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Abstract

We prove that every integer > exp(524) is a sum of seven non
negative cubes.

1 History and statements

In his 1770’s " Meditationes Algebraicae”, E.Waring asserted that every pos-
itive integer is a sum of nine non-negative cubes. A proof was missing, as
was fairly common at the time, the very notion of proof being not so clear.
Notice that henceforth, we shall use cubes to denote cubes of non-negative
integers. Consequently, the integers we want to write as sums of cubes are
assumed to be non-negative.

Maillet in [15] proved that twenty-one cubes were enough to represent
every (non-negative) integer and later, Wieferich in [30] provided a proof to
Waring’s statement (though his proof contained a mistake that was mended
in [12]). The Géttingen school was in full bloom and Landau [13] showed
that eight cubes suffice to represent every large enough integer. Dickson [7]
improved on this statement by establishing that the only exceptions are 23
and 239. The reader will find a full history of the subject in chapter XXV of
8].

Finally, Linnik in [14] showed that every large enough integer is a sum of
seven cubes. Since then, there has been no further improvements in terms of
the number of cubes required. Notice that the circle method readily proves
that almost all integers are sums of at most four cubes.

From an experimental and heuristical viewpoint, computations and ar-
guments developed in [2],[27], [16], [1], [6] tend to suggest that every integer
> 10" is a sum of four cubes. The argument in [6] even leads us to believe
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that 7373170279850 is the last integer that is a sum of five cubes but not
of four. When it is required to exhibit a large example of an integer that is
a sum of five cubes, but not of four, the simplest example I know is 10? + 4.

Similarly, it is believed that 454 is the largest integer that is a sum of
at least eight cubes, that 8042 is the largest integer that is a sum of seven
cubes but not of six and that 1290 740 plays this role with respect to sums
of six cubes.

By density considerations (there are less than X'/® cubes less than X),
we see that every integer cannot be a sum of three cubes. The same would
follow by studying sums of three cubes in Z/9Z. But nothing prevents sums
of three cubes to have positive lower density, a hypothesis believed to be true
by Hooley in [11]. There the author proves that this density is strictly less
than T'(4/3)?/6, this value coming from size considerations only. Hooley even
improves on it by taking advantage of some disparities in the distribution of
cubes in some arithmetical progressions. The probabilistic models of [5] of
sums of 3 cubes supports this conjecture, while giving a density that tends
to zero for sums of two squares (a result known to be true by a theorem of
Landau), as the model takes more and more local obstructions into account.
This is in contrast with a previous probabilistic model (exposed in [10]) of
Erdos for such sums that predicts a positive density for sums of three cubes
but also for sums of two squares, and of course gives stronger ground to the
initial conjecture. In fact, 23 + y3 + 2% is not a norm and in turn, lacks the
ensuing multiplicativity.

In [6], it is shown that every integer between 1290741 and 106 is a sum
of five cubes from which one readily deduces (see [23]) that every integer n
verifying 455 < n < exp(78.7) is a sum of seven non-negative cubes. On the
other hand, note that it is proved in [1] that every integer in some special
arithmetic progression, and larger than 455 is indeed a sum of seven cubes.

Our concern in this paper to show that every integer larger than a given
explicit bound is indeed a sum of seven cubes. We prove that

Theorem 1 FEvery integer n > exp(524) is a sum of seven cubes.

Watson [29] had already greatly simplified Linnik’s original proof, though
it remained ineffective, and independently, McCurley [16] and Cook [4] cor-
rected this defect. McCurley [16] even proved a theorem similar to the one
above with 1077334 instead of 524. The method we use has been partially
set in [23] where we had a similar statement but with 205000 instead of 524.
In both these approaches, the crux of the method was to show that some
arithmetic progression did indeed contain a fairly small prime and the battle
was on the link between the size of the modulus ¢ involved and the size of
the wanted prime. If the later was of size X, McCurley’s proof needed a



modulus of size about (Log X)'? (barring exceptional moduli) while we re-

quired only a modulus of size about (Log X)®. Here, we replace the prime by
a product of two well localized primes. We produce moduli ¢ for which we
are sure that more than half of the reduced residue classes contain primes,
from which we deduce that every reduced residue class contains a product
of two primes. The gain stems from the method used: our main tool is a
large sieve extension of the Brun-Titchmarsh inequality and the avoiding of
the prime number Theorem in arithmetic progressions leads to most of our
improvement. This alone would give a lower bound of size about exp(780).
An additional gain comes from using the special structure of the moduli we
are interested in, namely products of three terms, but we need a digression
before pursuing this explanation.

First a remark about the order of magnitude. When working on the
lower range, near exp(780) say, the product of the two primes we are to build
should be of size about exp(780/3)/780% ~ exp(233), and since both primes
are going to be of the same size, this latter should be about X = exp(116).
On the other side the modulus will be of size 780° ~ exp(40) which behaves
more like X'/3 than like Log® X. This in turn implies that the prime number
theorem in arithmetic progressions is completely unsuitable for this purpose.

Next, the distribution of primes in arithmetic progressions modulo ¢ of-
ten stumbles on the possible existence of so called Siegel zeros, that would
have the effect that only about half the residue classes would contain primes.
When abording the problem of this distribution through zeros of L-functions,
this effect is well controlled and is avoided by a simple fact: two coprime mod-
uli ¢; and ¢, not too far apart in size cannot have a Siegel zero simultaneously.
The remedy (used in [16] and [4]) is thus to create two moduli, and one of
them will be good. The condition of coprimality is not minor in any sense:
if ¢ has a Siegel zero, then the distribution of primes modulo 3¢ for instance
is still going to be unbalanced.

From a sieve point of view, zeros do not appear as such, but a similar role
is played by the fact that we can only prove that the number of primes in a
given arithmetic progression is about twice what it should be. Indeed, this
implies that in this case primes cannot accumulate on a subset of (Z/qZ)*
that would contain less than ¢(q)/2 elements. This can be made accurate
is ¢ is a very small power of a X (see [9] and [18]). This is only the rough
philosophy when ¢ becomes a power of X. A link between the factor 2 and
a possible Siegel zero is also detailed in [19] and in [21].

The fact is that we have a similar effect, even if we are not actually able to
produce a corresponding zero. And, indeed, by using a large sieve extension
of the Brun-Titchmarsh inequality, we see that primes cannot accumulate in
some small sets modulo two coprime moduli of similar size. And that the



density of the set attained can even be shown to be fairly close to one if we
are ready to chose one moduli among say T candidates. Exactly how close
this would be depends on the size of the moduli, say ¢ and of T', but we can
roughly show that more than (1 + 2 Log X /(T Log(X/q?)))”" ¢(q) classes are
reached and this indeed will be larger than a half if 7" is large enough in
terms of Log(X/¢?).

At this level, we reach the mentioned exp(780) and there is still some
ground to cover. The next idea is to say that the moduli we are interested in
are of shape u?v?w?, which «, v and w of the same size B. So we can hope for
a large sieve inequality for an average on such moduli once u and v are being
fixed. This would replace the Log(X/q*) = Log(X/B'?) by Log(X/B?®).
Such an inequality is readily proved via a suitable generalization provided
section 5, but its use in giving a lower bound for the number of classes
reached finds a hurdle: the possible existence of a Siegel zero modulo u?v?,
or its analogue, a possible Siegel zero effect. To discard this case, we can
however apply the same process when fixing u in u?v?, meeting a possible
Siegel zero effect modulo u? and finally avoiding it by applying yet again this
process to the moduli «?. And this amounts to our final result, when one
adds some numerical consideration.

2 A modified form of G.L.Watson’s lemma

We state and prove a lemma similar to the one used by Watson in [29]. The
central identity is however different and is due to E.Bombieri. We still add
summands of the type (a + z)* + (a — x)* with a fixed a to shift the problem
from representations by sums of cubes to representations by sums of squares.
G.L.Watson’s lemma as well as ours relies on the fact that every integer
congruent to 3 modulo 8 is a sum of 3 squares, while Yu Linnik introduced
coefficients in the resulting ternary quadratic form to encompass all possible
residue classes. The introduction of the factor « is the only novelty when
compared to a similar lemma proved in [23].

Lemma 1 Letn, s, u, v and w be positive integers, t a non-negative integer
and v a positive real number. Let us assume that

(1) 1<u<v<uw, (4) n—t3=1[2],
(2) ged(uvw, 6n) = 1 and s is odd, — (5) n— t* = 0[3s],

(3) u, v, w and s are pairwise co-
prime.



4(n — t?) = v0uwls3[u?], (7) v < min(3,2(w/v), (w/u)®).
(6) < 4(n—t3) = ubw’s3[v?],

4(n —t3) = ubo®s3[w?],

Set 6 = (14 (w/u)® + (w/v)®)/4. If

O<uv(n __3_7) < t <uv<n _5>

~ 6w \ ubvbs3 4 ~ 6uvws — 6w \ubvbsd

then n is a sum of seven non-negative cubes.
PROOF : Set N = 8(n — t3). Our hypotheses give us the expression
N =2(u%°® + 0%’ + w'u®)s® 4+ 6suv*w’c

where ¢ = 3[8]. We can then write ¢ as a sum of 3 non-negative squares:
c=a?+ y? + 2%2. We choose z, y and 2 so as to have 0 < < y < z. This
implies that 22 < ¢/3, and that y* < ¢/2. Our size condition on ¢ is also

equivalent to
0 < c < y(u*v’s/w)?

so that, using v < 3 and 2% < ¢/3, we get
0 <z <u*v’s/w.
Similarly with v < 2(w/v)® and y* < ¢/2, one obtains
0 <y < u*w?s/v
and finally v < (w/u)® and 22 < ¢ lead to
0 <z < v*w?s/u.
Next notice that

(u?v?s + wx)® + (v*v?s — wz)?

(1) +  (WPw?s +oy)? + (viw?s — vy)?
+  (V®w?s +uz)? + (vViw?s — uz)?

= 2(u®0® 4 ubwb + v%uwb)s? + 6sutvw?(z? + y* + 2?)

where the involved cubes are non-negatives due to the upper bound on c.
This gives a writing of NV as 6 non-negatives cubes, all of them even. The

lemma follows readily.
RS



3 Using lemma 1

Let u, v and w be prime numbers = 5[6] and prime to n. Let ¢ be a residue
class modulo u?*v?w? such that 3 is congruent to 4n/(v®w®) modulo u?, to
4n/(ubw®) modulo v?, and to 4n/(uv®) modulo w?. This is possible because
every invertible residue class modulo u?v?w? is indeed a cube, u, v and w
being primes = 5[6]. Select s an integer having all its prime factors = 5[6]
and = ([u?v?w?]. Finally select ¢ = O[uvw] and so that t3 = n — 1[2] and
t3 = n[6s] which can again be achieved because of the condition imposed on
the prime factors of s. It is possible to choose ¢ in the desired interval if it
contains more than 6suvw integers, which is certainly true if its length is
larger than 6suvw + 1. This means

n 1/3 n 3y 3 6w
2 (s —0)  ~(mem—0-7) =—0
2) ubv63 (u6v633 4 ) - uv( )

with p = 1/(6suvw). Before continuing, let us mention that we shall seek u,
v and w to be as small as possible, and since they are to be coprime with n,
the best we can do is to take them of size Logn. This means that § will be
about constant in size and p will be very small. Since

(3) 23— (x— )% >0/(32%%) forz>60>0
it is enough to have uSv%s® < n/(5 + 2) and
w n 2/3
4 > 24(1 + p) L (— . 5) :
(4) 72241 +p)— (553
which means thst

32 1/3
Vi (34 0) 3 sutet >ty [ (M
(5) a4 = suP* >0l 001 p)w +9 :

The lower bound being much smaller than the upper bound, the problem is
really to find a prime s in the proper arithmetical progression and of size

about n'/3/ (%’Y + 5)1/3. Note that in (5), we can replace p by any upper
bound (see (4)).

4 Creating enough primes = 5[0]

Lemma 2 Let B > A > 1 be two real numbers. There are more than M > 1
prime numbers prime to the integer n and congruent to b modulo q if

¥(B;q,b) — ¥(A; q,b) > Logn + M Log B.



PROOF : The product P of primes p = bq] in |A, B] which divide n verifies
Log P < Logn.

The condition thus ensures the existence of at least M other primes in the
concerned interval. 000

We shall only need case of ¢ = 6, b = 5 and y = x of the following lemma
due to the current author and R.Rumely in [25], but it requires no extra
effort to state it in general.

Lemma 3 For 1 < x < 10, any integer ¢ < 72 and any b prime to q, we
have

Iy;q,b) — %’ < 2.072¢/x.

max
1<y<z

Lemma 4 There are more than M prime numbers prime to n and congruent
to 5 modulo 6 lying in the interval [3 Logn, (6 + £(M, 3,n0)) Logn] if Logn
is larger that Logng, where (M, 3,ng) is the smallest positive solution of

§—2 2072(VB+VB+E) N MLogLogno + Log(B8 +€)
2 vLogngy Logng

provided Logn < 1019,

We have £ > 2.

PROOF :  We are to verify the hypothesis of lemma 2 with ¢ = 6 and b = 5.
We are to check that

£-2 S 2.072(\/B+ VB +€) N MLog Logng + Log(B + &)
2 v/Logng Logng

which is readily done. 0O

When we seek an interval containing primes coprime with n, we are forced
to consider the worst case when all prime factors of n are indeed in this in-
terval. But in such a case, we could consider a shifted interval: it would then
contain no divisor of n and would be smaller. Introducing such a dichotomy
is however numerically too heavy: we should typically consider whether n is
divisible by the first 200 primes congruent to 5 modulo 6, amounting to 22%
cases ... The following lemma is a simple minded way of putting such an
idea to practice. We will use it with M = 2T.
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Lemma 5 Let T|M be integers and f > 0 be a real number. Let o =
(24 B+ &(M, B,n0))/B)T™. There exists an interval [A, aA] with A in
[BLogn, (B+&(M, 3,n0)) Logn] which contains more than T primes coprime
to n and congruent to 5 modulo 6 if Logn is larger that Lognyg.

PROOF : Set Ay = S Logn. Among the M/T intervals [/ Ag, o/t Ag] with
j€{0,1,--- ,M/T — 1}, by lemma 4, one of them contains more than T
primes in the proper congruent class. The lemma follows readily. SRR

5 General characters in a sieve context

Here, we work in a general context, which does not cost much more, but
enables us to uncover the general lines and to prepare future applications.

Let K be a fixed positive integer. Let Q be a set of moduli K-closed
under division, by which we mean the following conditions:

1. Every q € Q is divisible by K.

2. For every g € Q and every positive integer ¢ divisible by K, if £|q then
¢ belongs to Q.

Let also KK = (KC;)4e0 be a compact set, which as in [26], means that
1. For every q € Q, K, is a subset of Z/¢Z,

2. For every ¢, q € Q, if ¢|q then IC; = IC,/VZ.

We further assume that the Johnsen-Gallagher condition is satisfied, that is
to say

(JG) WVl qe€ Q/lq, thenumber Z 1 does not depend on a € K.
beky
b=al{]
Let us note here that similar material is also developed in [24]. In the applica-
tion we have in mind, we shall take K, = (Z/qZ)* the subgroup of invertible
elements of Z/qZ. There, all moduli ¢ will be divisible by a fixed K since
we shall restrict our attention to ¢’s such that ¢/K and K are coprime, we
could make do by properly twisting the usual objects.
We consider next .%, the vector space of functions from Z/qZ to Z that
vanish out of Ky, which we endow with the hermitian product

(6) [f19)k, IIC | > fla)g(a)

a€ly

A definition is required here to clarify our subsequent steps.
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Definition 1 A sequence ()< is said to be an orthonormal system on

K if
a. Forallqe Q, X, C #,.

b. Let ¢ and q be both in Q with l|q and let x be an element of ;. Then x
defined by X(x) = x(x + (Z) if x € K, and x(x) = 0 otherwise, is in J,.

c. Y(x1,Xx2) € A, we have

0 ile #Xm
I if x1 =X

(7) [X1lx2lk, = {

d. || = Kl

e. If x comes (according to (c)) from J#;, and from J,, then x comes from
K1, 1), where ({1, 0s) is the ged of {1 and ly.

We shall call characters the elements of JZ;, even though they are usually
not linked with any group structure. The notion of induced character is
natural from (3), while the one of K-conductor is simply established from
(e). Let J*(K) be the set of characters of conductor ¢. We shall explain
later why it is safe to make the dependence in K explicit in our notation.

Condition (e) is more restrictive than it seems so let us give an example
where it is not satisfied, while all other conditions are. Take Ko(1) = {1, 2},
Ks(1) = {1,2}, and Kg(1) = {1,2} ; in %, 5 et Hs, we put the constant
function equal to 1, and of conductor 1, and the function that is 1 on 1 and
—1 on 2. This last function is induced by a function modulo 2 and by a
function modulo 6 but by no function modulo 1.

The existence of such a system is a problem to which we give a partial
answer in a lemma below. When K, = Z/qZ, then the additive characters
modulo ¢ (n — e(na/q)) build such a system while if /C; is the set of invertible
elements, we can take the set of multiplicative characters modulo ¢ as 2. In
this last example when K = 1, the 1-conductor above is the usual conductor.
But note that if K is larger, the K-conductor fx is linked with the usual f
by

(8) frx = Ki/(f, K).

A similar remark also holds for the multiplicative characters. We shall write
amody ¢q to say that a ranges the points of Z/qZ such that, when writing
a/q = b/t, with (b,t) = 1, the lem(K,t) = [K,t] = q. It is clear from these

9



examples at least that the K-conductor depends strongly on K, but the
reader should be even more wary of this dependence because of the induced
system: usually, we start with a compact set K defined by K = (IC;), where
g ranges all positive integers. We then restrict this system by limiting ¢ to
be in a special set Q and in particular to be divisible by some K; it would
then be natural to confuse J7*(1) and J#*(K), a situation that our notation
prevents.

By (c) and (d), #; is an orthonormal basis of .%,. In particular, when
q € Q and a is an integer, the function ex (.a/q) defined by x — e(za/q) if
x € K4 and by z — 0 otherwise, can be written as

) x,(rafg) = 3 (ﬁ 3 e(ka/q>m)x<x>.

All this construction has been designed for the following application. Let
(n)n<n be a sequence of complex numbers such that

(10) Vn < N,|a, #0 = Vg€ Q,neK,.
We define
(11) S(@) =Y gne(na) , (a €R/Z)
n<N
and
(12) = eax(n) , (X € Hpq€Q),
n<N

distinction between (11) and (12) being clear from the context. Let us note
that (10) ensures the fundamental equality S(x) = S(x’) whenever x and y’
are induced by a same character.

By (9), we check that

(13) 3 IS(a/q)f? = % DORELCSlk

amody, q

from which we infer

Yo ISt/ % 1S(O2,

K|d|q amody, d

from which Moebius inversion formula yields
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(14) Zr%mwzz(zméﬁ%)ijwmﬁ

amod ¢ K|flg “dla/f XEA}(K)

This equation was our main objective here. It turns out that it is one
of the main ingredients of Bombieri & Davenport’s [3] proof of the Brun-
Titchmarsh inequality. Note the reason why we can reach such a generality
is that we dispense here with the value of the Gauss sums. Note that usually,
the factor of erxf*(K) |S(x)|? is non-negative

All this is of no use if no orthonormal system for IC exists. We now provide
a sufficient condition usually satisfied. If K = 1, our condition is the split
multiplicativity introduced in [26], a condition that is inherited by induced
system, as defined above, and this would be enough for the application we
have in mind. We propose here an intrinsic definition. Let o,_., be the
canonical surjection from Z/qZ to Z/(Z when £|q. We consider the fibered
product

(15) zmmew@z:&mwﬂmwwmn:%ﬁﬂm@

whenever K divides ¢; and ¢, and the somewhat generalized Chinese remain-
der map

p:Z2)(1q2) K)Z — Z/@WZ X 7] ¢
T = (UQ1q2/K—>Q1(x)7Uq1q2/K—>q2(x))

(16)

which is a ring isomorphism whenever (¢, ¢q) = K (it is trivially injective
and a cardinality argument concludes). Once this is set, we say that I is
K -multiplicatively split if KCy, 4,/ is isomorphic to kg, X ¢ Ky, via the Chinese
remainder map, whenever (q;,¢2) = K. In case K = 1, this only means that
IC, is isomorphic to the product of the ICpv for all p”||q.

Theorem 2 If K is K-multiplicatively split and verifies the Johnsen-Gal-
lagher condition (JG) then there ezists an orthonormal system for IC. A
partial converse is that if an orthonormal system exists then the Johnsen-
Gallagher condition is verified.

PrROOF : Let us start with the sufficiency. By K-split multiplicativity, it
is enough to build such a system on K, k. We first select an orthonormal
system #x in k. Let us note that

|ICPK’ |ICp2K| ’Kp“K’
’ICK’ VCPK’ "Cp”‘lK‘

(17) |1Cp”K| =

11



Let us proceed by induction on v > 0. For v = 0, #k has already been
built (and is thus the same for every p). Let us assume that -1, has
been built. We first consider JZ” the set of all pull-backs from .1, over
Z/p* MZ. We have

(18) Y(xi.x2) €', Y xil@xa(a)= > xibxa(d) > 1

a modp¥ M bEICp,,,1M a€lpv s
a=b[p¥ ' M]

and (JG) together with (17) tell us that property (c) is verified on ", It is
then enough to complete .#” in an orthonormal base of .#p” M.

Conversely, let Wi (x) be the number of points of IC, that are congruent
to  modulo d, when d|q. Let x; and xs be two characters modulo d. By
writing their scalar product modulo d, we get

Z Wg(x)X1($)X2—(x) = Oyy=x2 [KCql-

€y

However the orthogonality of these characters also gives

Z Xl(x)X2—<x) = 5)(1:)(2

ey

from which it is not difficult to conclude that W3 (x)/|/C,| should be constant
and thus equal to 1/[/Cy]. 000

6 Products of primes covering every reduced
residue class

Lemma 6 For X > 4, we have

(2 (d)
¢(d)

> < Log X 4 0.6.

1
3
d<X
(d,6)=1
(and 3 Log X + 0.463 if one wants X >1).

PROOF : Lemma 3.4 of [22] yields for X > 0

Z % = 1Log X +c+ O*(4.58X /%)

d<X
(d,6)=1
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with

1 Log2 Log3
(% g2  Log

5 ) = 0.68178665394 + O*(1071°).

This proves our estimate if X > 10000. For smaller X we use the following
GP script.

{res=0.0; cmin=1.0;
for(d=1,1000,
if (issquarefree(d)&&(d%2==1)&&(d%3!=0),
res+=1/eulerphi(d),);
if (d>4,cmin=min(cmin,res-log(d+1)/3),));

cmin}
RS
Lemma 7 For X >0 and 3.32A > X, we have
Ap*(d) 1
S AD px
< 3
(d,6)=1
Proor : This is obviously true if X < 4 so we are now only considering

the case X > 4. Call G(X) the function of lemma 6, or the one we study
here but with A = co. With ¢ = 0.6, we find that

3 ( Apr(d) AG(X) +A/X G(t)dt

A+d)p(d) X+ A (t+ A)?

d<X
(d,6)=1

Ac X(1+ A) 1 (G(t) — s Logt — c)dt
> —— 41 el S Mt 3 .
> A—|—1+3L0 X1 A —i—A/1

(t+ A)?
When t varies from 1 to 4, G(t) is 1, and

A/4 (1—3Logt—c)dt  3A(1—c)
1

(t+ A)? 4+ A1+ A)
The function of X

11, 1—|—A+ Ac n 3A(1 —c¢)
38X AT AT 4+ A)(1+ A

decreases as X increases and some numerical analysis tells us that it is pos-
itive if A > 10. For smaller A and X, in fact for X < 10000, we use the
following script to show our difference to be > 0.02.
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{Getc(Amin)=
exp(log(1+1/Amin)+3*Amin*0.6/ (Amin+1)
+3*Amin*intnum(t=1,4, (0.4-1log(t)/3)/(t+Amin))) -1}

{f(X)=
local(res = 0.0, d);
for(d = 1, X, if((moebius(d) != 0)&&(gcd(d,6) == 1),
res += 1/eulerphi(d)/(1+3.32%d/X),));
return(res)}

{Check(borneX)=
local(X, res = 1000);
forstep(X = borneX, 1, -1,
res = min(res, £f(X)-log(X+1)/3);
if(res > 0, printi("."),
print(X," gives troubles")));
return(res)}

SO0

Theorem 3 Let (k;)ics be a set of moduli, all of them divisible by K, prime
to 6. We further assume that the k;/K are two by two coprime. Let P be
a set of prime numbers all not more than X', contained in an interval of
length X > K, and containing only primes congruent to 5 modulo 6 and
prime to all k;’s. For every modulus k, we set

ARE)=¢(k) Y | D> 1) —g(K) > | Y 1

a mod *k'p=alk], a mod *K'p=a[K],
peEP peEP

2

and © =3, Logp; Then

2 Log(k;/K) 2 (X +6) Log X’
Z: (1 ~ Log(X/K) — 1) Alki, K)/67 < O (Log(X/K) — 1) -

Note that in the proof we shall require the condition k; < %\/X K but that

it is superfluous in the statement, for otherwise the coefficient of A(k;, K) is
<0.

ProoOF : For typographical simplicity, let us introduce the function f on
primes that is Logp if p € P and 0 otherwise. We set

V= > Zf e(ap/q)

a mod *q
14
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The weighted large sieve inequality of Montgomery & Vaughan in [17] as
improved by [20] gives us

V(‘]) 2
E ———— < E Log”p
q<Q N+'OKQQ pEP
(g,6)=1

where N is a real number that majorizes the number of integers = 5[6] in

the interval that contains P; and p = 4/1 + % 6/5. Let us further set

2
Wilg)= > D f) x®)
x mod Kql| p
and (14) gives us
p*g/d) d
V d
D=2 g oy
(¢/d,Kd)=1
so that
> Gr(d,Q)W(d) < ©Log X'
(@1
with

i . Kd 1°(q)
Gr(d, Q) = 7 %:/d (N + pKQdq)p(q)
(q?(S_Kd):l

We follow the classical treatment of [28] to write

u 1°(q)
> Z N+pKqu Z Z (N + pKQdq)¢(q)’

SldK  q<Q/d 6\dK q<Q/d
(¢,6dK)=46 (q,GdK):l
so that
2 2
Gold 1=(q) 1 1 (q) N/ (pKdQ)
K@) = q;Q/d (N + pKQdg)p(q) N q;Q/d (N/(pKdQ) + q)¢(q)
(¢.6)=1 (¢,6)=1
Log(Q/d)
- 3N
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provided KQ?* < 3.32N/p et d < Q. Hence

> Log(Q/d)Wk(d) < 3NO©Log X'.

d<Q
(d,6)=1

At last note that for any £

Z Wk (d) = Z

dlk/K a mod *k

> fp)

p=alk]

We are now to get rid of N and . We can take N = (X + 6)/6 and

= \/3.32N/(pK) > £/X/K, which yields the result. 000

We are to observe that a minimization argument readily yields

(19) Ak, 1) > 672 (% — 1) :

We take K =1 and deduce that for one i, we have

(20) !I|(1— 2Lngi>(¢(k‘)‘ 1) X+6 LogX’

Log X —1/) \|A(k:) > LogpLogX —1

7 A first simple approach for large n

We are first to note that we will take w as upper bounds for the u and the
v that appear on the denominator of Y, which means that we should rather
write it in the form

Since 3ubv%y/4w!? and

ubv% | (ub® Wb Wl
(21) —:Z(w12+ﬁ+ﬁ)

are both largest when u/w and v/w are smallest, we have

/3
(22) Y2 mn e =Y

!/

16



To derive a lower bound, we write the quantity Y/« in the form

n1/3
5 3/2 1/37
ut ((—24(11;’)“31”) + ((v/u)b + (vw/u?)6 + (w/u)ﬁ)/él)
- n1/3
- 32, 1/3°
ut ((24(11,;’)) + Z)
We set

K=o (C+1)/(v+ 1)) C= (247 /B3(1+ )

and we are to find our product of two primes in [Y'/r’,Y’]. We anticipate the
final result: we have not been able to produce any noticeable improvement
by acting on the parameter . The trivial value v = 1 yields results that are
only slightly worse, but simplifies scripts quite a lot. Thus, from now on, we
shall only consider this case. A final note: one could try to select special sets
of u, v and w were this parameter could be taken appreciably larger than 1;
in the present case, n is still too large and the sets considered too big.

8 Base final argument

We write s = §5 with
8,8 € VYK, VY.

We know that
(23) Y(X;6,5) = %(1 + 0*(0.0023)) (X > 612477)

from [25]: directly from the table there for X > 10'° and then by using the
bounds for the restricted range (< 1.8/y/Xp).

Remember that we are sure to have T' primes congruent to 5 modulo 6
and prime to n in an interval [A, aA]. Once this is set, the values of Y’ and
Y'/K' are defined, and we are simply to select the proper u, v and w. We
assume that 7" is divisible by 3 and group them 3 by 3. This gives us 7/3
moduli ¥ = v?v?w?, all of them prime to the other. The number of classes
reached is at least for one of the k’s
-1

A gl
(24) (k) = |1 . LongzlL B
T/S (]' - Longfl>
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where L = VY'(1—4/1/)+1and © = VY'(3(1—/1/K) —e(1++/1/K)) —
Logn with ¢ = 0.0023. We need this density to be at least 1/2, which
translates into

L+6 iLogY’ T 12 Log B
(25) 10 308 (1— o8 )

— 1< — - =
© LogL-1 3 LogL —1

This way we show that integers larger than exp(780) are sums of seven cubes.
Parameters: 3 =1.9, T =51 and M = 2T.

9 Refinement number 1

We now assume Logn to be not more than 750. Using fLogn = A~ as a
lower bound, we find B such that the the interval [A~, B] contains more than
M primes congruent to 5 modulo 6 and prime to n, and find a subinterval
that contains 7" such primes. This step only differs from the previous one
by the fact that we compute B exactly. Then we can build Y’ and Y'/k’ as
before but this time select u, v and w more shrewdly. Select first ¢; in this
set such that

D—TLogX +1
(26) A(t2,1) < R
T(Log X — 1 —4Log B)

with D = (X + 6) Log(X)/©. Having this ¢;, we select ¢, again in this set
but distinct from ¢; and such that

D —Log X +2LogB+1 n D —LogX +1
(T—1)(Log X —1 —6LogB)  T(LogX — 1 —4Log B)

A(tit3,1) <

And finally, we select t3 again in this set and distinct from ¢; and ¢ and such
that

D —Log X +4LogB+1
(T —2)(Log X — 1 —8Log B)
D —Log X +2LogB+1
(T —1)(Log X — 1 — 6 Log B)
D —Log X +1
* T(LogX— 1 —4LogB)

(27) A(tityts, 1) <

+

We simply reorder 1, ts and ¢3 to get u, v and w and use again (19) to get
a lower bound for the number of classes attained.

We show this way that integers larger than exp(536) are sums of seven
cubes by selecting the parameters as follows: 3 = 2.2, T'= 33 and M = 2T.

18



10 Refinement number 11

For small values of n, we compute £ exactly and we reach Logn > 524 by
selecting the parameters as follows: § = 1.79, T'= 34, M = 2T.
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