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Abstract

We denote by ψ̃(x; q, a) the sum of Λ(n)/n for all n ≤ x and
congruent to a mod q and similary by ψ(x; q, a) the sum of Λ(n) over
the same set. We show that the error term in ψ̃(x; q, a)−(log x)/ϕ(q)−
C(q, a), for a suitable constant C(q, a) can be controlled by that of
ψ(y; q, a) − y/ϕ(q) for y of size x, up to a small error term. As a
consequence, if a partial Generalized Riemann Hypothesis has been
verified for the L-functions attached to characters modulo q up to
height H, this error term is bounded by O(e−H/8) when x ≥ H.
Previous methods had at best O(1/H) instead. We further compute
asymptotics for the L2-average of a quantity closely related to C(q, a).

1 Introduction

Let q ≥ 1 be a modulus and a be an integer prime to q. We classically define

ψ(x; q, a) =
∑
n≤x,
n≡a[q]

Λ(n), ψ̃(x; q, a) =
∑
n≤x,
n≡a[q]

Λ(n)/n.
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There has been significant progress towards finding explicit asymptotics for
ψ(x; q, a), see for instance [5], [10], [21], [22], [31], [33], [34], [35] and [37]. The
quantity ψ̃(x; q, a), however, has received less attention, though Mertens gave
very early, in [23], elementary and rather sharp bounds for these quantities.
Rosser & Schoenfeld’s landmark paper [34, Theorem 6] gives an estimate
when q = 1. In [26], the second author devised a method that yielded
fairly good numerics for ψ̃(x; q, a). This question is also addressed in [6] and
[24]. More recently the second author [27] obtained a satisfactory answer
when q = 1. The present paper extends this approach in two ways: the
effect of a numerical zero-free region is much stronger on the final result, see
Theorem 1.2 below, and it is also valid for primes in arithmetic progressions.

Since a lot of work has been done on ψ(x; q, a), the starting idea is to de-
rive good estimates for ψ̃(x; q, a) from those for ψ(x; q, a). Rosser & Schoen-
feld’s paper does not follow such a line. The aim of this paper is to provide
a method to achieve this, see Theorem 1.1 and 1.2 below.

Let us note that the prime number Theorem in the form ψ(x) = (1+o(1))x
is classically equivalent to

ψ̃(x) = log x− γ + o(1). (1)

So in a sense, we are concerned with a quantitative version of this equivalence.
A simple integration by parts is not enough, as it loses a log-factor. In effect,
an estimate of the form |(ψ(x) − x)/x| ≤ 0.01 for x large enough transfers
in something like |ψ̃(x) − log x + γ| ≤ 0.01 log x which is of little interest.
The Landau equivalence Theorem can however be made explicit, but does
not admit a saving better than 1/

√
log x in a rough form; allowing a saving

of any power of log x is already theoretically not obvious, see [2] and [18].
Concerning primes in arithmetic progression, the classical theory tells us that
there exists a constant C(q, a) (see the paper [26, Corollaire 1] for instance)
such that

ψ̃(x; q, a) =
log x

ϕ(q)
+ C(q, a) + oq(1).

(Where oq(1) designates here a function of x that may depend on q and that
goes to 0 when x goes to infinity). Our general conjecture is that there exists
a constant C > 0 independant on q ≤ x such that∣∣∣ψ̃(x; q, a)− log x

ϕ(q)
+ C(q, a)

∣∣∣ ≤ C max
x/10<y≤10x

|ψ(y; q, a)− (y/ϕ(q))|
y

+ C
log x√
x
.

(2)
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This conjecture is now justified by Theorem 1.2 below, which shows that such
an inequality holds under the Generalized Riemann Hypothesis (on selecting
κ = 1 and H = 10 log x). However [9] indicates that this inequality does not
hold in the case of Beurling generalized integers without any further assump-
tion; interestingly, [25] shows that an equivalent of the Mertens formula is
always valid in any Beurling system. The present method relies on zeroes
of L-series and is not applicable to an arbitrary Beurling system. Here is a
theorem that quantifies the strength of our approach:

Theorem 1.1. Let x ≥ 10 and 1 ≤ q ≤ x with q not an exceptional modulus
(see Lemma 10.7). Then there exists a constant c > 0 such that, for every a
invertible modulo q, we have∣∣∣∣ψ̃(x; q, a)− log x

ϕ(q)
− C(q, a)

∣∣∣∣� max
x≤y≤2x

|ψ(y; q, a)− y
ϕ(q)
|

y

+ exp

(
−c log x

log(q log x)

)
.

We discuss at the end of the proof the modifications necessary to cover
the case when q is exceptional. We note here that a similar question con-
cerning derivation of bounds for

∑
n≤x µ(n)/n from bounds for

∑
n≤x µ(n)

(and some related sums) is addressed in [4], [3, Proposition 8] and [29, (1.4)].
A conjecture similar to (2) has been proposed in several talks by the sec-
ond named author. We complete this detour by mentioning the conjecture
given at the bottom of the first page of [28] that proposes a very similar link
between

∑
n≤x µ(n)/n and

∑
n≤x Λ(n).

Though all the quantities of the end-product are elementarily defined,
the proof uses zeros of L-functions, and indeed an elementary proof would
be likely to ignore the effect of the possible exceptional zero and lead to some
strong informations on this one.

Let us end the general part of this introduction with a remark: in [15], the
authors exhibit, under the Riemann Hypothesis, a pseudo-periodical function
that (essentially) takes the value (ψ̃(e−y; q, a) + y/ϕ(q)) ey/2 when y < 0 and
(ψ(ey; q, a)−ey/ϕ(q)) e−y/2 when y > 0 and aa ≡ 1[q]. This gives a connection
between ψ̃(x; q, a) and ψ(x; q, a) and not with ψ(x; q, a).

The aim of the present method is numerical. Good bounds for |ψ(y; q, a)−
y

ϕ(q)
|/y are obtained from the verification that the non-trivial zeros ρ = β +

iγ of bounded imaginary part (say |γ| ≤ H) of any Dirichlet L-functions
associated with a character modulo q have a real part equal to 1/2. We
shorten the description of this hypothesis by simply saying that GRH(q,H)
has been satisfied.
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Before we state our results on ψ̃(x; q, a), we need some notation. When
χ is a character modulo q, we denote by Z(χ) the set of the zeros of L(s, χ)
that have a real part between 0 and 1, both extremes being excluded. We
have Z(χ) = Z(χ′) whenever χ and χ′ are induced by a same character,
and in particular, when χ is induced by the primitive character χ1, we have
Z(χ) = Z(χ1). The zeros of L(s, χ) that belong to Z(χ) are called the non-
trivial zeros. They are usually written as ρ = β + iγ where β and γ are real
numbers. This γ has no a priori connection with the Euler constant! There
are ϕ∗(q) = (ϕ ? µ)(q) primitive characters modulo q, see [38, Theorem 8] or
[30, Lemma 4.1] with the notation ϕ∗ of [13, (3.7)]. Let further b(χ) be the
constant term in the Laurent expansion of L′/L(s, χ) around s = 0. We have
more explicitely:

b(χ) =



L′(0, χ)

L(0, χ)
when a = 0,

lim
s→0

(
L′(s, χ)

L(s, χ)
− 1

s

)
when a = 1 and q > 1,

log(2π) when q = 1.

(3)

See also Lemma 8.1 for a different expression for b(χ).

Theorem 1.2. Let κ > 0 and H ≥ 100 be two real parameters. We assume
that H/(4(1 + κ−1)) is an integer ≥ 10. We select a modulus q ≥ 1 and
assume GRH(q,H). We have, for any x ≥ q ≥ 1 such that x ≥ H, and any
invertible residue class a modulo q:∣∣∣∣ψ̃(x; q, a)− log x

ϕ(q)
−C(q, a)−

ψ(x; q, a)− x
ϕ(q)

x

∣∣∣∣ ≤ ∫ (1+κ)x

x

∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣dy
y2

+
U(q,H)√

x
+
V (q, x)

x
+
e−H/(4(1+κ

−1))

H2
(1 + x−1/2)W (q,H, κ)

where

U(q,H) =
1

ϕ(q)

∑
χmod q

∑
ρ∈Z(χ),
|γ|≤H

1/|ρ(1− ρ)|, (4)

V (q, x) =

∑
d|q
∑

χmod ∗d |b(χ)|
ϕ(q)

+ (1 + log x)(1 + f(q)) +
5

4
(5)

W (q, x, κ) =
√
κ+ 1

(1.81

κ
log

qH

2πe
+ 4.41 log(qH) + 10.6

)
, (6)

and

f(q) =
∑
p|q

1

p− 1
. (7)
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We assume H/(4(1 +κ−1)) to be an integer to simplify the computations
and avoid some integer parts. In [27] we investigated this line of approach,
and obtained a first inequality, via an analog of Lemma 3.1 below. See
also [41] (this is [42, chapter 4]) for some corrections and an improved error
term. Since a partial Riemann Hypothesis has been satisfied to a very large
height, this led to efficient estimates. Roughly speaking, up to the present
paper, verifying the Riemann Hypothesis up to height H enabled to majorize
the relative error term between the one of ψ̃(x) − log x + γ and the one of
(ψ(y) − y)/y by O(1/H). The proof we present below leads to the bound
O(e−cH) (for any constant c < 1/4).

Numerically, the first named author has checked GRH in [7] for every

primitive character to modulus q ≤ 400 000 to height max
(

108

q
, A·10

7

q
+ 200

)
with A = 7.5 in the case of even characters and A = 3.75 for odd characters.
This improves on the earlier works [5] and [36]. Two main factors contribute
to this improvement: the use of new algorithms that exploit the efficiency of
Fast Fourier transforms to reduce the running time in its q-dependence from
O(q2) to O(q log q), and the availability of more modern hardware. These
computations were carried using interval arithmetic.

We readily see that U(q,H) = O(log2 q) while an individual explicit upper
bound of the shape |b(χ)| = O(log2 q), when χ is non exceptional, is provided
by (30). The quantity that appear is however the average of these values.
We state in a theorem our numerical finding.

Theorem 1.3. For every q ≤ 104, we have

V ]
2 (q) =

1

ϕ∗(q)

∑
χmod∗q

∣∣∣b(χ) + log
q

2π
− γ
∣∣∣2

=
1

ϕ∗(q)

∑
χmod∗q

∣∣∣L′
L

(1, χ)
∣∣∣2 ≤∑

n≥1

Λ(n)2

n2
.

The constant
∑

n≥1 Λ(n)2/n2 = 0.805 · · · has been guessed by the numer-
ics and is shown to be relevant by the following theorem.

Theorem 1.4. We have

1

ϕ∗(q)

∑
χmod∗q

∣∣∣∣L′L (1, χ)

∣∣∣∣2 =
∑
n≥1

Λ(n)2

n2
−
∑
p|q

log2 p

h(p, q)
+O(q−1/10)

where h(p, q) = (p− 1)2 when p2|q and h(p, q) = p2 − 1 otherwise.

5



0 50000 100000

Modulus q

0

0.25

0.5

0.75

V
♯ 2
(q
)

Figure 1: V ]
2 (q) vs. q

This is in this case a q-equivalent of the Plancherel formula for Mellin
transforms. We did not try to get the best exponent in the error term, but
just ensured that it was a negative power of q. Numerically however, it
seems that this error term is non-positive; if this fact is a consequence of
our Theorem when q has some prime factor ≤ q1/20 and is large enough,
it is surprising in general and calls for some explanation that we failed to
uncover. (We in fact checked this fact, but with lesser numerical accuracy
for all moduli up to 105). This paper took quite some time to be put together,
and we mention that in between, Sumaia Saad Eddin [11] proved that the
values (|L′/L|(1, χ))χmod∗q have a distribution when q ranges the primes.

Numerical computations give us the following for U(q,H) (the average
over every characters) and U∗(q,H) (same quantity as for U(q,H), but av-
eraged over primitive characters, see (1.6)).

Theorem 1.5. For q ∈ [1, 104], we have

U(q, 200) < 0.736 log q.

In particular, for q ≤ 104 we have U(q, 200) < 6.772.

Theorem 1.6. For q ∈ [3, 104], we have

U∗(q, 200) =
1

ϕ∗(q)

∑
χmod∗q

∑
ρ∈Z(χ),
|γ|≤200

1/|ρ(1− ρ)| < 0.737 log q.

In particular, for q ≤ 104 we have U∗(q, 200) < 6.773.
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Figure 3: U(q, 200)/ log q vs. q

The computation of U and U∗ were implemented in C++ using interval
arithmetic. The positions of the zeros, accurate to more than 100 bits, were
computed rigorously using the algorithms described in [7].

A straight forward computation shows that for q ≤ 104 we have the
inequality V (q, 104)/100 ≤ 0.277 (with the maximum at q = 213) so for all
q ≤ 104 ≤ x we have

U(q,H) +
V (q, x)√

x
≤ 7.049,

e−H/(4(1+κ
−1))

H2
W (q,H, κ) ≤ 8 · 10−12
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with H = 200 and κ = 2/3. Hence the corollary to Theorem 1.2:

Theorem 1.7. For every q ≤ 104 ≤ x, we have∣∣∣∣ψ̃(x; q, a)− log x

ϕ(q)
− C(q, a)−

ψ(x; q, a)− x
ϕ(q)

x

∣∣∣∣
≤
∫ 5x/3

x

∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣dy
y2

+ 7.05x−1/2 + 8 · 10−12.

This result is ready for use. Here are three comments:

1. Relative strength. The next step is to introduce bounds for ψ(y; q, a)−
y

ϕ(q)
and derive estimates for R̃(x; q, a) = ψ̃(x; q, a)− log x

ϕ(q)
−C(q, a). As

a comparison, [26, Corollary 4] shows that |R̃(x; q, a)| ≤ 2/9 for some
moduli q and x large enough (in this result x ≥ 182); the summand
8 · 10−12 is largely negligible when we compare to such a bound.

2. Incorporating bounds for ψ(y; q, a) − y
ϕ(q)

. Theorem 1.7 will re-

main valid and be usable even if the bounds on ψ(y; q, a)− y
ϕ(q)

improve.
There exists explicit bounds for primes in arithmetic progressions in
the litterature, for instance in [31] or [5]. However first the number of
moduli covered is much smaller than what is possible by combining [31]
together with [7], and secondly, we know by private communications
that several explicit bounds for ψ(y; q, a)− y

ϕ(q)
are in preparation but

not quite ready.
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3. Completing the bounds. Bounds for ψ(x; q, a) − x
ϕ(q)

will be used

for x somewhat large (say greater than 105) to avoid some initial noise
and should thus be completed for a better usability. [26, Theorem
2] gives bounds for |ψ̃(x; q, a) − log x

ϕ(q)
− C(q, a)| when x ≤ 105 and q

belonging to Rumely’s list. It is not straightforward to calculate the
constants C(q, a), and since we have the machinery ready, we complete
these computations with Theorem 8.1 below.

Notation

Our set of notation is essentially standard. We use 1q=1 to denote the function
that takes value 1 at q = 1 and 0 otherwise (sometimes called the Dirac
symbol at q = 1). We use also the natural extension of the already used
definitions:

ψ̃(x, χ) =
∑
n≤x

Λ(n)χ(n)/n. (8)

By F (x) = O∗(G(x)) we mean |F (x)| ≤ G(x). Usually s = σ + it but for
a zero of an L-function we use ρ = β + iγ. In this case γ is not the Euler
constant, though this constant is also denoted by γ. We further will use some
γ(χ). Finally d‖q means that d divides q in such a way that d and q/d are
coprime.
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2 An explicit formula for an integrated form

of ψ(x, χ)

We first need to adapt [32, Lemma 4] to the case of Dirichlet character. Let
χ be a primitive character modulo q. Let a = (1 + χ(−1))/2. The same
parameter appears in [8, Chapter 19, (4)] and equals 1 − d, where d is the
parameter of [14]. The notation b(χ) specified in (3) is the same as the
one used in [21, Section 3], while it is −B(χ) in [14]. We shall bundle the
contribution of the trivial zeros with the help of a simple function:

Ω(t, χ) =


1
2

log t−1
t+1

when a = 0,

log t+ 1
2

log(1− t−2) when a = 1 and q > 1,
1
2

log(1− t−2) when q = 1.

(9)

(See [14, (2.6) and (4.5)])

Lemma 2.1. Let g be a continuously differentiable function on [a, b] with 2 ≤
a ≤ b < +∞. Let χ be a primitive character modulo q. Let a = (1+χ(−1))/2
and b(χ) and Ω(t, χ) be defined as above. We have∫ b

a

ψ(t, χ)g(t)dt = 1q=1

∫ b

a

tg(t)dt−
∑
ρ

∫ b

a

tρ

ρ
g(t)dt

−
∫ b

a

(
b(χ) + Ω(t, χ)

)
g(t)dt.

where ρ ranges the zeros of L(s, χ) in the critical strip (i.e. with <ρ ∈ (0, 1))

Proof. The proof follows strictly the one of [32, Lemma 4]. It is enough to
prove this lemma when no integer lies between a and b, a hypothesis we shall
henceforth make. We recall that for a < y < b and T > 2,

ψ(y, χ) = 1q=1y −
∑
ρ

|γ| ≤ T

yρ

ρ
− b(χ)− Ω(y, χ) (10)

+O
(
y log2 yT

T
+

y log y

< y > T

)
,
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where < y >= min(y − a, b − y) (see [8, Chapter 17, (9)–(10)] when q = 1
and [8, Chapter 19, (2)–(3)] when q > 1). Note that the formula [32, (5)]
has a wrong sign in front of log 2π. Formula (10) is valid as such because y is
not an integer in this range and the reader should consult [8] to extend the
result in this case. The remainder of the proof is then straighforward, and is
for instance detailled in [32, Proof of Lemma 4].

Lemma 2.2. When t ≥ 1.84 we have |Ω(t, χ)| ≤ log t.

Proof. When a = 0, we have to check that

1
2

log
t− 1

t+ 1

?

≥ − log t

i.e. t2(t − 1) ≥ t + 1 whose largest (and only) real root is ≤ 1.84. When
a = 1, we see that the only inequality that is not obvious is

−1
2

log(1− t−2)
?

≤ 2 log t.

It is satisfied when t4 − t2 ≥ 1, i.e. when t ≥
√

(1 +
√

5)/2.

3 A first formula linking ψ̃(x, χ) and ψ(x, χ)

Our first step is the following lemma:

Lemma 3.1. Let χ be a primitive character modulo q. We have, for x ≥ 1:

ψ̃(x, χ) = 1q=1 log x− γ(χ) +
ψ(x, χ)− 1q=1x

x
+
∑
ρ

xρ−1

ρ(ρ− 1)
+
B(x, χ)

x
.

where the sum is over the zeros ρ of L(s, χ) that lie in the critical strip
0 < <s < 1 (the so-called non trivial zeros), γ(χ) is the constant defined by

γ(χ) = 1q=1 −
∫ ∞
1

(ψ(t, χ)− 1q=1t)
dt

t2

and B(x, χ) is the bounded function given by

B(x, χ) = x

∫ ∞
x

(b(χ) + Ω(t, χ))
dt

t2
.

The main feature of the lemma is that the sum over the zeros is uniformly
convergent, a feature not shared by the explicit formulaes for ψ(x, χ) or for
ψ̃(x, χ) (see (10) for instance). In fact, the main difficulty in carried by the
term (ψ(x, χ)− x)/x. Note that γ(1) = γ, while, when q > 1, we have

γ(χ) = L′(1, χ)/L(1, χ).
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Proof. We simply proceed by integration by parts:

ψ̃(x, χ) =

∫ x

1

ψ(t, χ)
dt

t2
+
ψ(x, χ)

x

= 1q=1 log x− γ(χ) +

∫ ∞
x

(ψ(t, χ)− 1q=1t)
dt

t2
+
ψ(x, χ)− 1q=1x

x
.

Note that the existence of the integral requires a strong enough form of the
approximation of ψ(t, χ) by 1q=1t. Next we apply the explicit formula given
in Lemma 2.1 and get∫ Y

x

(ψ(t, χ)− 1q=1t)
dt

t2
= −

∑
ρ

∫ Y

x

tρ−2dt

ρ
+

∫ Y

x

(b(χ) + Ω(t, χ))
dt

t2

= −
∑
ρ

Y ρ−1 − xρ−1

ρ(ρ− 1)
+

∫ Y

x

(b(χ) + Ω(t, χ))
dt

t2
.

Since (1) is known to hold, and
∑

ρ 1/|ρ(ρ − 1)| is convergent, we can send
Y to infinity and get∫ ∞

x

(ψ(t)− 1q=1t)
dt

t2
=
∑
ρ

xρ−1

ρ(ρ− 1)
+

∫ ∞
x

(b(χ) + Ω(t, χ))
dt

t2
.

4 Integration of ψ(x, χ) against a well-chosen

kernel

We will need in next section to choose a proper kernel. We rely on [32] where
a similar question has been addressed. We define, for any integer m ≥ 1, the
function

fm(t) = max
(
0, (4t(1− t))m

)
. (11)

The function fm satisfies

f (k)
m (0) = f (k)

m (1) = 0 (0 ≤ k ≤ m− 1). (12)

We recall part of [32, Lemma 6]

Lemma 4.1.

‖fm‖1 =
22mm!2

(2m+ 1)!
, ‖f (m)

m ‖2 = 22m m!√
2m+ 1

, (13)

‖f (m)
m ‖2/‖fm‖1 =

(2m+ 1)!

m!
√

2m+ 1
≤
√

4m+ 2 e
1

24m (4m/e)m. (14)
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From fm and another real parameter κ > 0, we define

gm(t, κ) =


1 when 0 < t ≤ 1,

1− ‖fm‖−11

∫ (t−1)/κ
0

fm(u)du when 1 ≤ t ≤ 1 + κ,

0 when t ≥ 1 + κ.

(15)

Note that the function gm satisfies 0 ≤ gm(t, κ) ≤ 1.

Lemma 4.2. We have∫ ∞
x

ψ(t, χ)− 1q=1t

t2
gm(t/x, κ)dt =

∑
ρ

xρ−1

ρ(ρ− 1)
−
∑
ρ

xρ−1cm(κ, ρ)

ρ(ρ− 1)

+

∫ ∞
x

(
b(χ) + Ω(t, χ)

)gm(t/x, κ)

t2
dt.

for some coefficients cm(κ, ρ) that satisfy

|cm(κ, ρ)| ≤ 1, |cm(κ, ρ)| ≤ ‖f (m)
m ‖2/‖fm‖1

|ρ(ρ+ 1) · · · (ρ+m− 1)|κm

√
(κ+ 1)2m+1 − 1

2m+ 1
.

We also have

|cm(κ, ρ)| ≤ e
1

24m

√
2κ+ 2

(4(1 + κ−1)m

e |ρ|

)m
. (16)

Furthermore, the proof shows that

cm(κ, ρ) =
1

‖fm‖1

∫ 1

0

(1 + κu)ρ−1fm(u)du. (17)

Proof. Lemma 2.1 is ready to be used in this context. We readily compute:∫ ∞
x

tρ−2gm(t/x, κ)dt = xρ−1
∫ ∞
1

tρ−2gm(t, κ)dt

=
xρ−1

ρ− 1
− 1

‖fm‖1κ(ρ− 1)

∫ 1+κ

1

tρ−1fm((t− 1)/κ)dt.

Repeated integration by parts on the last summand shows this one to be
equal to

1

‖fm‖1κk+1(ρ− 1) · · · (ρ+ k − 1)

∫ 1+κ

1

tρ+k−1f (k)
m ((t− 1)/κ)dt

for any integer k ≤ m (check by recursion on k).
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5 A second formula linking ψ̃(x, χ) and ψ(x, χ);

proof of Theorem 1.1

On joining Lemma 3.1 together with Lemma 4.2, we reach our fundamental
formula, namely

ψ̃(x, χ) = 1q=1 log x− γ(χ)

+
ψ(x, χ)− 1q=1x

x
+

∫ ∞
x

ψ(t, χ)− 1q=1t

t2
gm(t/x, κ)dt

+
∑
ρ

xρ−1cm(κ, ρ)

ρ(ρ− 1)
+

∫ ∞
x

(
b(χ) + Ω(t, χ)

)(1− gm(t/x, κ))

t2
dt.

(18)

Let us explain this formula: the first line contains what we want. The second
line is a part of the error term that is controlled directly by |ψ(t, χ)− 1q=1t|
for t ∈ [x, (1 + κ)x] since gm is bounded by 1. If the formula ended here,
we would have proven our conjecture. The third line however appears, in
which the second summand is readily seen to be � (log x)/x. The last
summand is the most important; the success of this formula relies on the
fact that this sum is extremely well-behaved. Indeed, when |ρ| ≥ T and

typically κ = 1, and on using (16), it is � log(qT )
mT

(8m/(eT ))m. If we take
m = log x + O(1) and T = 8m, this contribution is thus O(x−0.6). This
means that only the very first zeros contribute, and indeed the ones of height
≤ 8 log x + O(1). For these zeros, we use |cm(κ, ρ)| ≤ 1. Asymptotically,
the zero-free region ensures us that the contribution is thus bounded upto
a multiplicative constant by exp(−c(log x)/ log(q log x)) for some positive
constant c. This is not as good as the (log x)/

√
x of our conjecture, but it

is still much better than the error term one can get for ψ̃(x, χ) with such a
zero-free region. This means that the second line really controls the error
term.

6 From ψ̃(x; q, a) to ψ̃(x, χ) for primitive χ

We rely on [31, Section 4.3]. When χ is a character modulo q, we denote by
χ1 its associated primitive character. We define

wq(n, a) =
1

ϕ(q)

∑
χmod q

χ1(n)χ(a). (19)

14



It is proved in [31, Section 4.3] (the proof is easy) that, if K is the largest
divisor of q coprime to n, we have

wq(n, a) =

{
ϕ(K)/ϕ(q) when n ≡ a mod K

0 otherwise.
(20)

We consider

ψ̃∗(x; q, a) =
∑
n≤x

wq(n, a)Λ(n)/n, ψ∗(x; q, a) =
∑
n≤x

wq(n, a)Λ(n). (21)

The paper [31] contains also, next to equation (4.3.1) the inequality (recall
(7))

ψ∗(x; q, a) = ψ(x; q, a) +O∗(f(q) log x).

In the next lemma, we need only to register the existence of the constant
C(q, a), but we take the opportunity to explicitate it here. We define νp(q)
to be the p-adic valuation of q, so that pνp(q)|q and p is coprime to q/pνp(q). We
define $(p, a, q) to be the smallest positive integer ` such that p` ≡ a[q/pνp(q)]
and ∞ if no such ` exists. We define finally

C0(q, a) =
∑
p|q

p1+$(p,1,q) log p

(p− 1)(p$(p,1,q) − 1)pνp(q)+$(p,a,q)
. (22)

Lemma 6.1. We have, when x ≥ 1,

ψ̃(x; q, a) = ψ̃∗(x; q, a)− C0(q, a) +O∗(5
4
/x).

Proof. Indeed, we find that

ψ̃∗(x; q, a) = ψ̃(x; q, a) +
∑
p|q

1

(p− 1)pνp(q)−1

∑
`≥1,p`≤x,

p`≡a[q/pνp(q)]

log p

p`

= ψ̃(x; q, a) +
∑
p|q

1

(p− 1)pνp(q)−1

∑
`≥1,

p`≡a[q/pνp(q)]

log p

p`

+O∗
(∑

p|q

log p

(p− 1)2pνp(q)−1
/x

)
.

After some easy work, the reader will recover (22). Concerning the remainder
term, we note that ∑

p≥2

log p

(p− 1)2
≤ 1.23 ≤ 5/4.
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On using (19), we readily derive from (18) the following formula

ψ̃∗(x; q, a) =
log x

ϕ(q)
+ C∗(q, a)

+
ψ∗(x; q, a)− x

ϕ(q)

x
+

∫ ∞
x

ψ∗(t; q, a)− t
ϕ(q)

t2
gm(t/x, κ)dt

+
1

ϕ(q)

∑
d|q

∑
χmod∗d

χ(a)
∑
ρ∈Z(χ)

xρ−1cm(κ, ρ)

ρ(ρ− 1)

+
1

ϕ(q)

∑
d|q

∑
χmod∗d

χ(a)

∫ ∞
x

(
b(χ) + Ω(t, χ)

)(1− gm(t/x, κ))

t2
dt.

(23)

where

C∗(q, a) =
−γ
ϕ(q)

− 1

ϕ(q)

∑
d|q,
d>1

∑
χmod∗d

χ(a)
L′

L
(1, χ) (24)

The reader will easily check that f(q) is at most of order log log log(100q).
We replace ψ̃∗ by ψ̃ at the cost of a modification of the constant and a
O∗(5

4
/x). We replace ψ∗(x; q, a) by ψ(x; q, a) at a cost of O∗(f(q)(log x)/x)

and ψ∗(t; q, a) by ψ(t; q, a) at a cost of O∗(f(q)(1 + log x)/x). We appeal to
Lemma 2.2 and get that the last summand is, in absolute value,

≤ 1

ϕ(q)x

∑
d|q

∑
χmod∗d

|b(χ)|+ 1 + log x

x
.

After some straightforward manipulations, we reach

ψ̃(x; q, a) =
log x

ϕ(q)
+ C(q, a)

+
ψ(x; q, a)− x

ϕ(q)

x
+

∫ ∞
x

ψ(t; q, a)− t
ϕ(q)

t2
gm(t/x, κ)dt

+
1

ϕ(q)

∑
d|q

∑
χmod∗d

χ(a)
∑
ρ∈Z(χ)

xρ−1cm(κ, ρ)

ρ(ρ− 1)

+O∗
(∑

d|q
∑

χmod∗d |b(χ)|
ϕ(q)x

+
1 + 2 log x

x
(1 + f(q)) +

5/4

x

)
.

(25)

where (see (22) and (24))

C(q, a) = −C0(q, a) + C∗(q, a). (26)
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7 On the constants b(χ)

On reading the proof of [21, Lemma 3.5] and more precisely the equality
before (3.16), we see that we have, when χ is primitive (i.e. equals χ1 in the
notation of [21])

|b(χ)| ≤
∣∣∣∣ζ ′ζ (2)

∣∣∣∣+ a +
∑
ρ∈Z(χ)

2

ρ(2− ρ)
. (27)

We read [21, Top of page 275] and find, that, when χ is not exceptional (for
otherwise there may be a zero close to 1 and by symmetry – since this would
correspond to a real character – a zero close to 0), we have

|b(χ)| ≤ 0.57 + 1 + 11(π−1 + C1) log2 q + 11(C2 − π−1 log(2πe)) log q

+ (4π−1 + 2C1) log q − 4π−1 log(2π) + C1 + 2C2 (28)

where we can take C1 = 0.9185 and C2 = 5.512 as in [31, Lemma 4.1.1] (be
careful to the change of notation between both papers!). As a consequence,
we find that

|b(χ)| ≤ 6 + 54 log q + 14 log2 q (χ not exceptional.) (29)

This bound can be improved in several ways, for instance on invoking the
improved zero-free region for L-function proved in [16] (see also [17]). This
result is heavily influenced by the small zeros for which a better result may be
known. Furthermore, and since we only need to bound the average

∑
χ |b(χ)|,

several other tools could be used. We keep these improvements for a later
paper. On using [31, Lemma 4.1.4] together with (27), we infer that, when
L(s, χ) has no zeros on the critical strip of height ≤ 1 (in absolute value)
that are off the critical line (i.e. <s = 1/2), we have

|b(χ)| ≤ 14.3 + 3.94 log q (when L(s, χ) satisfies GRH(q,1))

By [7], this condition is known to hold for every character to any modulus
≤ 4 · 105; we combine both estimates to get

|b(χ)| ≤ 14 + 19 log2 q (χ not exceptional.) (30)

Note again that [7] demonstrates that there are no exceptional characters
when q ≤ 4 · 105.
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8 On the constants b(χ) and C(q, a), II

Our first task here is to express b(χ) in terms of values at s = 1, when q 6= 1.
This is achieved in the next lemma.

Lemma 8.1. For a primitive non-principal Dirichlet character χ, we have

b(χ) = − log
q

2π
+ γ − L′

L
(1, χ).

Proof. We consider the completed L-series defined by

Φ(s, χ) = (q/π)(s+a)/2Γ

(
s+ a

2

)
L(s, χ) (31)

where a = (1− χ(−1))/2. Its logarithmic derivative is given by

Φ′(s, χ)

Φ(s, χ)
= 1

2
log

q

π
+

Γ′

2Γ

(
s+ a

2

)
+
L′

L
(s, χ). (32)

When a = 1, the functional equation at s = 0 gives us

1
2

log
q

π
+

Γ′

2Γ
(1/2) +

L′

L
(0, χ) + b(χ) = −1

2
log

q

π
− Γ′

2Γ
(1)− L′

L
(1, χ) (33)

Thus, on recalling the special values of the digamma function z = Γ′/Γ (see
[1, (6.3.1)]):

z(1) = −γ, z(1/2) = −γ − 2 log 2, (34)

we find that

b(χ) = − log
q

2π
+ γ − L′

L
(1, χ) (a = 1). (35)

When a = 0, the functional equation at s = 0 gives us

1
2

log
q

π
+ lim

s→0

(
Γ′

2Γ
(s/2) +

1

s

)
+ b(χ) = −1

2
log

q

π
− Γ′

2Γ
(1/2)− L′

L
(1, χ).

Note that, by Γ(z + 1) = zΓ(z), we find that

z(s/2) +
2

s
= z(1 + (s/2)) (36)

and thus

b(χ) = − log
q

2π
+ γ − L′

L
(1, χ) (a = 0) (37)

as desired.

18



Lemma 8.2. We have

C(q, a) = −C0(q, a)− γ

ϕ(q)
+

1

ϕ(q)

∑
d|q,
d>1

∑
χ mod∗ d

χ(a)
(
b(χ) + log

d

2π
− γ
)
.

Appealing to Lemma 8.2, we can now examine computationally

max
q≤Q

max
q≤x≤X

max
a mod∗ q

√
x

∣∣∣∣ψ̃(x; q, a)− log x

ϕ(q)
− C(q, a)

∣∣∣∣ .
Theorem 8.1. Let X = 105 and Q = 103. Then

max
q≤Q

max
q≤x≤X

max
a mod∗ q

√
x

∣∣∣∣ψ̃(x; q, a)− log x

ϕ(q)
− C(q, a)

∣∣∣∣ ∈ (0.8533, 0.8534)

and the maximum is attained with q = 17, x = 606 and a = 12.

0 5000 10000

Modulus q

0.2

0.4

0.6

0.8

se
e
te
x
t

Figure 6: max
q≤x≤105

max
a mod∗ q

√
x
∣∣∣ψ̃(x; q, a)− x

ϕ(q)
− C(q, a)

∣∣∣ vs. q

9 The sum over the zeros; proof of Theo-

rems 1.2 and 1.1

We recall the following lemma of [21] in the notation of [31, Lemma 4.1.1].
See also [40].

19



Lemma 9.1 (McCurley). If χ is a Dirichlet character of conductor q, if
T ≥ 1 is a real number, and if N(T, χ) denotes the number of zeros β + iγ
of L(s, χ) in the rectangle 0 < β < 1, |γ| ≤ T , then∣∣∣N(T, χ)− T

π
log

(
qT

2πe

)∣∣∣ ≤ C2 log(qT ) + C3

with C2 = 0.9185 and C3 = 5.512.

Once again, the reader should be wary of the change of indexes in C1, C2

and C3 between [21] and [31].

Proof of Theorem 1.2. We first note that the quantities we are interested
(namely ψ̃(x; q, a)) are real numbers. We can thus replace the sum over the
zeros by

Jm(χ, x) =
1

2

 ∑
ρ∈Z(χ)

xρ−1cm(κ, ρ)

ρ(ρ− 1)
+
∑
ρ∈Z(χ)

xρ−1cm(κ, ρ)

ρ(ρ− 1)

 .

The advantage is the symmetry that results from the following remark: when
ρ ∈ Z(χ), then 1−ρ ∈ Z(χ). We continue by assuming that every non-trivial
zero ρ = β + iγ of L(s, χ) of imaginary part γ not more than H in absolute
value lies on the line <s = 1/2. We get

|Jm(χ, x)| ≤ 1

2

 ∑
ρ∈Z(χ),
|γ|≤H

2x−1/2|cm(κ, ρ)|
|ρ(1− ρ)|

+
∑

ρ∈Z(χ),
|γ|>H

(x−1/2 + 1)|cm(κ, ρ)|
|ρ(1− ρ)|


since one of xβ−1 or x−β is not more than x−1/2. We use |cm(κ, ρ)| ≤ 1 for
the first sum, getting a contribution that adds up, when summing over all
characters, to ϕ(q)U(q,H). We use (16) to bound |cm(κ, ρ)| in the second
summand, together with Lemma 9.1 to write:∑

ρ∈Z(χ),
|γ|>H

1

|γ|m+2
≤(m+ 2)

∫ ∞
H

(N(t, χ)−N(H,χ))
dt

tm+3

≤−
log
(
qH
2πe

)
πHm+1

+
C2 log(qH) + C3

Hm+2

+ (m+ 2)

∫ ∞
H

( t
π

log

(
qt

2πe

)
+ C2 log(qt) + C3

) dt

tm+3
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After some integration by parts and some shuffling, we reach the upper bound

log
(
qH
2πe

)
(m+ 1)πHm+1

+
2C2 log(qH) + 2C3 + C2 + m+2

π(m+1)2

Hm+2
.

As a consequence, we find that, under GRH(q,H), we have

1

ϕ(q)

∑
χmod q

|Jm(χ, x)| ≤ U(q,H)√
x

+ e
1

24m

√
2κ+ 2

H2

(
4(1 + κ−1)m

eH

)m

× (1 + x−1/2)

(
H log

(
qH
2πe

)
(m+ 1)π

+ 2C2 log(qH) + 2C3 + C2 +
m+ 2

π(m+ 1)2

)
.

We select
m = H/(4(1 + κ−1)) ≥ 10. (38)

The Theorem follows readily.

Proof of Theorem 1.1. We follow the above scheme but we have to bound∑
|γ|≤H

xβ

|ρ(1− ρ)|

differently. We select H = log x+O(1) in such a way that the parameter m
defined by (38) is an integer greater than 10. When there is no exceptional
zero, we use the zero-free region for L(s, χ) to write

xβ ≤ exp
−c log x

log(qH + 10)

for some positive constant c. The sum over the zeros is at most O((log q)2).
Hence Theorem 1.1 in this case (with a different contant c to take care of
the sum over the zeros). If there is an exceptional zero, the contribution of
the other zeros can still be evaluated in the same fashion, but we do have to
take the contribution of this zero into account. From (17), we see that when
ρ = β is close to 1, cm(κ, ρ) is also close to 1: this contribution should simply
be incorporated into the main term to get the same error term.

10 Proof of Theorem 1.4

We have split the proof in several lemmas.
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10.1 Some technical steps

Lemma 10.1. When 1 ≤ X, q, we have∑
q<p

log p

p
e−p/X � X log q

q
e−q/X

Proof. We simply write∑
q<p

log p

p
e−p/X � log q

q
e−q/X

∑
k≥0

e−k/X � X log q

q
e−q/X .

Lemma 10.2. Let Y > 0. We have∑
1≤n

Λ(n)

n
e−n/Y � log(2 + Y ).

Proof. We use an integration by parts∑
n≥1

Λ(n)

n
e−n/Y =

∑
n≥1

Λ(n)

n

1

Y

∫ ∞
n

e−t/Y dt =
1

Y

∫ ∞
1

∑
n≤t

Λ(n)

n
e−t/Y dt

� 1

Y

∫ ∞
1

(log t)e−t/Y dt =

∫ ∞
1/Y

log(uY )e−udu

�
[
− log(uY )e−u

]∞
1/Y

+

∫ ∞
1/Y

e−u
du

u
.

When 1/Y ≥ 1, we forget the 1/u, while, when 1/Y < 1, we separate the
integration from 1/Y to 1, which we bound above by log Y , and integration
from 1 to∞, which we bound above by 1. The total contribution is O(log(2+
Y ).

Lemma 10.3. Let Q and X be two real parameters larger than 1. We have∑
1≤n,
p≥2

Λ(n)

n

∑
k≥2,
pk≥Q

log p

pk
e−np

k/X � e−Q/X log(2X)/
√
Q.

Proof. Indeed, when n and p are fixed, we bound above e−np
k/X by e−nQ/X .

Further, let k0 be the first integer larger than 2 such that pk0 ≥ Q. The
remaining sum over k is 1

pk0 (1− 1
p
)

which is ≤ 2/max(Q, p2). Next we use

∑
p≥2

log p

max(Q, p2)
=
∑
p≤
√
Q

log p

Q
+
∑
p>
√
Q

log p

p2
� 1√

Q
.
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Concerning the summation upon n, we use Lemma 10.2. The lemma follows
readily.

Lemma 10.4. When 1 ≤ X, q, we have∑
1≤n<p,
p≡n[q]

Λ(n)

n

log p

p
e−np/X � (log q)2

ϕ(q)
.

The summation above carries over both n and p.

Proof. We separate the treatment according to whether p < n + 2q (i.e.
p = n + q) or not. In the second case, we notice when n is fixed, with
Y = X/n and on using the Brun-Titchmarsh Theorem, that∑

n+2q≤p,
p≡n[q]

log p

p
e−p/Y �

∫ ∞
n+2q

∑
p≤t,
p≡n[q]

log p
(e−t/Y
Y t

+
e−t/Y

t2

)
dt

�
∫ ∞
n+2q

t log t

ϕ(q) log(t/q)

(e−t/Y
Y t

+
e−t/Y

t2

)
dt

� log(n+ 2q)

ϕ(q) log(2 + (n/q))

∫ ∞
n+2q

( 1

Y
+

1

t

)
e−t/Y dt

� log(n+ 2q)

ϕ(q) log(2 + (n/q))

∫ ∞
(n+2q)/Y

(
1 +

1

x

)
e−xdx

and, on recalling the value of Y , this quantity is finally majorized up to a
multiplicative constant by

log q

ϕ(q)

(
1 +

X

n(n+ q)

)
e−nq/X � log q

ϕ(q)

(
1 +

X

nq

)
e−nq/X . (39)

For the summation over n, and as far as the first summand of 1 +X/(nq) is
concerned, we employ Lemma 10.2 getting O((log q)(logX)/ϕ(q)). When it
comes to the second summand we discuss according to whether n > X/q or
not. When n ≤ X/q, the contribution is

� log q

ϕ(q)

∑
n≥1

Λ(n)

n2

X

q
e−X/q � log q

ϕ(q)
.

When n > X/q, the contribution is

� log q

ϕ(q)

q

X

∫ ∞
X/q

∑
X/q<n≤t

Λ(n)

n
e−qt/Xdt

� log q

ϕ(q)

q

X

∫ ∞
X/q

(1 + log
t

X/q
)e−qt/Xdt� log q

ϕ(q)
.
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Let us now consider the case when p = n+ q. The contribution is

�
∑
n≥1

Λ(n) log(n+ q)

n(n+ q)
e−n(n+q)/X �

∑
n≤q

Λ(n) log q

nq
+
∑
n>q

Λ(n) log n

n2

� (log q)2

q
+

log q

q
.

We could use, in the first sum, the fact that n is a prime power such that
n + q is also a prime, but the saving would be irrelevant in our subsequent
application.

We follow the idea of [31, beginning of section 4.3] that dispenses with
the transition from characters to primitive ones.

Lemma 10.5. Let m and n be two positive integers. Let q(mn) be the largest
divisor of q that is prime to mn. We have

1

ϕ(q)

∑
f|q

∑
χmod∗f

χ(m)χ(n) =

{
ϕ(q(mn))
ϕ(q)

when m ≡ n[q(mn)],

0 otherwise.

Proof. We repeat the proof, as it is a two-liner: we simply have that∑
f|q

∑
χmod∗f

χ(m)χ(n) =
∑

f|q(mn)

∑
χmod∗f

χ(m)χ(n)

=
∑

χmod q(mn)

χ(m)χ(n)

as required.

10.2 Analytical material

We start with a classical lemma. Its proof and statement has taken some
years to find a proper shape. One can find traces of it in [19] of Landau,
between equations (92) and (93), see the definition of F . It will evolve until
[20, Lemma 1] to yield a bound on ζ ′/ζ(s) next to the line <s = 1. At the
time, Gronwall and Landau were improving each other’s bound. See also [39,
section 3.9, Lemma α].

Lemma 10.6. Let M be an upper bound for the holomorphic function F in
|s− s0| ≤ R. Assume we know of a lower bound m > 0 for |F (s0)|. Then

F ′(s)

F (s)
=

∑
|ρ−s0|≤R/2

1

s− ρ
+O∗

(
16

log(M/m)

R

)
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for every s such that |s − s0| ≤ R/4 and where the summation variable ρ
ranges the zeros ρ of F in the region |ρ − s0| ≤ R/2, repeated according to
multiplicity.

Lemma 10.7. There is a constant c such that, for any non-principal char-
acter χ modulo q, we have

L′

L
(s, χ)� log q

provided that

<s ≥ 1− c

log q
, |t| ≤ q

except for at most one of them, which we call exceptional, and for which we
have L′

L
(s, χ)�ε q

ε in the above region.

We define, for a primitive character χ modulo q:

N(T, σ, χ) = #
{
ρ | L(ρ, χ) = 0, |=ρ| ≤ T, <ρ ≥ σ

}
. (40)

We recall another classical lemma from [12] (better results are available).

Lemma 10.8. We have, when σ > 4/5 and for any ε > 0,∑
f|q

∑
χmod∗f

N(T, χ, σ)�ε (qT )2(1−σ)+ε.

10.3 Proof of Theorem 1.4

Proof of Theorem 1.4. We consider the function

Gq(s) =
∑
f|q

∑
χmod∗f

L′

L
(s, χ)

L′

L
(s, χ) (41)

where χ ranges the primitive characters modulo f. When <s > 1, the series
converges absolutely. The proof relies on two distinct evaluations of the
quantity:

Sq(X) =
1

2iπ

∫ 2+i∞

2−i∞
Gq(s)X

s−1Γ(s− 1)ds (42)

where X ≥ 2 is a parameter at our disposal. We shall select X = q3/2 at the
end of the proof.

25



The first evaluation is elementary and relies on the Cahen-Mellin formula
e−y = 1

2iπ

∫ 2+i∞
2−i∞ y−sΓ(s)ds (valid for positive y). On using Lemma 10.5, we

readily find that

Sq(X) =
∑
m,n≥1,

m≡n[q(mn)]

ϕ(q(mn))
Λ(m)Λ(n)

mn
e−mn/X , (43)

which we decompose in Sq(X) = Dq(X) + 2S∗q (X), with

Dq(X) =
∑
m≥1

ϕ(q(m))
Λ(m)2

m2
e−m

2/X (44)

and

S∗q (X) =
∑

1≤n<m,
m≡n[q(mn)]

ϕ(q(mn))
Λ(m)Λ(n)

mn
e−mn/X . (45)

The study of S∗q (X) is tedious and is concluded at the level of inequali-
ties (46). We decompose S∗q (X) as follows:

S∗q (X) =
∑

1≤n<m≤q,
m≡n[q(mn)]

ϕ(q(mn))
Λ(m)Λ(n)

mn
e−mn/X

+
∑

1≤n<m,
m>q,

ω(m)≥2,
m≡n[q(mn)]

ϕ(q(mn))
Λ(m)Λ(n)

mn
e−mn/X

+
∑

1≤n<m,
m>q,

ω(m)=1,
m≡n[q(mn)]

ϕ(q(mn))
Λ(m)Λ(n)

mn
e−mn/X .

The second sum is dealt with by majorising ϕ(q(mn)) by ϕ(q), forgetting the
congruence condition and appealing to Lemma 10.3 with Q = q. In the third
one, m is prime to q (it is a prime number > q). Thus Lemma 10.4 takes care
of the n that are coprime with q; the joint contribution is O(ϕ(q)q−1/2 logX+
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(log q)2) which simplifies to O(ϕ(q)q−1/2 logX). Finally

S∗q (X) =
∑

1≤n<m≤q,
m≡n[q(mn)]

ϕ(q(mn))
Λ(m)Λ(n)

mn
e−mn/X

+
∑
pa‖q

ϕ(q)

pa−1(p− 1)

∑
k≥1

log p

pk

∑
1≤pk<m,
m>q,

ω(m)=1,

m≡pk[q/pa]

Λ(m)

m
e−mp

k/X .

+O
(
ϕ(q)q−1/2 logX

)
.

We can reuse (39) for the inner summation, of the second term above, with
q/pa instead of q. This shows that this sum is

�
∑
pa‖q

log q

pa−1(p− 1)

∑
k≥1

log p

pk

(
1 +

Xpa

qpk

)
e−p

k−aq/X

�
∑
pa‖q

log q

pa−1(p− 1)

log p

p

(
1 +

Xpa

q

)
� log q +

X log2 q

q
.

In the (temporary) main term of S∗q (X), at least one of m or n has a non-
trivial gcd with q. The contribution of m prime to q is, once n is fixed,

� log q
∑

1≤k≤q/q(n)

1

n+ kq(n)
� log2 q

q(n)
,

and thus S∗q (X) is equal to

∑
1≤n<m≤q,
m≡n[q(mn)],

(m,q)>1

ϕ(q(mn))
Λ(m)Λ(n)

mn
e−mn/X +O

(ϕ(q)

q1/2
logX + log3 q +

X

q
log2 q

)
.

We bound above the coefficient e−mn/X by 1 in the first sum. We next check
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that:∑
1≤n<m≤q,
m≡n[q(m)],

(m,q)>1,(n,q)=1

ϕ(q(m))
Λ(m)Λ(n)

mn
�
∑
pa‖q

ϕ(q) log p

pa−1(p− 1)

∑
k≥1,
pk≤q

∑
1≤n<pk,
m≡n[q/pa],
(n,q)=1

Λ(n)

npk

�
∑
pa‖q

ϕ(q) log p

pa−1(p− 1)

∑
k≥1,
pk≤q

∑
1≤n<pk,
m≡n[q/pa],
(n,q)=1

Λ(n)

n(n+ qp−a)

�
∑
pa‖q

ϕ(q) log p

qp−1(p− 1)

∑
k≥1,
pk≤q

∑
1≤n<pk

Λ(n)

n
� log2 q.

We are left with the contribution of n that have a non-trivial gcd with q. We
start with the case (m,n) = 1. We find that∑

pa1‖q,
pb2‖q,
p1 6=p2

ϕ(q) log p1 log p2

pa−11 pb−12 (p2 − 1)(p1 − 1)

∑
k≥1,
pk1≤q

∑
`≥1,
p`2≤q,

pk1≡p`2[qp
−a
1 p−b2 ]

1

p`2p
k
1

�
∑
pa1‖q,
pb2‖q,
p1 6=p2

ϕ(q) log p1 log p2

pa−11 pb−12 (p2 − 1)(p1 − 1)

∑
k≥1

∑
`≥1

p`2<p
k
1≤q,

pk1≡p`2[qp
−a
1 p−b2 ]

1

p`2qp
−a
1 p−b2

� (log q)3.

The contribution with p2 = p1 is even smaller. Thus

S∗q (X)� (log q)3 + qϕ(q)X−1 log q + ϕ(q)q−1/2 logX +Xq−1 log2X. (46)

With X = q3/2, we find that S∗q (q
3/2) � √q log2 q. The main term Dq(X),

with X = q3/2, is much easier to simplify:

Dq(X) =
∑
m≤√q

ϕ(q(m))
Λ(m)2

m2
e−m

2/X +O(ϕ(q)q−1/2)

=
∑
m≤√q

ϕ(q(m))
Λ(m)2

m2
+O(ϕ(q)q−1/2)

=
∑
m≥1

ϕ(q(m))
Λ(m)2

m2
+O(ϕ(q)q−1/2).

The second evaluation of Sq(X) is analytical and runs as follows.
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On selecting σ = 9/10, ε = 1/10 and T = q in Lemma 10.8, we see that
at most O(q3/5) characters modulo a divisor of q have a zero in the region

|=ρ| ≤ q, <ρ ≥ 9/10. (47)

We call these characters bad and the other set, the one of good characters.
We shift the line of integration in (42)

• To <s = 9/10 and |=s| ≤ q when χ belongs to the good set;

• To <s = 1− c/ log q and |=s| ≤ q when χ belongs to the bad set; Here
c is the constant from Lemma 10.7.

For a bad character, Lemma 10.7 gives the necessary material, even for the
exceptional one. For a good character, Lemma 10.6 gives us that

L′/L(s, χ)� log q (48)

when σ ≥ 9/10 and |t| ≤ q. A line shifting gives us that

S∗q (X) =
∑
1<f|q

∑
χmod∗f

∣∣∣∣L′L (1, χ)

∣∣∣∣2
+O

(
(logX)2 + q3/5 log2 q + ϕ(q)X−1/10(log q)2

)
. (49)

(The O((logX)2) comes from the principal character; the exponential de-
cay on the Γ-function in vertical strips ensures that the contribution of the
vertical segments is negligible).

We have reached∑
1<f|q

V [
2 (f) =

∑
m≥1

ϕ(q(m))
Λ(m)2

m2
+O(q17/20 log q).

and we reduce O(q17/20 log q) to O(q9/10) since we anyway did not try to
minimize the exponent of q. To ease typographical work, we momentarily
define

C0 =
∑
m≥1

Λ(m)2

m2
.

An easy discussion leads to∑
m≥1

ϕ(q(m))
Λ(m)2

m2
= ϕ(q)C0 − ϕ(q)

∑
pa‖q

(
1− 1

pa − pa−1

)
log2 p

p2 − 1

= ϕ(q)C0 − ϕ(q)
∑
pa‖q

pa − pa−1 − 1

pa − pa−1
log2 p

p2 − 1
.
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Moebius inversion formula gives us

V [
2 (q) = ϕ(q)∗C0 −

∑
f|q

µ(q/f)ϕ(f)
∑
pb‖f

pb − pb−1 − 1

pb − pb−1
log2 p

p2 − 1
.

= ϕ(q)∗C0 −
∑
pb|q

log2 p

p2 − 1

∑
pb‖f|q

µ(q/f)ϕ(f)
pb − pb−1 − 1

pb − pb−1
.

Concerning this last summand, we distinguish two cases according to whether
p2|q or not. Let a ≥ 1 be the power of p in q. When a = 1, we have forcibly
b = 1 above and the sum over f is∑

p|f|q

µ(q/f)ϕ(f/p)(p− 2) = (p− 2)ϕ∗(q/p) = ϕ∗(q).

When a ≥ 2, we have either b = a − 1 or b = a and writing f = pbf′ and
q = paq′, the sum over f is

−
∑
f′|q′

µ(q′/f′)ϕ(f′pa−1)
pa−1 − pa−2 − 1

pa−1 − pa−2
+
∑
f′|q′

µ(q′/f′)ϕ(f′pa)
pa − pa−1 − 1

pa − pa−1

= ϕ∗(q′)(pa − pa−2) = ϕ∗(q)
p2 − 1

(p− 1)2
= ϕ∗(q)

p+ 1

p− 1

since ϕ∗(pa) = pa−2(p− 1)2 as soon as a ≥ 2. Our result is proved.
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