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1 First lecture: initiation to Brun pure sieve

Pure Brun sieve. It was very intricate before the invention of using Rankin’s
trick. Multiplicativity.

(Brun, 1919a), (Brun, 1919b), (Rankin, 1938), (Murty & Saradha, 1987).
The Moebius function is defined by

µ(d) =

{
(−1)t when d is a product of t distinct prime factors,

0 otherwise.
(1)

We have µ(1) = 1. This function is very combinatorial in nature∗. It appears
in the inclusion-exclusion principle: we have, for any subset of integers A,

#{a ∈ A/ gcd(a, r) = 1} =
∑
d|r

µ(d)#{a ∈ A/ d|a}. (2)

If you want elements of A that are coprime to r = 6, take all elements of A
(this is the contribution for d = 1), remove from that the elements of A that
are divisible by 2 (this is the contribution of d = 2) and the ones divisible
by 3 (this is the contribution of d = 3). However you have removed twice

∗And indeed has an equivalent in any ordered lattice satisfying some suitable finiteness
hypothesis.
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the elements of A that are divisible by 2 and by 3, i.e. by 6, and this is the
contribution of d = 6. The general case is not more difficult than that. Note
that |µ(r)| is a characteristic function, often written as µ2(r).

When we do that for primes, the accumulated error term is too big. We
look at an upper and a lower estimate.

Lemma 1.1. We have, when k ≥ 1∑
0≤`≤r

(−1)`
(
k

`

)
= (−1)r

(
k − 1

r

)
.

Remark: we use the convention that(
t

s

)
= 0 when t > s, or t ≤ 0 < s.

But
(

0
0

)
= 1.

Proof. We simply proceed by recursion on r ≥ 0. When r = 0, both sides
equal 1. Assume the property has been proved for r and let us prove it for
r + 1. We find that the left hand expression equals

(−1)r
(
k − 1

r

)
+ (−1)r+1

(
k

r + 1

)
= (−1)r

(k − 1)!

(r + 1)!(k − 1− r)!
(r + 1− k)

= (−1)r+1 (k − 1)!

(r + 1)!(k − 1− (r + 1))!

as required.

Lemma 1.2. Let r be an odd integer and let m ≥ 1 be an integer. We have∑
d|m,
ω(d)≤r

µ(d) ≤ 11m=1

where 11m=1 is 1 when m = 1 and vanishes otherwise.

Lemma 1.3. Let r be an even integer and let m ≥ 1 be an integer. We have

11m=1 ≤
∑
d|m,
ω(d)≤r

µ(d)

where 11m=1 is 1 when m = 1 and vanishes otherwise.
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Proof. Indeed, let k be the number of prime factors of m. When k = 0 (i.e.
m = 1), both inequalities hold. Otherwise∑

d|m,
ω(d)≤r

µ(d) =
∑

0≤`≤r

(−1)`
(
k

`

)

since there are
(
k
`

)
divisors of m that are squarefree and have exactly ` prime

factors.

Theorem 1.4 (Mertens, 1874). We have∏
p≤z

(
1− 1

p

)
= (1 +O(1/Log z))e−γ/Log z.

(The error term may require the PNT).

Theorem 1.5. Let x ≥ 10 be a real number. The number of integers n ≤ x
that are such that n(n+ 2) has no prime factors ≤ z is equal to

x

2

∏
3≤p≤z

(
1− 2

p

)
+O(xe−

√
Log x)

for any z such that
Log z ≤

√
Log x.

This is not enough to prove Brun assertion: the sum of the reciproquals
of the twin primes [is finite or] converges. But if you take better parameters
in the proof that follows, you will be able to prove Brun’s assertion.

Lemma 1.6. We have, when d is squarefree,∑
n≤x,

d|n(n+2)

1 = h(d)x+O∗(2ω(d))

where

h(d) =
∏
p|d,
p 6=2

2

p

∏
p|d,
p=2

1

2
. (3)

The error term O∗(dh(d)) would be enough.

Proof. Indeed,by the chinese remainder Theorem, the equation n(n + 2) ≡
0[d] has dh(d) solutions modulo d.
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Proof of Theorem 1.5. We use the following inequality

S =
∑
n≤x,

(n(n+2),P (z))=1

1 ≥ Sr =
∑
n≤x,

(n(n+2),P (z))=1

∑
d| gcd(n(n+2),P (z)),

ω(d)≤r

µ(d) (4)

valid for any odd integer r. Our aim is now to evaluate Sr, since, remember,
the lower bound we have taken is because we said we would be able to evaluate
the resulting sum Sr. As it turns out, the condition d| gcd(n(n + 2), P (z))
splits into d|n(n+ 2) and d|P (z). We invert summations, getting:

Sr =
∑
d|P (z),
ω(d)≤r

µ(d)
∑
n≤x,

d|n(n+2)

1.

We appeal to Lemma 1.6 and reach our first ledge:

Sr = x
∑
d|P (z),
ω(d)≤r

µ(d)h(d) +O∗
( ∑
d|P (z),
ω(d)≤r

2ω(d)

)
= xS?r +O∗((2z)r)

say. We have to evaluate both sums over d. Let us start with S?r . We write

S?r =
∑
d|P (z)

µ(d)h(d) +O∗
( ∑
d|P (z),
ω(d)>r

h(d)
)

= 1
2

∏
3≤p≤z

(
1− 2

p

)
+O∗

(
Sr
)
.

We now have to bound Sr. We proceed as follows:

Sr ≤
∑
d|P (z),
ω(d)>r

2ω(d)yω(d)−r/d ≤ y−r
∏
p≤z

(1 + 2y/p) ≤ exp
(
−r Log y + 2y

∑
p≤z

1

p

)

valid for any y ≥ 1. We now have to choose r and y. We first define

u =
Log x

Log z
. (5)

We have u ≥
√

Log x which goes to infinity. This inequality also implies that
u ≥ Log z. We take for r the odd number that is immediately larger than
u/2. We further select

y =
u

Log u
.
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The first error term O((2z)r) is O(
√
x). As for the second one, we have

− r Log y + 2y
∑
p≤z

1

p
≤ −u

2
Log

u

Log u
+
u

2
+

2u

Log u
(Log Log z +O(1))

≤ −u
2

Log
u

Log u
+
u

2
+ 2u+O(1) ≤ −uLog u

3
≤ −

√
Log x

provided x be large enough. We prove the upper bound in exactly the same
way.

Further readings:

(Iwaniec, 1977), (Daboussi & Rivat, 2001).

More:

the additive Rankin’s method to get a lower bound for n!.

2 Second lecture: Vinogradov method made

easy

Theorem 2.1 (Dirichlet). Let Q ≥ 2 be a real number. For every α ∈ [0, 1],
there exists un fraction a/q such that q ≤ Q and∣∣∣α− a

q

∣∣∣ ≤ 1

qQ
.

Take Q = x/(Log x)6. Let α be in [0, 1] and select a/q as in Dirichlet’s
Theorem. We want to show that∣∣∣∑

p≤x

e(αp)
∣∣∣ ≤ Cx/(Log x)2

provided q ≥ (Log x)9. So very few arcs are remaining.
To do that, we need to handle a summation over prime numbers. (Vino-

gradov, 1937) is the first one to have succeeded in this very difficult task. See
also (Vinogradov, 2004). It has been thought as being extremely to follow,
but we present now a very easy account of Vinogradov method, as presented
in (Ramaré, 2006). The reader interested in the most powerful development
of Vinogradov method should read (Harman, 1996, Theorem 2),
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Theorem 2.2. Let z and x be two real parameters such that 4 ≤ z2 ≤ x.
Let r(n) be the number of prime factors of n that fall in the interval (z,

√
x].

We define next ρ(n) by

ρ(n) =
11(n,P (z))=1

1 + r(n)
. (6)

We have ∑
z<p≤x

g(p) =
∑
`≤x,

(`,P (z))=1

g(`)−
∑

z<p≤
√
P ,

d≤P/p

ρ(d)g(dp) +R

where |R| ≤ 3x/z when |g(n)| ≤ 1 for all n ≥ 1.

Proof. We detect the prime numbers among the set of integers ` that have no
prime factor ≤ z by removing the ones that have a prime factor in (z,

√
x),

i.e. that can be written as ` = dp. We however have to divide by the number
of such writings, and this is r(dp). We have thus reached∑

z<p≤x

g(p) =
∑
`≤x,

(`,P (z))=1

g(`)−
∑

z<p≤
√
x,

d≤x/p

g(dp)

r(dp)
.

Since r(dp) = r(d) + 1 when d is not divisible by p, we can replace r(dp) by
r(d) + 1 provided we correct the resulting expression for the integers dp of
the shape tp2. This gives us the claimed formula with

R =
∑

z<p≤
√
x

∑
t≤x/p2

ρ(tp2)g(tp2)

r(tp2)
. (7)

In order to bound this remainder term, we put absolute values inside, ex-
tend the summation over p to every integer, and simplify it by bounding
|g(tp2)/r(tp2)| above by 1, and ρ(tp2) by 1. We conclude by comparing the
resulting expression to an integral.

Theorem 2.3 (Vinogradov). Let α ∈ [0, 1] and Q ≥ 1 be two real numbers.
Let a/q ∈ [0, 1] be a rational, written in shortest terms and such that q ≤ Q.
We assume that ∣∣∣α− a

q

∣∣∣ ≤ 1

qQ
.

We have∑
p≤x

e(αp)� x

Log x

( 1
√
q

+

√
q

x
+

x

qQ
+ exp

(
−1

2

√
Log x

))
(Log x)2

where e(β) = exp(2iπβ).
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Proof. We want to use Theorem 2.2 with g(p) being e(pα) when p lies in
(x/2, x] and 0 otherwise. Let us first proceed to an initial reduction. We
write α = (a/q) + β and readily check that we can assume β = 0 at a cost of
an error term of size O(x2/(qQLog x)).

Concerning the bilinear part, we use a diadic decomposition in p. The
part to handle is∣∣∣∣ ∑

P<p≤P ′,
x/(2p)<d≤x/p

ρ(d)
e(adp/q)

1 + r(d)

∣∣∣∣2 � x

P

∑
x/(4P )<d≤x/P

∣∣∣ ∑
p∈I(d)

e(dap/q)
∣∣∣2

� x

P

∑
p,p′≤P ′

∑
d∈J(p,p′)

e(da(p− p′)/q)

� x

P

(( x
P

+ q
) ∑
p,p′≤P ′,
p≡p′[q]

1 +
∑

p,p′≤P ′,
p 6≡p′[q]

∑
d∈K(p,p′)

e(da(p− p′)/q)
)

where I(d) is an interval of length ≤ P , J(p, p′) is an interval of length ≤ x/P
and K(p, p′) is an interval of length < q: we obtaining it by removing as many
times as possible q consecutive integers from the interval J(p, p′)∗. In this last
sum, the primes such that p ≡ p′[q] contribute at most q(Log q)

∑
p,p′≤P ′,
p≡p′[q]

1.

Hence∣∣∣∣ ∑
P<p≤P ′,

x/(2p)<d≤x/p

ρ(d)
e(adp/q)

1 + r(d)

∣∣∣∣2

� x

P

(
(P + q)2 Log q + P 2q Log q

)
�
(
xPq +

xq2

P

)
Log q.

We now have to handle the linear part, namely

S =
∑
`≤x,

(`,P (z))=1

e(a`/q).

We have seen how to handle this summation when the function we are sum-
ming (here e(α`)) is non-negative. Here is how we reduce the problem to this
case. We consider∑

`≤x,
(`,P (z))=1

(
1 + <e(a`/q)

)
and

∑
`≤x,

(`,P (z))=1

(
1 + =e(a`/q)

)
∗Starting from its least integer for instance.
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for which we give asymptotic bounds. We proceed as in the proof of Theo-
rem 1.5. The main difference is that we will have to handle the summation∑

d|P ′(z),
ω(d)≤r,
q-d

µ2(d)/‖da/q‖+
∑

x/2<`≤x,
q|d|`,
d|P (z),
ω(d)≤r

µ(d)

where ‖θ‖ denotes the distance to the nearest integer. It is not more than∑
d≤zr,

(d,q)=1

1/‖ad/q‖+
∑
q|`≤x

τ(`/q)� zr Log q +
x

q
Log x.

This way, we compute ∑
`≤x,

(`,P (z))=1

(
1 + <e(a`/q)

)
and ∑

`≤x,
(`,P (z))=1

1.

By substraction, the main terms cancel out!. Operating similarly for the
imaginary part, we get the Theorem we sought.

Further readings:

(Iwaniec & Jutila, 1979), (Harman, 1982), (Iwaniec & Kowalski, 2004).

3 Third lecture: Initiation to Selberg upper

bound sieve

(Levin & Fainleib, 1967), (Ramaré, 2009, Theorem 21.1). Convolution method:
folklore but can be found in (Ramaré, 1995).

Theorem 3.1. Let g be a non-negative multiplicative function. Let κ, L and
A be three non-negative real parameters such that

∑
p≥2,ν≥1,
w<pν≤Q

g
(
pν
)

Log
(
pν
)

= κLog(Q/w) +O∗(L), (Q > w ≥ 1),

∑
p≥2

∑
ν,k≥1

g
(
pν
)
g
(
pk
)

Log
(
pν
)
≤ A.
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Then, when D ≥ exp(2(L+ A)), we have∑
d≤D

g(d) = C(LogD)κ(1 +O∗(B/LogD))

with C =
1

Γ(κ+ 1)

∏
p≥2

{(
1− 1

p

)κ∑
ν≥0

g(pν)

}
,

B = 2(L+ A)(1 + 2(κ+ 1)eκ+1).

Here is a simpler version:

Theorem 3.2. Let g be a non-negative multiplicative function. Let κ, L′

and A be three non-negative real parameters such that
∑

p≥2,ν≥1,
pν≤Q

g
(
pν
)

Log
(
pν
)

= κLogQ+O∗(L′), (Q ≥ 1),

∑
p≥2

∑
ν,k≥1

g
(
pν
)
g
(
pk
)

Log
(
pν
)
≤ A.

Then, when D ≥ exp(4(L′ + A)), we have∑
d≤D

g(d) = C(LogD)κ(1 +O∗(B′/LogD))

with C =
1

Γ(κ+ 1)

∏
p≥2

{(
1− 1

p

)κ∑
ν≥0

g(pν)

}
,

B′ = 4(L′ + A)(1 + 2(κ+ 1)eκ+1).

As an application, let us evaluate

G(z) =
∑
d≤z

µ2(d)g(d) (8)

where g is the multiplicative function defined on the primes by

g(2) = 1, g(p) = 2/(p− 2) (p ≥ 3) (9)

and g(pk) = 0 for k ≥ 2 and any prime p. The condition are easily verified
with κ = 2, so that the constant reads here∏

p≥3

{(
1− 1

p

)2
p

p− 2

}
.
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We want to evaluate ∑
p≤x,

p+ 2 prime

1.

We first select a sieving parameter z and limit our search to primes > z, at
a cost of at most O∗(z). The idea of Selberg has then been to consider

S =
∑
n≤x

( ∑
d|n(n+2),
d≤z

λd

)2

with λ1 = 1. This sum is indeed larger than the number of prime twins in
(z, x]. Indeed, the coefficients we sum is equal to 1 on such a prime twin and
non-negative otherwise. Let us now try to choose the λd’s to the best of our
interests. Our choice will have |λd| ≤ 1. We have

S =
∑

d1,d2≤z

λd1λd2
∑

[d1,d2]|n(n+2),
n≤x

1 = x
∑

d1,d2≤z

λd1λd2h([d1, d2]) +O(
∑
d≤z

2ω(z))

= x
∑

d1,d2≤z

λd1λd2h(d1)h(d2)

h((d1, d2))
+O(z2(Log z)2)

where h is defined by (3). Notice next that when (d1, d2) is squarefree:

1

h((d1, d2))
=
∑
δ|d1,
δ|d2

h?(δ)

where h? is the multiplicative function defined on prime numbers by

h?(2) = 1, h?(p) =
p

2
− 1 (p ≥ 3) (10)

and the values on prime powers will not intervene, so we do not have to define
h? there. The reader will check that h? is in fact 1/g, with g being defined
in (9). We get

S =
∑
δ≤z

h?(δ)
(∑
δ|d≤z

λdh(d)
)2

+O((z Log z)2).

Let us define the new variables

yδ =
∑
δ|d≤z

h(d)λd. (11)
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It is readily checked that

h(d)λd =
∑
d|δ

µ(δ/d)yδ. (12)

Proof. Indeed, put (11) inside the right hand side of (12). We get∑
d|δ

µ(δ/d)
∑
δ|`≤z

h(`)λ` =
∑
d|`≤z

h(`)λ`
∑
d|δ|`

µ(δ/d) = h(d)λd.

Our condition λ1 = 1 reads∑
δ≥1

µ(δ)yδ = 1

condition uder which we seek to minimize the quadratic form
∑

δ≤z h
?(δ)y2

δ .
It is readily checked that such a minimum is reached with the choice

yδ =
µ(δ)

h?(δ)G(z)

where G(z) has been defined in (8). Let us only check that the linear condi-
tion holds.

Proof. ∑
δ≥1

µ(δ)yδ =
∑
δ≥1

µ(δ)2

h?(δ)G(z)
=
G(z)

G(z)
= 1

as required.

The minimum is then∑
δ≤z

h?(δ)y2
δ =

∑
δ≤z

µ2(δ)

h?(δ)G(z)2
= 1/G(z). (13)

Since we have already evaluated the main term, this gives us∑
p≤x,

p+ 2 prime

1 ≤ x

G(z)
+ z +O((z Log z)2)

and we choose z =
√
x/(Log x)2 to get

11



Theorem 3.3. The number of prime twins in [1, x] is not more than

(1 + o(1))
x

2

∏
p≥3

(
1− 1

(p− 1)2

)
× 8.

Note : this is valid as an upper bound for the number of twin primes in
any interval of length x. (Siebert, 1976) gives a completely explicite version
of this result. It may be possible to improve on it in the spirit of (Ramaré &
Schlage-Puchta, 2008).

We now should check that |λd| ≤ 1.

Further readings:

(Halberstam & Richert, 1974), (Ramaré, 2005).

4 Fourth lecture: the parity principle in sieve

methods

What is a sieve? One answer is: it is a machine that extracts informations
from an over-sequence A, for instance the integer of interval, to get properties
of a smaller sequence, for instance the one of primes in this interval, or the one
of prime twins in this interval. What kind of informations? Well, usually only
information on how this sequence is distributed in some specific arithmetic
progressions. And, if you look closely, only at information concerning the
main terms in the form∗:

∀d ≤ D,
∑
a∈A,
d|a

1 = σ(d)X +Rd.

We want to extract information from σ(d).
The fact is that these processi are usually very general, as we have seen.

This implies that they are flexible and give information even in very tricky
situation. But this should also imply that they have limitations!

Following Selberg

We rely on (Selberg, 1949), (Selberg, 1949) and (Selberg, 1991, Lectures on
sieve).

∗When sieving to get prime numbers
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Let us follow Selberg on the subject and consider the Liouville function
λ(d) defined by

λ(d) = (−1)Ω(d) = (−1)number of prime factors of d, counted with multiplicity.

This function is completely multiplicative, Let us assume for simplicity the
Riemann Hypothesis, though we could do without. This hypothesis tells us
that

∀ε > 0,
∑
n≤x

λ(n)� x
1
2

+ε.

Let us now consider two sequences: Aeven is the sequence of integers in [1, x]
that have an even number of prime factors andAodd is the sequence of integers
in [1, x] that have an odd number of prime factors. An integer n ∈ [1, x] is
in Aeven if and only if (1 + λ(n))/2 = 1, and this function takes value 0
otherwise. As a consequence

∀d,∀ε > 0,
∑
n≤x,
d|n

1 + λ(n)

2
=

x

2d
+Oε

(
(x/d)

1
2

+ε
)
.

This means that for this sequence, the main term is the same as when sieving
the whole interval! If we had a sieve that would extract from this information
that the number of primes in such a sequence is indeed > 0, then it would
do so in Aeven also. But this sequence does not contain any primes at all!

Looking at Aodd, we see that the best a sieve could do is produce δX =
(1 + o(1))x/Log x primes, i.e. δ = 2/Log x, which when applied to the
sequence of primes in any interval or length x, implies that this kind of
process cannot give any better than

2x/Log x

in this interval.

Hand waving

Here is how one can summarize what has been observed:

The sieve alone is not able to distinguish between an even
and an odd number of primes factors.

In particular it cannot produce primes. This is vague, and true only if the
notion of sieve is understood in a proper general context. In Theorem 2.2,
the reader may have noticed that in applies only to the primes between 1
and x. Though this is not a sieve, it is surely akin to a sieving process.

13



Selberg’s identity

Λ Log +Λ ? Λ = µ ? Log2 . (14)

This leads to:

Theorem 4.1. We can prove elementarily that∑
n≤x

Λ(n) Log n+
∑

n1n2≤x

Λ(n1)Λ(n2) = 2xLog x+O(x).

Lemma 4.2. We can prove elementarily that∑
d≤x

µ(d)

d
� 1,

∑
d≤x

µ(d)

d
Log(x/d)� 1

and that ∑
d≤x

µ(d)

d
Log2(x/d) = 2 Log x+O(1).

Proof. Let us start with the difficult one which is the third one. The reader
will check on using Dirichlet hyperbola formula that∑

m≤M

d(m)

m
=

(LogM)2

2
+ c1 LogM + c2 +O(M−2/3). (15)

(even better is available). This gives us∑
d≤x

µ(d)

d
Log2(x/d)

=
∑
d≤x

µ(d)

d

(
2
∑
m≤x/d

d(m)

m
− 2c1 Log(x/d) + 2c2 +O((d/x)2/3)

)
= 2

∑
dm≤x

µ(d)d(m)

dm
+O(1) = 2 Log x+O(1).

Proof of Theorem 4.1. We have

S =
∑
d≤x

µ(d)
(x
d

Log2 x

d
− 2x

d
Log

x

d
+

2x

d
+O(

√
x/d)

)
= x

∑
d≤X

µ(d)

d

(
Log2 x

d
− 2 Log

x

d
+ 2
)

+O(x) = 2xLog x+O(x)

by the previous Lemma.
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It is worth mentionning that the part with the primes and the part with-
out it have the same contribution, namely that∑

n≤x

Λ(n) Log n = xLog x+O(x) =
∑
p1p2≤x

Λ(p1)Λ(p2).

In (Bombieri, 1976), (Friedlander & Iwaniec, 1996) and (Friedlander &
Iwaniec, 1998), the sum∑

n≤x

Λ(n) Log nf(n) +
∑
p1p2≤x

Λ(n1)Λ(n2)f(n1n2)

is computed for a wide variety of functions f . This is made possible by the
fact that the treatment above is elementary. In (Ramaré, 2010), we compute∑
n≤x

Λ(n)(Log n)2ν−1

(2ν − 1)!
f(n) +

∑
n1n2≤x

Λ(n1)(Log n1)ν−1Λ(n2)(Log n2)ν−1

(ν − 1)!2
f(n1n2)

for about the same class of functions. We get a better error term when ν
(any integer ≥ 1) grows. This is so, while in fact the coefficient

Λ(n1)(Log n1)ν−1Λ(n2)(Log n2)ν−1

(ν − 1)!2

enables a better localization of n1 and n2 as this quantity will be larger when
n1 and n2 are close to

√
x. This phenomenom increases as ν increases.
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sont ”nombres premiers jumeaux” est convergente ou finie. Darboux Bull., 43(2), 100–104, 124–128.

Brun, V. 1919b. Le crible d’Erathosthène et le théorème de Goldbach. C.R., 168, 544–546.

Daboussi, H., & Rivat, J. 2001. Explicit upper bounds for exponential sums over primes. Math. Comp.,
70(233), 431–447.

Friedlander, J., & Iwaniec, H. 1996. Bombieri’s sieve. Pages 411–430 of: Berndt, Bruce C. (ed.) et al.
(ed), Analytic number theory. Vol. 1. Proceedings of a conference in honor of Heini Halberstam,
May 16-20, 1995, Urbana, IL, USA. Boston, MA. Birkhäuser. Prog. Math., vol. 138.
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