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Abstract

Our initial problem is to represent classes m modulo q by a sum
of three summands, two being taken from rather small sets A and B
and the third one having an odd number of prime factors (the so-called
irregular numbers by S. Ramanujan) and lying in a [q20r, q20r + q16r]
for some given r ≥ 1. We show that it is always possible to do so
provided that |A||B| ≥ q(log q)2. This proof leads us to study the
trigonometric polynomial over irregular numbers in a short interval
and to seek very sharp bound for them. We prove in particular that∑

q20r≤s≤q20r+q16r e(sa/q) � q16r(log q)/
√
ϕ(q) uniformly in r, where

s ranges through the irregular numbers. We develop a technique ini-
tiated by Selberg and Motohashi to do so. In short, we express the
characteristic function of the irregular numbers via a family of bilin-
ear decomposition akin to Iwaniec amplification process and that uses
pseudo-characetrs or local models. The technique applies to the Liou-
ville function, to the Moebius function and also to the van Mangold
function in which case it is slightly more difficult. It is however is
simple enough to warrant explicit estimates and we prove for instance
that |

∑
X<`≤2X Λ(`) e(`a/q)| ≤ 1300

√
q X/ϕ(q) for 250 ≤ q ≤ X1/24.

Several other results are also proved.
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1 Introduction

We investigate the additive behavior of irregular numbers in Z/qZ when q
is large. We borrow the terminology irregular numbers from Ramanujan
in [25]: they are the integers having an odd number of prime factors, see
sequence A028260 from [20]. The importance of such numbers increased
sizeably when Selberg enunciated his parity principle around 1949, for in-
stance in [37], as such numbers behaved very similarly to usual integers from
a sieve viewpoint. Their characteristic function is easily expressed in terms
of more common players: it is (1 − λ(n))/2 where λ(n) = (−1)Ω(n) is the
Liouville-function, Ω(n) denoting as usual in such surroundings the number
of prime factors of n counted with multiplicity.

Here is our main result.

Theorem 1. Let q ≥ 3 be a prime number and r ≥ 1 be given. Let S be the
set of irregular numbers in [q20r, q20r + q16r]. Let A and B be two arbitrary
sets in Z/qZ such that |A| · |B| ≥ q(log q)2. We have∑

a+b+s≡m[q],
a∈A,b∈B,
s∈S

1 ∼ |A| · |B| · |S|/q

(as q goes to infinity) valid for every m ∈ Z/qZ and uniformly in r.

The difficulty here lies in handling the exponential sum over irregular
numbers, or equivalently, the exponential sum

∑
n λ(n)e(na/q) when q can

be as large as a power of X and n runs over the short interval [X,X +Xθ].
This exponential sums is very similar (and can be reduced, by using the
identity λ = µ ? 11X2 where ? denotes the arithmetic convolution product:
(f ? g)(n) =

∑
d|n f(d)g(n/d)) to the sum

∑
n µ(n)e(na/q).

This latter sum is often compared to
∑

p e(pa/q) where p ranges through
primes, but the short interval condition leads to difficulties. However the
method we develop is valid equally for λ(n), µ(n) or the characteristic func-
tion of the primes. The proofs are even somewhat easier in the former case.

Historically, Davenport saw immediately the strength of Vinogradov’s
masterpiece [39] and used it for the trigonometric polynomial with Moebius
coefficients in [6]. His method is indirect as he uses Vinogradov’s estimate on
the primes. The initial treatment of Vinogradov was involved; the book [40]
gives an excellent account of it. Since then, the theory of bilinear decompo-
sition for the primes has evolved with the systematic use of combinatorial
identities, though mostly over the primes. It is folklore knowledge that such
methods adapt mutatis mutandis to the case of the Moebius function, though
finding references is not so easy. We found [4, Theorem 3], [11, Theorem
2.1] and [13, Theorem 13.9] as well as [14, Chapter II.6]. There has been
a renewal of interest in this problem since and we mention in particular [3]
and [10].
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Theorem 1 will be a consequence of the next estimate.

Theorem 2. When q ≤ Xη for some η < 1/8, T ≤ (Xη/q)16/13, and a is
prime to q, we have∫ T

−T

∣∣∣∑
`≤X

µ(`) e(`a/q)/`it
∣∣∣dt� (log min(q, 2 + T ))X/

√
ϕ(q).

Variants of the theorem are also available:

(V2) One can replace µ(`) by λ(`) and get the same bound,

(V3) One can add the coprimality condition (`, q) = 1 and replace the
1/
√
ϕ(q) by 1/

√
q,

(V4) One can replace the Moebius function by the van Mangold func-
tion Λ(`) by replacing the 1/

√
ϕ(q) by

√
q/ϕ(q).

The variant (V1) is the one of the theorem. All the results below will have
the same variants. This L1-estimate readily leads to an estimate of the
trigonometric polynomial over a short interval.

Theorem 3. Let η < 1/8 be given. When q ≤ Xη, a is prime to q and θ0

is defined by X1−θ0√q = (Xη/q)16/13, we have, for any θ ∈ (θ0, 1]∑
X<`≤X+Xθ

µ(`) e(`a/q)� (log q)Xθ/
√
ϕ(q).

When compared to the bound obtained by Zhan in [41, Theorem 2], the
author has access to smaller intervals, but our bound has no power of logX.
This may not be obvious to compare both results but a closer scrutiny shows
that the constant B in [41, Theorem 2] is smaller than c2

2 − 1.
The estimates above require that we stay at the precise point a/q and

do not shift (except from some trivial amount) from it. When θ = 1, we
can however relax this condition, and this may be important for the circle
method (a summation by parts enables one to extend the result to |α −
a/q| � 1/X; going further than that is the difficulty). Here is what we get.

Theorem 4. When q ≤ Xη for some η < 2/13, a is prime to q, and

|β|X + |t| ≤ (Xη/q)13/2 and |β|X ≤ X
1
22
− 13η

44 , we have∑
`≤X

µ(`) e(`β)e(`a/q)/`it � X/
√
ϕ(q).

Here and thereafter, we do not try to get the best exponents; our aim be-
ing to describe precisely the method. These upper bounds have two features:
after division by Xθ (the trivial estimate), they tend to 0 with q (no power
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of logX comes in to weaken the result); and they are valid for q up to some
power of X. The technique developed is to represent the Moebius function
by a family of linear combinations of linear and bilinear sums in modern
terminology (or in type I and type II sums if we are to follow Vinogradov’s
initial choice of words). Let us specify here that the results obtained are
all effective (i.e. all implied constants can be explicitly determined); the
possible Siegel zero thus limits our expectation as to what kind of results
we may reach (it cannot however be properly termed an obstruction!).

A similar question over the primes has received attention. Theorem 2b
of Chapter IX of [40] gives a first answer in that case (on selecting there
ε = 2(log q)/ log logX). A simplified version reads:∑

n≤X
Λ(n)e(na/q)� X(log q)10/

√
q, q ≤ exp(

√
0.1 log logX). (1)

In [5] the author obtained an estimate analogous to (1) but better when
q does not have too many divisors. Both these results rely on bilinear
decomposition and are thus extendable to the Moebius function. A first
best possible result in the case of primes was reached in [29]: the function
of q is

√
q/ϕ(q). The variable q is still restricted to being not more than

exp(0.02(logX)1/3) and though flexible, the method developed relies also on
positivity and is thus not adaptable to the case of the Moebius function. A.
Karatsuba in [15, Chapter 10, section 4, Lemma 7] gives the same coefficient√
q/ϕ(q) for q up to exp(c(logX)1/2) for some positive constant c > 0, but

this time by using analytical methods that are not transposable (more on
this issue later). In fact, on using Gallagher’s prime number Theorem, i.e. [8,
Equation (5)], one can reach a result of similar strength: same coefficient and
for q up to some power of X. Our present method gives an analogous result
without using log-free zero density theorem or even mentioning the zeros,
and, in this aspect, this project is a sequel of Motohashi’s work, see [17]
and [18].

Indeed, Motohashi in [18] produced a proof of Gallagher’s prime number
theorem without using the zeros of the relevant Dirichlet L-series. Such
a proof can be adapted to the case of the Moebius function by using the
material we develop here. Let us record the result.

Theorem 5. There exist constants c1, c2 > 0 such that

∑
q≤Q

∑∗

χmod∗q

∣∣∣∑
n≤X

µ(n)χ(n)
∣∣∣� X exp

(
−c1

logX

logQ

)

provided that exp(
√

logX) ≤ Q ≤ Xc2. The constant c1 is chosen so that at
most one Dirichlet L-function has a zero in the region σ ≥ 1− c1

log(Q(2+|t|)) .
Such a zero if it exists is simple and attached to a real character. The symbol
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∑∗ means that, in case such an exceptional zero exists, say β attached to
the character χ∗, we replace

∑
n≤X µ(n)χ∗(n) by

∑
n≤X

µ(n)χ∗(n)− Xβ

βL′(β, χ∗)
. (2)

In case L′(β, χ∗) is small, this contradicts Theorem 4. Indeed, on choos-
ing X to be a large power of q = Q, we deduce from Theorem 5 that∑

`≤X,
(`,q)=1

µ(`) e(`β)e(`a/q) �
X
√
q

ϕ(q)L′(β, χ∗)
.

Let us record this result with the proper quantifiers.

Corollary 6. There exists a constant c > 0 such that, if L(s, χ∗) admits a
real zero β > 1− c/ log q, then L′(β, χ∗)� q/ϕ(q).

This completes the result [21] of Pintz , namely that, under the above
assumptions, one has L′(1, χ∗) � q/ϕ(q). It is possible to go from one to
the other when 1− β = o((log q)−2) by using simple analysis.

The methods we use are fully explicit and even lead to possible numerical
bounds. Because the most difficult case is the one of the primes, we consider
this case and prove the following.

Theorem 7. When 250 ≤ q ≤ X1/24 and a is prime to q, we have∣∣∣ ∑
X<`≤2X

Λ(`) e(`a/q)
∣∣∣ ≤ 1300

√
q X/ϕ(q).

It is worthwhile noting that the constant 1300 is maybe large but explicit
while the work [29] relies on a Brun sieve-based preliminary sieving process
that would make such a computation very hard (it would also most probably
result in a much higher constant). We made the effort to get an explicit
constant, but there are many places where this work can numerically be
improved upon. Notice that Platt in [22] has computed the zeroes of all the
Dirichlet L-series of conductor q ≤ 4 · 105 and whose imaginary parts are
not more than 108/q, so the distribution of primes up to such levels is better
handled by using this.

Concerning the method, as already mentioned, we detect the primes via a
family of bilinear decompositions, in a mecanism akin to Iwaniec’s amplifica-
tion process. Our implementation is inherited from a technique introduced
by Selberg around 1973 (as mentioned by Bombieri in [2] and by Motohashi
in [18]), and that has shown exceptional power.

This family of decompositions is shown to be “orthogonal”, in some
sense, via a large sieve extension of the classical large sieve inequality for
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the Farey points, that encompasses generalized characters in Selberg’s or
Motohashi’s terminology, also called (up to some rescalling) local models
in [28]. See Theorem 10 below where the implied constant is improved with
respect to the classical one.

The building of our decompositions involves Barban & Vehov* weights,
see [1]. While studying an optimisation problem close to the one that clas-
sically found the Selberg sieve for primes, Barban & Vehov introduced the
weights

λ
(1)
d =


µ(d) when d ≤ z,
µ(d) log(z2/d)

log z when z < d ≤ z2,

0 when z2 < d.

(3)

They consider in fact slightly more general weights with a y instead of z2, see
Motohashi (Section 1.3 of [19]) and Graham [9]. Their particular property
is that ∑

n≤B

(∑
d|n

λ
(1)
d

)2
� B/ log z

whether B ≥ z4 or not. We will follow an idea of Motohashi that the weaker
property ∑

n≥1

(∑
d|n

λ
(1)
d

)2
/n1+ε � zε/(ε log z)2, (ε ∈ (0, 1])

can often be enough (this is our case) via Rankin’s trick (see [34]) and is
easier to establish. The required material is contained in Lemma 27 and
comes from [12]. From an explicit viewpoint, this implies dealing with sums
of type

∑
d≤D µ(d)/d1+ε or

∑
d≤D µ(d) log(D/d)/d1+ε with some coprimality

conditions added, and such sums are really more difficult to handle than the
ones with ε = 0. In this latter case, identities can be used to effect that do
not have any counterpart (as far as we can see) in case ε > 0.

Notation

Our notation is standard except maybe f(x) = O∗(g(x)) means that |f(x)| ≤
g(x). Furthermore, the arithmetic convolution is denoted by ?; it is defined
by (f ? g)(n) =

∑
d|n f(d)g(n/d) under obvious conditions.

We however require quite a lot of partial definitions to make the writing
easier. It is then easy to forget the meaning of a quantity and we try to
recall the most important ones here. The letters θ and H are used in several
acceptions.

*For a reason unknown to me but which stems almost surely from older transliteration
rules, Vehov is spelled Vekhov in Zentralblatt.
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Let us recall the definition of the Ramanujan sum as well as its evaluation
in terms of the Moebius function:

cr(m) =
∑

amod∗r

e(am/r) =
∑
u|r,
u|m

uµ(r/u). (4)

A companion function of these Ramanujan sums cr are the functions vr
defined by

vr(m) = cr(m)
(∑
d|m

λ
(1)
d

)
. (5)

By ` ∼ L, we mean L < ` ≤ 2L. The main actor is

S(a/q, t, β) =
∑
`∼X,

(`,q)=1

Λ(`)

`it
e(β`)e

(`a
q

)
, (6)

which we will split into a linear combination of sums of the linear type

L
(1)
r (a, t, β) defined in (18) and L

(2)
r (a, t, β) defined in (19), and of sums of

bilinear type:

Sr(a/q, t, β,M,N) =
∑

mn∼X,
(mn,q)=1,
m∼M,n∼N

Λ(m)vr(n)

(mn)it
e(βmn)e

(mna
q

)
. (7)
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2 The general setting of the proof

We consider the Dirichlet series:

Vr(s) =
∑
n≥2

cr(n)
(∑
d|n

λ
(1)
d

)
/ns =

∑
n≥2

vr(n)/ns. (8)

This series has the good idea to (almost) factor. Note that the summation
can be restricted to integers n > z.
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Theorem 8.

1 + Vr(s) = ζ(s)Mr(s, λ
(1)
d ) (9)

where

Mr(s, λ
(1)
d ) =

∑
u|r,
d≤z2

uµ(r/u)λ
(1)
d

[u, d]s
=

∑
1≤n≤rz2

hr(n)/ns, (10)

where we quote explicitly:

hr(n) =
∑

u|r,d≤z2,
[u,d]=n

uµ(r/u)λ
(1)
d . (11)

One can find a similar decomposition in [18, Lemma 4] with f(n) = 1.
In this condition, we have Ψr(n) = cr(n) and g(r) = µ2(r)/ϕ(r), they
are defined between equations (9) and (10) there. The µ2(r) is absent in
Motohashi’s definition, but the function g will be used only with square-free
argument. In this manner, the large sieve inequality given by [18, Lemma
2] reduces to [2, Théorème 7A], which is attributed to A. Selberg by E.
Bombieri.

Here is the formal identity that gives us a decomposition of 1:

1 = −Vr + (1 + Vr).

There follows a decomposition of −ζ ′/ζ which we modify with the help of
(9), and we reach

−ζ
′

ζ
=
ζ ′

ζ
Vr − ζ ′Mr. (12)

This translates in the following point-wise identity:

Λ = −Λ ? vr + log ? hr. (13)

The corresponding identity for the Moebius function is even more striking:

µ = −µ ? vr + hr. (14)

We finally quote the one for the Liouville function:

λ = −λ ? vr + 11X2 ? hr. (15)

Identities (13), (14) and (15) are the core of our approach. They however
still need to be slightly refined, as the variable carried by Λ, resp. µ and λ,
in the factor Λ ? vr (resp. µ ? vr and λ ? vr), can be small. This is readily
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taken care of by a simple truncation, see (17). Let us finally mention that
we will average over this family of decompositions.

Let us initiate the proof to fix the notation.

The coprimality with our variables with the modulus q will come into
play, and we start this section by this point. In situation (V3), the question
does not arise. In situation (V4), we write∣∣∣∣ ∑

`∼X,
(`,q)6=1

Λ(`)

`it
e(β`)e

(`a
q

)∣∣∣∣ ≤∑
p|q

log(2X)

log p
log p = ω(q) log(2X).

This leads to an error term that is easily absorbed, even numerically on
using ω(q) ≤ (log q)/ log 2, by all our subsequent error terms. Section 11
explains how to dispense with the coprimality condition in situations (V1)
and (V2).

Let us select a squarefree integer r ≤ R. We assume that

z2R ≤ X. (16)

We further select a (large) parameter M0 and write (recall (6))

S(a/q, t, β) = L(1)
r (a, t, β)− L(2)

r (a, t, β)

−
∑

mn∼X,
(mn,q)=1,
m>M0

e(βmn)
Λ(m)vr(n)

(mn)it
e
(mna

q

)
, (17)

where the first linear form is defined by

L(1)
r (a, t, β) =

∑
mn∼X,

(mn,q)=1

e(βnm)
hr(m) log n

(nm)it
e(nma/q) (18)

while the second one is defined by

L(2)
r (a, t, β) =

∑
mn∼X,

(mn,q)=1,
m≤M0

e(βmn)
Λ(m)vr(n)

(nm)it
e
(mna

q

)
. (19)

We now examine the last sum and localize the variables m and n. Notice
that n > z. So we start at N = z, go until 2z, etc until 2kz ≤ 2X/M0 <
2k+1z, i.e. 0 ≤ k ≤ log(X/(M0z))/ log 2. Concerning M , we have N < n ≤
N ′ ≤ 2N , and thus 1

2(X/N) ≤ X/n < m ≤ 2X/N . So for each N , we have
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two values of M , namely M1 = 1
2(X/N) and M2 = X/N . We then use the

following inequalities, where A(m,n) = e(βmn)Λ(m)vr(n)
(nm)it

e
(
mna
q

)
11(mn,q)=1:∣∣∣∣ ∑

mn∼X
A(m,n)

∣∣∣∣2 =

∣∣∣∣∑
M,N

∑
mn∼X,

m∼M,n∼N

A(m,n)

∣∣∣∣2

≤
∑
M,N

1
∑
M,N

∣∣∣∣ ∑
mn∼X,

m∼M,n∼N

A(m,n)

∣∣∣∣2

≤
2 log 2X

M0z

log 2

∑
M,N

∣∣∣∣ ∑
mn∼X,

m∼M,n∼N

A(m,n)

∣∣∣∣2. (20)

Let us point out that this last summation over m, n has been denoted by
Sr(a/q, t, β,M,N) in (7). We relax the condition mn ∼ X and remove the
coefficient e(βmn) in this sum by appealing to Lemma 45, case b = 2, R = X
and some δ = δ(M,N) ∈ (0, 1/2). We find that

Sr(a/q, t, β,M,N) =

∫ ∆

−∆

∑
(mn,q)=1,
m∼M,n∼N

Λ(m)

mi(v+t)

vr(n)

ni(v+t)
e(mna/q)XivH (v)dv

+O∗
(
E1(δ, r) + E2(δ, r) + 2δE3(r)

)
(21)

where H (v) is provided by Lemma 45 and with

E1(δ, r) =
∑

X<mn≤2δX,
(mn,q)=1,
m∼M,n∼N

Λ(m)|vr(n)|, E2(δ, r) =
∑

2X/2δ<mn≤2X,
(mn,q)=1,
m∼M,n∼N

Λ(m)|vr(n)| (22)

and
E3(r) =

∑
(mn,q)=1,
m∼M,n∼N

Λ(m)|vr(n)|. (23)

The parameter ∆ is defined in (74) (with b = 2).

The proof continues in Section 7.

3 Preparations

3.1 A hybrid large sieve inequality

This material is our main ingredient to control the bilinear form arising from
our decomposition of the Λ-function.

We quote the following Theorem of Selberg from [2, Théorème 7A].
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Theorem 9. Let N0 be a given real number. Let (un)N0<n≤N0+N be a
sequence of complex numbers. We have∑
fr≤R,
(f,r)=1

f

φ(fr)

∑
χmod∗f

∣∣∣ ∑
N0<n≤N0+N

unχ(n)cr(n)
∣∣∣2 ≤ ∑

N0<n≤N0+N

|un|2(N +R2),

where cr(m) is the Ramanujan sum modulo r.

The summation is over both coprime variables f and r, subject to fr ≤
R. The parameter N0 is required since the left-hand side is not (a priori)
invariant under translation. We now prove the following hybrid version.
Such a result can also be found in [2, Théorème 10] and has its origin in [8],
our input here is a refined constant 7. Looking more closely at [32, Corollary
6.4], we see that it proves the following.

Theorem 10. Let (un)n be a sequence of complex numbers that is such that∑
n(|un|+ n|un|2) <∞. We have∑
d≤D

∑
amod∗d

∫ T

−T

∣∣∣∑
n

unn
ite(na/d)

∣∣∣2dt ≤ 7
∑
n

|un|2(n+D2 max(T, 10)).

Theorem 11. Let q be some fixed modulus and N0 be some real number. Let
(un)n be a sequence of complex numbers that is such that

∑
n(|un|+n|un|2) <

∞. We have, for any T ≥ 0,∑
r≤R/q,
(q,r)=1

1

ϕ(r)

∑
a mod q

∫ T

−T

∣∣∣∑
n

uncr(n+N0)nite(na/q)
∣∣∣2dt

≤ 7
∑
n

|un|2(n+R2 max(T, 10)).

Proof. We use

cr(n+N0) =
∑

a′mod∗r

e
((n+N0)a′

r

)
.

Cauchy’s inequality brings us to a position where we can use Theorem 10
since the set {(a/q) + (a′/r)} is a subset of the set of points {b/d} with d ≤
R.

Corollary 12. Let q be some fixed modulus. Let (un)n be a sequence of
complex numbers that is such that

∑
n(|un| + n|un|2) < ∞. We have, for

any T ≥ 0,∑
r≤R/q,
(q,r)=1

1

ϕ(r)

∑
a mod q

∫ T

−T

∣∣∣∑
n

uncr(n)nite(na/q)
∣∣∣2 dt

1 + |t|

�
∑
n

|un|2(n+R2 log(T + 2)) .
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Proof. Simply use integration by parts and Theorem 11.

3.2 Prime number estimates

We recall some classical results taken from [36].

Lemma 13. When M ≥ 101, we have∑
m∼M

Λ(m) ≤ 5
4M.

Proof. Indeed, [36, Theorem 12] gives us

ψ(x) ≤ 1.04x, (x ≥ 0), (24)

while [36, Theorem 10] gives us

ϑ(x) =
∑
p≤x

log p ≥ 0.84x, (x ≥ 101). (25)

The lemma follows readily.

We infer also, from [23, Corollary to Theorem 1.1]:∑
m≤M0

Λ(m)

m
≤ logM0, (M0 ≥ 1). (26)

We next need the following extension of the celebrated version of the
Brun-Titchmarsh inequality due to H.L. Montgomery and R.C. Vaughan
in [16, Theorem 2].

Lemma 14. Let d is some integer modulus and a be a reduced residue class
modulo d. When A ≥ B > d ≥ 1, we have∑

A<m≤A+B,
m≡a[d]

Λ(m)

logm
≤ 2B

ϕ(d) log(B/d)
.

We shall require the cases d = 1 and d = q. The hypothesis A ≥ B is
absent in [16, Theorem 2] where only primes are counted. We however need
this hypothesis here.

Proof. The hypothesis A ≥ B ensures that, if a prime power pk belongs to
the interval (A,A + B], then no other powers of this prime belongs to this
interval. We may thus bound above our quantity by the number of integers
within (A,A + B] that have no prime factors below some parameter z to
which we add the number of primes below z. This upper bound is the one
used at the beginning of the proof of [16, Theorem 2] in Equation (3.3)
therein (when B is large) and in Lemma 10 (when B is small). In each
occurence, the summand ’+π(z)’ accounts for the additionnal primes (or
prime powers) to be included. The proof of [16, Theorem 2] thus applies.

12



Lemma 15. For any modulus q ≥ 1, any real number M ≥ max(121, q3),
we have ∑

m∼M,
m≡a[q]

Λ(m) ≤ 9
2M/ϕ(q).

Proof. By Lemma 14, we find that

∑
m∼M,
m≡a[q]

Λ(m) ≤ 2
M log(2M)

ϕ(q) log(M/q)
.

A numerical application ends the proof.

Lemma 16. For any modulus q ≥ 1, any real number M ≥ max(121, q3),
we have ∑

bmod∗q

∣∣∣∣ ∑
m≡b[q],
m∼M

Λ(m)

∣∣∣∣2 ≤ 45

8
M2/ϕ(q).

Proof. We collect Lemma 15 and 13 getting that the left-hand side above is
not more than

9

2

M

ϕ(q)

5

4
M ≤ 45

8

M2

ϕ(q)
.

Lemma 17. For any modulus q ≥ 1, any ε > 0 and any real number
M ≥ q1+ε, we have

∑
bmod∗q

∣∣∣∣ ∑
m≡b[q],
m∼M

Λ(m)

∣∣∣∣2 �M2/ϕ(q).

Proof. Lemma 14 implies that∑
m∼M,
m≡b[q]

Λ(m)�ε
M

ϕ(q)

when M ≥ q1+ε and the proof is completed by noticing that∑
bmod∗q

∑
m≡b[q],
m∼M

Λ(m)�M.

13



3.3 Moebius function estimates

The following lemma is quoted from [30]:

Lemma 18. When r ≥ 1 and 1.38 ≥ ε ≥ 0, we have

−(1.44+5ε+3.6ε2) ≤
∑
d≤x,

(d,r)=1

µ(d)

d1+ε
log

x

d
≤ 1.4+4.7ε+3.3ε2+(1+ε)

r1+ε

ϕ1+ε(r)
xε ,

where
r1+ε

ϕ1+ε(r)
=
∏
p|r

p1+ε

p1+ε − 1
. (27)

In case ε = 0, we have access to better and simpler estimates, and we
quote from [31, Corollary 1.10 and 1.11]:

Lemma 19. For any real number x ≥ 1 and any positive integer r, we have

0 ≤
∑
n≤x,

(n,r)=1

µ(n)
log(x/n)

n
≤ 1.00303r/ϕ(r),

and

0 ≤
∑
n≤x,

(n,r)=1

µ(n)
log2(x/n)

n
≤ 2 log x · r/ϕ(r).

3.4 Explicit averages of some non-negative multiplicative func-
tions

Let us start by recalling estimates on the G-functions. We recall the classical
definition

Gq(D) =
∑
d≤D,

(d,q)=1

µ2(d)

ϕ(d)
, G(D) = G1(D). (28)

We quote from [38], for any coprime positive integers r and s:

Gr(D) ≤ s

ϕ(s)
Grs(D) ≤ Gr(sD). (29)

and in particular, when r = 1 and s = q:

G(D) ≤ q

ϕ(q)
Gq(D) ≤ G(qD). (30)

We quote from [26, Lemma 3.5] (see also [35])

G(D) ≤ logD + 1.4709, (D ≥ 1) (31)
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and, concerning a lower bound,

logD + 1.06 ≤ G(D), (D ≥ 6). (32)

We next turn our attention to some of the less studied functions. We
appeal to [26, Lemma 3.2] that shall be partially recalled during the proof.

Lemma 20. When X ≥ 6, we have∑
n≤X,

(n,6)=1

µ2(n)
∏
p|n

(
1− 4

p
+

8

3p2

)
/n ≤ 0.225(logX + 3.1).

A bound valid from X ≥ 15 would be enough.

Proof. We define the multiplicative function g by

g(2) =
−1

2
, g(3) =

−1

3
, ∀k ≥ 2, g(2k) = g(3k) = 0,

g(p) = − 4

p2
+

8

3p3
, g(p2) = −

(
1− 4

p
+

8

3p2

)
/p2, ∀k ≥ 3, g(pk) = 0,

so that we have (simply compare the Dirichlet series)

11(n,6)=1µ
2(n)

∏
p|n

(
1− 4

p
+

8

3p2

)
/n =

∑
`m=n

g(`)
1

m
.

Hence the sum S that we need satisfies

S =
∑
n≤X

∑
`m=n

g(`)
1

m
=
∑
`≥1

g(`)
∑

m≤X/`

1

m
.

We recall the first half of [26, Lemma 3.3], namely∑
m≤t

1

m
= log t+ γ +O∗

(
0.9105t−1/3

)
valid for any t > 0. This means that we can dispense with the condition
` ≤ X above. We thus get

S =
∑
`≥1

g(`)
(
log

X

`
+ γ) +O∗

(
0.9105X−1/3

∑
`≥1

|g(`)|`1/3
)
.

We readily check that∑
`≥1

|g(`)|`
1
3 =

(
1+

1

2
2
3

)(
1+

1

3
2
3

)∏
p≥5

(
1+

4

p
5
3

− 8

3p
8
3

+
1

p
4
3

− 4

p
7
3

+
8

p
10
3

)
≤ 11.

15



Furthermore, with

G(s) =
∏
p≥2

(
1 +

∑
k≥1

g(pk)/pks),

we can rewrite the above in the form

S = G(0)

(
logX + γ +

G′(0)

G(0)

)
+O∗(10/X1/3) .

We readily find that

G(0) =
1

3

∏
p≥5

(
1− 4

p2
+

8

3p3
− 1

p2
+

4

p3
− 8

3p4

)
≤ 0.225.

On the other hand

G′(0)

G(0)
= log 2 +

log 3

2
−
∑
p≥5

(g(p) + 2g(p2)) log p

1 + g(p) + g(p2)
≤ 2.42.

Finally S ≤ 0.225(logX + 3 + 45/X1/3). We used a GP-script to show that

∀X ∈ [8, 109], S ≤ 0.225(logX + 3). (33)

As a conclusion

∀X ≥ 8, S ≤ 0.225(logX + 3.1) (34)

which can be extended to X ≥ 6 by direct inspection.

Lemma 21. When X ≥ 15, we have∑
`≤X,

(`,2)=1

µ2(`)
∏
p|`

4p2 − 12p+ 8

p2
≤ 0.0114X (logX + 3.1)3.

A bound valid from X ≥ 15 would be enough. This lemma is not optimal
and more work would yield better constants.

Proof. Let us call S the sum to be evaluated. We define the multiplicative
functions f1 and f2 on primes p ≥ 5 by f1(p) = 4−12p−1 +8p−2 = f2(p)+1
and f1(pk) = f2(pk) = 0 as soon as k ≥ 2. At p = 3, this would give a
negative value for f2(3), so we majorize f1(3) by 1 to keep the non-negativity
of f2. We thus set f2(3k) = 0 for every k ≥ 1. We have f1(n) ≤ (f2 ? 11)(n).
Furthermore, we check that f2(m) ≤ (f3 ? f3 ? f3)(m) where

f3(m) = µ2(m)11(m,6)=1

∏
p|m

(
1− 4

p
+

8

3p2

)
. (35)
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More precisely, we have the equality f2(m) = (f3 ? f3 ? f3)(m) when m
is squarefree, while, when m is not squarefree, we have f2(m) = 0 while
(f3 ? f3 ? f3)(m) ≥ 0. Therefore

S ≤
∑
m≤X,

(m,2)=1

f2(m)
∑

`≤X/m

1

≤ X
( ∑

m≤X,
(m,3)=1

f3(m)

m

)3

≤ 0.0114X(logX + 3.1)3.

where we have used Lemma 20 for the last inequality.

We define ϕ+(r) =
∏
p|r(1 + p).

Lemma 22. We have ∑
r≤X

µ2(r)ϕ+(r)

ϕ(r)
≤ 3.28X.

This lemma is not optimal and more work would yield better constants.

Proof. The proof is straightforward:∑
r≤X

µ2(r)ϕ+(r)

ϕ(r)
≤
∑
`≤X

µ2(`)
∏
p|`

2

p− 1

∑
`|r≤X

1

≤ X
∏
p≥2

(
1 +

2

p(p− 1)

)
≤ 3.28X.

3.5 Estimates on the Barban & Vehov weights

Let us start with a rough preliminary estimate.

Lemma 23. We have
∑

d≤z2 |λ
(1)
d | ≤ z

2/ log z.

Proof. We first note that∣∣λ(1)
d

∣∣log z = µ2(d)
(
log+(z2/d)− log+(z/d)

)
(36)

where log+ x = max(0, log x). We verify this identity by checking it holds for
d ≤ z, for d ∈ [z, z2] and for larger d. We next note that

∑
d≤y log(y/d) ≤ y

and the lemma follows readily.

Next we recall [32, Lemma 5.4] , i.e. that when s > 1 is real, we have:

ζ(s) ≤ eγ(s−1)/(s− 1). (37)
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Lemma 24. Let R and Q be two positive coprime integers. When ε ∈
[0, 0.168], we have ∣∣∣∣∣ ∑

R|d≤z2,
(d,Q)=1

λ
(1)
d

d1+ε

∣∣∣∣∣ ≤ 5(1 + ε)

log z

Q1+εz2ε

Rεϕ1+ε(QR)
.

We also have ∣∣∣∣∣ ∑
R|d≤z2,
(d,Q)=1

λ
(1)
d

d

∣∣∣∣∣ ≤ 1.004

log z

Q

ϕ(RQ)
,

Proof. We first note that (compare with (36))

λ
(1)
d log z = µ(d) log+(z2/d)− µ(d) log+(z/d). (38)

We prove this identity again by checking it holds for d ≤ z, for d ∈ [z, z2]
and for larger d. On using the decomposition (38), we find that

∑
R|d≤z2,
(d,Q)=1

λ
(1)
d log z

d1+ε
=

∑
R|d≤z2,
(d,Q)=1

µ(d) log(z2/d)

d1+ε
−

∑
R|d≤z,
(d,Q)=1

µ(d) log(z/d)

d1+ε

=
µ(R)

R1+ε

∑
`≤z2/R,

(`,QR)=1

µ(`) log z2/R
`

`1+ε
− µ(R)

R1+ε

∑
`≤z/R,

(`,QR)=1

µ(`) log z/R
`

`1+ε
.

We use Lemma 18 to show that the absolute value of the LHS is not more
than

µ2(R)

R1+ε

(
1.4 + 4.7ε+ 3.3ε2 + (1 + ε)

(RQ)1+ε

ϕ1+ε(RQ)

z2ε

Rε
+ 1.44 + 5ε+ 3.6ε2

)
.

Since (2.84+9.7ε+6.9ε2)/(1+ε) ≤ 4 when ε ∈ [0, 0.168], the first inequality
of the lemma follows. The second inequality follows by using the same
decomposition (38) and invoking Lemma 19.

Lemma 25. Let δ be a given integer and ε ∈ (0, 0.16]. We have∣∣∣∣∣ ∑
d1,d2≤z2,
δ|[d1,d2]

λ
(1)
d1
λ

(1)
d2

[d1, d2]1+ε

∣∣∣∣∣ ≤ 25(1 + ε)2z4εζ(1 + ε)

δε log2 z

∏
p|δ

3

p− 1
.
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Proof. Let us call S the sum to be studied. We find that

S =
∑

δ1δ2δ3=δ

∑
δ1δ3|d1≤z2,
δ2δ3|d2≤z2,

(d1,δ2)=(d2,δ1)=1

λ
(1)
d1
λ

(1)
d2

[d1, d2]1+ε

=
∑

δ1δ2δ3=δ

δ1+ε
3

∑
`≤z2,

(`,δ)=1

ϕ1+ε(`)
∑

`δ1δ3|d1≤z2,
`δ2δ3|d2≤z2,

(d1,δ2)=(d2,δ1)=1

λ
(1)
d1
λ

(1)
d2

(d1d2)1+ε

obtained by using

1

[d1, d2]1+ε
=

(d1, d2)1+ε

(d1d2)1+ε
=

δ1+ε
3

(d1d2)1+ε

∑
`|d1/δ3,
`|d2/δ3

ϕ1+ε(`)

and by noticing that ` is prime to δ; this implies that, in fact, `|d1/(δ1δ3)
and `|d2/(δ2δ3). We apply Lemma 24 twice (once to the sum over d1 and
once with the sum over d2) to get

|S| ≤ 25(1 + ε)2z4εδ1+ε

(log z)2δεϕ2
1+ε(δ)

∑
δ1δ2δ3=δ

1

δε3

∑
`≤z2,

(`,δ)=1

µ2(`)

`2εϕ1+ε(`)
.

But we have∑
`≥1

(`,δ)=1

µ2(`)

ϕ1+ε(`)
=

∏
(p,δ)=1

(
1 +

1

p1+ε − 1

)
=
ϕ1+ε(δ)

δ1+ε
ζ(1 + ε) .

With this we get that

|S| ≤ 25(1 + ε)2z4εζ(1 + ε)

(log z)2δεϕ1+ε(δ)

∑
δ1δ2δ3=δ

1

δε3
.

Finally we can see that

1

ϕ1+ε(δ)

∑
δ1δ2δ3=δ

1

δε3
=

1

ϕ1+ε(δ)

∑
δ3|δ

2ω(δ/δ3)

δε3
=

1

ϕ1+ε(δ)

∏
p|δ

2

(
1 +

1

2pε

)
≤
∏
p|δ

3

p− 1
,

from which the proof follows.
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Lemma 26. Let δ be a given integer and ε ∈ (0, 0.16]. We have∣∣∣∣∣ ∑
d1,d2≤z2

λ
(1)
d1
λ

(1)
d2

[δ, d1, d2]1+ε

∣∣∣∣∣ ≤ 25(1 + ε)2z4εζ(1 + ε)

log2 z

∏
p|δ

4

p
.

Proof. We use Selberg’s diagonalization process as usual and appeal to
Lemma 25 to get

∑
d1,d2≤z2

λ
(1)
d1
λ

(1)
d2

[δ, d1, d2]1+ε
≤
∑
t|δ

ϕ1+ε(t)

δ1+ε

∑
d1,d2≤z2,
t|[d1,d2]

λ
(1)
d1
λ

(1)
d2

[d1, d2]1+ε

≤ 25(1 + ε)2z4εζ(1 + ε)

δ1+ε log2 z

∑
t|δ

ϕ1+ε(t)

tε

∏
p|t

3

p− 1
.

But we have

1

δ1+ε

∑
t|δ

ϕ1+ε(t)

tε

∏
p|t

3

p− 1
≤ 1

δ

∑
t|δ

ϕ1+ε(t)

t2ε

∏
p|t

3

p− 1
≤
∏
p|δ

4

p
.

where we have used the following to get the second inequality.

ϕ1+ε(t)

t2ε
≤ ϕ(t) .

The next lemma is contained in the main Theorem of [12].

Lemma 27. We have, when B ≥ z ≥ 100,

∑
n≤B

(∑
d|n λ

(1)
d

)2

n
≤ 166

logB

log z
.

In the next two lemmas, we define

A
′
r =

∑
u|r,d≤z2,
(ud,q)=1

uµ(r/u)λ
(1)
d

[u, d]
, (39)

and

A′′r =
∑

u|r,d≤z2,
(ud,q)=1

uµ(r/u) log([u, d])λ
(1)
d

[u, d]
. (40)

We first get simpler expressions. The parameter r will always be squarefree
and prime to q, but we prefer to repeat it when necessary.
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Lemma 28. When r is squarefree and prime to q, we have

A′r
ϕ(r)

=
∑

r|d≤z2,
(d,q)=1

λ
(1)
d

d
,

as well as

A′′r
ϕ(r)

=
∑

r|d≤z2,
(d,q)=1

log(rd)
λ

(1)
d

d
+
∑
`|r

Λ(`)

`− 1

 ∑
(r/`)/d≤z2

(d,q)=1

λ
(1)
d

d
− `

∑
r|d≤z2
(d,q)=1

λ
(1)
d

d

 .

Proof. For this proof, it will save on typographical work to define fd to be

λ
(1)
d /d when d is prime to q and 0 otherwise. The case of A′r is easily dealt

with. We simply write

A′r =
∑

u|r,d≤z2

uµ(r/u)dfd
[u, d]

=
∑
δ|r

ϕ(δ)
∑

δ|u|r,δ|d≤z2
µ(r/u)fd = ϕ(r)

∑
r|d≤z2

fd

and this ends the proof. Concerning A′′r , we use [u, d] = ud/(u, d) to get

A′′r =
∑

u|r,d≤z2,
(ud,q)=1

uµ(r/u) log([u, d])dfd
[u, d]

=
∑

u|r,d≤z2,
(ud,q)=1

µ(r/u)(u, d)fd
(
log(ud)− log((u, d))

)
= B − C

say. This calls for the study of two partial quantities, B and C:

B =
∑

δ|u|r,δ|d≤z2
ϕ(δ)µ(r/u)fd

(
log d+ log(u/δ) + log δ

)
= ϕ(r)

∑
r|d≤z2

log d fd +
∑

δ|r,δ|d≤z2
ϕ(δ)Λ(r/δ)fd + ϕ(r) log r

∑
r|d≤z2

fd

since µ ? log = Λ. Moreover r is squarefree, and this implies that ϕ(δ) =
ϕ(r)/ϕ(r/δ). On using ` = r/δ:

B = ϕ(r)
∑
r|d≤z2

log d fd + ϕ(r)
∑

`|r,(r/`)|d≤z2

Λ(`)

`− 1
fd + ϕ(r) log r

∑
r|d≤z2

fd.
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The partial quantity C is (use log((u, d)) =
∑

`|u,`|d Λ(`))

C =
∑

u|r,d≤z2
µ(r/u) log((u, d))(u, d)fd

=
∑

`|u|r,`|d≤z2
Λ(`)µ(r/u)(u, d)fd = ϕ(r)

∑
`|r

Λ(`)

`− 1

∑
r|d≤z2

fd.

The last equality asks for some details: ` being fixed dividing r and d, we
have ∑

`|u|r

µ(r/u)(u, d) = `
∑
v|r′

µ(r′/v)(v, d′)

where r′ = r/` and d′ = d/`. This last sum vanishes if r′ - d′ and has value
ϕ(r′) = ϕ(r)/ϕ(`) otherwise. Hence

A′′r/ϕ(r) = B/ϕ(r)− C/ϕ(r)

=
∑

r|d≤z2,
(d,q)=1

log(rd) fd −
∑
`|r

Λ(`)

`− 1

 ∑
(r/`)|d≤z2

fd − `
∑
r|d≤z2

fd

 .

The lemma follows readily.

Lemma 29. We have, when r is squarefree and prime to q,∣∣∣∣∣ ∑
r|d≤z2,
(d,q)=1

log
4X

erd

λ
(1)
d

d

∣∣∣∣∣ ≤ (1.004
log 4X

er

log z
+ 2
) q

ϕ(rq)
.

Proof. We appeal to the decomposition given by (38) and find that

∑
r|d≤z2,
(d,q)=1

log
4X

erd

λ
(1)
d

d
=

∑
r|d≤z2,
(d,q)=1

log
4X

erd

µ(d) log z2

d

d log z
−
∑
r|d≤z,
(d,q)=1

log
4X

erd

µ(d) log z
d

d log z

=
∑

r|d≤z2,
(d,q)=1

log
4X

erz2

µ(d) log z2

d

d log z
+
∑

r|d≤z2,
(d,q)=1

µ(d) log2 z2

d

d log z

−
∑
r|d≤z,
(d,q)=1

log
4X

erz

µ(d) log z
d

d log z
−
∑
r|d≤z,
(d,q)=1

µ(d) log2 z
d

d log z
.

Lemma 19 tells us that each sum is signed and is bounded. For instance,
when µ(r) = 1, the first two terms are non-negative while the next two are
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non-positive, and similarly when µ(r) = −1. It is thus enough to bound
each term. We further note, with α = 1.003003, that

α log
4X

erz2
+ 2 log

z2

r
≤ α log

4X

erz2
+ 4 log z = α log

4X

er
+ (4− 2α) log z.

The lemma follows readily.

3.6 Handling some smooth sums

The study of the linear parts relies on the exact evaluation of smooth sums:
we gather this material here.

Lemma 30. When M and N > 0 are real numbers such that M +N ≥ 1,
and a is an integer prime to q, we have∑

M<n≤M+N,
(n,q)=1

e(na/q) =
µ(q)N

q
+O∗

(
ϕ(q)

)
.

Proof. We split the interval (M,M+N ] in N/q+O∗(1) intervals containing q
consecutive integers and a final interval containing say h integers prime to q.
Since h ≤ ϕ(q)− 1, the lemma is proved.

By integration by parts, we get

∑
n≤N,

(n,q)=1

log n e(na/q) =
∑
n≤N,

(n,q)=1

e(na/q) logN −
∫ N

1

∑
n≤t,

(n,q)=1

e(na/q)
dt

t
.

We use this formula for 2N and N and get∑
N<n≤2N,

(n,q)=1

log n e(na/q) =
∑
n≤N,

(n,q)=1

e(na/q) log 2

+
∑

N<n≤2N,
(n,q)=1

e(na/q) log(2N)−
∫ 2N

N

∑
n≤t,

(n,q)=1

e(na/q)
dt

t
.

Hence we get the following lemma.

Lemma 31. When N is a real number, and a is an integer prime to q, we
have ∑

N<n≤2N,
(n,q)=1

log n e(na/q) =
µ(q)N log(4N/e)

q
+O∗

(
ϕ(q) log(8N)

)
.
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Lemma 32. When M and N > 0 are real numbers, and b is an integer, we
have

∑
M<n≤M+N,

n≡b[q]

e(βn)

nit
=

1

q

∫ M+N

M

e(βv)dv

vit

+O
(
(|t|+ |β|(M +N) + 1) log(2(M +N))

)
and

∑
M<n≤M+N,

n≡b[q]

e(βn) log n

nit
=

1

q

∫ M+N

M

e(βv) log v

vit
dv

+O
(
(|t|+ |β|(M +N) + 1) log2(2(M +N))

)
.

Proof. We define f1(α, `) = e(βq`)/(α+`)it and f2(α, `) = log(α+`)f1(α, `)
for α = b/q with 1 ≤ b ≤ q − 1 and first study, for f = f1 or f = f2,

S(L; f) =
∑

1≤`≤L
f(`). (41)

We have

S(L; f) = −
∫ L

1
[u]f ′(u)du+ [L]f(L)

= f(1) +

∫ L

1
f(u)du+O

(∫ L

1
|f ′(u)|du+ |f(L)|

)
=

∫ L

1
f(u)du+O((|t|+ βqL) log2(2L)).

We consider(
S((M +N − b)/q; f1)− S((M − b)/q; f1)

) log q

qit

+
(
S((M +N − b)/q; f2)− S((M − b)/q; f2)

) 1

qit

and, as a consequence, we find that

Main Term of
∑

M<n≤M+N,
n≡b[q]

e(βn) log n

nit
=

∫ (M+N−b)/q

(M−b)/q

e(β(b+ uq)) log(b+ uq)

(b+ uq)it
du

=
1

q

∫ M+N

M

e(βv) log v

vit
dv.

The lemma follows readily.
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Lemma 33. When M and N > 0 are real numbers, and a is an integer
prime to q, we have

∑
M<n≤M+N

(n,q)=1

e(nβ)
e(an/q)

nit
=
µ(q)

q

∫ M+N

M

e(βv)dv

vit

+O
(
q(|t|+ |β|(M +N) + 1) log(2(M +N))

)
and

∑
M<n≤M+N

(n,q)=1

e(βn)
log n

nit
e(an/q) =

µ(q)

q

∫ M+N

M

e(βv) log v

vit
dv

+O
(
q(|t|+ |β|(M +N) + 1) log2(2(M +N))

)
.

Proof. This is a simple exercise from the previous lemma.

4 The first linear sum

We study here the first linear form defined in (18) and this section is devoted
to proving Lemma 34 and 35.

4.1 When t = β = 0

Lemma 34. When Rz2/q ≤ X and (a, q) = 1, we have

∑
r≤R/q,
(r,q)=1

µ2(r)|L(1)
r (a, 0, 0)|
ϕ(r)

≤ X

q
G(R)

(
3.012

log 4X
e

log z
+ 2
)

+ 3.3ϕ(q)
R

q

z2

log z
log(8X).

Proof. We start from (18) and sum over n first by using Lemma 31; we find
that

L(1)
r (a, 0, 0) =

µ(q)

q
X

∑
m≤2X,
(m,q)=1

hr(m) log(4X/(me))

m

+O∗
(
ϕ(q) log(8X)

∑
m≤2X,
(m,q)=1

|hr(m)|
)
. (42)
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The bound m ≤ 2X can be replaced in both summations by m ≤ rz2 since
hr(m) vanishes otherwise. Note also that rz2 ≤ 2X. We set

Ar =
∑

m≤rz2,
(m,q)=1

hr(m) log(4X/(me))

m
= log

(4X

e

)
A′r −A′′r , (43)

on recalling (39) and (40).

Bounding the main term in (42):
As a consequence, we deduce the following. We combine (39) with

Lemma 28 to infer that

Ar
ϕ(r)

= log
4X

e

∑
r|d≤z2,
(d,q)=1

λ
(1)
d

d
−
∑
r|d≤z2
(d,q)=1

log rd
λ

(1)
d

d
−
∑
`|r

Λ(`)

`− 1

 ∑
(r/`)|d≤z2

(d,q)=1

λ
(1)
d

d
− `

∑
r|d≤z2
(d,q)=1

λ
(1)
d

d



=
∑

r|d≤z2,
(d,q)=1

log
4X

erd

λ
(1)
d

d
−
∑
`|r

Λ(`)

`− 1

 ∑
(r/`)|d≤z2

(d,q)=1

λ
(1)
d

d
− `

∑
r|d≤z2
(d,q)=1

λ
(1)
d

d

 .

In this form, Lemma 29 and the second part of Lemma 24 (with R = r/`
and Q = `q) applies directly to yield the bound:

|Ar|
ϕ(r)

≤
(

1.004
log 4X

er

log z
+2
) q

ϕ(rq)
+
∑
`|r

Λ(`)

`− 1

1.004

log z

q

ϕ(rq/`)
+
∑
`|r

Λ(`)`

`− 1

1.004

log z

q

ϕ(qr)
.

Note that
∑

`|r
ϕ(`)Λ(`)
`−1 ≤ log r and that

∑
`|r

`Λ(`)
`−1 ≤ 2 log r. Thus

|Ar|/ϕ(r) ≤
(

1.004
log 4X

er

log z
+2
) q

ϕ(rq)
+log r

1.004

log z

q

ϕ(rq)
+2 log r

1.004

log z

q

ϕ(qr)
.

We simplify this into

|Ar|/ϕ(r) ≤
(

1.004
log 4Xr2

e

log z
+ 2
) q

ϕ(rq)
.

We first notice that r ≤ 4X/e and sum over r. On recalling that (30) implies
that q

ϕ(q)Gq(R/q) ≤ G(R), we finally get

∑
r≤R/q,
(r,q)=1

µ2(r)|Ar|
ϕ(r)

≤ G(R)
(

3.012
log 4X

e

log z
+ 2
)
. (44)

Bounding the error term in (42):
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Regarding the error term, we first notice that∑
m≤2X,
(m,q)=1

|hr(m)| =
∑

u|r,d≤z2
|uµ(r/u)λ

(1)
d | ≤

z2

log z

∏
p|r

(p+ 1)

by Lemma 23. And thus

∑
r≤R/q,
(r,q)=1

µ2(r)
∑

m≤2X,
(m,q)=1

|hr(m)|

ϕ(r)
≤ z2

log z

∑
r≤R/q,
(r,q)=1

µ2(r)
∑
δ|r

2ω(δ)

ϕ(δ)

≤ R

q

z2

log z

∏
p≥2

(
1 +

2

p(p− 1)

)
≤ 3.3

R

q

z2

log z
.

The proof of Lemma 34 is complete.

4.2 The general case

Lemma 35. When Rz2/q ≤ X, we have

∑
r≤R/q,
(r,q)=1

µ2(r)|L(1)
r (a, t, β)|
ϕ(r)

≤ X

q
G(R)

(
2.008

log 4XR
eq

log z
+ 3
)

+O
((

(|t|+ |β|X + 1) log2X
) Rz2

log z

)
.

Proof. We start from (18) and sum over n first by using Lemma 33; we find
that

L(1)
r (a, t, β) =

µ(q)

q

∑
m≤2X,
(m,q)=1

hr(m)

mit

∫ 2X/m

X/m

e(βmv) log v

vit
dv

+O
(
q(|t|+ |β|X + 1) log2X

∑
m≤2X,
(m,q)=1

|hr(m)|
)
.

The change of variable w = vm yields:

L(1)
r (a, t, β) =

µ(q)

q

∑
m≤2X,
(m,q)=1

hr(m)

m

(∫ 2X

X

e(βw) logw

wit
dw−

∫ 2X

X

e(βw)dw

wit
logm

)

+O
(
q(|t|+ |β|X + 1) log2X

∑
m≤2X,
(m,q)=1

|hr(m)|
)
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so that, with the notation A′r and A′′r from (39) and (40).

L(1)
r (a, t, β) =

µ(q)

q

∫ 2X

X

e(βw) logw

wit
dwA′r −

µ(q)

q

∫ 2X

X

e(βw)dw

wit
A′′r

+O
(
q(|t|+ |β|X + 1) log2X

∑
m≤2X,
(m,q)=1

|hr(m)|
)
.

From then onwards, the treatment of L
(1)
r (a, t, β) can be mimicked with the

one of L
(1)
r (a, 0, 0). We leave the details to the reader.

5 The second linear form

We study here the second linear form defined in (19).

Lemma 36. When a and r be such that (a, q) = (r, q) = 1 , we have

∣∣L(2)
r (a, 0, 0)

∣∣ ≤ 1.004
µ2(q)X logM0

ϕ(q) log z
+ 1.04ϕ(q)ϕ+(r)M0

z2

log z

with ϕ+(r) =
∑

`|r ` =
∏
p|r(1 + p).

Proof. We readily find that

L(2)
r (a, t, β) =

∑
m≤M0,
(m,q)=1

Λ(m)

mit

∑
d≤z2,

(d,q)=1

λ
(1)
d

∑
n∼X/m,
(n,q)=1,
d|n

e(βmn)
cr(n)

nit
e(mna/q)

=
∑

m≤M0,
(m,q)=1

Λ(m)

mit

∑
d≤z2,

(d,q)=1

λ
(1)
d

∑
`|r

`µ(r/`)
∑

n∼X/m,
(n,q)=1,
[d,`]|n

e(βmn)
e(mna/q)

nit
.

(45)

Now we specialize to t = β = 0, apply Lemma 30 and get

L(2)
r (a, 0, 0) =

∑
m≤M0,
(m,q)=1

Λ(m)
∑
d≤z2,

(d,q)=1

λ
(1)
d

∑
`|r

`µ
(r
`

)( µ(q)X

m[d, `]q
+O∗

(
ϕ(q)

))

=
µ(q)Xϕ(r)

q

∑
m≤M0,
(m,q)=1

Λ(m)

m

∑
d≤z2,

(d,q)=1,
r|d

λ
(1)
d

d
+O∗

(
1.04ϕ(q)ϕ+(r)M0

z2

log z

)
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since the error in the above equation is

ϕ(q)
∑
m≤M0

Λ(m)
∑
d≤z2
|λ(1)
d |
∑
`|r

` ≤ ϕ(q)1.04M0
z2

log z
ϕ+(r)

where the sum over m is treated via (24) and the sum over d is via Lemma 23
We appeal to the second estimate of Lemma 24 (with R = r and Q = q) to
get

|L(2)
r (a, 0, 0)| ≤ µ2(q)1.004X logM0

ϕ(q) log z
+ 1.04ϕ+(r)ϕ(q)M0

z2

log z
,

where the sum over m is this time treated via (26). The lemma follows
readily.

Adapting this proof to the general case from (45) is not difficult. We
get:

Lemma 37. When a and r be such that (a, q) = (r, q) = 1 , we have

∣∣L(2)
r (a, t, β)

∣∣� µ2(q)X logM0

(1 + |t|)ϕ(q) log z
+O

(
q(|t|+|β|X+1)ϕ+(r)M0

z2

log z
logX

)
.

We quote the next direct consequence of this lemma.

Lemma 38. We have, for any ε > 0,∫ T

−T

∑
r≤R/q,
(r,q)=1

µ2(r)

ϕ(r)

∣∣L(2)
r (a, t, 0)

∣∣dt�ε
X(log T )(logR) logM0

ϕ(q) log z
+
M0z

2T 2R1+ε logX

log z
.

6 The error term due to the separation of vari-
ables

Lemma 39. When ε ∈ (0, 0.154], and R/q ≥ 15, we have

∑
rq≤R,
(r,q)=1

µ2(r)

ϕ(r)

∑
n≤B,

(n,q)=1

|vr(n)|2/n

≤ 0.285Gq(R/q)
(1 + ε)2Bεz4εζ2(1 + ε)R

q log2 z
(log(R/q) + 3.1)3.

Proof. We use

|cr(n)|2 ≤ ϕ((n, r))2 =
∑
δ|n,
δ|r

δf2(δ).

29



where f2(δ) =
∏
p|δ(p− 2). Thus, on using (29),

∑
r≤R/q,
(r,q)=1

µ2(r)|cr(n)|2

ϕ(r)
=
∑
δ|n

δf2(δ)
∑

δ|r≤R/q,
(r,q)=1

µ2(r)

ϕ(r)

=
∑
δ|n

f2(δ)Gδq(R/(δq)) ≤
∑
δ|n,

δ≤R/q

f3(δ)Gq(R/q).

where f3(δ) = µ2(δ)
∏
p|δ(p− 1)(p− 2)/p. On denoting by S the sum to be

bounded above, we get

S ≤
∑
rq≤R,
(r,q)=1

µ2(r)

ϕ(r)

∑
n≤B

(∑
d|n

λ
(1)
d

)2
|cr(n)|2/n

≤ Gq(R/q)
∑
δ≤R/q

f3(δ)
∑
δ|n≤B

(∑
d|n

λ
(1)
d

)2
/n

≤ Gq(R/q)Bε
∑
δ≤R/q

f3(δ)
∑
δ|n

(∑
d|n

λ
(1)
d

)2
/n1+ε

≤ Gq(R/q)Bεζ(1 + ε)
∑
δ≤R/q

f3(δ)
∑

d1,d2≤z2

λ
(1)
d1
λ

(1)
d2

[δ, d1, d2]1+ε
.

We appeal to Lemma 26 and (37):

S

Gq(R/q)
≤ 25(1 + ε)2Bεz4εζ2(1 + ε)

log2 z

∑
δ≤R/q

f3(δ)
∏
p|δ

4

p
.

A use of Lemma 21 gives us

S ≤ Gq(R/q)
25(1 + ε)2Bεz4εζ2(1 + ε)R

q log2 z
0.0114(log(R/q) + 3.1)3.

The lemma follows readily.

7 Proof of the explicit Theorem 7

We continue the argument started in section 2.

7.1 Preparation of each
∣∣Sr(a/q, t, β,M,N)

∣∣
Recall the decomposition (21) of Sr.

We first have the next explicit bound.
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Lemma 40. We have, when M ≥ 1014 and δ ≥M−1/4,

E1(δ, r) + E2(δ, r) + 2δE3(r) ≤ 10.5 δM
∑
n∼N,

(n,q)=1

|vr(n)|.

When ignoring the explicit aspect, here is what we get.

Lemma 41. Let ε > 0. When δM �M ε, we have

E1(δ, r) + E2(δ, r) + 2δE3(r)�ε δM
∑
n∼N,

(n,q)=1

|vr(n)|.

Proof. We first notice that, when N < n ≤ 2N , M < m ≤ 2M and X <
mn ≤ 2δX, we check that, with A = max(M,X/n),

[max(M,X/n),min(2M, 2δX/n)] ⊂ [A,A+(2δ−1)M ] ⊂ [A,A+(2δ log 2)M ]

since 2δ − 1 =
∫ δ log 2

0 eudu ≤ 2δ log 2. Similarly concerning the conditions
N < n ≤ 2N , M < m ≤ 2M and 21−δX < mn ≤ 2X, we check that, with
A = max(M, 21−δX/n),

[max(M, 21−δX/n),min(2M, 2X/n)] ⊂ [A,A+ 2(1− 2−δ)M ]

⊂ [A,A+ (2δ log 2)M ]

since this time 1− 2−δ =
∫ 0
−δ log 2 e

udu ≤ δ log 2. We note that 2 log 2 ≤ 7/5.
By Lemma 14 twice,we find that

E1(δ, r) + E2(δ, r) ≤ 2
27

5δM

log(7
5δM)

log(2M)
∑
n∼N
|vr(n)|.

Note that, since δ ≥M−1/4, we have δM ≥M3/4 and

27
5 log(2M)

log(7
5M

3/4)
≤ 3.80,

and thus

E1(δ, r) + E2(δ, r) ≤ 3.80 δM
∑
n∼N
|vr(n)|. (46)

Concerning E3(r), we use Lemma 13, getting

E3(r) ≤ 5
4M

∑
n∼N
|vr(n)|. (47)

Note that 2× 3.80 + 2× 5
4 = 10.1 ≤ 10.5.
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Hence, on using the classical |a+ b|2 ≤ 2(|a|2 + |b|2),

∣∣Sr(a/q, t, β,M,N)
∣∣2 ≤ 2

∫ ∆

−∆

∑
bmod∗q

∣∣∣∣ ∑
m≡b[q],
m∼M

Λ(m)

mi(v+t)

∣∣∣∣2|H (v)|2dv

×
∫ ∆

−∆

∑
bmod∗q

∣∣∣∣ ∑
(n,q)=1,
n∼N

vr(n)

ni(v+t)
e(nba/q)

∣∣∣∣2dv + 2 ·
(

10.5 δM
∑
n∼N
|vr(n)|

)2
.

(48)

By Lemma 45, We have
∫
R |Ĥ(δ, λ, κ; v)|2dv =

∫
R |H(δ, λ, κ;u)|2du = (2 −

2δ)(log 2)2/(4π)2. We use Lemma 16 provided that M ≥ max(121, q3):

∣∣Sr(a/q, t, β,M,N)
∣∣2 ≤ 2× 2

(log 2)2

(4π)2

45

8

M2

ϕ(q)

×
∫ ∆

−∆

∑
bmod∗q

∣∣∣∣ ∑
(n,q)=1,
n∼N

vr(n)

ni(v+t)
e(nb/q)

∣∣∣∣2dv + 221δ2M2(N + 1)
∑
n∼N
|vr(n)|2,

i.e., since MN ≤ X and N ≥ z ≥ 121,

∣∣Sr(a/q, t, β,M,N)
∣∣2 ≤ 45

2

(log 2)2

(4π)2

M2

ϕ(q)

∫ ∆

−∆

∑
bmod∗q

∣∣∣∣ ∑
(n,q)=1,
n∼N

vr(n)

ni(v+t)
e(nb/q)

∣∣∣∣2dv
+ 446δ2X2

∑
n∼N

|vr(n)|2

n
. (49)

7.2 Average estimate (over r and (M,N) ) of
∣∣Sr(a/q, t, β,M,N)

∣∣2
Let us use the shorter notation

Σ(M,N) =
∑
rq≤R,
(r,q)=1

µ2(r)

ϕ(r)

∣∣Sr(a/q, t, β,M,N)
∣∣2. (50)

We sum (49) over r and use the large sieve inequality from Theorem 11 to
get (since MN ≤ X):

Σ(M,N) ≤ 158
M2

ϕ(q)

(log 2)2

(4π)2

∑
(n,q)=1,
n∼N

∑
d|n

λ
(1)
d

2

(n+R2∆)

+ 446δ2X2
∑
rq≤R,
(r,q)=1

µ2(r)

ϕ(r)

∑
n∼N

|vr(n)|2

n
.
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We take R = z1/4 = 2δ−1 > 2q2 and M0 = z ≥ q8, with z ≥ 1014. We
assume that β = 0, and thus (see (74))

δ2∆ =
2

π log 2
.

Thus n+R2∆ ≤ 2N + 2δ−2

π log 24δ−2 ≤ 2N + 4δ−4 ≤ 2N + (z/4). This is since

R = 2δ−1.
Furthermore, for any n ∈ (N, 2N ], we have n(2N+(z/4)) ≤ 4.5N2 since

N ≥ z. Hence

Σ(M,N) ≤ 4.4
X2

ϕ(q)

∑
(n,q)=1,
n∼N

(∑
d|n λ

(1)
d

)2

n

+ 446δ2X2
∑
rq≤R,
(r,q)=1

µ2(r)

ϕ(r)

∑
n∼N

|vr(n)|2

n
.

It is time to sum over relevant (M,N). We set

Σ =
∑
M,N

Σ(M,N). (51)

Summation over M is readily dealt with: there are at most two M ’s for
each N . Thus

Σ ≤ 8.8
X2

ϕ(q)

∑
(n,q)=1,
n≤2X/z

(∑
d|n λ

(1)
d

)2

n

+ 892δ2X2
∑
rq≤R,
(r,q)=1

µ2(r)

ϕ(r)

∑
n≤2X/z

|vr(n)|2

n
. (52)

We forget the condition (n, q) = 1 in the first summation and appeal to
Lemma 27, while we use Lemma 39 for the second term. All of that yields:

Σ ≤ 8.8
X2

ϕ(q)
166

log 2X
z

log z

+ 892δ2X2Gq(R/q)
0.285(1 + ε)2(e2γ2Xz3)εR

ε2q log2 z
(log(R/q) + 3.1)3.

Whence (since δ = 2R−1, ϕ(q) ≤ q, Gq(R/q) ≤ G(R/q) and R/q ≥ R1/3 =
X1/48 ≥ 15)

ϕ(q)

X2
Σ ≤ 1461

log 2X
z

log z
+ 1016

(1 + ε)2(e2γ2Xz3)ε

Rε2 log2 z
(log(R/q) + 3.1)4.
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We used equation (31). Now we directly choose z = X1/4 and ε = 8/(7 logX) ≤
0.009 (since X ≥ 25024). We thus get

ϕ(q)

X2
Σ ≤ 4414 + 95200

(logR− log q + 3.1)4

R
.

Next with R = z1/4 ≥ q3/2 ≥ 2503/2,

Σ ≤ 32830
X2

ϕ(q)
. (53)

7.3 Conclusion of the proof of Theorem 7

Recall that z = X1/4 ≥ q6 and assume that q ≥ 250. We have

Gq(R/q)|S(a/q, t, β)| ≤
∑

r≤R/q,
(r,q)=1

µ2(r)

ϕ(r)
(|L(1)

r (a, β, t)|+ |L(2)
r (a, β, t)|)

+
√
Gq(R/q)

(
32 830

X2

ϕ(q)

2 log 2X
z2

log 2

)1/2

where the factor 2(log 2X
z2

)/ log 2 comes from (20) since M0 = z. This bound
is valid for β = 0 (because we specialized ∆) and t arbitrary. We continue
numerically by specializing further t = 0.

We select R4 = z = M0 = X1/4 ≥ q6 and q ≥ 250.

Concerning L
(1)
r , we use Lemma 34: the hypothesis Rz2/q ≤ X is met.

We thus get

∑
r≤R/q,
(r,q)=1

µ2(r)

ϕ(r)
|L(1)
r (a, 0, 0)|

≤ X

q
G(R)

(
3.012

log 4X
e

log z
+ 2
)

+ 3.3ϕ(q)
R

q

z2

log z
log(8X)

≤ X

q
G(R)

(
3.012

log 4X
e

1
4 logX

+ 2 +
3.3X−19/48

1
16 logX + 1.06

log(8X)
1
4 logX

)
≤ 16

X

q
G(R).

We use (32) on G(R) which is allowed since R = X1/16 ≥ 6. Concerning

L
(2)
r , we use Lemma 36 and Lemma 22, getting, (we check that ϕ(q)M0Rz

2 ≤
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X107/192)

∑
r≤R/q,
(r,q)=1

µ2(r)

ϕ(r)
|L(2)
r (a, 0, 0)|

≤ Gq(R/q)1.004
µ2(q)X logM0

ϕ(q) log z
+ 1.04ϕ(q)M0

z2

log z
3.28R/q

≤ G(R)
X

q

(
1.004 + 3.4112

X
107
192
−1

( 1
16 logX + 1.06)1

4 logX

)
≤ 1.005G(R)

X

q
.

This finally amount to:

18G(R)
X

q
+
√
Gq(R/q)

(
47 860

X2

ϕ(q)
logX

)1/2

We finally get (R/q ≥ R1/3 = X1/48 and Gq(R/q) ≥ ϕ(q)
q G(R/q))

|S(a/q, 0, 0)| ≤ 1292

√
qX

ϕ(q)

provided 250 ≤ q ≤ X1/24.

8 Proof of Theorem 4 in version (V4)

Proving Theorem 4 with primes rather than with the Moebius function is
a simple modification of the proof of Theorem 7. Let us recall (20) from
section 2:∣∣∣∣S(a/q, t, β)− L(1)

r (a, t, β) + L(2)
r (a, t, β)

∣∣∣∣2
≤

2 log 2X
M0z

log 2

∑
M,N

(∫ ∆

−∆

∣∣∣∣ ∑
(mn,q)=1,
m∼M,n∼N

Λ(m)

mi(v+t)

vr(n)

ni(v+t)
e(mna/q)

∣∣∣∣|H (v)|dv

+ E1(δ, r) + E2(δ, r) + 2δE3(r)

)2

. (54)

This is so because
∑

mn∼X A(m,n) is nothing other than S(a/q, t, β) −
L

(1)
r (a, t, β) + L

(2)
r (a, t, β). The localised version of this quantity, i.e. with

m ∼ M and n ∼ N is Sr(a/q, t, β,M,N). However in this latter sum, the
variables m and n are still constrained by the condition mn ∼ X. We then
only have to introduce (21) in (20) to get the above.

The only remaining difficulty is to collect the diverse conditions on the
parameters R, δ, M0, z, q and X. We list them below (we simplify them:
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we neglect the difference from ϕ(q) to q, we also impose that R2/(zδ2) ≤ 1
while an upper bound of any constant would also do, and so on). For some
ε > 0, we need:

1. R ≥ 8q,

2. M0, R, z ≥ Xε,

3. δM0 ≥M ε
0 for the separation of variables by Lemma 41,

4. δ2R log6X ≤ 1 for the large sieve argument on the remainder term
coming from the separation of variables: indeed by Lemma 39 (with
ε = 1/ log z � 1/ logN) and 41, we find that∑
r≤R/q

µ2(r)

ϕ(r)

∣∣∣E1(δ, r) + E2(δ, r) + 2δE3(r)
∣∣∣2 � δ2(MN)2(logR)4R/q.

After summation over N as a power of 2 and over M (at most two
values), this bound is multiplied by logX. The factor O(log(X/M0z))
in front introduces another logarithm.

5. We assume that (βX)2 ≤ δ−1 and this ensures that ∆, which is given
by ∆ = 100(δ−1 + (βX)2)/δ , verifies ∆� δ−2.

6. R2/(zδ2) ≤ 1 and M0 ≥ q1+ε for the large sieve argument on the bilin-
ear form: indeed we proceed as in (48) and apply Corollary 12. The
final L2-norm is handled by Lemma 27. We need R2∆� z, and that
is granted by R2δ−2 � z since N starts at z. We employ Lemma 17
rather than Lemma 16 for its less stringent condition M ≥ q1+ε. Since
M can be as small as M0, this explains the second condition above.

7. (|t| + 1 + |β|X)
√
qRz2 ≤ X for the term coming from L

(1)
r (a, t, β) by

Lemma 35.

8. (|t| + 1 + |β|X)
√
qRz2M0 ≤ X for the term coming from L

(2)
r (a, t, β)

by Lemma 37.

Condition 7 is a consequence of Condition 8. It is better to choose M0 as
small as possible, so let us select M0 = min(q, δ−1)X2θ for some positive θ.
We want the ranges in β and t to be as large as possible, so we want δ and z
to be small. However condition 6 imposes to reach a balance between these
two aims. It is also better to choose R as small as we may, so we choose
R = qX2θ and z = q2X4θ/δ2.

Let us choose M0 = qX4θ and δ = q−1X−2θ. We also assume that

|βX| ≤ √qXθ, (1 + |t|+ |β|X)q13/2X22θ ≤ X.

We set η = 2
13 −

44
13θ to reach the statement of the theorem.
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9 Proof of Theorem 2 in version (V4)

The proof of the L1-Theorem 2 is similar to the proof of Theorem 7 with
one notch of difficulty added. The required modifications are however rather
simple; we explain them in this section. The case of the primes is slightly
more difficult as it entails using the Barban-Davenport-Halberstam Theo-
rem, while the bounds |λ(m)|, |µ(m)| ≤ 1 will be enough in the other cases.
We shall rely on the bound |H (v)| � (1 + X|β|)/(1 + |v|) with β = 0,
combined with Corollary 12. We start with

Gq

(R
q

)∫ T

−T

∣∣∣ ∑
`∼X

(`,q)=1

Λ(`)

`it
e(
`a

q
)
∣∣∣dt�

∫ T

−T

∑
r≤R/q
(r,q)=1

µ2(r)

ϕ(r)
(|L(1)

r (a, t, 0)|dt+ |L(2)
r (a, t, 0)|)dt

+

∫ T

−T

∑
r≤R/q
(r,q)=1

µ2(r)

ϕ(r)

∣∣∣∣ ∑
mn∼X

(mn,q)=1
m>M0

Λ(m)vr(n)

(mn)it
e
(mna

q

)∣∣∣∣dt .
The term with L

(1)
r on the right-hand side is estimated as in Lemma 35. The

term with L
(2)
r is estimated as in Lemma 38. The estimation of third term

on the right hand side requires a modification at the level of equation (48).
We first split the summation in (m,n) according to their size (M,N) and
then apply Cauchy’s inequality on the resulting sums, getting:∫ T

−T

∑
r≤R/q,
(r,q)=1

µ2(r)

ϕ(r)

∣∣∣∣ ∑
mn∼X

(mn,q)=1
m>M0

Λ(m)vr(n)

(mn)it
e
(mna

q

)∣∣∣∣dt

�
∑
M,N

(
Gq

(R
q

) ∑
r≤R/q

µ2(r)

ϕ(r)

(∫ T

−T
|Sr(a/q, t, β,M,N)|dt

)2)1/2

.

Now we release the condition mn ∼ X:(∫ T

−T
|Sr(a/q, t, β,M,N)|dt

)2

�
(
δTM

∑
n∼N
|vr(n)|

)2

+

∫ ∆

−∆

∫ T

−T

∑
bmod∗q

∣∣∣∣ ∑
m≡b[q],
m∼M

Λ(m)

mi(v+t)

∣∣∣∣2|H (v)|dtdv

×
∫ ∆

−∆

∫ T

−T

∑
bmod∗q

∣∣∣∣ ∑
(n,q)=1,
n∼N

vr(n)

ni(v+t)
e(mna/q)

∣∣∣∣2dt|H (v)|dv. (55)
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We use the estimate∫ ∆

−∆

∫ T

−T
v+t=w

|H (v)|dv � log min(2 + T,∆)

and from this point onwards, the treatment of the factor containing vr(n)
is as previously. As for the factor containing the Λ-part, we first reduce to
prime variables and then use multiplicative characters. The first step reads∑
bmod∗q

∣∣∣∣ ∑
m≡b[q],
m∼M

Λ(m)

miw

∣∣∣∣2 =
∑

bmod∗q

∣∣∣∣ ∑
p≡b[q],
p∼M

log p

piw
+

∑
m≡b[q],
m∼M,

m=pk,k≥2

Λ(m)

miw

∣∣∣∣2

≤ 2
∑

bmod∗q

∣∣∣∣ ∑
p≡b[q],
p∼M

log p

piw

∣∣∣∣2 + 2
∑

bmod∗q

∣∣∣∣ ∑
m≡b[q],
m∼M,

m=pk,k≥2

Λ(m)

miw

∣∣∣∣2.

We then use∑
bmod∗q

∣∣∣∣ ∑
m≡b[q],
m∼M,

m=pk,k≥2

Λ(m)

miw

∣∣∣∣2 ≤ max
bmod∗q

( ∑
m≡b[q],
m∼M,

m=pk,k≥2

Λ(m)

) ∑
m∼M,

m=pk,k≥2

Λ(m)

≤
( ∑

m≤M,
m=pk,k≥2

Λ(m)

)2

�M.

On detecting the congruence condition in m ≡ b[q] by multiplicative char-
acters, we thus find that∑

bmod∗q

∣∣∣∣ ∑
m≡b[q],
m∼M

Λ(m)

miw

∣∣∣∣2 ≤ 2

ϕ(q)

∑
χ mod q

∣∣∣∣ ∑
(p,q)=1,
p∼M

χ(p) log p

piw

∣∣∣∣2 +O(M).

The reduction to primitive characters is immediate:∑
χ mod q

∣∣∣∣ ∑
(p,q)=1,
p∼M

χ(p) log p

piw

∣∣∣∣2 =
∑
f|q

∑
χ mod ∗f

∣∣∣∣ ∑
(p,q)=1,
p∼M

χ(p) log p

piw

∣∣∣∣2.
The next step is a way to introduce the Barban-Davenport-Halberstam The-
orem via Theorem 9. Here f|q, and we note that cr(p) = µ(p) = −1:∑

r≤M/f,
(r,f)=1

µ2(r)

ϕ(r)

∣∣∣∣ ∑
(p,q)=1,
p∼M

χ(p)cr(p) log p

piw

∣∣∣∣2 = Gf(M/f)

∣∣∣∣ ∑
(p,q)=1,
p∼M

χ(p) log p

piw

∣∣∣∣2.
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We recall (30): f
ϕ(f)Gf(M/f) ≥ G(M/f). We can then appeal to Theorem 9

instead of Lemma 16. Let us summarize (for uniformity with the last section)
the diverse conditions:

1. R ≥ 8q,

2. M0, R, z ≥ Xε,

3. δM0 ≥M ε
0 for the separation of variables,

4. δ2TR log6R ≤ 1 for the large sieve argument on the remainder term
coming from the separation of variables since we integrate trivially in
t the corresponding error term from section 8.

5. Since β = 0, we have ∆ = 100/δ2 and this makes condition 5 from
section 8 useless here,

6. TR2/(δ2z) ≤ 1 and M0 ≥ q1+ε for the large sieve argument on the
bilinear form,

7. qT 2Rz2 ≤ X√q for the remainder term linked to L
(1)
r (a, t, 0),

8. qT 2Rz2M0 ≤ X
√
q for the remainder term linked to L

(2)
r (a, t, 0),

for some ε > 0. Condition 7 is yet again a consequence of condition 8. Here
are the parameters we choose, for some θ > 0,

R = qX2θ, δ−1 =
√
qTX2θ,M0 =

√
qTX3θ, z = q3T 2X4θ (56)

and assume that T 13/2q8X13θ ≤ X. We set η = (1 − 13θ)/8 to get the
claimed estimate.

10 The short interval estimate: proof of Theo-
rem 3

The L1-estimate opens a clear path to the short interval result. Let us start
with a methodological comment. One can try to compute the Mellin trans-
form of the characteristic function of the interval [X,X +Xθ] but the lack
of continuity results in a transform which is of order 1/s when s goes to
i∞. As an implication the integral of the absolute value of this transform
over a vertical line is not convergent and this raises complications. One can
get a more precise version for the characteristic function of [1, X] that does
not rely on the absolute value of the Mellin transform but on more informa-
tions on the sequence we consider; this is the truncated Perron’s formula.
Alternatively, one can consider a smooth sum of the initial characteristic
function, and removing the smoothing depends on short interval estimates,
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and this is exactly the same information that is required in the truncated
Perron’s formula.

This means that we get results of similar strength by using the difference
of two truncated Perron’s formulas. A usual form of this truncated Perron’s
formula like [27, Theorem 2.1] is enough. We note on the methodogical side
that the more powerful version [33, Theorem 1.2] by the first author would
lead to refined error term.

Theorem 42 (Truncated Perron’s formula). Let F (z) =
∑

n un/n
z be a

Dirichlet series that converges absolutely for <z > κa, and let κ > 0 be
strictly larger than κa. For X ≥ 1 and T ≥ 1, we have

∑
n≤X

un =
1

2iπ

∫ κ+iT

κ−iT
F (z)

Xzdz

z
+O∗

∫ ∞
1/T

∑
| log(X/n)|≤v

|un|
nκ

2Xκdv

Tv2

 .

We take F (z) =
∑

X<`≤2X Λ(`)e(`β)/`z. We select κ = 1 and set ω =

Xθ−1. To handle the error term, we split the integral at v = 1. When
v ≥ 1, we majorize

∑
| log(X/n)|≤v

|un|
n by

∑
n∼X Λ(n)/n � 1. When v < 1,

we majorize 1/n by X−1e1/T ) � 1/X. We assume that T ≤
√
X. This

implies that, when 1/T ≤ v ≤ 1, we have

∑
| log(X/n)|≤v

|un|
n
� X−1

∑
e−vX≤n≤evX

Λ(n)� X−1 vX

log(3vX)
logX � v

by using Lemma 14 with q = 1, A = e−vX and B = 3vX ≥ 2 sinh(v)X ≥
2 e

v−e−v
2 X. This readily leads to

∑
X<`≤X+Xθ

Λ(`) e
(`a
q

)
=

1

2iπ

∫ 1+iT

1−iT

∑
X<`≤2X

Λ(`) e(`a/q)

`z
Xz((1 + ω)z − 1)dz

z

+O
(
X logX

T

)
. (57)

A usage of [33, Theorem 1.2] we mentioned would remove the logX in the
error term, the only slight bump in the proof being that we need the same
T ∗ for the formula up to X and the formula up to X + Xθ: going back
to [33, Corollary 5.1] would do the trick.

We end this methological remark here and proceed by using the classical
|(1 + ω)z − 1| ≤ |zω(1 + ω)| obtained from the representation

(1 + ω)z − 1 = z

∫ ω

0
(1 + y)z−1dy.

We choose T = X1−θ√q logX.
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We shift the line of integration in (57) to <z = 0. To bound the contri-
bution of the two horizontal segment, we notice that, when =z = ±T and
0 ≤ <z = σ ≤ 1, we have |(1+ω)z−1| � 1, |1/z| � 1/T ,

∑
`∼X2 Λ(`)/|`z| �

X/Xσ. This gives the error term O(X/T ) which is admissible.
On the line <z = 0, we use the estimate |(1 + ω)z − 1|/|z| � Xθ−1,

getting ∑
X<`≤X+Xθ

Λ(`) e
(`a
q

)
� Xθ−1

∫ T

−T

∣∣∣∣ ∑
X<`≤2X

Λ(`) e(`a/q)

`it

∣∣∣∣dt+
Xθ

√
q
. (58)

We are ready to prove Theorem 3. To meet its hypotheses, we require

X1−θ√q logX ≤ (Xη/q)16/13. (59)

The hypotheses θ > θ0 and

X1−θ0√q ≤ (Xη/q)16/13 (60)

are enough to ensure (59), when X is large enough.

11 The trigonometric polynomial of the Moebius
function

Adapting the previous argument to the polynomial

S[(a/q) =
∑
`∼X

µ(`)e(`a/q) (61)

is easy enough. We take the same notations as for the van Mangoldt func-
tion, but we add a [ when they concern the Moebius function. The treatment
of the two linear forms carries over with few changes and same result. The
treatment of the bilinear form is simpler in one aspect, since we do not need
any Brun-Titchmarsh Theorem and use instead of Lemma 17 the estimate∑

b mod q

∣∣ ∑
m≡b[q],
m∼M

µ(m)
∣∣2 �M2/q (62)

valid when M ≥ q1+ε. We also consider the companion

S](a/q) =
∑
`∼X,

(`,q)=1

µ(`)e(`a/q). (63)

We have to bound in (48) ∑
bmod∗q

∣∣ ∑
m≡b[q],
m∼M

µ(m)
∣∣2. (64)

This quantity is at most M2ϕ(q)/q2 while we used M2/ϕ(q) when dealing

with primes. We thus multiply this bound ϕ(q)2

q2
and we have to take the

squareroot of this factor when modifying the final bound.
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12 Proof of Theorem 1

We are now in a position to prove Theorem 1. We consider only the case of
irregular numbers. Here is a more general statement.

Theorem 43. Let X ≥ 3 and θ ∈ [0.79, 1] be two parameters. Let S be the
set of irregular numbers in [X,X +Xθ]. Let q ≤ X1/20 be a prime, and let
A and B be two arbitrary sets in Z/qZ such that |A| · |B| ≥ q(log q)2. We
have ∑

a+b+s≡m[q],
a∈A,b∈B,
s∈S

1 ∼ |A| · |B| · |S|/q

(as q goes to infinity) valid for every m ∈ Z/qZ.

Proof. Let us define the two trigonometric polynomials

T (A, c/q) =
∑
a∈A

e(ac/q), T (B, c/q) =
∑
b∈B

e(bc/q), (65)

then the one over the irregular numbers

U(α) =
∑

X≤s≤X+Xθ

1− λ(s)

2
e(sα) (66)

and lastly the number of representations

r(A,B,m) =
∑

a+b+s≡m[q],
a∈A,b∈B,
s∈S

1. (67)

We get classically that

r(A,B,m) =
1

q

∑
cmod∗q

T
(
A, c

q

)
T
(
B, c
q

)
U
( c
q

)
e
(
−mc
q

)
. (68)

By Theorem 3 with η = 1/12 and λ instead of µ (i.e. in version (V2)),
together with the fact that q is prime, we infer that, when c 6= 0, we have

U
( c
q

)
� Xθ log q√

ϕ(q)
.

Furthermore U(0) ∼ Xθ/2 by the result [24] of K. Ramachandra (since
θ > 7/12). Hence, by applying Parseval and since ϕ(q) = q − 1, we obtain

r(A,B,m) = (1 + o(1))
Xθ|A||B|

2q
+O

(
Xθ

√
|A||B| log q

q

)
.
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This proves our claim.

Final note: we have decided to select specific parameters in Theorem 1 to il-
lustrate the relative strength of our result, a larger domain for the parameter
for (θ, (log q)/ logX) is available.

Proof of Theorem 1. We simply need to select X = q20r and Xθ = q16r in
Theorem 43.

13 Appendix: Separating the variables and re-
moving a phase

In the bilinear form, we will have to handle conditions like

a ∼ A, b ∼ B, and ab ∼ X

where y ∼ Y means that Y < y ≤ 2Y . The last inequality is annoying
because it links both variables together. This link is mild and we remove it
by the process we describe here. At the same time we remove a phase e(βr).
Our object here is ∑

X<r≤bX
ϕr e(βr) (69)

for some general (ϕ`) and a parameter b > 1 that is usually equal to 2. The
same process is used for instance in [7, Lemma 6]. Our form is more precise
in two aspects: we regulate the length of the integration, and we avoid a loss
of a log-factor by introducing (or more precisely: preparing the introduction
of) some information of the local behaviour of (|ϕr|). We rewrite the above
as ∑

r≥1

ϕr 11[−1,1]

(
2

log(r/X)

log b
− 1

)
e

(
λe

κ
(

2
log(r/X)

log b
−1

))
(70)

with λ = βX
√
b and κ = (log b)/2 and we first seek an approximation for

11[−1,1]. Let δ ∈]0, 1/2] be a real parameter. We first note that∫ ∞
−∞

(1− |u|)+e(uv)du =
(sinπv

πv

)2
.

We then consider the trapezoid function

h0(δ;u) =
(1− |u|)+ − (1− δ − |u|)+

δ
=


1 when |u| ≤ 1− δ,
1−|u|
δ when 1− δ ≤ |u| ≤ 1,

0 when 1 ≤ |u|.
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This function verifies

ĥ0(δ; v) =

∫ ∞
−∞

h0(δ;u)e(uv)du =
(sinπv)2 − (sinπ(1− δ)v)2

π2δv2

=
sin(πδv) sin(π(2− δ)v)

π2δv2
.

We further select two additional real parameters κ and λ and build:

H(δ, λ, κ;u) = h0(δ;u)e
(
λeκu

)
. (71)

Lemma 44. Except when u ∈ {±1,±(1− δ)}, we have

|H(δ, λ, κ;u)| ≤ 1, |H ′(δ, λ, κ;u)| ≤ δ−1 + 2π|λκ|e|κ|.

The following L1-bounds also hold:
∫ 1
−1 |H

′(δ, λ, κ;u)|du ≤ 2+4π|λκ|e|κ|,and∫ 1
−1 |H

′′(δ, λ, κ;u)|du ≤ 4π|λκ|e|κ|
(
2 + |κ|+ |2πλκ|e|κ|

)
.

Proof. We have, when u /∈ {±1,±(1− δ)},

H ′(δ, λ, κ;u) = h′0(δ;u)e
(
λeκu

)
+ 2iπλκeκuH(δ, λ, κ;u)

and

H ′′(δ, λ, κ;u)

2iπλκeκu
= 2h′0(δ;u)e

(
λeκu

)
+
(
1 + 2iπλκeκu

)
H(δ, λ, κ;u).

The reader will easily derive the lemma from both these expressions.

The Fourier transform being defined by f̂(v) =
∫
R f(u)e(uv)du, we de-

duce from the above lemma and one and then two integrations by parts that

|Ĥ(δ, λ, κ; v)| ≤ 1 + 2π|λκ|e|κ|

π|u|
, (72)

and

|Ĥ(δ, λ, κ; v)| ≤ δ−1

2π2|v|2
+

3 + |κ|+ |2πλκ|e|κ|

π|v|2
|λκ|e|κ|. (73)

The separation of variables relies on the next lemma.

Lemma 45. Let b > 1, δ ∈ (0, 1/2), β and X ≥ 1 be four real parameters.
There exists a C1-function H such that for any sequence (ϕr) of complex
numbers, we have

∑
X<r≤bX

ϕr e(βr) =

∫ ∆

−∆

∑
r≥1

ϕr
riu

H (u)Xiudu

+O∗
( ∑
X<r≤bδ/2X

|ϕr|+
∑

b1−δ/2X<r≤bX

|ϕr|+ 2δ
∑
r≥1

|ϕr|
)
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where ∆ is given by

∆ =
2

π(log b)δ2
+

12b+ 2b log b+ 4πb2 log b |β|X
log b

|β|X
δ

. (74)

Any choice of ∆ larger than this one would also do. We have furthermore
|H (u)| ≤ (log b)(1 + 2πb|β|X)/(4π2|u|) and

∫∞
−∞ |H (u)|2du = (log b)2(2 −

2δ)/(4π)2.

The function H depends on X except when β = 0, so we could dispense
of the factor Xiu, but it is more natural to keep it. We have in fact H (u) =
log b
4π Ĥ(δ, λ, κ; (u log b)/(4π))biu/2 with

λ = βX
√
b, κ = (log b)/2 (75)

Proof. The first step is to introduce H(δ, λ, κ;u) (with the parameters we
have just specified):∑

X<r≤bX
ϕr e(βr) =

∑
r≥1

ϕrH
(
δ, λ, κ; 2

log(r/X)

log b
− 1
)

+O∗
( ∑

0≤ log(r/X)
log b

≤δ/2

|ϕr|+
∑

1−δ/2≤ log(r/X)
log b

≤1

|ϕr|
)
.

Next, we write (73) in the form |Ĥ(δ, λ, κ; v)| ≤ (δ∆1)/|v|2, with

∆1 =
1

2π2δ2
+

6b+ b log b+ 2πb2 log b |β|X
2π

|β|X
δ

.

We truncate the integral and infer that

H
(
δ, λ, κ; 2

log(`/L)

log b
− 1
)

=

∫ ∞
−∞

Ĥ(δ, λ, κ; v)
(L
`

) 4iπv
log b

e(v)dv

=

∫ ∆1

−∆1

Ĥ(δ, λ, κ; v)
(L
`

) 4iπv
log b

e(v)dv +O∗(2δ).

The change of variable u = 4πv/log b concludes. The value of
∫∞
−∞ |H (u)|2du

is obtained by appealing to Parseval equality.

On selecting b = 2, using 2δ/2 − 1 ≤ δ and 1 − 2−δ/2 ≤ δ/2, simplifying
the constant and using δ−1 + 40|β|X + 60(βX)2 ≤ 100(δ−1 + (βX)2), here
is the result we obtain.

Lemma 46. Let δ ∈ (0, 1/2), β and X ≥ 1 be three real parameters. There
exists a C1-function H such that for any sequence (ϕr) of complex numbers,
we have∑
X<r≤2X

ϕr e(βr) =

∫ ∆

−∆

∑
r≥1

ϕr
riu

H (u)Xiudu+O∗
( ∑

X<r≤(1+δ)X,
or (2−δ)X<r≤2X

|ϕr|+2δ
∑
r≥1

|ϕr|
)
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where ∆ = 100 δ
−1+(βX)2

δ . We have furthermore |H (u)| ≤ 25
73(1+|β|X)/(1+

|u|) and |H (u)| ≤ (δ−1 + (βX)2)/(1 + |u|2).

Concerning the last bound, we prove in fact that

|H (u)| ≤ min
( log 2

2π
,
log 2

4π2
(1 + 13|β|X)/|u|

)
from which we infer the bound stated (we use the first value when |u| ≤ 2).
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[28] O. Ramaré. Arithmetical aspects of the large sieve inequality, volume 1
of Harish-Chandra Research Institute Lecture Notes. Hindustan Book
Agency, New Delhi, 2009. With the collaboration of D. S. Ramana.
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