
ON THE MISSING LOG FACTOR

O. RAMARÉ

Abstract. This paper is the detailled written account of a talk with the
same title given during the conference. Its guiding line is the elementarily
proven bound |

∑
n≤x µ(n)/n| ≤ 1. The trivial bound for the implied

summation is log x + O(1), while the Prime Number Theorem tells us
that it is o(1). Our starting estimate thus lies in-between, a fact that we
explore under different lights.

1. Introduction

The Moebius function has attracted lots of attention in the last few years.
As is classical in Analytic Number Theory, we are trying to estimate sums
of the shape

∑
n≤x µ(n)g(x, n) for various and usually regular functions

g(x, n).
There are essentially three definition of the Moebius function:

• It is the multiplicative fonction with µ(p) = −1 and µ(pk) = 0
(k ≥ 2),
• It is the convolution inverse of 11,
• It appears as the coefficients of the Dirichlet series of 1/ζ(s).

All three are of course linked1, but this list enables a rough and empirical
classification of proofs. In this talk, we concentrate on the second definition,
and we shall often add an explicit angle to our looking glass. We will in
particular see that this combinatorial definition leads to functional analysis
problems.

2. Meissel & Gram

Let us start our journey by an identity due the german mathematician
Ernst Meissel2 in 1854 which is equation (6) of [26]. Thanks to the Di-
giZeitschriften project hosted by the university of Göttingen, we can have
access to this text online, though some knowledge of latin is required. The
classical reference book [9] on history of numbers of L.E. Dickson may serve
as a first guide, and for instance, the paper [26] is mentionned in Chap-
ter XIX of this series of three books. In modern notation, the identity in

2010 Mathematics Subject Classification. 11M06, 11N56, 11N80.
Key words and phrases. Moebius function.
1If only by the fact that they define the same function!
2His full name is Daniel Friedrich Ernst Meissel. This student of Carl Gustav Jacob

Jacobi and Johann Peter Gustav Lejeune Dirichlet is born in 1826 and passed away in
1895. His full biography can be found in [31].
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question reads

(2.1)
∑
n≤x

µ(n)[x/n] = 1

where [y] denotes the integer part of the real number y, while {y} denotes
its fractional part. This is established by noticing that [y] =

∑
1≤m≤y 1 when

y is non-negative and on using the property that
∑

mn=` µ(n) = 11`=1. Now
let us replace [y] by y − {y} in the above; we get

(2.2)
∑
n≤x

µ(n){x/n} = −1 + x
∑
n≤x

µ(n)

n
.

We stop to emphasize three surprising aspects of this equation:

(1) Error term treatment: On the left-hand side, the summand µ(n)
is contaminated by the error term {x/n} while the contamination
disappears on the right-hand side! The Prime Number Theorem thus
implies that the left-hand side is indeed o(x).

(2) Identity: We have used an identity, and the question arises is natu-
rally to know whether it is an accident or a feature.

(3) Log-factor: When we bound |µ(n)| and {x/n} by 1, we see that the
trivial bound for the left-hand side is x, while the trivial bound for
the right-hand side is ... O(x log x)! As a consequence, the danish
mathematician Jørgen Pedersen Gram showed in [16, p 196-197]3

that

(2.3)
∣∣∣∑
n≤x

µ(n)/n
∣∣∣ ≤ 1

for every positive x. It is of course a consequence of the Prime Num-
ber Theorem that this sum goes to zero, but this partial result is
striking.

The identity angle leads to more curious identities. Here is another one ob-
tained much later by the canadian mathematician Robert Allister MacLeod
in [25]: ∑

n≤x

µ(n)
{x/n}2 − {x/n}

x/n
= x

∑
n≤x

µ(n)

n
−
∑
n≤x

µ(n)− 2 +
2

x
.

In fact, MacLeod exhibits a full family of similar identities, all valid for any
x ≥ 1. Yet again, the reader can see that the left-hand side is contaminated
by an “error term”-like function, while this contamination is absent from
the right-hand side.

3This reference has been kindly provided to us by M. Balazard. The reader is refered
to the MacTutor archive maintained by the University of Saint Andrew, in Scotland for
the biography of J.-P. Gram. We just mention here that Meissel travelled to Denmark
in 1885 to meet the 23 years old Gram who had just won the Gold Medal of the Royal
Danish Academy of Sciences for the memoir we refer to. The inequality we extract from
this memoir is not its main matter but rather a pleasant sidedish.
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I am showing you this identity to insist on the strange aspect these
relations may take. Are these identities just curiosities or is a better under-
standing possible? Can we give some order to these facts?

3. Generalizing Meissel’s proof, I

While trying to shed some light on Meissel’s identity I devised the next
theorem that shows that, under rather general conditions, we always save a
log factor. More refined version are possible, but this simplistic one captures
the main power of Gram’s statement. We first need two general lemmas.

Lemma 3.1. When Q ≥ 0, we have∑
pν≤Q

ν2 log p ≤ 3Q,

the sum being over every prime powers pν.

Proof. We first use GP/Pari [30] to establish the claimed inequality when
Q is below 106. Then we express our sum, say S, in the following manner:

S =
∑
pν≤Q

log p+
∑
pν≤Q

(ν2 − 1) log p ≤ ψ(Q) +
∑
p≤
√
Q

(
logQ

log p

)2

logQ

≤ ψ(Q) + π(
√
Q)

log3Q

log2 2

with the usual Tchebyshev function ψ and π. We recall that ψ(x) ≤ 1.04x
for every x > 0 by [41, (3.35)] and that π(Q) ≤ 1.26x/ log x by [41, (3.6)].
A numerical application ends the proof of the lemma. �

The next lemma follows the path initiated by Levin & Fainleib in [24],
and trodden by several authors, like in [18].

Lemma 3.2. Let h be a non-negative multiplicative function for which there
exists a parameter H such that

∣∣h(pν)∣∣ ≤ Hν for every prime power pν.
Then we have ∑

n≤x

h(n) ≤ 3H x

log x

∑
n≤x

h(n)

n
.

Proof. We start by∑
n≤x

h(n) log x =
∑
n≤x

h(n) log n+
∑
n≤x

h(n) log
x

n

≤
∑
n≤x

h(n) log n+ x
∑
n≤x

h(n)

n
.

Concerning the sum with h(n) log n, we write

log n =
∑
pν‖n

log
(
pν
)
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where the summation ranges over every prime power pν dividing n and such
that pν+1 does not divides n. In other words, ν is the proper power of p that
divides n. We infer from this identity that:∑
n≤x

h(n) log n =
∑
pν≤x

log
(
pν
) ∑
pν‖n≤x

h(n) ≤
∑
pν≤x

log
(
pν
)
h
(
pν
) ∑
n≤x/pν ,
(n,p)=1

h(n)

≤ H
∑
pν≤x

ν log
(
pν
) ∑
n≤x/pν

h(n)

≤ H
∑
n≤x

h(n)
∑

pν≤x/n

ν log
(
pν
)
.

To conclude, we employ Lemma 3.1 above. �

Theorem 3.3. Let K be some real parameter and let g be a multiplicative
function such that

∣∣g(pν)∣∣ ≤ K for every prime power pν. Then we have∣∣∣∣∑
n≤x

g(n)

n

∣∣∣∣ ≤ 9K

log x

∑
n≤x

|g(n)|+ |(11 ? g)(n)|
n

On taking g = µ, and K = 1, we recover the fact that the partial sum∑
n≤x µ(n)/n is bounded.

Proof. We consider the sum S =
∑

n≤x(11?g)(n) which we write in the form

S =
∑
m≤x

g(m)[x/m] = x
∑
m≤x

g(m)

m
−
∑
m≤x

g(m){x/m}.

We deduce from the above that∣∣∣∣∑
n≤x

g(n)

n

∣∣∣∣ ≤ 1

x

∑
n≤x

(|g|+ |11 ? g|)(n).

We next notice that both functions |g| and |11 ? g| are multiplicative and
non-negative. Furthermore

∣∣g(pν)∣∣ ≤ K ≤ Kν by hypothesis, while the

reader will readily check that
∣∣(11 ? g)

(
pν
)∣∣ ≤ K(ν + 1) ≤ 2Kν. We are

thus in a position to apply Lemma 3.2 twice, namely to the two multiplica-
tive functions |g| and |11 ? g|. Concluding the proof of the theorem is then
straightforward. �

An intriguing example. Seeing the appearance of |g| and |11?g|, one may
want to balance the effect of both factors; this almost happens when one
selects g(d) = µ(d)/2ω(d). This case has in fact been considered long ago
by Sigmund Selberg, a mathematician like his more famous brother Atle
Selberg, in his 1954 paper [43] where he used Meissel’s approach in a very
careful manner to show the next theorem.

Theorem 3.4 (S. Selberg, 1954). We have, for every x > 0,

0 ≤
∑
n≤x

µ(n)

2ω(n)n
≤ 1.
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Proof. Let us denote by f the function that associates µ(n)/2ω(n) to the
integer n. The reader will readily check that (11 ? f)(n) = 1/2ω(n). We thus
get ∑

n≤x

1

2ω(n)
=
∑
`≤x

µ(`)

2ω(`)

[
x

`

]
= x

∑
`≤x

µ(`)

`2ω(`)
−
∑
`≤x

µ(`)

2ω(`)

{
x

`

}
from which we deduce that

x
∑
`≤x

µ(`)

`2ω(`)
=
∑
n≤x

1

2ω(n)

(
1 + µ(n)

{
x

n

})
.

This astounding equation immediately implies that the left hand side is
non-negative and bounded above. To prove the more precise bound 1, we
first notice that it is enough to prove it for positive integers x, in which case
we first find that

1

2ω(1)

(
1 + µ(1)

{
x

1

})
= 1

and then that, as soon as n ≥ 2, we have 2ω(n) ≥ 2, hence

1

2ω(n)

(
1 + µ(n)

{
x

n

})
≤ 2

2
= 1.

It is straightforward to conclude from these two inequalities. �

A consequence of Theorem 3.3 is also that, when x ≥ 2, we have

(3.1)
∑
n≤x

µ(n)

2ω(n)n
� 1/

√
log x.

This is for instance a consequence of the following theorem that we infer
from the more precise [35, Theorem 21.1]. This theorem is in essence the
one of Levin & Fainleib [24] we refered to above.

Theorem 3.5. Let g be a non-negative multiplicative function. Let κ be a
non-negative real parameter such that

∑
p≥2,ν≥1
pν≤Q

g
(
pν
)

log
(
pν
)

= κ logQ+O(1) (Q ≥ 1),

∑
p≥2

∑
ν,k≥1

g
(
pk
)
g
(
pν
)

log
(
pν
)
� 1.

Then, we have∑
d≤D

g(d) =
(logD)κ

Γ(κ+ 1)

∏
p≥2

{(
1− 1

p

)κ∑
ν≥0

g
(
pν
)}

(1 +O(1/ logD)) .

To infer (3.1) from Theorem 3.3, we use Theorem 3.5 twice with κ = 1/2.
We leave the details to the reader.

We are thus in a position to prove elementarity and with no use of the

Prime Number Theorem that the sum
∑

n≤x
µ(n)

2ω(n)n
goes to 0! So why not

try to reconstruct the Moebius function from this? This is easily achieved
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by employing Dirichlet’s series. We first define the multiplicative function
f0 by f0(p

ν) = −(ν − 1)/2 and then find that

(3.2)
∑
n≥1

µ(n)

ns
=

(∑
n≥1

µ(n)

2ω(n)ns

)2∑
n≥1

f0(n)

ns
.

The abscissa of absolute convergence of D(f0, s) =
∑

n≥1 f0(n)/ns is 1/2.

Proof. All the implied functions being multiplicative, it is enough to check
this identity on each local p-factor, i.e that

1− 1

ps
=

(
1− 1

2ps

)2(
1−

∑
ν≥1

ν − 1

2νpνs

)
.

This comes from the following formal identity, with Y = X/2:

1−X
(1− X

2
)2

=
1

1− Y
− Y

(1− Y )2
=
∑
k≥0

Y k −
∑
k≥1

kY k.

To get the abscissa of absolute convergence we consider, with σ = <s,

∆ =
∑
p≥2

∣∣∣∣∑
ν≥2

ν − 1

2νpνs

∣∣∣∣ ≤∑
p≥2

1

4p2σ

∣∣∣∣∑
k≥0

k + 1

(2pσ)k

∣∣∣∣
≤
∑
p≥2

1

4p2σ
1

(1− 1/(2pσ))2
≤
∑
p≥2

1

p2σ
.

This is bounded when σ > 1/2, showing that the product∏
p≥2

∑
ν≥0

f0(p
ν)

pνs

is absolutely convergent when <s > 1/2. An immediate consequence is
that the series is absolutely convergent in the same half-plane at least. The
reader will readily see that the series of |f0(n)|/ns diverges when s = 1/2,
thus establishing that the half-plane <s = 1/2 is the actual half-plane of
absolute convergence of D(f0, s). �

The function f0(n)/n being much smaller than the function µ(n)2−ω(n)/n,
a first goal before finding bounds for

∑
n≤x µ(n)/n from bounds on µ(n)2−ω(n)/n

is to estimate the quantity ∑
`m≤x

µ(`)µ(m)

2ω(`)+ω(m)`m
.

The Dirichlet hyperbola formula is made for that, i.e. we write∑
`m≤x

µ(`)µ(m)

2ω(`)+ω(m)`m
= 2

∑
`≤
√
x

µ(`)

2ω(`)`

∑
m≤x/`

µ(m)

2ω(m)m
−
(∑
`≤
√
x

µ(`)

2ω(`)`

)2

.

The second term is O(1/ log x) while the first one is

�
∑
`≤
√
x

|µ(`)|
2ω(`)`

1√
log x

� 1
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because we are loosing the sign of the Moebius factor µ(`). The bound (3.1)
fails to improve on (2.3)! The reader may want to use the non-negativity
bound and distinguish as to whether ` has an even or an odd number of
prime factors... And for instance aim at a lower estimate: when µ(`) = 1,
we use the fact that the summand is non-negative, and otherwise that it is
O(1/

√
log x). We have then to estimate∑

`≤
√
x

1 + µ(`)

2

|µ(`)|
2ω(`)`

=
1

2

∑
`≤
√
x

|µ(`)|
2ω(`)`

+
1

2

∑
`≤
√
x

µ(`)

2ω(`)`

=
1

2

∑
`≤
√
x

|µ(`)|
2ω(`)`

+O

(
1√

log x

)
and so, we have only saved a factor 1/2—

Yet a third path opens before us: we may want to use the non-negativity

of the sum
∑

n≤x
µ(n)

2ω(n)n
in a stronger manner via Landau’s Theorem on

Mellin transform of non-negative functions, and maybe derive a stronger
estimate! Indeed, the integral∫ ∞

1

∑
n≤x

µ(n)

2ω(n)n

dx

xs+1

represents the function (1/s)
∑

n≥1
µ(n)

2ω(n)ns+1 . Hence the abscissa of conver-
gence of the integral should be a pole of the function represented. Can we
show in this fashion that the integral converges for <s > 1/2 hence improv-

ing on (3.1)? This is tempting, but does not work: the series
∑

n≥1
µ(n)

2ω(n)ns+1

behaves like 1/
√
ζ(s+ 1), i.e. like

√
s next to s = 0, and the innocent look-

ing factor (1/s) in front of the series above shows that the integral has a
polar contribution at s = 0. In fact, S. Selberg already showed in [43] that∑

n≤x
µ(n)

2ω(n)n
is equivalent to C/

√
log x, where C is some well-defined and

non-zero constant.

The purpose of this digression was to show the reader that the results we
are looking at are tight. Any improvement would have acute consequences.

4. The Axer-Landau Equivalence Theorem

We have studied the situation from the angle of general multiplicative
functions; let us now restrict more closely our attention to the case of the
Moebius function. Here is an enlightening result in this direction. We first
recall how the van Mangoldt function Λ is defined:

(4.1) Λ(n) =

{
log p when n = pν

0 else.

Theorem 4.1 (Axer-Landau, 1899-1911). The five following statements are
equivalent:

(S1) The number of primes up to x is asymptotic to x/ log x.
(S2) M(x) =

∑
n≤x µ(n) is o(x).
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(S3) m(x) =
∑

n≤x µ(n)/n is o(1).
(S4) ψ(x) =

∑
n≤x Λ(n) is asymptotic to x.

(S5) ψ̃(x) =
∑

n≤x Λ(n)/n is log x− γ + o(1).

In fact, proving that (S3) implies (S2) or that (S5) implies (S4) is a sim-
ple matter of summation by parts, as is the equivalence of (S1) and (S4).
Edmund Landau in 1899 in [22] was the first to investigate this kind of
result: he showed that (S1) implies (S3). The viennese mathematician A.
Axer continued in 1910 in [1] by establishing that (S2) implies (S3). Landau
immediately applied Axer’s method to prove that (S4) and (S5) are equiva-
lent and concluded in [21] essentially by showing that (S3) implies (S4). See
also [2] and [23].

Concerning our question, this theorem shows that we clearly need to save
the logarithm factor over the trivial estimate for m(x), as well as for ψ̃. A
second aspect arises from this theorem: the call for an quantitative version
of it. If one follows the proofs of Axer and Landau, the saving is essentially
limited at O(1/

√
log x), though some later authors, like the swiss mathe-

matician Alfred Kienast in [20], went further.

A related problem. In [36] and more fully in [33] with David Platt from
Bristol, I investigated the problem of deriving quantitatively (near) optimal

results on ψ̃(x) once one supposes results for ψ(x). This implication has
been shown to be false in the general context of Beurling integers4 by Harold
Diamond & Wen-Bin Zhang in [8]. They even exhibit a Beurling system B
where one has ψB(x) ∼ x while ψ̃B(x) − log x � log log x, with obvious
notation. This means in particular that something special linked with the
nature of the integers is required. It took us quite a while to understand
what was happening, though I had essentially settled the problem in the
q-aspect several years ago in [34]: instead of looking at primes, I was looking
at primes in some arithmetic progression, say modulo some q; the error term
has then a dependence in q and in x. In the mentionned paper, I resolved
this question provided the question for q = 1 was solved! I thought that I
had reduced the problem to a simpler one, but it is more correct to say that
the x-aspect is the one that leads to real difficulties.

The first idea is of course to use a summation by parts, i.e. to write

(4.2) ψ̃(x)− log x =
ψ(x)− x

x
+ 1 +

∫ x

1

ψ(t)− t
t2

dt.

A careful look at this equation will in fact be enough to solve the question.
We can understand on it the idea of Diamond & Zhang: they built a Beurling
system where the integral above does not converge. A different approach
from this same starting point leads to the next theorem we proved with
D.Platt.

4The Beurling integers are the multiplicative semi-group built on a family of “primes”
to be chosen real numbers from (1,∞).
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Theorem 4.2 (D. Platt + O.R., 2016). There exists c > 0 such that, when
x ≥ 10, we have:

ψ̃(x)− log x+ γ � max
x≤y≤2x

|ψ(y)− y|
y

+ exp

(
−c log x

log log x

)
.

A similar statement for primes in arithmetic progressions holds true.
This theorem is very efficient to compare ψ̃ together with ψ, and is in
fact nearly optimal from a quantitative viewpoint. We are almost saving
a power of x; a look at the proof discloses that the zero-free region for
the Riemann-zeta function is used only up to the height log x. This has
the consequence that numerically, verifying the Riemann Hypothesis up to
the height H gives control for x roughly up to eH ! And since X. Gourdon
& P. Demichel [15] have checked this Riemann Hypothesis5 up to height
2.445 · 1012, we can assume the Riemann Hypothesis is available when x ≤
e10

12
, which is enormous! Practically, this discussion shows that the factor

exp(−c(log x)/log log x) can be replaced by a very small quantity. We shall
see below some very explicit consequences of this fact, but let us start by a
rough explanation of the proof. This is not the manner the proof appeared
at first, but how I now understand it. We first note that

(4.3) 1 +

∫ ∞
1

ψ(t)− t
t2

dt = −γ.

This is highly non-obvious if seen like that. The Prime Number Theorem
with a remainder term ensures that the integral converges, but the full proof
requires the limited development ζ(s) = (s − 1)−1 + γ + O(s − 1) around
s = 1 which implies that −(ζ ′/ζ)(s) = (s−1)−1−γ+O(s−1). We leave the
details to the reader. What is really important for us is that this quantity
is indeed a constant so that we can rewrite (4.2) in

(4.4) ψ̃(x)− log x =
ψ(x)− x

x
− γ −

∫ ∞
x

ψ(t)− t
t2

dt.

This formula is not enough to conclude but a very small modification of it
will suffice: let F : [1,∞) → R be a smooth function such that F (y) = 1
when y ≥ 2. We have

(4.5) ψ̃(x)− log x =
ψ(x)− x

x
− γ −

∫ 2x

x

(1− F (t/x))
ψ(t)− t

t2
dt

+

∫ ∞
x

F (t/x)
ψ(t)− t

t2
dt.

The integral over [x, 2x] can be controlled by maxx<y<2x |ψ(y) − y|/x, but
what about the last integral? In short: we express it in terms of the zeros
of the Riemann zeta-function and get in this manner a fastly convergent
sum. Why is that so? The reader may think it is because of the smoothing
and the involvement of Mellin transforms... And would be right! A fact

5This computation has not been the subject of any published paper. D. Platt in [32]
has checked this hypothesis up to height 109 by with a very precise program using interval
arithmetic.
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that had escaped my attention so long, and not only mine, is that this
argument works for the point at infinity. Repeated integrations by parts for
instance, when assuming F smooth enough, show that the corresponding
Mellin transform decays vary rapidly in vertical strips.

Here are two very explicit consequences that we promised earlier.

Theorem 4.3. We have∣∣∣∑
n≤x

Λ(n)/n− log x+ γ
∣∣∣ ≤ 1

149 log x
(x ≥ 23).

The previous result is due to J. Rosser & L. Schoenfeld in [41] and had
a 2 instead of 149.

Theorem 4.4. We have∣∣∣∑
n≤x

Λ(n)/n− log x+ γ
∣∣∣ ≤ 2

(log x)2
(x > 1).

This result has no ancestor that I know of. There are related work by P.
Dusart [12], [11], L. Faber & H. Kadiri, H. Kadiri & A. Lumley [19] (and
more to come), C. Axler [3], L. Panaitopol [29], R. Vanlalnagaia [46], ...

The sketch I propose above is the manner I now explain the proof, but
the two initial papers, [36] and [33] proceeded in a very different manner: the
integral

∫∞
x

(ψ(t)− t)dt/t2 was expressed in terms of the zeros of zeta and
the relevant expression was compared with another one more convergent.
The better understood scheme above will have an interesting consequence
we shall see later.

The horizon. It is time to set the horizon! Here are three conjectures.

Conjecture C. There exists a constant A > 0 such that

m(x)
?
� max

x/A<y≤xA
|M(y)|/y + x−1/4.

And since we would like to have control of M(x) via6 ψ(x), I also believe
the following.

Conjecture D. There exists a constant A > 0 such that

m(x)
?
� max

x/A<y≤xA
|ψ(y)− y|/y + x−1/4.

And we recall the conjecture of [36].

Conjecture A. There exists a constant A > 0 such that

ψ̃(x)
?
� max

x/A<y≤xA
|ψ(y)− y|/y + x−1/4.

These three conjectures are trivially true under the Riemann Hypothesis,
even with the x−1/4 replaced by x−1/2+ε. This exponent 1/4 is not partic-
ularly relevant, the saving of any power of x would be a true achievement.

6I formulated such a more precise conjecture, say Conjecture B, in [37].
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These three conjectures are obvious if we allow a factor log x in front of the
maxima, simply by using integration by parts, but even if we allow a factor
between 1 and log x, like

√
log x for instance, the answer is not known.

5. From M to m

The proof we presented of Theorem 4.2 allows one to dispense with
the notion of zeros, though introducing them is numerically much more
efficient. We can however express the function F in (4.5) in terms of its
Mellin transform. This Mellin transform decreases fast in vertical strips7

and this is enough to get the result! We provide a full proof appear in [40].

Theorem 5.1. There exists c > 0 such that, when x ≥ 10, we have:

m(x)� max
x≤y≤2x

|M(y)|
y

+ exp

(
−c log x

log log x

)
.

The difference with the case of ψ̃ is that we do not have any efficient
version of this theorem.

6. Generalizing Meissel’s proof, II

M. Balazard took another path to understand Meissel’s formula. He
rewrote this identity in the form:

(6.1)
1

x

∫ x

1

M(x/t)
{t}
t
dt = m(x)− M(x)

x
− log x

x

and did the same for the MacLeod identity:

1

x

∫ x

1

M(x/t)
(2{t} − 1)t+ {t} − {t}2

t2
dt = m(x)− M(x)

x
− 2

x
+

2

x2
.

Some order emerges in this manner, but the question remains as to whether
these identities are oldies to be thrown in the wastebasket or not. The
situation has been further cleared by F. Daval8 [6] in the next theorem.

Theorem 6.1 (Daval, 2016). Let h : [0, 1] → C be a continuous function

normalized by
∫ 1

0
h(u)du = 1. When x ≥ 1, we have

1

x

∫ x

1

M(x/t)

(
1− 1

t

∑
n≤t

h(n/t)

)
dt = m(x)− M(x)

x
− 1

x

∫ 1

1/x

h(y)

y
dy.

Like many identities, once it is written, it is not very difficult to establish.
On selecting h = 1, we recover the Meissel identity, and on selecting h(t) =
2t, the MacLeod identity I showed is being recovered. We thus see that
a “Riemann integral-remainder” appears; functional analysis is coming in!
Among the natural questions, let us mention this one: given a function f
over [0, 1], can it be approximated by such a Riemann-remainder term? If
not what is the best approximation? Before continuing, let us mention that
there are some other identities in this area, and for instance, following J.-P.

7As already stated, we show that by classically repeated integrations by parts.
8F. Daval was at the time a PhD student of mine.
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Gram [16], R. MacLeod [25] and M. Balazard [4], here is, in Balazard’s form,
a typical identity I obtained in [39, Lemma 3.2]:∑

n≤x

µ(n)

n
log
(x
n

)
− 1 =

6− 8γ

3x
− 5− 4γ

x2
+

6− 4γ

3x4
− 1

x

∫ x

1

M(x/t)h′(t)dt

where9 the function h is differentiable except at integer points where it has
left and right-derivative, and satisfies 0 ≤ t2|h′(t)| ≤ 7

4
−γ. The function h is

this time linked with the error term
∑

n≤t 1/n− log t. Similar identities have

been proved with logk(x/n) instead of log(x/n), for any positive integer k.
The theory of F. Daval can most probably be adapted to these cases. One
striking consequence is the next result.

Theorem 6.2 ([39, Theorem 1.5]). When x ≥ 3155, we have∣∣∣∣∑
n≤x

µ(n)

n
log(x/n)− 1

∣∣∣∣ ≤ 1

389 log x
.

Note that one could try to derive such an estimate by writing∑
n≤x

µ(n)

n
log(x/n) = (log x)

∑
n≤x

µ(n)

n
−
∑
n≤x

µ(n)

n
log n

and using estimates for both. But to attain the accuracy level of our theo-
rem, one would need to prove at least that

∑
n≤x µ(n)/n = O∗(1/(389 log2 x)),

and we are rather far from having this kind of results!

The problem at large. Let us try to formalize the problem. We start from
a regular function F : [1,∞) → C, for instance F (t) = 1 or F (t) = log t.
The question is to find two functions H and G and a constant C such that∑

n≤x

µ(n)

n
F (x/n)− CM(x)

x
=

1

x

∫ x

1

M(x/t)G(t)dt+H(x).

To avoid trivial solutions, we assume that∫ ∞
1

|F (t)|dt/t =∞,
∫ ∞
1

|G(t)|dt/t <∞,

and that H is smooth and “small”. This looks like a functional transform
from F to G, but there is a lot of slack! Indeed, when F = 1 or when
F (t) = log t, there are several solutions.

Beginning of a theory when F = 1. We start from Theorem 6.1 and,
remembering the identities of MacLeod in Balazard’s form, we aim at writ-
ing the integral with M in the form

∫
M(x/t)f ′(t)dt. With this goal in sight

we note that ∫ x

0

(
1− 1

t

∑
n≤t

h(n/t)

)
dt =

∫ 1

0

{ux}h(u)

u
du.

9As a matter of fact, the mentionned lemma is slightly different, but a corrigendum is
on its way.



ON THE MISSING LOG FACTOR 13

So, given f : [1,∞) → C, we want to solve f(x) =
∫ 1

0
{ux}h(u)

u
du. The

change of variable y = 1/x leads to the problem: given g : [0, 1] → C,

solve g(y) =
∫ 1

0
{u/y}
u/y

h(u)du. We see another appearance of functional anal-

ysis! The operator T over the Hilbert space L2([0, 1]) which associates∫ 1

0
{u/y}
u/y

h(u)du to h is a Hilbert-Schmidt, compact and contracting operator.

Indeed, we readily check that the kernel (u, y) 7→ {u/y}
u/y

belongs to L2([0, 1]2)

and then, we for instance use [14] (around equations (9.6)− (9.8)). Since∫ 1

0

∫ 1

0

∣∣∣∣{u/y}u/y

∣∣∣∣2dudy =

∫ 1

0

∫ 1/y

0

∣∣∣∣{z}z
∣∣∣∣2dz ydy

≤
∫ 1

0

(
1 +

∫ ∞
1

{z}
z2

dz

)
ydy = 2(1− γ) < 1

we readily see by invoking the Cauchy-Schwarz inequality that T is strictly
contracting. The general theory tells us that there exist a sequence of com-
plex numbers (λn)n and two orthonormal sequences of functions (ψn)n and
(ϕn)n such that∫ 1

0

{u/y}h(u)

u
du =

∑
n≥1

λn

∫ 1

0

h(u)ψn(u)duϕn(y)

for every y ∈ [0, 1]. By [44], this operator to be of Shatten class p for every
p > 1, and I suspect it is not of trace class. The above decomposition is a
consequence of the general theory of integral operator and a more specific
study should be able to disclose arithmetical properties. For instance, the
presence of the fractional part is not without recalling the Nyman-Beurling
criteria. This is work in progress.

The localization problem, case F = 1. We are here going back to what
has been done rather than guessing what could be happening in the future!
It is easier to first state a result and then describe the problem at hand from
there. We start with a lemma.

Lemma 6.3 (F. Daval, 2017). Let h : [0, 1] 7→ C be a Ck-function for some

k ≥ 2, normalised with
∫ 1

0
h(u)du = 1. We further assume that

• h(0) = h′(0) = 0,
• When 3 ≤ 2i+ 1 ≤ k − 1, we have h(2i+1)(0) = 0,
• When 0 ≤ ` ≤ k − 2, we have h(`)(1) = 0.

Then we have, for t ≥ 1,∣∣∣∣1− 1

t

∑
n≤t

h(n/t)

∣∣∣∣� 1/tk.

Given an integer k ≥ 2, let us call Hk the class of functions h described
above. Then, for any h ∈Hk, there exists a constant Ck(h) such that∣∣∣∣∣

∫ x

1

M(x/t)

(
1− 1

t

∑
n≤t

h(n/t)

)
dt

∣∣∣∣∣ ≤ Ck(h)

x

∫ x

1

M(t)(t/x)k−2dt.
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F. Daval [6] has obtained the following table:

k = 3 4 5 6 7
minhCk(h) ≤ 1.05 1.44 2.52 5.9 13.2

This improves of earlier values of M. Balazard in [4]. It would be interesting
to determine numerically these minima with more accuracy. The value for
k = 5 has been obtained with the highly non-obvious choice h5(t) = 2t2(1−
t)4(120t2+52t+13). As a consequence, one can get for instance the following
inequality: ∣∣∣∣m(x)− M(x)

x

∣∣∣∣ ≤ 33/13

x4

∫ x

1

|M(t)|t3dt+
19/7

x

and such an inequality should give improvements for many of the results I
obtained in [39]. We call this problem the “localization problem” because
a high power of t in the integral above means that the values of M(t) for t
close to x have more weight than the lower ones. We recall that conjecture C
claims that one can use only the values of t that are a constant multiple
of x.

All in all, a lot remains to be understood in this area. I for instance
wonder whether functions like {t2 + 1} could appear in these identities
rather than {t}... I thought at first that the answer should be no but I am
not so sure anymore.

From Λ to µ / From ψ to M . Let us continue our journey around the
Axer-Landau Equivalence Theorem. We first notice that Wen-Bin Zhang has
exhibited in [47] a Beurling system of integers where one have MP(x) = o(x)
without ψP(x) ∼ x. Our final destination being numerical estimates, we are
however more interested in the reverse implication, i.e. to derive bounds
for M from bounds for the primes. This problem has been studied by A.
Kienast in [20] and by L. Schoenfeld [42], and they proceeded as I later
did in [37] by using some combinatorial identities. The family of identities I
produced is simply more efficient. It is better to refer the reader to the cited
paper but let us give the general flavour. The first interesting case reads

(6.2)
∑
`≤x

µ(`) log2 ` =
∑
d`≤x

µ(`)
(
Λ ? Λ(d)− Λ(d) log d

)
.

It is worth mentioning that the Selberg10 identity that is used for proving
elementarily the Prime Number Theorem is Λ ? Λ(d) + Λ(d) log d = (µ ?
log2)(d) and that, assuming this Prime Number Theorem, both factors Λ ?
Λ(d) and Λ(d) log d contribute equally to the average. In particular, the
function Λ ? Λ(d)− Λ(d) log d should be looked upon as a remainder term.
We get information of its average order by using the Dirichlet hyperbola
formula; it would most probably be better to use an explicit expression in
terms of the zeros directly, but this involves the residues of (ζ ′/ζ)2 and there
lacks a control of those, while the residues of ζ ′/ζ are well understood. Some
more thought discloses that we need essentially the L1-norm of such residues,
and since they are non-negative integers for ζ ′/ζ, we may as well compute

10This one is Atle Selberg!
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their simple average, which is readily achieved by a contour integration that
has most of its path outside the critical strip. No such phenomenom is known
to occur for (ζ ′/ζ)2! The reader may be wary of the Moebius factor that
appears on the right-hand side of (6.2), but only one such factor appears.
It is maybe more apparent in the next identity of this series:∑

`≤x

µ(`) log3 ` =
∑
d`≤x

µ(`)
(
Λ ? Λ ? Λ(d)− 3Λ ? (Λ log)(d) + Λ(d) log2 d

)
.

When starting with the last identity with k = 3, one can expect to save
a log3 x on the trivial estimate x, but the presence of the Moebius factor
on the right-hand side reduces that to a saving of one log x less, so log2 x.
This is because the Dirichlet hyperbola method is not used, though one may
employ a recursion process: indeed, L. Schoenfeld does that, followed by H.
Cohen, F. Dress & M. El Marraki in [5], [10] and [13]. I did not introduce
such a step as it is numerically costly, but a more careful treatment is here
possible.

7. Generalizing Meissel’s proof, III

We now turn towards the third aspect of Meissel’s identity, which is to
provide a simple proof of

∑
n≤x µ(n)/n � 1. Here is a theorem I proved a

long time back with Andrew Granville in [17, Lemma 10.2].

Theorem 7.1. For x ≥ 1 and q ≥ 1, we have∣∣∣∣ ∑
n≤x,

gcd(n,q)=1

µ(n)

n

∣∣∣∣ ≤ 1.

This result belongs to the family of the eternally-reproved lemmas! In
fact, I discovered much lated that it appeared already in an early paper of
Harold Davenport as [7, Lemma 1]! The precise upper bound by 1 is not
given, but the proof is already there. And Terence Tao reproved this result
in [45], in a larger context, but the proof is again the same! We cannot even
say that Davenport’s paper or the one I co-authored are forgotten: they are
simply cited for other reasons.

The main theme is the handling of the coprimality condition. Since we
mentioned the investigations of Sigmund Selberg, it is worthwhile stating a
surprising lemma that one finds in [43, Satz 4].

Theorem 7.2. For x ≥ 1 and d, q ≥ 1, with d|q, we have

0 ≤
∑
n≤x,

gcd(n,d)=1

µ(n)

2ω(n)n
≤

∑
n≤x,

gcd(n,q)=1

µ(n)

2ω(n)n
≤ 1.

We should make a stop here; indeed the reader may think that removing
the coprimality condition is an easy task. The standard manner goes by
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using the Moebius function and the identity:

(7.1)
∑
d|n,
d|q

µ(d) =
∑

d| gcd(n,q)

µ(d) =

{
1 when gcd(n, q) = 1

0 else.

However, here is what happens in our case:∑
n≤x,

gcd(n,q)=1

µ(n)

n
=
∑
n≤x

∑
d| gcd(n,q)

µ(d)
µ(n)

n
=
∑
d|q

µ(d)
∑
d|n≤x

µ(n)

n

=
∑
d|q

µ2(d)

d

∑
m≤x/d,

gcd(m,d)=1

µ(m)

m
(7.2)

and thus a coprimality condition comes back in play! E. Landau has devised
a long time ago a manner to go around this problem: it consists in comparing
the multiplicative function f(n) = 11(n,q)=1µ(n) with the function µ, i.e. to
find a function g such that f = µ?gq, where ? is the arithmetical convolution
product. Determining gq is an exercise resolved by comparing the Dirichlet
series. Once the reader has found the expression for gq, he or she will find
that it is somewhat unwieldy. The foremost problem is that it has an infinite
support and thus, when we write∑

n≤x,
gcd(n,q)=1

µ(n)

n
=
∑
`≥1

gq(`)
∑
m≤x/`

µ(m)/m

one has to handle the case when ` is large, i.e. when x/` is small. This leads
to difficulties, for instance when one wants explicit estimates. But even if
one aims only at theoretical results, diffulties appear: for instance, if one

wants to bound
∑

n≤x,
gcd(n,q)=1

µ(n)
n

from the estimate |
∑

n≤x
µ(n)
n
| ≤ 1 and the

function gq, the resulting bound is O(q/φ(q)), which can be infinitely larger
than O(1).

I devised in [38] and [39] a workaround to handle this question. The two
remarks needed are first that the Liouville function11 λ is rather close to the
Moebius function, and second that the Liouville function being completely
multiplicative, the proof above (leading to (7.2)) would this time succeed.
This implies a process in three steps:

(1) Go from µ to λ.
(2) Get rid of the coprimality with the Moebius function.
(3) Study the resulting sum by comparing λ to µ and by using results

on µ.

In the second paper, I noticed that it is possible to combine steps 1 and 3,
hence gaining in efficiency. This process is however only half a cure: one

11The Liouville function is the completely multiplicative function defined by λ(n) =
(−1)Ω(n), where Ω(n) is the number of prime factors of n, counted with multiplicity, so
that Ω(12) = 3.
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indeed avoids short sums, and this is numerically important, but the factor
q/φ(q) we talked about earlier still arises! Here is a typical result I obtained
in this fashion.

Theorem 7.3. When 1 ≤ q < x, we have∣∣∣∣ ∑
d≤x,

(d,q)=1

µ(d)/d

∣∣∣∣ ≤ 4q/5

φ(q) log(x/q)
.

Similar results with µ(d) log(x/d)/d and µ(d) log(x/d)2/d are also pre-
sented. Let me end this section with a methological remark: Theorem 7.1
does not contain in its statement a natural restriction of q with respect
to x, and as such is hard to improve upon. Indeed q could be the product
of all the primes below x, in which case the bound is optimal. The factor
1/ log(x/q) in Theorem 7.3 avoids this fact, which is why I believe it can be
largely improved. The removal of the factor q/φ(q) would be a interesting
step.

A related problem. Meissel’s identity leads to an excellent handling of
the coprimality condition, and we saw at the beginning of this section that
it was not obvious to generalize. In another paper [27] with Akhilesh P.
concerning the Selberg sieve density function, we encountered the problem
of bounding the sum

(7.3)
∑
k>K,

gcd(k,q)=1

µ(k)

kφ(k)

uniformly in q. We were only able at the time to get a better than trivial
estimate, but recently, together with Akhilesh P. in [28], we proved the next
result by again employing the Liouville trick described above to which we
added a sieving argument.

Theorem 7.4.

lim sup
K→∞

K max
q

∣∣∣∣ ∑
k>K,

gcd(k,q)=1

µ(k)

k2

∣∣∣∣ = 0.

Our result is more general and encompasses the sum (7.3). In essence,
the proof runs as follows: when q has many prime factors, use a sieve bound;
when q has few prime factors, remove the coprimality condition with Moe-
bius. This time coprimality with

∏
p≤K,p-q p comes into play. Both arguments

take care of extremal ranges of q (i.e. when q as many or few prime factors).
These ranges do not overlap: there is a middle zone where this time, the
oscillation of µ comes into play, and it is where we use the λ-trick to get rid
of the coprimality condition.

The rate of convergence is however unknown to us. Under the Riemann
Hypothesis, our proof gives a rate of convergence in 1/(logK)1/3−ε for any
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ε > 0 but the best we have been able to prove concerning an Omega-result
is that

lim sup
K→∞

K logK max
q

∣∣∣∣ ∑
k>K,
(k,q)=1

µ(k)

k2

∣∣∣∣ ≥ 1.

We have not even been able to improve on this last constant 1, which we
got by considering q =

∏
p≤K p. Our journey ends here!
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[36] O. Ramaré, Explicit estimates for the summatory function of Λ(n)/n from the one
of Λ(n), Acta Arith. 159 (2013), no. 2, 113–122.

[37] , From explicit estimates for the primes to explicit estimates for the Moebius
function, Acta Arith. 157 (2013), no. 4, 365–379.

[38] , Explicit estimates on the summatory functions of the Moebius function with
coprimality restrictions, Acta Arith. 165 (2014), no. 1, 1–10.

[39] , Explicit estimates on several summatory functions involving the Moebius
function, Math. Comp. 84 (2015), no. 293, 1359–1387.

[40] , Quantitative steps in axer-landau equivalence theorem, Submitted (2017),
9pp.

[41] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime
numbers, Illinois J. Math. 6 (1962), 64–94.

[42] L. Schoenfeld, An improved estimate for the summatory function of the Möbius
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explicites, Ph.D. thesis, Mathématique, Lille, 2015, urlhttp://math.univ-lille1.fr/ ra-
mare/Epsilons/theseRamdinmawiaVanlalngaia.pdf.

[47] Wen-Bin Zhang, A generalization of Halász’s theorem to Beurling’s generalized in-
tegers and its application, Illinois J. Math. 31 (1987), no. 4, 645–664. MR 909789
(89a:11102)

E-mail address: olivier.ramare@univ-amu.fr
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