define
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and we further define wy ¢ by

(2.2) wi¢(u)
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which satisfies ff wi ¢ (u)du = 1.
Corollary 2.1 (ex-Corollary 5.1). Let k > 1 be an integer and let £ > 1 be a real
number. Let F(z) = Y, an/n® be a Dirichlet series that converges absolutely

for Rz > Ky, and let k > 0 be strictly larger than k,. Forx > 1 and T > 1, we
have
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3 Proof of Theorem 1.1

Let us handle the remainder term in Corollary 2.1 under the assumption that
lan] <1 and k < 3/2. We also set £ =1+ < 3/2. We split the integral in u
at 1. We get

o When u > U, we use Y1040z /n)|<u ‘Z’;‘ < ¢(k), whence the contribution
is bounded above by -
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on recalling that (k) < k/(k — 1).

o When 1/T < u <1, we use Y 10u00/n)|<u lan] < gl-reru(eu _e=u 4 1/g).

o
Next some easy manipulation shows that e* —e™" = 2sinhu < 2usinh 1 <
2.36 u. Since we assumed that T' < x, we get

@ <3.362' e u.
[og(2/n)|<u

The corresponding contribution is thus bounded above by
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We thus get
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Let us select k = [—log(k —1)/log T] + 1, so that T%(x — 1) > 1. We call R the
right-hand side of this inequality. For such a k, we find that
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For any parameter € > 0, the set I(x, k) of t € [T, £T] for which
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verifies |I]| < e(& — 1)T.
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