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A note on additive properties of dense subsets of sifted sequences

O. Ramaré

Abstract

In this paper we show that if A is a subset of the primes with positive lower relative density δ
then A+A must have positive lower density at least C1δ/ log log(1/δ) in the natural numbers.
Our argument uses the techniques developed by the author and I.Ruzsa in their work on additive
properties of dense subsequences of sufficiently sifted sequences. The result is optimal and
improves on recent work of K.Chipeniuk & M.Hamel. We continue by proving several similar
results, by successively replacing the sequence of primes by the sequence of sums of two squares,
by the sequence of those integers n that are such that n and n+ 1 are both a sum of two
squares and finally by the sequence of primes p that are such that p+ 1 is a sum of two squares.
The second part of this paper contains a heuristical argument that leads to several conjectures
concerning the existence of k-term arithmetic progressions within these sequences. We conclude
with some conjectures belonging to the Ramsey part of additive number theory.

1. Introduction and some results

In recent years there has been much progress made towards understanding additive properties
of the primes. One of the first important structural result on the primes is due to Šnirel’man
[21], who showed that the primes is an asymptotic additive basis. In 1937 Vinogradov [23]
proved his celebrated Theorem stating that the order of this basis is not more than 4. More
recently, Sárkőzy [20] proved that every dense subsequence of the primes is also an asymptotic
additive basis. In 2001 and expanding on a previous work of the author [16], the author &
Ruzsa [18] obtained a wide generalization of this result as a well as optimal bounds concerning
the order of such sequences as asymptotic additive basis.

The strategy we have developed is to embed the primes in a ’weighted sifted’ sequence
where they have positive relative density and to adapt Šnirel’man’s approach in this setting.
The heuristic which we explain more fully in the next section is that ’weighted sifted’ sequences
behave like arithmetic progressions and should thus share their properties. This is the starting
point of [7] and [6]. Since the paper [18] has been recently overlooked, we complement it by
this note; no result is proved here that is not already contained in this previous paper, but this
different presentation as well as the heuristical approach proposed section 2 may be helpful.

We prove here that:

Theorem 1.1. Let A be a subset of the primes with positive relative lower density 1/k.
Then there exists an absolute constant C1 such that A+A has positive lower density at least
C1/[k log log(3k)] in the natural numbers.

We can replace in the above statement lower densities by upper densities. Indeed, the
proof goes by selecting a bound X up to which A ∩ [1, X], has enough elements and then
showing that the cardinality of (A+A) ∩ [1, X] is large enough. We can either assume that
the initial statement is valid for every X, or only for X belonging to some sequence. This
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improves on [20] who has the lower bound C1/k
4 and on [2] who has the lower bound

C1/[k exp(−C2(log k)2/3(log log k)1/3)]. It also improves on this latter work in that we only
need a lower density, and not a density, and the conclusion gives a lower density and not only
an upper one. Moreover our bound is optimal up to the constant C1, as shown by Sárkőzy [20].

Our method is extremely flexible and we prove also:

Theorem 1.2. Let A be a subset of the sums of two squares with positive relative lower
density 1/k. Then there exists an absolute constant C1 such that A+A has positive lower
density at least C1/[k

√
log log(3k)] in the natural numbers.

The example developed in [18] shows that this lower bound is optimal, again up to the
constant C1. The next two theorems deal with more difficult sequences.

Theorem 1.3. Let C be the sequence of those integers n that such that n and n+ 1 are
simultaneously a sum of two coprime squares. Let A be a subset of C with positive relative
lower density 1/k. Then there exists an absolute constant C1 such that A+A has positive
lower density at least C1/[k log log(3k)] in the natural numbers .

Theorem 1.4. Let D be the sequence of those primes p such that p+ 1 is a sum of
two coprime squares. Let A be a subset of D with positive relative lower density 1/k. Then
there exists an absolute constant C1 such that A+A has positive lower density at least
C1/[k(log log(3k))3/2] in the natural numbers.

The sequences C and D above are not known to have an asymptotic density, though they
are believed to possess one. We know however that (see [13] for the lower bound)∣∣{c ≤ X, c ∈ C}∣∣ � X/ logX

and that (see [14] for the lower bound)∣∣{d ≤ X, d ∈ D}∣∣ � X/(logX)3/2.

Both lower bounds are consequences of the sieve reversal process of Iwaniec, while both upper
bounds are consequences of the Selberg sieve, see [8] for instance.

2. A heuristical argument and conjectures

We first exhibit a majorant for the characteristic function of the primes betwen X and 2X.
Let us recall that the Ramanujan sum can be defined by

cr(n) =
∑
d|r,
d|n

dµ(r/d). (2.1)

Our construction starts by choosing a parameter R strictly less than X. Then the function
(used also in [10], [4], [5], [3] and [22])

ΛR(n) =
∑
r≤R

µ(r)cr(n)

φ(r)
(2.2)
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takes a constant value on every integer n that is coprime with every r that is less than R. This
value is, say

Y =
∑
r≤R

µ2(r)

φ(r)
. (2.3)

We can show that this value is asymptotic to logR when R grows, but we will not use this
here. The function ΛR(n) has a main drawback: we do not control its values on integers that
are not coprime with some r satifying r ≤ R. So we consider instead

βR(n) = (ΛR(n)/Y )2 =

∣∣∣∣∑
r≤R

µ(r)cr(n)

φ(r)

/
Y

∣∣∣∣2. (2.4)

This is the majorising function we propose. It is indeed the majorising function that the Selberg
sieve proposes, by following another path which shows that it is optimal in some sense. The
path followed here is fully documented in [17, chapter 11].

The following Lemma specifies how far off we are from the prime numbers.

Lemma 2.1. When R2 = o(X), we have∑
X<n≤2X

βR(n) ∼ logX

logR
·
∑

X<p≤2X

1.

So if we take for instance R = X1/3, we get a weighted sequence which is about three times
larger than the sequence of primes. On taking R =

√
X/ logX, we get an even better sequence

in terms of density.
On opening the square, employing (2.1) and shuffling terms, we reach:

βR(n) =
∑

r1,r2≤R,
d1|r1,d2|r2

d1µ(r1/d1)d2µ(r2/d2)

φ(r1)φ(r2)
11n≡0[lcm(d1,d2)]

/
Y 2 (2.5)

the summation being on the four integer variables d1, d2, r1 and r2 verifying the stated
conditions. Here is the main point exhibited by this expression:

βR(n) is defined in terms of congruences.

The moduli of these congruences are all no more than R2.

Note that R2 is a parameter at our disposal. When R2 = o(X) you can expect to be able to
handle such congruences; if need be, one can even choose R2 to be a some small power of X,
as in [7].

Once these properties have been established (density and expression in terms of arithmetic
progressions), it is straighforward to see that the weighted sequence should share many
properties of arithmetic progressions, since, in essence, it is a linear combination of a small
number of arithmetic progressions. This analogy has some limitations. There are some local
obstructions, and for instance we loose a factor log log k to some power in our estimates. I do
not know in this context how to state a conjecture that would be as precise as Mann’s Theorem
(see [9]).

The similarity of treatment with the case of primes however leads to the following conjecture:

Conjecture 1. There are arbitrarily long arithmetic progressions in the sequence of sums
of two squares, and in each of the sequences C and D.



Page 4 of 6 O. RAMARÉ

It is plausible that [7] and [6] may be generalized to these cases, and this would settle
the above conjecture. The general line would be to establish a Szemeredi kind of theorem for
the weighted majorant sequence ; the property for the sequence C (resp. D) would follow by
considering it as a subsequence of density of the enveloping (majorant) one. This is not more
than a sketch, but it seems to me to be a very plausible one. Let us mention [11] where the
author studies in details the 4-terms arithmetic progressions among sums of two squares.

On investigating monochromatic sums as done in [12] we propose the following conjectures:

Conjecture 2. If one partitions the sequence of sums of two squares into k subsequences,
where k is a positive natural number, there exists a constant C1 such that every large enough
integer is a sum of at most C1k

√
log log k sums of two squares, each belonging to the same

part.

Conjecture 3. If one partitions the sequence C into k subsequences, where k is a positive
natural number, there exists a constant C1 such that every large enough integer is a sum of at
most C1k log log k elements of C, each belonging to the same part.

Conjecture 4. If one partitions the sequence D into k subsequences, where k is a positive
natural number, there exists a constant C1 such that every large enough integer is a sum of at
most C1k(log log k)3/2 elements of D, each belonging to the same part.

In the case of primes, a very precise result on this question is proved in [15].
In the four cases considered, the host sequence has density some (negative) power of logX

when counting them up to X. One way to state that is to say that the dimension κ is finite.
Since the Selberg sieve provides an upper bound for the characteristic function of thinner sets,
one may wonder how thin one can take this host sequence. We do not have any example, save
an extreme one: the thinner sequence for which the Selberg sieve works is surely the sequence
of squares, and we know that there are no 4-terms arithmetic progressions made only of squares
(one may read [1] on connected subjects). However, many properties still hold true as shown
for instance in [12] (see also [19]).

3. Proof of theorems 1.1, 1.2, 1.3 and 1.4

Each of the sequences we consider is sufficiently sifted in the terminology of [18], and this
is the fact that we need to establish. Let us start by recalling the definition of a sufficiently
sifted sequence:

Definition 3.1. A sequence A of integers is said to be sufficiently sifted if there exist
parameters X0 ≥ 1, c1, c2 > 0, κ ≥ 0, s0 ≥ 2, ξ ∈ [0, 12 [, α > 0, a sequence (Kp)p such that
Kp ⊂ Z/pZ and finally a sequence (AX)X≥1 of subsets of A such that

(H1) When X ≥ X0, we have A(X) ≥ c1X/ logκX.
(H2) A(X)−AX(X) = o

(
X(logX)−κ

)
.

(H3) For every prime p not more than X1/s0 , we have AX + pZ ⊂ Kp.
(H4)

∑
p≤X(1− |Kp|/p) log p = κ logX +O(1).

(H5) We have |Kp| ≥ p− c2pξ.
Here, as usual, A(X) (resp. AX(X)) denotes the number of elements of A (resp. AX) that are
below X.
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It is best to motivate this definition by looking at the case of prime numbers. We would
like to use a sieve approach and say that the primes are the ones that, for every prime p, are
not congruent to 0 modulo p. Alas, such a definition would rule out every integer, save 1. We
overcome this difficulty by using the sieve property locally. Practically, we define AX , for every
positive real number X, to be the set of primes between

√
X (excluded) and X. This time,

for every prime p less than X1/2, every element of AX falls modulo p on a non-zero class.
The above definition shows that the primes indeed form a well-sifted sequence with the choices
s0 = 2, κ = 1, Kp = Z/pZ \ {0}, c2 = 1 and finally ξ = 0.

Examined under this light, the above definition looks natural enough, but there are a number
of difficulties that we now point out. The density κ is in fact the only biunivocally defined
parameter above. Indeed, the sieve shows that with the conditions above, we have A(X) �
X/ logκX. This being so, hypothesis (H4) constrains somehow the choice of (Kp) but not
strongly: a smaller or larger set Kp for some prime p may also satisfy (H3). Finally, in the case
of primes, we could have taken for AX the sequence of those primes between X/ logX and X.
This shows that any s0 strictly less than 1 would then be possible, i.e. that even the level at
which we sieve is unclear when we start from the end-product.

Once this definition has been set and properly commented, it is not difficult to show that
the sequences we consider are indeed sufficiently sifted. Let us give some details to establish
this fact for the sequence D. We set K2 = Z/2Z \ {0},

when p ≡ 3[4] Kp = Z/pZ \ {0, 1},
when p ≡ 1[4] Kp = Z/pZ \ {0}.

(3.1)

For X ≥ 1, we select DX = D ∩ (
√
X,X], so that hypotheses (H1), (H2), (H3), (H4) and

(H5) are easily seen to be satisfied with κ = 3/2, s0 = 2, ξ = 0, c2 = 2 and A(X)−AX(X) =
O(
√
X).

Let us recall [18, Theorem 1].

Lemma 3.1. For i ∈ {1, 2}, let Ai be a sufficiently sifted sequence of dimension κi, let
ki ≥ 1 be a real number and let A∗i ⊂ Ai be such that A∗i (X) ≥ Ai(X)/ki for X ≥ X1. Then
we have

(A∗1 +A∗2)(X)�A1,A2 X/
(
k1(log log 3(k1 + k2))κ1

)
.

By �A1,A2
, we mean that the implied constant may depend on all the parameters required to

define the sufficiently sifted sequences A1 and A2.

Theorem 1.4 follows by choosing A1 = A2 = D.
Concerning the three other sequences, the proof is similar, and we simply mention that the

dimension κ of the sequence of integers that sums of two coprime squares is 1/2, while the
dimension of C is 1.
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