QUANTITATIVE STEPS IN AXER-LANDAU
EQUIVALENCE THEOREM

0. RAMARE

ABSTRACT. Completing previous enquiries of the same nature, it is
shown that, for every non-negative integer h, there exists a positive con-
stant ¢ such that, for > 10, the inequality | Y, . p(n)(logn)"/n| <

maxy~z | Y-, <, #(n)|(log y)" Jy + x—¢/1oglog holds. The main theorem
applies to general problems of this kind.

1. INTRODUCTION

The error term in the Prime Number Theorem is a central quantity in
multiplicative number theory. Other error terms appear, and for instance,
if we define

Y(z) = An), dx)=> Aln)/n,
n<x n<x

we would like to have access to ¥(z) — (logz — 7). A theorem of Landau
from [10] which combines results of Axer and Landau, namely [9], [1] and
8], asserts that this latter goes to zero as soon as ¥ (z) — x does. After
a cursory look, one could believe this problem to be readily solved by a
partial summation, but this is not the case. Going from 9 (x) — (log z —7) to
¥ (x) — x is indeed mechanical, but the reverse is more difficult. As a matter
of fact Diamond & Zhang exhibited in [4] a system of Beurling generalized
integers where ¢p(z) ~ x but where ¥p(z) — logz does not have a limit,
with an obvious notation. The Landau Theorem refered to above answers
this question from a qualitative viewpoint. I addressed the question of a
quantitative version of it in [13], and more completely together with D.
Platt in [12], with applications to explicit estimates in view: the idea is to
concentrate the work on ¥(x) — z and to derive automatically estimates
for ¢(x) — (logz — ~) (and for similar quantities with primes in arithmetic
progressions). The results obtained are not (conjecturally) optimal but are
still rather strong, both from a theoretical and numerical point of view,
see below. The link with different error terms concerning ), 1/p and the
Euler products [],..(1 — 2/p), for any complex number 2 of modulus not
more than 2, has further been investigated by Vanlalngaia in [11].

We know since Landau in [10] that the error term of the Prime Number
Theorem is linked with the one of the summatory function M(x) of the
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Moebius function. From now on we use the notation

(L1) M) =3 pn). m(x) =3 u(n)/n.

n<lx n<x

Inferring a quantitative error term (here, simply a bound) for M (z) from
the one of ¥ (z) — = has received attention. Let us mention the work [7]
of Kienast, the work [17] of Schoenfeld and the one of El Marraki in [5],
though these two latter authors do not present their investigation in this
perspective, and lately the paper [14]. The answers are up to now rather
unsatisfactory.

One would also like to derive error terms for m(z) from the one of M (x).
Following the well-known paper [1] of Axer, the question has later been
addressed by Kienast using a tauberian argument and Lambert series in [6]
and more precisely in [7]; it is initially this question that we set to investi-
gate here. It is striking that, in Kienast’s Satz 10 taken from [7], no direct
derivation is given for what could be thought as a simple question, but an
additionnal requirement concerning ¢ (x) has to be made.

We end this survey of previous researches with two remarks. First and
as noticed by Landau, inferring an error term for M (z) once we have one
for m(x) is routine. Secondly, we mention that a path using identities has
been investigated by Balazard in [3] (see [2] for a french translation) and
in [14].

The methods I used with Platt to go from v (z) to ¢ (z) relied heavily
on two explicit formulae that were compared; such material is missing when
dealing with the Moebius function. However after analysing this proof, we
discovered that similar information could be obtained from the Mellin trans-
form directly, and this is the subject of the present work. Here is a corollary
of the main Theorem.

Corollary. There exists a positive constant ¢ such that, for x > 10, and
notation being defined in (1.1), we have

M 1
Im(x)] < max M)l + exp L
r<y<3z Yy log log x

Expliciting numerically the proof we give of this corollary would this
time be clearly of no use to infer numerical estimates, at least at the time of
writing. Indeed the latest best bound for 1/((s) is due to Trudgian in [1§]
and would put a constant at least of size 107 in front of the z~1/(8loglogz)
When the emphasis rests on this aspect, the path of identities taken in [3]
and [14] remains a better choice.

Since our method is very general and we want to encompass several cases
in one statement, our first call is to define a general setting. The reader may
want to keep the case of the Moebius function in mind. We start with a
Dirichlet series

(1.2) F(s) =) ap/n® (Rs>1)

n>1
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which we assume to be absolutely convergent in the half-plane Rs > 1.
We further assume that there exists five constants r, ¢ € Z*, ¢ € (0,1],
A € [2,00) and B € [2,00), and a polynomial R of degree at most r — 1
such that the function F'(s) — R(s —1)/(s — 1)" extends holomorphically to
the domain
c

1.3 Rs>1— —————

(13) o= log(A + |Ss|)

(where Js and s denotes respectively the real and imaginary part of the
complex number s), and where it satisfies

(1.4) |F(s) = R(s—1)/(s —1)"| < Blog'(A + |3s|).

The choice r = 0 is allowed and is indeed the case of the Moebius function,
i.e. when F(s) = 1/((s); We further check that R = 0 and ¢ = 1 in this case.
For the primes, we use F(s) = —('(s)/((s) together with r = ¢ = 1 and
R = 1. The above hypotheses imply classically that, for any non-negative
integer i > 0, there exists a polynomial P, of degree at most r + h such
that ) . a,/n—P,(logx) goes to zero, and also a polynomial ) of degree
at most r — 1 such that Y __a, —2Q(logz) is bounded above in absolute

value by a multiplicative constant times z exp(—cy/log(A + x)/2). When
r =0, we set () = 0. Here is our central result.

Theorem 1.1. Let x > 10. Notation being as above, for any non-negative
integer h, we have

L logh ey n — lo log )"
Za B b logs)| < max DI yQ(logy)|(log y)
n r<y<3z Y

n<x

n clogx

exp| — )
P 7log(A + log x)

When r = 0, the polynomial P, ), is constant.

The main point is that the last error term above is better than the one
h
(recalled above) that we know how to get for > “"lo% — P, h(logx).

n<lz
The reader will see in the proof that we only use the zero-free region up to
height log x.

Though case h = 0 has been more advertised, Axer already showed
that proving that > _ (u1(n)logn)/n be asymptotic to —1 is equivalent to
showing that M (z) is o(z/logz), an assertion that Kienast generalized to
any power of logn, provided a similar condition concerning 1 is satisfied.
The above theorem settles the problem is full generality in a quantitative
manner.

We should maybe be more precise when comparing results over such
a span of times. From 1900 until 1950-1960, there was a belief that the
so-called “elementary” methods had a distinct (and lesser) power than “an-
alytic” methods. As time went, more and more results from the “analytic”
world were converted to the “elementary” world, and it is now clear that
there are no differences in the results obtainable. However one setting or
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another (or a mix of both as often in sieve context) offers more efficiency to
tackle a given set of problems.

If needed, the proof of Theorem 1.1 provides us with a localization in
[z, (14k)z] for y, for any positive k. There remains the problem of converting
the last error term in a power saving in x, and we state formally:

Question. Is it true that for any function F' verifying the above hypotheses,
there exists two positive constants a and b such that

E fn ro(logz)| < max [ 2nsy yQl gy)’_f_x—b
n

z/a<y<ax
n<zx / =Y= Yy

In case of the von Mangoldt function or of the Moebius function, this
can be turned into a conjecture which is readily shown to be true under
the Riemann Hypothesis (on taking b to be any positive real number below
1/2). In general, and for instance for Beurling numbers, we are undecided.

Though Theorem 1.1 of [12] is a consequence of the above, getting a
statement numerically as good as Theorem 1.2 of the same paper is difficult,
if at all possible, with the method we develop here.

We can of course get similar corollaries with p(n)x(n) rather than p(n),
where x is a Dirichlet character, and also replace the Moebius function
w(n) by the Liouville function A(n). We can further see these functions as
related to the number field QQ and consider similar quantities but related
to a different number field, or consider L-series associated to Hecke grossen
Charakteren or to some modular form, and, finally, to Beurling numbers.

2. PRELIMINARY LEMMAS

We first recall a handy integral Gorny’s inequality we proved in [15,
Theorem 1.4].

Lemma 2.1. Let Ci(a,b) be the class of functions f over an interval (a,b)
(both a and b can be infinite) that are k-times differentiable, such that all f™)
when h € {0,--- ,k} are in L? and such that, for all index h € {0,--- ,k—1},
we have f™(a) = fM(b) = 0. Let f be in Ci(a,b). For any h € {0,--- |k},

we have
b ) b ) * b 9 =%
/ |0 ()P < (/ £ ® ()] dv) (/ ()] d”) :

We rely on [16] for the smoothing process. We define, for any integer
m > 1, the function over [0, 1]

(2.1) fnlt) = (421 = 1))™
This function f,, satisfies
(2:2) F900) = FH1) =0 (0<k<m—1).

We recall part of [16, Lemma 6].
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Lemma 2.2.

22mm!2 22mm!
2.3 = — (o)), — ="
(2.4) 1£59]l2 < vm(4m/e)*, (k< m).

Proof. The first statements come from [16, Lemma 6] and we deduce the
last one by appealing to Lemma 2.1:

18] < (zsz)’“/’” (M)(m—’“’/w
" V2m +1 (4m + 1)!
since || finl2 = \/m Hence, on using Lemma 2.1,
1900/ Fls < ( mi?__(4m + 1>!)"“2”” (2m)!(2m + 1)
(2m+1) (2m)!? \/me
(m2m (4m)4m64m>k/(2m) (2m/e) '™ m?
mb5/2(4dm/e)?m (m/e)2m

as claimed. O
Lemma 2.3. We have, when uw > 1 and k > 0,

dr < 1 ) cx(7)

— | ——) = (—1)k _—

du® \log? u 2§j§+2 Jluk(log u)?

for some non-negative coefficients cy(j) that satisfy > ci(j) = k!.
Proof. We prove the existence of the coefficients ¢, (j) by recursion:

L\ kew(J) jer ()
— (—1)F+! b : :
<log2u> (=1) Z (j!u’fﬂ(log u)J * Jluk+1(log u)i+t

2<j<k+2

and thus cx1(j) = ker(j) + ex(j — 1), with ¢x(1) = cx(k 4+ 3) = 0. Define
Pi(X) = D ocjchio ck(j)X7. The recursion gives us that
Po1(X) = (X + k)P(X), Py(X)=X?,

whence Py(X) = (X +k — 1)(X + k — 2)--- X2 The Taylor expansion
of P,(X)/X is given by the (unsigned) Stirling numbers of the first kind
|s(k, j)|, but we do not need this. It is enough for us to see that Py(1) =
kt'=73_; cx(j). This does not lose much since cx(k +2) = (k — 1)L. O

From f,,, we define (almost as in section 4 of [12])

1 when 0 <t < 2,
(2.5) Gn(t) =<1 — || fmlli? ;72 fm(uw)du when 2 <t <3,
0 when ¢t > 3.

Note that the function g, satisfies 0 < g,,(t) < 1.
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We consider, for s < 1, the Mellin transform

(2.6) H,.(s) = /:O l_g—mus’ldu.

ulog®u

We need the denominator log® u at infinity, but since this function vanishes
at u = 1, we have shifted the smoothing from 2 onwards.

Lemma 2.4. When Rs < 1, we have |Hp(s)| <, 1. The function H,,
extends in a holomorphic function in the half plane Rs < 1. When |Ss| > 1,
we have, uniformly in m:

[Hn(s)| < 1/ls],  [Hin(s)] < (2m)™/|s|™ "

Proof. We define 1 — g,,(u) = an(u) so that, by Lemma 2.2 when 1 <
k < m+ 1, and directly otherwise, we have a¥ (u) < (2m/e)* for k €
{0,---,,m+1}. We further set a,,(u)/(logu)? = b,,(u). Notice that, for any

k€ {0,---,m}, we have b')(2) = 0. Hence we can use k € {0,--- ,m+1}
integrations by parts to reach

_ (—D)F = s—2+k
H,(s) = G5 (s—1+F) /2 b (u)u du.

We use this expression for £k = m + 1. Leibniz’s formula together with
Lemma 2.3 give us that

m+1 m+1 Cmr1-1\J
b )= Y ( k )agj)(u) 2 <m+1—k)!umg)’“(10g“>j'

0<k<m+1 2<j<24+m+1—k

i (1) S Cm+1(7)

umt(m + 1)! r< s (logu)’

m+1 i Cm—i-l—k(j)
+ Z ( e )ng)(“) Z (m+1—k)lumti=F(logu)i’

1<k<m+1 2<j<m+3—k

The second part of this expression vanishes when v > 3 and is otherwise
bounded above by

m—l—l) L(m+1—k)!
< m° ———"
T () g
(m+ 1)k Z mk(log 2)*

k!

< (m + 1)!emlog2 < m3/2< 2m

"< om)m.
(log 2)™ elog?) < (2m)

Therefore, when |J's| > 1, we get

o) < e ([ WA L gy ) < (2m)™ |5
(s — _ m m)™/|s
’S|m+1 9 um+1(logu)2

as required. O
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3. THE DECOMPOSITION

To ease the typographical work, we define

(3.1) Sp(@) =Y an, Sp(z) = an(logn)"/n.

n<lx n<lx

It will also be helpful to use the shortcut

(3.2) pi(t) = (logt)"/t.
We first use an integration by parts to remove the (logn)"/n:
~ S(x)(1 h e
(o) = 2B st oy
_ () = Qo TNIBT | 1yt

_ / " Qlog 1)t (1)t — / (S() — 1QUog 1)) (1)t
+ [ (S() — 1Qog ) gl (1)dt

since our hypotheses ensure that S(t)—tQ(logt) = O(t/log(2t)"*?). Though
much more is true, such an estimate is enough to prove that the integral
[ (S(t) — tQ(logt))pj,(t)dt is absolutely convergent. By unicity, we have

P p(logz) = Q(log z)(log t)" + /1 ) Q(logt)tpy,(t)dt

+ [0~ 1QUog 0 1.

At this level, we take new notation:
(33) A(x) =Y a, —2Q(og), Ay(z) Z“"(k’g”)h Poy(log )
: = n — s Ap(T) = ——— — Iy .
n<lz n<lz n

The decomposition we will use is the following one:

B Bt = 2O A1 0

- / T AW)(L — gt/ ().

Our next task is to express the last summand in this formula in terms
of Mellin transforms. On recalling (2.6), Mellin inversion formula gives us,
when u > 0,

1 — O 1 1+i00
(3.5) 9—2(“) - / Hyp(s)u=*ds
wlog” u 2 )y

—100



8 0. RAMARE

and thus

/ T AWML~ gunlt /)0l (1)t = / T AW gnlt/2)h (e
N A /1 h A(t)t(logt)Qp;L(t)d—ids.

2T )1 oo

We employ at this level the exact expression of p}, i.e. t2p}(t) = —(logt)" +
h(logt)"~1. We note that, when Rs > 1, we have

(3.6) F(s)/s = /loo S(t)dt /5

where the integral converges absolutely. As a consequence we find that, for
any non-negative integer k, the following holds:

(3.7) A F(s)/s) = (-DF /1°os<t><10gt>kdt/ts+1.

We infer from this formula that

(3.8)
1M [ S@og 05 = T (P69 + b (FGs) )

We define

(B9) Gu(s) = (UL (9 + (P (PG ) - 2

where Ry, is a polynomial of degree at most h-+r+1 and Ry, (s—1)/(s—1)"+2
is the polar part of Gj,(s) at s = 1. The final thing we have to notice is that

(3.10) /A H(log t)%p ()dds_Gh()

for $ts > 1. This is however obvious when Rs > 1 by following the above
reasoning, simply replacing (3.6) by

sy (P - ) = [0 - uos)

The extension to s > 1 follows by unicity of analytic continuation, let us
say. Here is thus the final result of this section

A@)loga)"  *

(3.12) An(z) = " A(t) g (t/x)p, (t)dt

4. PROOF OF THEOREM 1.1

In order to use formula (3.12), we need some bounds for Gj. We take s
in the region

C
4.1 >1-
(4.1) R 2 L= S a(A+ 159))
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Then, to bound G} (s), we use Cauchy’s Theorem on a circle centered in s
and of radius (¢/2)/log(A+ |Ss|), immediately getting that the modulus of
G (s) is bounded by a constant multiple of log"™"™(A 4 |Ss|) in the region
defined by (4.1).
Once this is established, we select a parameter T' > 2, shift the line of
integration to
c

~ 2log(A+T)

when [Ss| < T. When |Ss| > T', we shift the line of integration to s = 1
and we complete this path with the two horizontal segments |Js| = T" and

1-— m < Rs < 1. We get, on this line L:

J

We select

(4.2) Rs=1

ds

Hm(S)l's_lGh(S)? <

1 /2m\"™

—(e/2)/10g(A+T) 5o T + — [ 22 log( A - T))e+h+2.

€ o6 + 75 () J(oxa-+ 1)
T = 4m, m = [log x].

When =z is so large that

glogx > (0 +h+2)(loglog(A + 4logx))?,

say x > xo(A, { + h,c), the next inequality holds:

/ ( clogx )
< exXp .
c

7 log(A + log z)
When z is smaller than (A, ¢+ h, ¢), we adjust the constant in the above
inequality; indeed the left hand side is bounded is this range. This completes
the proof of Theorem 1.1.

H,(s, %)xs_lGh(s)%
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