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Abstract

The quadratic form V(p,Q) = X, o 2 moeatq |S(¢,a/q)|* and its
eigenvalues are well understood when Q = o(+/N), while V (g, Q) is ex-
pected to behave like a Riemann sum when N = o(Q). The behavior in
the range Q € [\/N7 100N] is still mysterious. In the present work we
present a full spectral analysis when Q = N7/® in terms of the eigenvalues
of a one-parameter family of nuclear difference operators. We show in
particular that (a smoothed version of) the quadratic form V(p, @) may
stay away from (6/72)Q Y., |¢n|> when Q = N, though only on a vector
space of positive but small dimension.

1 Introduction and results

Main consequence

We are interested in this paper in the quantity >, o >, moasq [S(: a/q) |2 where
(¢n)n<n is any sequence of complex numbers and S(p, o) = >,y pne(na). It
is this quantity that we analyze. Our main steps in this analysis are Theorem 1.2,
Formula (74) and Theorem 1.6. One of the main consequence of our work is the
next theorem.

Theorem 1.1. There exists ¢ > 0 such that for every N large enough and
Q € [eN/y/log N,20N], we have

O ) IS(e e/ = Q7NN ol

1<q/Q<2 amod*q

This is to be compared with the lower bound given by W. Duke & H. Iwaniec
in [12]. Note that the summation therein extends over all classes a modulo ¢
rather than over the reduced classes, see the remark following [35, Theorem
2.7] on this issue. In particular, the principal character is included (i.e. ¢ = 1)
with a definite influence. J.-C. Schlage-Puchta in [40] gives, for some random
sequences, a lower bound of a large sieve quantity under the sole assumption
that Q?/N goes to infinity. Read also the papers of P. Erdos & A. Renyi [17]
and of D. Wolke [47].

The proof of Theorem 1.1 will unfold in four steps:
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e By appealing to the d-symbol technique, we relate the above sum to a sum
of similar kind but where the moduli h are much smaller, namely h < H
for some H of size roughly N/Q.

e We then interpret, for each h, the intervening quantity as a scalar product
of some function Ry, (p) together with the value of a difference operator
applied at this same vector.

e After analyzing the one-parameter family of compact operators that in-
tervene, we use their eigenvalues to derive a spectral decomposition of the
large sieve quantity we are interested in.

e When W is non-negative and N/Q is small enough, we prove that these
eigenvalues are < 1 by using the harmonic analysis uncertainty principle.
Theorem 1.1 is a consequence of that.

Setting the horizon for a lower bound

Question. Do we have Z Z 1S(p,a/q)|* » NZMme when Q =
1<q/Q<2 a mod*q m
N2+ for some positive €?

When N = 3 _, ¢(q), we gave in [35, Theorem 1.2] the (rather weak) lower

bound []3 exp(=520 N log N) for the quantity ¥, -q D moarq |S(2: a/a) %
Theorem 1.3 implies that the better lower bound Q?|®|3 holds true as soon
as  oscillates enough along small arithmetic progressions in intervals of length
about @. The main result of [9, Theorem 2.4] by B. Conrey, H. Iwaniec and
K. Soundararajan implies a similar lower bound for functions ¢ that are the
convolution product of an oscillating factor supported on [1, Q!~¢] and a rather
general sequence.

Some functional transforms of our weight function

The §-symbol technique involves some functional transforms of our weight func-
tion W that we better treat before starting the analysis proper. Assumptions
W being as above, we define W* in (26), but the following expression valid for
z € R is better:

-2 Z J cos(2mny)W (z/y)dy/y.

n=1

By Lemma 5.9, the function W* is even, twice differentiable outside z = 0 where
it vanishes, and is of bounded variations over [0,1] and decreases like 1/22 ¢
at infinity. The expression for its Mellin transform, valid when Rs € [0, 3/2)
is simply W*(s) = W(s)¢(1 — s)/¢(1 + s), see Lemma 5.6, where W (s) is the
Mellin transform of W. We finally mention the following expression for its
Fourier transform, valid for u # 0 and obtained in Lemma 5.7:

_WQJW dt——z¢ (n/Jul). (1)

This Fourier transform satisfies W*(u So t)dt when |u| < 1/2 and
[uW* (u)| < exp —cor/10g [u] 0therw1se, for some posmve constant ¢y, ensuring



that W* (u) belongs to L!. Tt is worth specifying that W*(u) varies in sign when

W is non-negative'.

A smoothed setup

Our analysis revolves around the quantity
IR WL )
g=1 amod¥q

for some weight function W satisfying:

(W1) e The function W is C? over | — 00, 0 and C* per pieces.

(W3) e It is even and its support lies inside [—2,—1] U [1, 2].

(W3) e We have §° W (u)du # 0.

We do not need W to be non-negative, though nothing is made to avoid this
natural condition. We do not seek generality but on the reverse to restrict
ourselves to as smooth a situation as necessary.

We define

W) = Z (ZW - % JOOO W (u)du + O((log Q)/Q). ()

The quantity Io(W) depends on @, but in a very mild manner.

First step: an equality via j-symbol
The proof of Theorem 1.1 will unfold in four steps. We start our journey with

the following essential formula that is of independent interest.

Theorem 1.2. When 1/2 < H < +/N/(log N)° and log Q « log N, we have

WD 5 i - (100) 00 @) ) Dol

qQ
_Z Z J W*(u ’S <p, ))du

q a mod¥*q
h<H a mod*h

The reader will find a refined version for primes in Theorem 10.2. Please note
that the factor N(QH)~! is not polluted by any power of log N' and that W*(u)
belongs to L. The proof shows clearly that a polarized version is accessible of
the same strength, namely:

SIS S0/ STafa) = 1oW) S e

q amod*q m

7h§H Qamg*hj\ W* +@)S<¢,E+m>du
O(N(@QH)™Hl¢l2]v]2)

1Such a SIgn Change may be detected by using (1) for u € [1/2,1]. The positivity of Ww* (u)
implies that — 2 S1 (u)du = W (v) when v € [1,2], leading to a contradiction.




where |pl2 = 4/>,, |¥m| and similarly for [+[,. Similar polarized versions
are true for Theorems 1.3, 1.6 and Corollary 1.4. The beginning of our proof

follows closely the one of B. Conrey & H. Iwaniec [8] (which has been for the
most part incorporated in [9] by B. Conrey, H. Iwaniec & K. Soundararajan)
and can be considered as an additive analogue of their result. Our main new
ingredient at this stage, with respect to this proof, is the use of a maximal
large sieve inequality. To introduce this part, we got inspired from another try
at a large sieve equality due to W. Duke & H. Iwaniec and contained in [12].
The treatment of the finite parts (meaning: for h < H) diverges from [8], and
in particular we show that what may appear like two main terms in the first
coarse formula we get in fact cancels out in their leading contribution. This
part of the treatment is similar to what happens for the §-symbol of W. Duke,
J. Friedlander & H. Iwaniec in [11] (see also [25, Section 20.5] by H. Iwaniec &
E. Kowalski. A more precise version of this remark is documented Section 8.1).

Since W*(u) has its main contribution around u = 0, the sum over h con-
tributes to the main term only when the sequence (y¢,,) accumulates in some
arithmetic progression of modulus < H. When it does not, we have the following
result that implies a conditional large sieve equality.

Theorem 1.3. When % < H <+/N/(log N)® and log Q « log N, we have

S WL S 50,0/ = (1(W) + OV (QE) ™) X n?

q qQ a mod*q
N +hQ
+ O( Z hQ2 u<711$134}r(2hQ cn%:dh u<gl<v ¥n
n=c[h]

\

Recall that the size condition u,v < N is included in the condition on the
support of ¢. See Theorem 9.1 for a sharper remainder term. See also the work
[19] of J. Friedlander & H. Iwaniec, as well as [35, Theorem 2.6] for a large sieve
equality for coefficients of a special form (convolution of a shortly supported
sequence with a smooth sequence). The case H = 1/2 has also an interesting
methodological consequence.

Corollary 1.4. When log @ « log N, we have

S Y IS0/ = 1+ O/ Y o

q a mod¥q m

Second step: Functional rephrasing

Corollary 1.4 describes the situation satisfactorily when 7 = N/Q goes to zero.
When 7 is larger, we show that the situation is controlled by a family of embed-
dings (Rnn)n of L2({1---N}) and a family of self-adjoined nuclear operators
Y., on the subspace L2(X},) of L?(X}),): we endow Xp, = Z/hZ x [0,1] with
the natural probability measure; the space L2 (X}) is the one of functions from
L?(X},) whose Fourier transform with respect to the first variable is supported
by (Z/hZ)* x [0,1], see Section 11 for more details. We denote by U;_,, the
orthonormal projection on this subspace.



Let us define the local embedding Ry 5. We start by defining the (nearly)
unitary (see Lemma 13.1) embedding I'y , of L2({1--- N}) in L*(X}) by:

Ty L2({1--- N}) — L*(Xp)

¢ = (n)1znen — Dan(y) : Z/hZ x [0,1] - C (4)
(b, y) = Yoy, (b)+h[N'y/h]

where op,(z) is the unique integer b in {1---h} that is congruent to z modulo h;
we have set ¢, = 0 when the index n is (strictly) larger than N and

=N+ VN. (5)

The embedding we need is given by

Ry =U;_, olnn. (6)

5

This is to be compared with the case of integers where we send Z inside Z,, for
every prime p, though we have here an “infinite place” for each modulus A (this
is the factor [0,1]) and that we may not rely on multiplicativity. It would be
interesting to show that the diagonal embedding ¢ — (Rnn(p))n has a dense
range, as in the adelic case. The situation is somewhat more intricate because of
the dependence in /N. We next define the one-parameter family of operators 77 p,
by

G)(b,y) = JG (h ))dy (7)

They are shown to be compact symmetric nuclear operators in Theorem 12.4
and to verify a Mercer like theorem (see Theorem 12.5). The fundamental
formula is (74) which we repeat here:

ZW%@ 3 18(e a/a))? = Io(W)|ll3(1 + O(r/H))

q amod¥*q
-N Z RN’L ) Vrn R n(p )]hx[o,l]
h<H
(H <« NY8(log N)™32 7 = N/Q « H,Q « N?). (74)

Allowing H to be as large as a power of N requires quite some efforts and we
have to rely on te moe technical formula (46) rather than on the simplified form
given in Theorem 1.2. Ideally, we should be able to allow H roughly as large as

VN.

Analysis of a class of difference operators

We treat in Section 12 the analysis of the intervening family of operators in an
abstracted setting. For a function V satisfying the regularity assumptions (Ry),
(R2) and (R3), we define

1
Y% : GeL*[0,1]) — <y — L Gy )V (y - y’)dy’> (8)



Assumptions (R1), (Rz) and (Rs3) indeed hold when V(y) = W*(ry/h). It is
classical theory that 7 is a compact Hilbert-Schmidt operator, see for instance
[22, Theorem 7.7]. Let (A¢, G¢)e be a complete orthonormal system of eigenval-
ues / eigenfunctions, ordered with non-increasing |A;|. The Fredholm equation
AG(Y) = S(l) K(y',y)G(y)dy has been intensively studied. It is not the purpose
of this paper to introduce to this theory, a task for which it is better to read the
complete and classical [21], or the more modern [22]. Kernel of type V(y' — y)
are often called difference kernel, and lead to operators that are distinct from
convolution operators as the integration and definition interval is not the whole
real line. The book [39] is dedicated to the operators built from such kernels.
The book [7] contains also many useful informations.

Here is a summary of what we prove in Section 12.

Theorem 1.5. The operator ¥ is nuclear. Given a complete collection (Mg, Gi)e
of non-zero eigenvalues / eigenvectors, arranged with non-increasing |Ae| and

normalized by S(l) |Ge(t)]2dt = 1, we have the three following properties:

e (Explicit nuclearity) Z [Ae| « ||VH2€_C, VIFIVILIVIIVIE for some posi-
=1
tive constant ¢’ depending only on A, B and c. The notation |V'||; stands
for the total variation.
o (Mercer like property) V(y' —y) = Z MeGo(y)Gely) uniformly.
=1
o (Lidskii’s Theorem) Z Ae = 0.

=1

This is proved in Theorem 12.4 and 12.5. These properties shows that this
class of operators is indeed very regular. We recall that the Mercer Theorem
concerns similar operators but having a non-negative reproducing kernel. On
integrating the case y = y’ of the Mercer like property, we recover the third
property.

Third step: Spectral decomposition of the large sieve

Theorem 1.6. Assume that VN < Q < N. There exist two positive constants
¢o and cg such that the following holds. For each T = N/Q and integer h > 1, let
(Ge,ejns Ae(T/R))¢ be a complete family of two by two orthonormal eigenfunctions
of (7) coupled with their respective non-zero eigenvalues. These eigenfunctions
are all continuous and of bounded variations. The sequence (A ¢(T))es1 is ar-
ranged in non-increasing absolute value, and satisfies \e(T/h) « 1/3/€ uniformly
in h and 7. We also have

(/) = 0. 3 e(rm)] < e, 3 It/ =2 [ W (FL) = ay
=1 =1 =1
Q

and this last value is bounded uniformly in 7. Under the Riemann Hypothesis,
we also have Y, [A\o(T/h)|P < o0 for any p > 4/5. For any sequence of complex



numbers ¢, any L =1, any H « N'/8(log N)~%/2 and any £ € [0, 1], we have

P WD S s(pa/0) 2 = W)l
q CIQ a mod¥q
1 T n nax |?

[Ae(/R)|ZEno(N)

log H 1
+ O (R4 2+ n) el

where ng(N) = exp —c3+/log N. We have furthermore

n na
IDIEDIEDY %Gém/h(ﬁ>e(f)
h<H (<L g mod*¥h'n<N
[Xe(T/R)|Zn0(N)

2
< Nlgl3(1 + H*Lno(N)).

When W is non-negative, the one-sided inequality (7/h)Ane < Io(W) + o(1)
holds true, where o(1) is here a function of Q that goes to 0 with 1/Q.

We prove that infinitely many A;(7/h) are positive (resp. negative), once h
is also allowed to vary; see end of Subsection 15.3. When W is further assumed
to be non-negative, Theorem 12.6 shows that (7/h)A¢(7/h) < Io(W)+0(1). The
parameter & above has only been introduced for flexibility purpose, in case one
needs a lower bound that is independent on .

Fourth step: Uncertainty principle and eigenvalues properties

A closer study of the eigenvalues that uses F.I. Nazarov’s version [31] of the
uncertainty principle combined with some positivity argument leads to the fol-
lowing.

Theorem 1.7. For any non-negative W satisfying the above conditions there
exist cq,cq,c7 > 0 such that we have, for any H < exp(cg/log N) and any

Q € [N exp(—cg+/log N), N?],
(T/To (W) [Anel /b <1 —coe™ ™" + O(exp —cr4/log N)
forany h < H, any £ =1 and with 7 = N/Q.

P. Jaming tells me that he believes ¢4 = 120 to be an admissible choice.

Arithmetical consequences

Corollary 1.8. For every € > 0, and every N = 1 and Q = 1, there exist a
constant ¢y and a subspace of dimension O(72/[e?log(1/€)]) such that we have,
for any (@) orthogonal to this subspace and when log Q > c4log®(N/Q),

1Y onl < 2% S IS(pa/g)l? < 1+ loml

a mod¥q m



Moreover, when T = 1 and for every integer K = 1, there exist ¢ > 0 depending
only on 7 and K, and 2K unitary sequences (ay)k<x and (Br)k<i, two by two
almost orthogonal in the sense that

¥7,7" € for} U {B},  [7.7 1N = 04—y + O(exp(—can/log N)),

and such that, on one side, we have

g(m Z ‘S(O‘ba/Q)P>(1+eo);|ak’m|2

a mod¥*q

while on the other side, we have

2 Cm D1 ISBra/g)? < (1= €0) D] |Brml*-

a mod¥q

The orthogonality is according to the hermitian product defined by

[w,w]w=% > entn. (10)

1<n<N

The sequences (o) and (Bg) are pull-backs of eigenvectors. Note that the
pulling-back process depends on N but that the eigenvectors do not. They are
very regular and do not result from some exotic construction; in particular they
are uniformly bounded and there exists € > 0 such that {n < N, |ag | = €} is a
set of density (in short: their “essential support” is a set of density).

Notation

We note the Mellin transform by W (s) = SSO W (t)t*~1dt and the Fourier trans-
form by W (u) = Siooo W (t)e(—ut)dt. Several other transforms of W will be used,
WH W, W, W* and W**; they are described in section 5. We note here that
the transform W# is very close to what appears in [25, section 20.5, (20.145)]
provided the changes of notation is incorporated: our W(y) is their w(y/C).

We recall that o/, (¥, )18 = Siv lo%y (1, t)|dt. We denote by a|, = (an)n<: the
truncated sequence. We also define

£(u) = exp/log(2 + u).

We denote the Euler totient function by ¢ and distinguish it from the sequence
by using a different script for the latter, namely ¢. We use the following norms:

N
(WY :f |F@)ldt, [ flloo,y = max |f(2)]. (11)

1 I<tSN

2 Related works

Influence of the Riemann Hypothesis

Under the Riemann Hypothesis (and not the Generalized one as one may be-
lieve), the proof we present allows to select @ as small as N/(log N)'—¢ for
any positive . The coefficient e~*N/? may be questioned and may well be
superfluous in this range.



Eigenvalues considerations when Q « vV N

The eigenvalues of the quadratic form Y _o >, oax, 1S(9,a/q)|* are well un-

derstood when @ = o(v/N), see the paper of I. Kobayashi [28] and this quan-
tity is expected to behave like a Riemann sum when N = o(Q) (Corollary 1.4
below gives a precise form to this statement), but the behavior in the range
Q € [V'N, cN] (for any positive constant c) is still mysterious. When Q ~ /N,
F. Boca and M. Radziwill have shown in [3] by a very delicate analysis that
the distribution of the eigenvalues of this quadratic form tend to a limiting dis-
tribution, henceforth proving a conjecture made in [34]. In fact, though this
went unnoticed by the authors, the paper [6] of T.H. Chan & A.V. Kumchev
can be read as also providing some informations on the eigenvalues in the case
Q ~ V/N. The values for the even moments of this limit distribution reveals
that it is not a classical distribution, confirming what the (rather limited) com-
putations from [36].

Eigenvalues considerations when @ > N

H. Niederreiter evaluated in [33] the discrepancy of the Farey sequence, a study
refined by F. Dress in [10], and this, together with the Koksma-Hlawka’s in-
equality, proves immediately that

Y D Swa/a)lP = Y éla) Y lealP(1+ O(N/Q))

q<Q amod*q q<Q n

in very much the same way P. Gallagher in [20] derived the large sieve inequal-
ity. Note that the arithmeticity of the Farey sequence is only mildly used: a
discrepancy estimate is enough.

Part I
A large sieve equality

3 Large sieve ingredients

We adapt here the proof of S. Uchiyama [45] concerning the maximal large sieve
to get a result which is a (weak) additive analogue of a result of P.D.T.A. Elliott
[14]. This is [13, Lemma 1] or [15, Chapter 29, exercise 3, page 254].

Lemma 3.1. Let (x4)a<p be a §-spaced sequence of points of R/Z. We have

Somax | Y pme(mag)” < (L + 25 log(e/8)) Y. loml?.

u<v<u+L
d< = u<n<v

Here is the version we shall use.

Lemma 3.2. We have

2 Z u<ﬁ?§f+L’ Z <Pme(ma/q)‘2 « (L+Q210gQ)Z|§0m|2.
d<Q a mod*q u<n<wv m



4 A functional transform

The transform we investigate here is given by

* -1 (" C(l — S) -5
W*(z) = i f_ioc W(S)C(1 " S)z ds. (12)
Please note that |((1 —s)/¢(1+ s)| = 1 on the line s = 0. This transform of
W is already the one the occurs in [34], see for instance equation numbered (48)
there, and in [6], see their equation (4.19). We keep the same hypothesis as
before for W. In particular, it is compactly supported and W (s) « (1 + |s|)~%.
We follow [34, Section 9] pretty closely. We start by recalling a handy form of
the complex Stirling formula.

Lemma 4.1 (Uniform complex Stirling formula). Let ¢ €]0,1] and a compact
subset A of C be fived. In the domain |argz| < 7 — ¢ and |z] = 1, we have

[(z+a) = V2re #2717 12(1 + O(1/]2])).
uniformly for a € A.
As a (classical) conclusion and taking z = it in the above, we find that
|cos(o + it)T(o +it)] = /7/2[t]7Y2(1 + O(1/]t))) (13)

uniformly in any domain 01 < 0 < 03 and |¢| = 1.

Isolating the arithmetical behavior

We proceed as in [34] and appeal to the functional equation of the Riemann
¢-function (see [44] or [25]) which may be written as

C(1 —s) =28 577% cos(ms/2)T'(s)C(s). (14)

To do so we first shift the line of integration in (12) to Rs = 9/8. Since |((—0c +
it)] <o (1 + [t])(1*9)/2+¢ when o > 0 and for any & > 0, it is enough to assume
that W (s) « (1 + |s|)~2 to ensure the convergence of our integrals. Since the
line shifting does not meet any pole, we get

-1 gHioo cos(ms/2)I'(s)((s)

e = o [ e S e
=23 @f(vv)@mz) (15)

where - .
F(W)(u) = % j: W (s) cos(rs/2)T(s)u~*ds. (16)

8

A bound at infinity

We infer from the estimate (13) that the line of integration in (16) can be pushed
up to Rs = 7/2 — ¢ and thus

F(W)(2rnz) <. (nz)~ 7, (17)
Here is the main conclusion of this part.

Lemma 4.2. We have W*(z) <. 2~ 7?*¢, for any € > 0.

10



A real-valued formula

The next step is to proceed as in section 9 of [34], which we only sketch here.
We employ equation (35) therein:

s *© Ss— * s
cos T T(s) = | costy)y® My = | costulutausy (18)
0 0
valid for 0 < Rs < 1 to infer that
1 %‘Fiw .
FW)(u) = —— W(s) cos(ms/2)T'(s)u™"ds
217‘(‘ %72'00
[ eostingie [ Wy a2
= — COS -_— S)u
0 Y 2im 1—io0 Y Yy
o]
| costy Wty
0

by Mellin inversion formula. This yilds formula (1).

5 More auxiliary functional transforms

Several functional transforms of our bump-function W will occur. We have
already seen W* and W* at (1) and (1). These two functions are central in our
work, but it is expedient to introduce several others. We start with the couple

k=1 f=1 f

We show in Lemma 5.1 that W’ (y) = J(W) + O(y) where
0
JOW) = J W(u)du (20)
0 U

When y is small as in our case of application, the approximation of wh by J(W)
is efficient. The proof will then lead us to understand W* — J(W), a quantity
we call =W, i.e. ~

W (y) = J(W) = W(y). (21)

The situation is there more difficult than with W?, in particular because W (y)
is not small when y is small but takes the constant value J(WW)! See Lemma 5.2.
As it turns out, we do not need to grasp W but the average

We(z) = > @W(cz). (22)

1<e<C

The value for small z, i.e. when |z| < 1, is now J(W) 3}, ... p(c)/c which tends
to 0 when C' is large. The rate of convergence is fast enough on the Riemann
Hypothesis, but rather slow otherwise. As a consequence, we have to treat this
point with care. In particular, we want to replace C by oo and still save a power
of C. We have already defined W* at (12) and Lemma 5.3 will show that both
definitions coincide. Let us start our journey.

11



5.1 Approximating W’

The transform W is also studied in [25, section 20.5]: the function V'(z) defined
there in (20.143) corresponds to J(W) — W?”(z) where one should change W (y)
into w(y/C) (albeit the trivial facts that w is supported on [C,2C], while our
W is supported on [1,2] and extended to the negative real axis by evenness).

Lemma 5.1. Assume that |W (u)| < 1/(1 + |u])?. We have, when z > 0,

Wz) =] WED vy + 0). (23)

f=1 f
with J(W') being defined at (20).

In practice, z is small (< CE/Q). The proof we present uses the Fourier
transform but one could also use the Mellin transform.

Proof. We introduce Fourier transforms to write

W (2) = LO W) ; e(f;”) du— — LO W () log(1 — e(zu))du

—— [ Wi os 2sintra)] + (e} — §))a

0
- J W (u) (log |2 sin(mzu)| + i By (2u))du.
—00
For the sake of the evaluation next to z = 0, it is better to adopt the expression

which we may simplify, with {* W (u)du = W(0) = 0, into

W' (z) = =2 f:o W (u) log |u| du — J_OOOO W (u) (log W + m{zu}) du.

We split the integral according to whether |u| < 1/z or not. In both cases we
use |W (u)| « 1/(1 + |u])? and bound log W by O(zu) when |u| < 1/z and
by log(|zu| + 1) otherwise.

We proceed by getting a simpler form for —2 SSO W (u) log |u| du. We readily
check that

L L 2
J W (u)log [u| du = QJ f W (t) cos(2mut)dt log |u| du
0

_ QJ Wt ( sm (2mut) 1 ¢ |u |] 1 (*sin(2mut) du)

2t 0 U
—1 2W(t)d
t
therefore concluding the proof of our lemma. O

12



5.2 From W! to W

In this part, we start from the definition of W provided by (21) and we reach
the definition (25) given below. With v > 0 fixed, we define

f(t) =W (v/t)/t. (24)

We simply write when v > 0

S i) =- Y f F(t)dt = —f ({1 (t) e

g=1 g=1

L F(t)dt + f (O F/ (1) dt

_ LOO W(u)d J it }(UW’(v/t ig/t))dt
_ W) - % L {0/} (W (w)u + W (w))du.

This establishes Eq. (25). The condition v > 0 has been used on the last line:
when v < 0, we should reverse the integration path, or divide by |v| instead of
by v.

5.3 Treatment of W

Define L

W) = - f {2/u} (W () + W () du. (25)
The expression W (z So {l/v (v2W'(vz) + W (v2))dv shows that W is an even
function?.

Lemma 5.2. The function W is C* and C? per pieces, and both derivatives are
bounded.

When |z| < 1, we have W (z) = J(W).

When |z| = 1, we have W (z) « 1/22.

Proof. Eq. (25) shows that the first part of the Lemma, by distinguishing
whether |z| > 1 or not.

When z € [0, 1), then z/u € [0,1) when w lies in the support of W, which im-
plies that {z/u} = z/u in this case. Hence the first equality We can furthermore
write, when z # 0, and with ¢ = z/u, and with B¥(t) = So By (v

W(z) = L ({t} — ) (=t "W (2/t) + W (z/t))dt/t?
= JOO B () (42t 72W (2/t) 4+ 2W (z/)t ™1 + 22t 3W (2/t))dt /12
0
= z_ZL B (z/u) (4u* W' (u) + 2uW (u) + v W’ (u))du

from which the bound claimed in the lemma follows readily. O

_ 28till reading [25, Section 20.5] by H. Iwaniec & E. Kowalski, we find that our W satisfies
W(z) = (C/|z]) SSC{’UZ/C}(W(C/U)/’U)ldU, and is thus like their W(C/z).

13



5.4 Study of W} and W*

The function W (z) is even since so is W. Lemma 5.2 tells us that this function
is constant when |2| < 1/C, with value J(W) >3, _ .. p(c)/c. We can even select
C = o in which case we write simply W™*:

Wi (2) = =2 #lo) (26)
c=1

The next expression of W* will in particular establish that W* is continuous at
z = 0 where we have W*(0) = 0.

Lemma 5.3. We assume that W is at least C%. We have, when ¢ > 0 and
z>0,

1 e+i00 H(C) .
Wiz Z — W(s)¢(1—s) Z T2 Cds
Jore 2 i e
where W (s So Yz~ Ldx is the Mellin transform of W. When C = o, the

expression above is correct provided we select € = 0 and replace Y, -, p(c)/c'*
by 1/¢(1 + s).

Proof. We first reduce the case C' = o to the case C finite. On using {z} =
z — [z], we get

W) = 3 A f (ze/ul (V" () + W (u))du

c=1
/
i (3 M [ 0,
o\ &, cz Jo u
~ Z o J )(u)du)
c<C’ 0 d<zc/u
o) o W)
B _01’1an Z C Z d '
c<C’ d=1

We introduce the Mellin transform of W and write

2 —1+i00 .
3 Wilee/d) _ 1 W(s)C(1 — 5)(2¢)*ds

d 24w

le —1—200
. 1 £+100 .
=W(0)+ — W(s)¢(1 — s)(zc)"*ds
2im £—100

which gives us (note that J(W) = W(0))

€+i00
Wiz Z nle) = 5 J W(s)¢(1—s) gl(fz 27 %ds

c<C €—100 c<C

hence the expression given, seeing that the pole of ¢(1 — s) cancels out with the
zero of 1/¢(1+ s) at s = 0 and that W (s) is O(1/(1 + |s])?). O
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Lemma 5.4. For Rs e (—1,0), we have

1 © _s—1
2mz)d 1
J\ ZS COS(27TZ)dZ — SJ M = (27‘(’)78711—‘(5 —+ 1) COS M.
0 1 2 2

Proof. We call the left-hand side j(s). It is not difficult to see that (this is how
is occurs below)

j(s) = LOO 2% cos(2mz)dz

and is thus the Mellin transform of cos(27z). On looking at [16, (21), page 319],
we readily discover that, when Rs € (—1,0) (note the shift or +1 between the
s variable j(s) and the one of the table we refer to), the above formula follows.
Giving a full proof is not difficult by using cosw = (e + =) /2. O

We define, when C < o0,
W (w) = We(u) = WE(0) = We(u) = J(W) ) @ (27)
c<C
= _ Z wwﬁ(cu)
c<C ¢

on recalling (21) and (22). Note also that Wi = W2 = W* by (26). We recall
that W is defined at (19).

Lemma 5.5. When W(s) « 1/(1 + |s|)?, we have, when u > 0,

L[ W) sl

- ; . 1—s 1+s
2im ) o U e

W (u)

When C = o, we replace Y -, p(c)/c'™ by 1/¢(1 + s5). As a consequence,
when C < o and for any real number k < 3/2, we have W&t (u) < (1 +
lu) =1 (1 + |u|/C)~F. Moreover, in the sense of distribution, we have W (u) =
J(W) Yeco ii(e)/c - du=o + W (u) where 8,—q is the Dirac mass at u = 0.

Proof. The value W (u) is the limit, as Z goes to infinity, of
z
2J WE(2) cos(2muz)dz.
0

We employ Lemma 5.3 and reach the expression

—e+1i00 Z
-1 : W(=s)C(1 + s) Z % J 2% cos(2mzu)dz ds
0

12 —£—100 c<C
which is also

=1 [T W (=s)¢(1 + 5) 3 pi(c)

1 1+s
[ —£—100 u e<C

clfs

uZ
J 2% cos(2mz)dz ds.
0

15



When C' = oo, we start with ¢ = 0 and shift the line of integration in s just
to the left-hand side of Rs = 0 but still within the zero-free region of (1 — s).
Concerning the inner integral, we write

uZ 1
J 2% cos(2mz)dz = J- 2% cos(2mz)dz
0 0

uZ

+ (u2)* sin2ruz s

- — 2°"Lsin(2nz)dz.
21 2 1

It is then enough to use the Lebesgue dominated convergence Theorem to send
Z to infinity (when u > 0). We next appeal to Lemma 5.4 to get that

0

J 2% cos(2mz)dz = (2m) " T !T(s + 1) cos(m(s + 1)/2)
1
2¢(1+s)

= —(2m) 1 T(1+ ) sin(rs/2) =

¢(=5)
(

by using the functional equation of the Riemann zeta-function. This gives us

Wer () = — W (=s)C(=s) o)

= y . 1+s 1—s
2im )0 U e

(28)

The bound on W (u) comes by separating the cases |u| < C and |u| > C
and in the latter case in shifting the line of integration to Rs = k and using
|C(—s)| << (1 + |s])*+1/2+= (for any positive ¢) there. O

Let us mention the following consequence of Lemma 5.3 together with Mellin
inversion formula.

Lemma 5.6. The hypothesis on W being as above, we have

W (s) = =W (s)C(1 =) Y. p(e)/e' ™.

c<C
for Rs € (0,3/2).

Lemma 5.7. When u > 0 and for C < o0, we have

e = 3 o) - 5 2y )
c<C n=1

where ¢c(n)/n =g, a<c #(d)/d. In particular, this gives

V** (1) = %W(O) when |u] < 1/2,
W** (u) = {sz(O) —W(1/u)/u when 1/2 <u < 2/2.

Proof. We only treat the case C' = oo. Lemma 5.5 gives us

_ =L W(s)¢(s) o ple)
95 1-s 1+s ds.
—100 u e<C c
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We shift the line of integration to s = 2 (since we move to the right, the
contribution of the pole at s = 1 is multiplied with a coefficient —1), use the
development ((s)/¢(s + 1) = },~; ¢(n)/n'"* and the reverse Mellin transform
to get

6

() = S0 - L 3 A

n=1

as expected. O
Lemma 5.8. We have W**(u) — W (u) « log(|u| + 2)/C.

Proof. Tndeed, by Lemma 5.7, we have W*(u) — W (u) « 1/C when |u| < C)/2.
When u is larger, we use

- = dlZn: 7 < 2@/
d>c"

where w(n) is the number of prime factors of n. This implies that

A 1
W () Wt (u) « O = S 24000 < log(lu] +2)/C

ULnKu

as required. O

The size of W* and W* is well controlled as shown in the next lemma.

Lemma 5.9. Assume W is at least C3. We have WE*(2)—J(W) Y ..o p(c)/c «
1/(1 + 2%). There exists co > 0 (depending on W only) such that, when z = 0
and § € (0,1/2], we have |W*(z + §) — W*(2)| < exp —coy/—logd and, when
€ (0,1], W*'(z) < £(1/z)%/z. This shows in particular that W* is of bounded

variations on [0,1]. Under the Riemann Hypothesis, we have |W*(2)| <. |z|27¢
for any positive €.

When z < 1/C, we have W*(z) = 0.

When W is four times differentiable, we have |W*(u)| « u=€(u)~%. More-
over W*(0) = % SSC W (u)du.

Proof. We split the proof is several stages.
Bounding W}£*: When |z| > 1, the first bound is a direct consequence of
Lemma 5.2. When |z| < 1, we write

WE ()= ) @J(W) + ) @W(cz) = o(1) + O(1)
c<1/|z|, ¢ c>1/|z|, ¢
c<C c<C
as required.
Bounding the modulus of continuity of W*: Appealing to Lemma 5.3 with the
change of variable s — —s, we next write

400 s 6/z
W* (2 4 8) — W*(2) = i ) W(—s)gg ! Sgszfo (1 + £)* L dtds.

Recalling that W(—s) « 1/(1 + [s])® and ¢(1 +it)/C(1 —it) < (log(2 + |t])?,
this immediately gives us the bound |W*(z + §) — W*(z)| « 6/z. This proves
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what we need (and more!) when z > +/6. When z is smaller, we proceed as
in the proof of the Prime Number Theorem: when ¢t = Ss € [—T, T, we shift
the line of integration to s = o = ¢1/logT where ¢; > 0 is chosen so that
¢(o —it)*! « logT when |t| < T. The usual prime number theory gives us such
a result, see e.g. [44]. Skipping some classical steps, we reach the bound

cq 2
W (z 4+ 8) — W*(2) « Demr 4 @
z

2 2
& Zlocng + M « 5212§T + (logT) .

T T

We select T = exp(4/10og(1/0). The reader will easily conclude from there. This
is were the hypothesis W C? is needed. The bound for W* is obtained in the
same manner.
Some more upper bounds: By Lemma 5.2, we have W (z) = J(W) when |z| < 1
hence Wi5*(z) = 0 when |z| < 1/C.

The bound for the Fourier transform follows by summation by parts. Con-
cerning the value of the Fourier transform at 0, let Z be a large parameter that
goes to infinity. We write

QLZW(z)dz=QJ dz+QJ f Z/“ W (u) + W (u))dudz
)+ 2J JZ/u B (uW'(u) + W(u))du

~an [ (</> (;;) B (1))

By (Z/u)W (u)du — 2 f: By (1/u)W (u)du

_2J(W)+2LOO

i LOO By (Z//u)W (u)du + f W (w)du

and the integral dependinngn Z goes to 0 as Z goes to infinity by Lebesgue’s
Lemma. This shows that W (0) = (I/Q)W(O). We next employ (22) to deduce

that
Z M
c<C
hence the value at u = 0, whether C' < o0 or not. O

6 Numerical aspects related to the smoothing
kernel and its transforms

It is interesting to produce some numerical datas, so as to explore our several
transforms.

6.1 An explicit family of smoothing kernels

Let 1j_; 17 be the characteristic function of the interval [—1,1]. We are inter-

( ™m)

ested in explicit formulae for the m-th convolution-power 1[ L] where m is

18



a positive integer. This function is even with support within [—m,m], and of
class C"™~!. We readily check that

TR P g
Some more sweat brings the next formula:
32 when [t] < 1,
100 = 4 3= [)?/2 when 1<t <3,
0 when 3 < [¢].

The general formula is given in [38] and reads

[(m]t))/2] (1) [m
(%m) '< )(m + [t] —25)™t when 0 < |t| < m,
1[71’1] (t) = = (m—=11\j

0 when m < [t].
Guessing this expression is not obvious, but verifying it by recursion is only a
matter of routine. The Fourier transform of 1j_; 3 is sin(2mu)/(7u), so the one
of 1%2”% is sin(27u)™/(wu)™. Since we will use the case m = 5, it is worth
giving its explicit expression:

115—30¢% +3¢4

5 when || < 1,
55410t|—30t>+10]¢|3 —t*
159 (1) = -~ } ” L, Vhenl<ftf <3, (30)
[—1,1] 625—500t+152(it —20[t° 4+t 3 <l <5
0 when 5 < [¢].

Formula (1) is handy for explicit computations. We introduce

4m _ m
pm(t) = 271?_1,1] (4mt - 3m)

for some integer m > 5. Its support lies inside [1/2,1]. We find that

bo) = ef3u/a) (2R )

Notice that Sgc pm(t)dt = p(0) = 1. We then select
W(m;t) = pm(1/1)/1.

For such a choice, we readily get

W*(m;z) =2 Z (b(nn) cos(3mnz/2) <Sm(m/(2m))> _

= mnz/(2m)

When we truncate this series at the integer N, the error is bounded above by

(%) e oy

We then use the following Sage script (see [43]):
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def Witself(t, m = 5):

if abs(t) > 2 or abs(t) < 1:
return(0)

res = 0

z = m*(4/t-3)

coef = 2xm/factorial(m-1)/2"m

asign =1

for j in range(0, floor(float((m + abs(z))/2)) + 1):
res += asign*binomial(m, j)*(m + abs(z) -2xj)~ (m-1)
asign = -asign

return(resxcoef/t)

plot(lambda t:Witself(t, 5), (1, 2))

6.2 A specific kernel

In this section, we specify m = 5.

On W (5;t):

Here is a plot of our function.

1.‘0 12 14 16 18 210
Figure 1: W (5;%)

The command integral numerical(lambda t:Witself(t,5), (1,2)) gives
us

6 0
— | wst)dt=0816---
7r2fo (5:t)dt = 0.816

On W*(5;t):
We get the following plot on [0.0001, 3]:
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o

—-0.15 4

- “WW U

Figure 2: W*(5; z) for 0.0001 < z < 0.1 and for 0.1 < z < 3

And here is a plot of W*(5;). It is worth noticing that W*(5; 1) = W*(5;0).

HEAWA
1\/2\/

Figure 3: W*(5;t)

After u = 1, we indeed find that W*(5;u) < W*(5;0).

7 A general formula, first step in the proof of
Theorem 1.2

In analytic number theory, when we want to detect an equality, the quantity
we really study is of the shape > ., , OmWUmOm—n and that what we use in an
approximation of the d-symbol. This is not only a tautology, it also imposes a
framework which decides of what are the “trivial” estimates and of what can be
expected or not. It also splits the problem in two parts: a combinatorial part,
where one uses the fact m and n are integers, possibly in certain subsequences,
and an analytical part where the quantities arising are to be estimated. There
is of course an interplay between both parts and a “good” decomposition is
a decomposition that leads to quantities that we know how to estimate. It is
difficult to give a precise historical date, but the contributions of M. Jutila in [26]
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(see also [23] and [27, Theorem 2]) and of H. Iwaniec in [11] (see also [12, | and

[25, Chapter 20], in particular Proposition 20.16 therein) seem to be prominent.

One can say rapidly that in some sense, Iwaniec’s way is to analyze the large

sieve quantity to extract a diagonal contribution, under some hypotheses, while

Jutila’s way is to start from the diagonal contribution and to modify the circle

to keep only the rationals one knows how to handle, with a possible weight.
The present study is centered on the quantity

WM%ZW%)ZWWM? (32)

q amod¥*q
Moebius inversion readily yields
[ Q/d (¢/Q)
2(Qw) = NS MYDTLEC) g0 /a2,
d d|q amodd

We expand the square, shuffle the terms around and get

L(QW) = em@aA(m —n) (33)

m,n

where we have use the notation (on setting cd = q)

p(e)W (ed/Q)
d|1)
Here is the decomposition of the A-symbol we use.

Lemma 7.1 (Iwaniec’s decomposition). Let C, E,H > 1 be parameters that
satisfy E < min(1Q,2Q/C). We have

A(v) = U(v) + U*(v) + Lo(v) + L(v) + L*(v)
where Ly(v) is the diagonal contribution
c)W(cd
L = 3 HAWEQ),
c<C, ¢
d=1

and U(v) and U*(v) are the “direct divisor” part:

Z Z /JJ Cef/Q) Z 6((111/8),

e<ch<C1 amod¥e
w
Ub(v) = Z Z W Z e(av/e),
e>F cf>>C1, a mod¥e

while L(v) and L¥(v) are the “complementary divisor” part:

ZZ“ S W(ew/(9@Q))e(av/h),

h<H h|g, a mod*h

c<C
ZZ“ ST W(ew/(9Q))e(av/h).
h>H h|g, a mod*h

c<C
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Proof. We start by splitting the range for the variable c:

Aw) = 3 HOWd/Q) | s pl)WHed/Q)

c<C, ¢ c>C, ¢
dlv d|v
= L(v) + U(v)

say. When v = 0, the term L(v) restricts to Lo(v). Otherwise, we switch to the
complementary divisor by setting gd = |v| (and g > 1 since v # 0). We detect
the divisibility condition by using additive characters:

v plc C|U|/(9Q))

c<C,
glv

- Z 3 ule vl/(gQ))e(bv/g)

c<C, 9 bmod g
g>1

c<C, h\gbmod*h
g=1

L(v) =

which amounts to

L) = 2 DS wiew/(g@))e(bo/n).

h>=1c<C, g bmod*h
hlg

Note that we do not need the condition v # 0 since W(cv/(gQ)) = 0 when
v = 0. We then simply split the summation over h according to whether h < H
or not, getting the two quantities L(v) and L (v).

Concerning U (v) we again detect the divisibility condition by using additive
characters. This gives us

Uw) = Z Cd/Q Z Z e(av/e).

c>C, e|ld amod*e
d=1

Note that ed/Q < 2. We set d = ef and thus e < 2Q/C. We continue by
splitting the range for e:

-3 3 M) 5 efavge)

6<ch>61V amod¥®e
>
W(cef/Q)
LI Al
e>FE cf>>C’1 amod¥e

We recognize U®(v) in the last quantity. The first one needs a transformation.
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We note that

5 p(e Cef/Q) - p(c Cef/Q) S H()W (cef/Q)

>0, o>1, e<C, ef
f=1 f>1 f=1

_ Z Z p(c Je/Q) Z p(c)W(cef/Q)

j=lcf=j c<C, cef
=1
_ 6/ Q) p(c Cef )W (cef/Q)
f>1
and the first term vanishes because of the assumption £ < Q. O

The diagonal term is easily handled.
Lemma 7.2.

Z Qam(anO (Z ¢ q/Q O(QCI)> H‘pﬂg

Proof. The contribution is
p(c cd/Q ple)
> leld =Y, 2, W (a/Q)l¢l3-
c<C,d q clg,c<C

Since

Z'u Cd/Q <ZQ<<Q/C

c>C,d c>C
we get that this diagonal term has value:

(Zd) Wig/@) 0<@cl>> o2

as announced. O

The large sieve inequality yields an efficient bound for the contribution
of U(m — n).

Lemma 7.3. We have
Z OmPalU?(m —n) « Z lom | (NE™H + QC ™) log Q.

Proof. We use the bound (where ¢ and e are fixed)

W (et /Q) )
-5 ¢ <1
T B A

to get:

D em@alUf(m—n) « (logQ) Y, et Y IS(p.a/e)f

E<e<3Q/C amod¥*e

< D lemP(NE™H +QC ™) 1og Q.
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The contribution of L#(m —n) is somewhat more difficult to handle but also
relies on the large sieve inequality. We shall most of the time employ the next
lemma with a set I reduces to one element. It is only in the final applications
that it is better to use the summation over some i € I.

Lemma 7.4. Let w be an even and C' function that vanishes when the variable
is larger than 1. We further assume that w is piecewise C%. Let I be a finite
set. We have

S| v itmiwatn )| <3l (Vo + 1) _max S| Y ]

” u<v<u+3/a
el m,n +3/ i€l u<m<v

Proof. The problem is twofold: localizing the variables m and n and separating
these two variables. The first problem is met by a subdivision argument: we
cover the interval [1, N] by at most Na + 1 disjoint intervals (a,a + o~ 1] = I,
of length o~ ! and localize n within such an interval. As a result we can assume
that m lies in [a — a™!,a 4+ 3a~!] = J,. We handle the separation of variables
by a summation by parts and the formula

w(a(n —m))

e Jn w' (a(t —m))dt

m—a~1

= Ll . IHQ at — s))dsdt

from which we infer that >, ;¥ it w(a(m —n)) equals

a+ta t+at
o’ f f Z Ymithn W (ot — s))dsdt. (35)
a—2a~-1 Ja—a~1

s<m<t—a~ 1,

t<n<a+a~!

We find that t —3a ! <a—a ! <s<m<t—-alandthatt <n<at+a!<
t+3a~!, hence the inner sum over m and n is bounded above (after introducing
the summation over i, by

max S| S v
u<v<u+3/a

el u<m<v

A change of variables readily shows that

f J ot — s))|dsdt < 3w,
a—2a~1

clearing out any uniformity problem in applications. O

Lemma 7.5. We have

Y, pmPalt(m —n) « (NH™' + NCQ™") |3 log" (QN).

m,n

Proof. We have to control

3 W (. — ) (36)
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where ¢, = @ne(ma/h) and o = ¢/(gQ) # 0. Note that the truncation in
¢ ensures that |a| is small; this truncation has been introduced for this very
purpose. Practically, we appeal to Lemma 7.4 and get

S = Z DS S pelma/h)omelnal AW (clm — nl/(5Q))

c<C h>H h|g amod*h m,n
Nc 2
« Z — <— + 1) Z max Z ome(am/h)
c<C,h>H, ge gQ amod*h u<vsu+9gQ/e u<m<v
hlg<eN/Q

The condition v > u is automatically satisfied. We continue with ¢ fixed by
localizing h and using k = g/h. Lemma 3.2 gives us:

s« B % (matpn) 3 me,

% ene(F)

I<k<Q/H, e’~l<h<e! amod*¥p VSUT T u<m<v
logHséslog%
N/Q 1 ¢ 20 2
3 2 Z (erM + ot )(mln(N keQct) + te )H(p”2

1<k<Q/H log H<{<log(cN/Q)
N Nt et
« X % (e g ) Il
1<k<Q/H log H</<log(cN/Q)
N N/

et
« N (Gitgto)lelBs@/m)
log H</¢<log(cN/Q)

< (NH '+ NQ ™) [l log? (@N)

so this contribution is at most (on summing over ¢), up to a multiplicative
constant:

Q(N(HQ)™ + NCQ™?)|¢[310g* (QN). (37)
O

This approximation provided by Lemma 5.1 together with the large sieve
inequality leads to the following formula (recall the definition (19) of W¥):

W(q/Q) 2
Zq]qQT(W) Z 1S(p, a/q)[? Z|%0m|

amod*q
- i L HL S iseaor

c<C, amod*e
e<E

*Zch% T 2 X e paWEdm =l /(Q))e((n — m)a/h)

amod*h m,n

+0((mg+ mg * 5+ e lelBlo@w) (39

h<H
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The first main term comes from Ly, the second one from U and the third one
from L.

8 Proof of Theorem 1.2

8.1 From W! to W: cancellation of the two main terms

We introduce W by appealing to (21). The choice E = H ensures that, in (38),
the second main term is canceled out by the contribution of the factor linked
with the J(W)/h above, getting

Zm > ISte.a/a)l = ol

amod*q

g T L3 et (el — n/(h@))e((n — ma/h)

amod®h m,n
h<H

+0((1g+ & + go)IeBlog’em)). 39)

The same cancellation of the main term is what presides to the introduction
of A.(u) in [25, section 20.5], see the proof of Lemma 20.17 therein.
8.2 Sharpening the error term in its H-dependence

One of the error term in Eq. (39) is O(HLQHwH% log”(QN)) and we want to (and
need to!) remove the log”(QN). We have to consider

S = Y+ S ez Wellm — nl/(hQ))e((n — m)a/h).

Hy<h<H> amod*hm,n
(40)

We somehow go backwards and use W* from (27) to write

S(H H) = Wa0) S &%

Hi<h<H> amod*h

S(@,%)‘z + Y/ (Hy, Ho)

with

S(pz + &) ]2W5*(u>du.

The large sieve inequality readily yields (since W5 (0) « 1)

Y'(Hy, Ha) = J h >
® <h<H2

amod*h

N
R(Hy, Hy) — S (Hy, Ha) < (5= + Ho) Il

The treatment of ¥'(Hj, Hz) is somewhat more difficult. When |u/Q| < 1/2,
by combining a summation by parts together with the large sieve inequality, we

find that
Z L Z S(%%*‘%)) ||<PH2(N +8H2)
Hy<h<H> amod¥*h
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since the points ( + 75)a,n are 1 H;?-well spaced. When |u/Q| > 1/2, we use
the large sieve inequality for every h. In this case the shift by u/(hQ) is constant
and the points are A~ -well-spaced, giving

1 2 2H
X 5 X |s(e g rig)] < lelb(Vioe Tzt + 1),
Hy<h<Hz amod¥h Q 1

As a consequence

N c 2H,
X (H, o)/ Il < g+ 8H> + a(mog T )

on using the bound |[Wg*(u)| « C/(1 + |uf?) from Lemma 5.5 when |u| > Q/2.
This implies that

>'(Hy, VN) « }% ++V/N + %V log N.

We can use formula (39) with H = 4/N and shorten the summation by the
process above. On renaming Hy = H, we have reached:

W(q/Q) 2 _ |2
Zq:qQT(W) DT 18(ea/a))” = lel3

amod¥*q

1 *
_ ;EH hQIy(W) am§*h§wmﬂwc(lm — n|/(hQ))e((n — m)a/h)
og® 007
(R e

The effect of the previous treatment is neat: the log-factor attached to N/(HQ)
has disappeared while the rest of the remainder term is still of the same order
of magnitude.

8.3 Direct extension of the c-variable

We handle the sum over c essentially trivially. The contribution from the diago-
nal term m = n is bounded above by 3 _ -, 9 H|o|2/Q. When |m—n| < hQ/c,

c>C ¢
we bound W(c/m — n|/(hQ)) by O(1), getting a contribution bounded above,
up to a multiplicative constant, by

1
Z m Z Z lmenl

h<H, amod®*h [m—n|<hQ/c
c>C

1 hQ
< Z @ZNPMQT < |pl3H?/C.
h<H, m
c>C

28



We use W (2) « 1/(1+422) when |m—n| > hQ/c, getting a contribution bounded
above, up to a multiplicative constant, by

|menl
2 ChQIO 2 Z 1+ c2(m —n)?/(h?Q?)

h<H, amod*h\m n|>hQ/c
c>C
2 2
Z 3 Z|Sﬁm| «|el3H?/C.
h<H, ¢ hQ
e>C'

We thus get, for any C’ > C:

ZM S 1S(ea/a)? = Il

QQI()(W) amod¥*q
- I rmmy, 3, B en e/ @)~ ma/

N  H? 1log’(QN) NClog®(QN) 9
+(9<(HQ+ e AR )||902).
The optimal choice C' = QH/N'/? (provided that H < N'/*; Indeed we recall

that Lemma 7.1 asks for £ < min(Q, 2Q)/C) and that we have chosen E = H)
may be too large. Instead we select

C=m (?/5 2}? c) —min(Q—H7C’/) (42)

and get

ZM S IStpa/a)l? = I3
Q

9 IO(W) amod¥*q
h;H hQIO ) am%*hrnz,n (pmmwé/qm o n|/(hQ))e((n - m)a/h)
+0( (g7 + D elg). o

We may reformulate this equality by using the Fourier transform of W*:

3 @R S 500, a/g)? = ol

q (JQI()(W) amod*q
Z Z WC’ ‘S 907 ’ du
h<H hQIO a mo d*hJ )

+0((57g+ f”l‘}f@m)nso%).

Later, to prove (71), it will be better to restrict the range of integration (note
that the Fourier transform has two parts: a Dirac mass and a regular part; only
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the regular part is concerned, as the Dirac mass is concentrated at u = 0). We
use the large sieve inequality with u and h fixed to infer that

W(q/Q) 2 2
Xoonn 2, 1Sl =l

amod*q

-5 wanw 5. [, Bewls(e o)l

h<H
N  NClogH H?+log®(QN
+0(( j NClogH | HY 4 log ))w). (a4)

HQ uQ C

We can however proceed in a different fashion: majorize |W* (u)| when |u| >

O(1/U), uniformly in C, and use §*_ [S(a + u/(hQ)[*du = hQ|¢|} by Par-
beval This leads to

;m > IS/l = Jel3

amod¥*q
_,;H hQIO azd*hf We(u ’S *"’ )’ du
ro((ps 2 —Hz“‘;% QM) )

The difference from W, to W is J(W) Yie<cr B(€)/cby=o by Lemma 5.5. On

using that J(W) « 1, that >, - p(c)/c « 1 and the large sieve inequality,
we get a contribution Wthh is « NH~1|p|3, thus incorporable in the already
existing error term. We have obtained:

SV S50 a2 = o2

q QQI()(W) amod¥*q
m 2
- Wer S , +— d
};H hQIO J ‘ ?h hQ)‘ u
N , NC”logH H? H2+log5(QN) )
+(9<(HQ+mln< 0o U>+C)|¢2). (46)

We can send U to infinity and Theorem 1.2 follows by keeping U = oo and
sending also C’ to infinity.

9 A case of large sieve equality. Proof of Theo-
rem 1.3

We prove a first result that is suited for some applications.
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Theorem 9.1. When % < H <+/N/(log N)® and log Q « log N, we have
w
S WL S i5(e.a/a)? = (W) + O (HQ)™) I3
N + hQ

qQ
2
h2Q2 u<vT??f2hQ Z Z gone(na/h)‘ )

q a mod¥q
mod*h u<n<v

+0o(

Proof. Ideally, we would simply combine Theorem 1.2 (but we convert back W
in W* as in (43)) together with Lemma 7.4 applied to W*, the set I being
{a mod™ h}. The function W* is however not regular enough, and we have
to revert to W and more precisely to Eq. (43). We select C = QH/\/N.
When z < 1/C, we have (Wg)” = 0 while Lemma 5.3 with ¢ = 0 implies that
(Wg)'(2) « 1 in general. The theorem follows readily. O

Proof of Theorem 1.3. We employ Theorem 9.1 and simplify the remainder term
by appealing to

| Y ene na/h) | X wene na/h‘

amod*h u<n<v amodh u<n<v

a3y

cmod h'u<n<v,

n=c[h]

2

Such an extension of the variable a may look a weak step, but since this theorem
is aimed at sequences oscillating highly in small arithmetic progressions, the loss
is not noticeable (at least in the examples I could think of). O

10 A refinement for primes

When the sequence ¢ is supported on integers prime to every integer h < H,
we may refine Theorem 1.2 further, thanks to the next improved large sieve
inequality. This is [35, Theorem 5.3]. See also [37, Corollary 1.5].

Lemma 10.1. If (pn)n<n is such that ¢, vanishes as soon as n has a prime
factor less than /N, then

N1
S Y [S(pafe) < 7080 )2

q<Qo a mod*q IOgN

for any Qo < VN and provided N = 100.
This lemma enables us to improve Theorem 1.2 into the next result.

Theorem 10.2. When 1/2 < H < v/N/(logN)®, Q < 10N and ,, vanishes
when n has a prime factor below VN, we have

SHLD 5 (steafa) - (IO<W> +0( Sitrean) ) ek

_Z 3 f W (u ’S(p, ))2d.

h<H a mod*h

31



Proof. We start from Theorem 1.2, but with say H’ rather than H and now
shorten the sum over h. To do so, we write

hZHl Qamg*hf W @)s (e, )ydu
i (51 )z Y

h~Hi a mod*h

( HUQ)‘Z

HlQ h~

Lemma 10.1 tells us th:’imt this quantity is « %H@H% from which, after
noticing the bound for W* from Lemma 5.9, the theorem follows readily. O

Part 11
Operator Decomposition of the
Large Sieve

11 A local geometrical space

We consider X}, = Z/hZ x [0,1], equipped with the product of the probability
measures. We denote by L2(X},) the space of functions from L?(X}) whose
Fourier transform with respect to the first variable is supported by (Z/hZ)*
[0,1], i.e. functions f such that

Wy [0,1],Yd € Z/hZ [ ged(d,h) > 1, > f(b,y)e(—db/h) = 0.
bmod h

It is maybe simpler to say that this is the space generated by the functions
(e,y) — elac/q)f(y) for all f e L%([0,1]) and (this is where a restriction oc-
curs) a prime to g. We reproduce rapidly the theory developed in [35, Chapter 4].
Let k|h be two moduli. We consider
L¥ . L*(Xy) — L*(Xp)
F s L¥(F):Z/hZ x [0,1] - C (47)
(b,y) — F(ox(b),y)

and correspondingly

JP LX) — L*(Xy)
F— JMNF):Z/kZ x [0,1] - C

1 (48)
(by) = = >, Flonle),y).
h/k cmod h,
c=b[k]
We finally define
Ui = L’,?LJ,?’ Upop = ZN k/d)Up_, g (49)

dlk
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Here is the structure theorem we need.?

Theorem 11.1. The maps L’fL and J,? are adjoined one to the other. The col-
lection (U;,_,;.)kn is a family of commuting orthogonal projectors. Furthermore

Upei = 2, Ui
d|k
while, for any two divisors ki and ke of h, we have Uy, _,, Uj ;= O, =k, Uj -
We have LZ(Xp,) = U; _,, L*(X},).
An explicit expression

At the heart of this matter are the Gauss sums

)= Y, x(b)eb-/h). (50)

bmod h

Theorem 11.2. For any h = 1, any class b modulo c, any real number y and
any function F € L?(X},), the orthonormal projection U;,_, on L2(X},) has the
following explicit form:

UiaFly) =3 Y anlb—F(ey).

cmodh

Given a hilbertian orthonormal basis (fx)x of L*([0,1]), the family (& @ fi)x.k
where &y = Th(X,-)/A/@(h) and x ranges the Dirichlet characters modulo h is
a hilbertian orthonormal basis of L2(X}).

Proof. We first check that
Z cnp(b—c)e(bd/h) = Z e(—ac/h) 2 e(b(a + d)/h)

bmod h amod*h bmod h
) he(dc/h) when (d,h) =1,
o else.

and since (b — e(bd/h))amodn generates the whole space of functions over Xp,
this proves our first assertion. The introduction of the Dirichlet character may
be arbitrary, but in fact (7,(x,-))y is the full set of eigenfunctions of f —
D emod h Ch(b—c¢) f(c)/h that are associated to a non-zero eigenvalue. We simply
have
1
e LWL, Th(x:b) =+ 1 en(b—o)r(x o). (51)
cmod h

Note finally that

% Y ntwontad= Y xl(a)xg(b)% D e(c(ah—b))

cmod h a,bmod h cmod h
= 1X1=X2 (p(h)

as required. O

3These results are easily proved. Details may be found in [35, Chapter 4], though with no
y-component. This component is inert here, so the proofs carry through mutatis mutandis.
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12 Analysis of a class of difference operators

We treat here the analysis of the intervening family of operators in an abstracted
setting. Let V' be a function satisfying the following assumptions:

(Ry) o V is a continuous real-valued even function of bounded variations and
integrable over R.

(Ro) » V(0) = 0.

(R3) @ There exist B = |V, ¢ € (0,1] and A > 0 such that, for every § € (0, 1)
and z € [0, 1—¢], we have |V (z+06)—V (z)| < Bexp(—cy/—logmin(1, AJ)).

Recall that we defined
1
hoi e~ (v [ WV -y ©
0

It is classical theory that % is a compact Hilbert-Schmidt operator, see for
instance [22, Theorem 7.7]. Let (Ag, G¢)¢ be a complete orthonormal system of
eigenvalues / eigenfunctions, ordered with non-increasing |A;|. The Fredholm

equation AG(y') = Sé K(y',y)G(y)dy has been intensively studied. It is not the
purpose of this paper to introduce to this theory, a task for which it is better
to read the complete and classical book [21] by I. Gohberg, I. C. & M.G. Krein,
or the more modern [22] by I. Gohberg, S. Goldberg & N. Krupnik. Kernel of
type V(y' — y) are often called difference kernel, and lead to operators that are
distinct from convolution operators as the integration and definition interval is
not the whole real line. The book [39] by L. Sakhnovich is dedicated to the
operators built from such kernels. The book [7] by J. Cochran contains also
many useful informations.

12.1 L2-norm
We readily find that

1
-1

J f V(' —y)dy = f V()P - |2])dz. (52)
0 JO

Hence

2 ! 2 ! 2
SN = | VR - lahds <2 [ V)P

=1

As a consequence, and enumerating the eigenvalues in such a way that || is
non-increasing, we find that

1
|\e| < A /QL |V (2)|2dz/VE. (53)

Theorem 12.4 will enable us to replace /¢ by ¢, but it uses the above bound.
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12.2 Properties of the eigenvectors

The eigenvectors of ¥ attached to non-zero eigenvalues are classically shown to
be continuous. Since the L'-norm is not more than the L?-norm squared here,
we have |G||; < 1. Each of them thus satisfies

IMMM@<2LJV@NO—ZMA (54)

Furthermore, we find that

MGy +9) = G| < |Gliw(V,8) = |Gy _max [V(z+6) = V(z)|.  (55)

These functions are also of bounded variation. Indeed, with obvious notation,
we find that

1<i<n ) 1<i<n

A Y 16 =Gl < | 160 Y Vs =) = Vis = )ldy
1

N

1 1
j|www4Wmmw<f\W@wy
—1 0 —1
since |G|1 < 1.

12.3 Nuclearity

A consequence of a theorem of Fredholm from [18] is that, when y — V(y)
is Holder of exponent a, then the eigenvalues verify >, , [\’ < oo for every
p > 2/(1+ 2a). This proof is reproduced in the book [22, Chapter IV, Theorem
8.2] by I. Gohberg, S. Gohberg & N. Krupnik. This is too strong a condition for
us if we are to avoid the Riemann Hypothesis (in which case o = 1/2 + ¢ would
be accessible). D. Swann in [42] considered the effect of bounded variation on a
general kernel, but his theorem asks again for too strong hypotheses since the
function (y',y) — V(y' —y) is a priori not of bounded variation. However, each
function y — V(y’ —y) is uniformly of bounded variation (i.e. its total variation
is, as function of y integrable; in our case, it is even bounded), a case that is
mentioned (with more generality) in the paragraph preceding [42, Theorem 3]
and more formally in [7, Theorem 16.2] in the monograph of J. Cochran. We
follow this approach.
In this subsection, we use

log™ ¢t = log min(1, t); (56)

We consider the coefficients of the Carleman determinant, see [7, Chapter 4,
(3)], for v = 2:

0 Viyr —y2) - V(y1—vw)
(—1)” flr V(y2-— y1) 0 V(y2.— Yv)

v!

d, =

dyldyg e dy,,.

0 0

Vi —1) Vg —12) 0
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As V(y —y) = 0, this is also the Fredholm determinant, see [22, Chapter VI,

(1.5)]. The above determinant, say K (yi1,--- ,¥,), can be rewritten as
0 Vi —y2) =V —w1) - V=) =V — 1)

Viya—v1) V(ye—92) -V —v) - Ve—v)— V(e —y.-1)

V(yu.— v1) V(g2 — ) —.V(yz Y1) - V(pw —y) —.V(yu — Yo—1)

We use the symmetry of the integral and now assume that 0 < y; < yo <
- < ¥y, < 1 (when an equality occurs between these variables, the deter-
minant vanishes). We define §; = y;11 — y; so that >, ,d; < 1. We

divide the second column by +/Bexp(—(c/2)y/—log™ (Ad;)), the third one by
VB exp(—(c/2)y/—log™ (Ady)) and so on, getting a factor

BU U2 T exp(—(c/2)y/—log™ (Ad;))

I<isv—1

in front of our determinant. We first note the following lemma.

Lemma 12.1. We have Y, ;. \/—log™ (Ad;) = n/logn when the 6;’s are
positive real numbers such that ZKK“ 0; < 1.

Proof. Given an n-tuple (d1,---,d,), we note that the n-tuple obtained by

replacing each §; by min(A~1, §;) satisfies the same constraint with an equal sum

of 41/—1log™ (A-). In order to find the minimum required, we may thus restrict

our attention to variables that verify &; < 1/A. Set 2; = (—log™ (Ad;))/%. This
4

variable ranges possibly (0, 0). The condition on §; now reads ZKK“ e /A =

6 for some § € (0,1], while we seek to minimize Y, _,_, 7 and we forget the

condition e~¥/4 < 1/A. We use the Lagrange method and consider

Y(x1,. .., %0, \) = Z 22— \( Z 6*1:?/14*5).

1<isn 1<isn

Its critical points, obtained by equating all the partial derivatives to 0, satisfy:

Vi<n, 2x;+ 4A_1x?)\e_””f/‘4 =0,

Z e TA = 5,

1<ig<n
This implies that? \/A = —Qe_x?/A/m?. The function y — 26_3’4/A/y2 is de-

creasing, from which we conclude that all z;’s are equal, which in turn implies
that all §;’s are equal, and equal to d/n. The choice § = 1 is also optimal. [

Next we use Hadamard’s inequality (as in all such proofs!) together with

4Any choice z; = 0 means that §; = 1, which implies that any other §; vanishes, leading
to the maximum being 00 when n > 2.
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the previous lemma (and (v — 1) > v/2) and get

K (y1,- )l <H<2‘“w| )1/2

Br/2e—(e/r/los(v=1)

<TTV1elVls— 90~ Vi~ + B D [V~ 5m) V- 3)])

i 2<j<v
1 v/2
< (2CJ |V’(y)}dy>
~1
since B = ||[V|«. As a consequence, we find that the Carleman determinant

D(V,2) =1+ Y. dyz" = [ [(1 = Aez)e” (58)

v=2 =1

satisfies, with M = 4/2B Sé]V’(y)|dy,

MY zlY —Sv4/log(r—1)
Do) <14 Y M

|
) V!

< (Mlz)¥* e+ e

c c
M‘Zlefz«/logN Hefz«/logN

< HVtlete

with H = M]|z| > 1 and for any real valued parameter N 1 that we may
choose. When H < e?, we use the upper bound |D(V, z)| < e¢ . When log H >
2, we select

N = He~iVleeH+D) /1o | (59)

When log H > 2, we check that (recall that we have assumed that ¢ < 1)

log N = 1ongf«/logH loglog H

=1lo (H+1)( logH ! _ loglog H )
-8 log(H +1)  44/log(H +1) log(H +1)
log 2 1 1 log(H + 1)
> log(H +1 —_—— ) > =
og(H + )(log3 44/log 3 e) 49

We thus find that, in this case, we have

ID(V, 2)| < Hetle #V™ g HeT S5 VIstny
b

— £ \/log(H+1)
< 6HeHe .

Next, He~ Vsl +1) 4 100 [ is certainly not more than He ™ 30 VIos(H+1) o
vided H be larger than some constant depending on c¢. So, in general, we find
that He ssVIes(H+1) 4 oo F < He soVIsH+1) L o/ where ¢ is a constant
depending solely on c. We have proved that

ID(V, 2)| < 6 eHe™ 55 /1og(H+1)

.. A/log(H+1)
when H > ¢2. The minimum of 6e< efe % when H ranges [0, ¢e?]

is some positive constant, say ¢”, depending only on ¢ (we have introduced
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log(H + 1) rather tha log H earlier for this very purpose). As a consequence,
we have, for any H > 0,

" — =5 4/log(H+1)
2 6e¢ efle 3

D(V, <e’
DV, 2)| <o e

Here is the lemma we have proved.
Lemma 12.2. There exists a positive constant ¢ = ¢(¢) such that we have

— & \/log(M[z]+1)
|D(‘/’ z)| < C/eM‘z|e 35V 1og(M|z|+1)

with M = /2B §,|V"(y)|dy.

We continue with the following general lemma.

Lemma 12.3. Let f be an entire function of finite order and such that f(0) = 1
and let (p¢) be an enumeration of its zeroes with non-decreasing |p¢|. Let g be a
C?-function over (0,00). Assume that, as t goes to infinity,

1 27 )
S f log | £ (te1%)[d0 £/ (£) —> 0.
2'IT 0

Then, provided the RHS converges absolutely, we have

1 o0 2T )
Moo = 5= [ | oslrteelastes 0 + o ()
=1 a 0

for any a e [0, |pu]].

The reader may want to read [2], for instance Theorem 8.4.1, for general
results on entire functions having only real zeroes.

Proof. We denote by n(t) the number of zeroes of f (counted with multiplicities)
that are of modulus not more than ¢t. We use an integration by parts to write

WIIEE| " gt = —a [ T
=171

=1 pel a t
t o © pt
d d
| [ | [ M e o e
a a 0 U
We only have to introduce Jensen’s formula in the RHS and use our hypothesis

0 u
to get our lemma. O

When used with g(¢) = 1/t and appealing to Lemma 12.2, we get the follow-
ing important result.

Theorem 12.4. The hypothesis on V' being as above, the operator ¥ is nuclear.
Furthermore, it satisfies 3,,-, Ae = 0 and

1
Z | « f |V (2)|2dz e—caV/log(L+ [V §g V' (8)ldt/ {5 [V (£)[2de)
0

=1
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for some positive constant cs3 that depends only on B and c. In particular, we
have

el < JO V(2)2dz/e. (60)

In our case of application, the L?-norm of V is controlled by Lemma 15.1.

Proof. On combining Lemma 12.3 together with Lemma 12.2; we readily find
that

S| ey
>1 1/

« M et /s I ) oo/ ls TN
M/ t

By (53) with £ = 1, we find that [A\;| < 4/2SO |V (2)|?dz, hence the bound for
(v —

D=1 |Ae|l. Lidskii’s Theorem then applies giving us that > -, A\¢ = Sé Vv
y)dy = 0.
12.4 Oscillation of the eigenvalues

Let us consider the eigenvalues of #;. At least one of them is positive and at
least one of them is negative because

2)\@:0

(=1

and V is not identically 0. Proving that infinitely many of them are positive or
negative seems to be more difficult, if true.

12.5 A Mercer Theorem

Let us select a complete system of non-zero eigenvectors (Gy)>1 associated with
the eigenvalues (Ag)y that are repeated according to multiplicity and arranged
in non-increasing order of their absolute values.

Theorem 12.5. For every positive integer N, we have

max — /\ng < |A .
y,y'€[0,1] V&' -y Z;V ) An-s1]

This theorem contains the value of the trace. Indeed, on selecting y' = y,
we get >, Ae|Ge(y)|? = 0; we then integrate this equality over y and recover
the trace X, A\¢ = 0.

Proof. We have, for any 3’ in [0, 1] and any L2-function f:

[ v = wreia = ¥ ar1G0Giw)

0 =1

:ZMJng@@ 3 MG HG).

L<N {=N+1
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This implies that, for any test function h, we have

th@/) | (v (VW =) - ¥ NGWG)) F)dsldy’ < s IFIIR] (61)

0 0 <N
by using Cauchy’s inequality and

L Z Ae(Gel ) Gely Jo Z Ae(Gel HPIGe(y) P dy

{=N+1 {=N+1

<Pl Y (GNP < s PISI

{=N+1

Select a point yo from (0,1) and a positive ¢ such that [yo — &,y0 + ] < [0, 1].
We take f = 1[,)_c .+ and get

| hw)

However we have

, 1 Yo+e , 1 Yo+e i
V(' —yo) — % V(y' —y)dy < % exp(—c«/mln(l,AE))dy

Yo—¢ Yo—¢

« exp(—cy/min(1, Ae))

1 Yo +e
[ - X aGe)afa <« i
Yo—¢e (<N

which tends to zero with e. The same applies to y — Y,y AeGe(y)Ge(y'). In
case of the two endpoints yo = 0 and yo = 1, we simply select f = 1[g ] in the
first case and f = 1;_. 1} in the second one. We then employ the same trick
regarding the variable y’. We leave the details to the reader. O

12.6 Influence of the Riemann Hypothesis

As we already mentioned, under the Riemann Hypothesis, the function 3’ —
V(y' — y) is uniformly Holder with exponent 1/2 — e for any ¢ > 0. In which
case, [7, Theorem 16.3-1] gives us that

Z [Ae|P «p 1

=1

for every p > 4/5. This implies that the number of eigenvalues below t, say n(t),
satisfies n(t) «. t¥°*¢ under the Riemann Hypothesis.

12.7 Bounds from Fourier analysis and non-negativity

Since the function V' is even over R its Fourier transform is (a cosine transform
and hence) real valued. In practice, we will use V (u) = W*(ru/h) where W* is
also given by (1); hence we can bound above the values of the eigenvalues when
W is assumed to be non-negative.

Theorem 12.6. Assume that V(u) < M; when u € R. Then the eigenvalues
of Y are not more than My. There exists a positive constant cq such that, if
we further assume that V(u) < My when |u| = Uy for some positive parameters
My > My and Us, then the eigenvalues of ¥, are not more than M; —ce V2 for
some positive constant ¢ depending on My and My (but not on 'V nor on Us).
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The proof uses F.I. Nazarov’s form [31], [32] of the Amrein-Berthier Theorem
[1] (see also [24, Section 4.11] in the monograph of V. Havin & B. Joricke) that
we now recall.

Theorem 12.7 (Nazarov). There ezist two positive constants cq,cs such that,
for any measurable subsets E and % of R of finite measure, and for any f €
L?(R), we have

I£]2 < cg ecsIIE! ( | U | . |f<u>|2du>.

We thank P. Jaming for giving some advice on this result, for pointing out
that a theorem of V.N. Logvinenko Ju.F. Sereda [30] would be enough here
(since we consider only the case when F and ¥ are intervals), and for giving us
the reference to the paper [29] of O. Kovrijkine that gives a simpler proof. P.
Jaming also told us that he believes cg = 300 and ¢4 = 120 to be an admissible
choice.

Proof of Theorem 12.6. We write
Vo) = [ Vwet-uty -y
and thus, for any G € L?([0, 1]), we have
6@ = [ Twie P ©2
Some comments are called for here. We have
Glu) = Jm G(v)e(—uv)dv
—0

i.e. we have extended G from [0, 1] to R by 0 outside. By the result of Nazarov
cited above, its Fourier transform is not accumulated on an interval. More
precisely, on selecting F = [0,1] and ¥ = [-Us, Us] in Theorem 12.7, we find
that

J Ly, [Gfdu > TGl oy
u|=Uz
and thus
[G, 76(G)] < (M1 — e~ e (M1 — Mz))| G5
The theorem follows readily. O

In between, (62) implies the following.
Lemma 12.8. The eigenvalues of % lie inside [— min V (u), max V (u)].

12.8 Spectral decomposition of ¥ from the one of %

Now that we have the spectral decomposition of ¥ with couples (A, Gy),
we recover a spectral decomposition of ¥/| L2(2/h2) (the restriction of ¥ to
L2(Z/hZ)), by considering the eigenvectors &}, , ® G¢, where &}, , comes from
Theorem 11.2. These eigenvectors are of norm 1 and are associated with the
eigenvalues \;. When we want to refer to the eigenvalues of 7| L2(2/hz)> We use
the notation Ay and we add the superscript for ;. We go from the latter to
the former by repeating ¢(h) times each eigenvalue.

41



13 From global to local: two embeddings

The hermitian product on {1--- N} is given by (10).

From the sequence ¢ to a local function

We explore the embedding defined in (4).

Concerning (5), we specify here that we could select a uniform value for N,
typically N + H where H is a bound to be chosen (like exp ¢14/log N). Since N
is supposed to be much larger than H, the introduction of this parameter in the
next definition is only to correct some effects on the border of our domain, see
the proof of Lemma 13.1 below. There are several ways to handle this situation,
we could have considered [0, 2] rather than [0, 1] in the definition of X or we
could also have kept NV and [0, 1] and simply replaced the equality of Lemma 13.1
by an equality with an error term and carried this error term throughout the
proofs. The choice above has the advantage of being independent of an external
upper bound (but is not henceforth canonical).

As a consequence, we note directly® here that

Tnn(p)(b,y) =0 when y > [N'/h]h/N’. (63)

The fundamental property of I'y 5, is that it preserves the hermitian product up
to a multiplicative constant (but is not isometric as it is not onto).

Lemma 13.1. For any positive integer h < N’ — N, we have

Nlo,¥ln = Tnnle), Tun@)n.

The reader should notice a notational difficulty here: the norm |p|2 that we
have used up to now corresponds to the scalar product only up to the scalar
1/N. We will thus refrain from using || as a shortcut to [, p]n.

Proof. Indeed, we have
TN (@)L nn ()

30 3 VIO o ca [

1<b<h V0

(k+1)h/N’ -
P x| P () (b )T (9) (b, ) dydz

Sh< o JEn/N
I<b<h ok 5 —1

1

! —_—
Dy f , T a(9) (0, y)T N n () (b, y)dy
1<b<h YA 10/ N

1 R

1<b<h n=b[h]

on employing (63). Hence the result. O

5Indeed, under the stated condition on y, we have [N'y/h] = [N’/h] = N/h and thus the
index b + h[N'y/h] is strictly larger than N.
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Local adjoint

For every ¢, the linear functional f — (I'y 1 (¢), f) can be uniquely represented
in the form [¢,I'}, ,(f)]n, i.e. we have

Tnnle), ) = e, T (- (64)

The functional f — I'} , (f) is of course linear. We find that

1 1
P Thax =5 X | cermam Ty

cmod h

%Z > SD”J[H_IC,W fle,y)dy

cmodh n<N,
nmod h=c

and thus, for any integer n < N, we deduce the following explicit expression:

N
MR = > f[ ey ey ) (63)

We conclude from [, ¥]y = Tnn(p), D)) = [CX N ne, )N that
Iy T, = 2 1d. (66)

And some easy manipulations tell us that T’ NJLF*N,h = %Ph where Py, is the
orthogonal projector on InT'y , = I (L2({1--- N})).

Proof. Indeed, we find that, for any ¢ and v, we have

ENTN DN TN e ) = DN DN a DN pe, TR ¥l

= TN ae: TN ¥In = A [CNaT N a0 YN

We conclude from these equalities that (I'y ,I'% h)2 = %FNJLF"R, n- The con-
clusion is easy. O

Pure embeddings

It will be clear in a moment that, if I'y , () is easier to grasp from a geometrical
viewpoint, our object is in fact Ry, = U;_,;, o 'y, as already defined in (6),
i.e. the orthonormal projection of I'y j, on the space L2(X}) (see section 11)°.
We call the function Ry the pure embedding. From Theorem 11.2, we get

Raa@)by) =7 X anlb—ATwa(e)(e) (67)

cmod h

from which we readily compute that

n—op (n)+h
NI

Rin@m) =5 X eb-n [ ebad  69)
bmod h N

6The choice of notation I‘;‘i] 5, would lead to confusion since adjoints are present in the
latter theory.

43



Note that

1 2
HRN,h«o)uz:% D f en(b—OTwal)(e,v)| dy
bmod h cmod h
w2 J > Tnnle)(a,y)e(—ab/h)| d (69)
0<a<h

bmod*h

Eq. (69) shows immediately (by extending the summation in b to all of Z/hZ)
that | Ry n(0)| < |Twn(e)], a fact that could have been more easily obtained
by noticing that the norm of an orthogonal projection is surely not more than
the initial norm. We can also get an explicit expression of | Ry n(¢)|? in terms
of ¢:

, (k+1)h/N’ 2
IRvs =55 & X S il —ba/h)| dy
bmod*hk>0 kh/N' O<a<h
2
hN/ Z Z Z ”e(_bn/h) (70)
bmod*h k=0'n/[n/h]=

14 Theorem 1.2 in functional form

We start with an easy lemma.
Lemma 14.1. We have
S0 A5 [ ruotbn (L)L )
1<b<h

Proof. When m = b[h] with 1 < b, we have

N’ N7 TN
Pm = - L_b I n(9)(b, y)dy.

N7

It is straightforward to get the lemma from this expression. O

When H < N'/8(log N)~%2, N « QH and Q < N? (this condition is only
to control log ) in the error term. In practice, ) is not more than N, but we
may want to select Q = constant x N), we have the following.

S aran S e =lek(1+0( )

d*

(71)

B R, () (0, )R (@) (b, y/) W* (T%)dydy’
h;H 1<b<hJJ h? QIO(W)/N2

Remark 14.2. Most of the work below is to allow H to be a power of N. If one
can control the continuity of W*, like under the Riemann Hypothesis, then the
proof is much simpler. We instead rely heavily on the bilinear structure.

44



Proof. We start from (46) and Lemma 14.1 to get that:

I et sl

%2 2 JJFM (b1, 9T Nn(9) (b2 y) D, 4@)

1<by,bo<h amod*h

Lj W*t(u)e(b1 ;bQ% n ([N’y/h] - [N’y’/h]) %)dudydy’. (72)

In the inner integration, we replace
bl — b2 u / 7 u
(T g+ (wm = vy m) )

by e((y — y')Nu/(hQ)). We call Ay (b1,b2,y,y’) the difference of the two, inte-
grated against W2 (u). We have

U
Bnlbrbacyyf) <« | |13 0] min(L [ul/@)du
-U

This gives rise to the error term

Mottt [ [ w00 w00 300, b i

1<by,b2<h

We get max |Ap(b1,b2,y,y')| out, separate I'y (@) (b1, y) from I'n p(¢)(b2,y')
by using 2|z122| < |21|? + |22|? and have to bound

N/2 1
S=tr X lelu— bl [ ICna(@)On )Py max |An(brbe, ),
1<b1,ba<h 0 v,y ,b1,b2
We use

5, @(h)
Dodenbr=b)l= D> len® =D > n (@m

1<ba<h 1<b<h dlh  bmodh,
ged(b,h)=h/d

= Y2 @) 2 = gu ).

—~ 9(d)
This and the isometrical property of I' leads to
B 2w(h)¢(h)N/

2 /
max |Ap(b1,b2,9,y")|.
h lelz bl,b27y7y,| n(b1,b2,9,y)|

Next by using Lemma 5.5, we check that |Ap(b1,be,y,y')] « C'/Q. The to-
tal error term is « Zth(Qh)*lC'?"(h)NS/QHcpH%/Q « C'N32|p|3(log H)?/Q?
which we call Ey. Thus we have reduced the right-hand side de (72) to

% Z f J FNh bl’ )FNh( )(627 )Ch(bl_b2)

1<by,b2<h

f wer y y)hQ)dudydy (73)
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By (67), this is also

Nh/ 2 ffORN,hwxbz,y)W

1<bo<h V0
Nu

U
J_U W*7(U)e((y -5

) dudydy’,

which, by orthogonality, is also

12 1 r1 S
Nh )3 f JORN&(@)(ZLy)RN,h(<p)(b7y’)

1<b<gh 0
J W **(u)e(( — ’)—Nu)dud dy’
’ y y h,g y y .

We want to replace Wi (u) by W*. We assume U < C’/2, hence W*(u) =
WEF (u) + Constant when |u| < U and this constant is O(1/C’). Again using
2|21 22| < |21]2 + |22/ on Ry n(p), and noting that (with s = NU/hQ)

I ’_ y's o
J sin((y y)s)dy :J bu;xdx <1
0

(y/ - y)S y's—y

uniformly in s and y’, we get an error term of size O((log H)N'||¢|3/(QC")).
We finally want to extend the path of integration in w to infinity. Again using

2|z120| < |21]? + |22/?, this means bounding
1) poo
A Nu
A=JJW*u6 y—1y)— |du|dy
), T @e(w-v55)

and similarly with 3’. We employ Cauchy’s inequality and open the square,
getting:

d

A2 « f: f: W (0 YW * (102) Ll (- y’)W)du.

We employ Lemma 5.8 on vy and us. When |u; —us| < 1, we get the contribution
O(1/U); When |u; — us| = 1, we integrate in y and get the contribution

Joo fm dulduQ
v Ju U1U2(1+|U1—U2|).

On splitting the path of integration on us in [U, max(U,uy/2)], followed by
[max(U, u1/2),2u1] and finally by [2u;,00), we readily see that this integral is
O((logU)/U). Summing over h gives the contribution

N 5 1o, [hQUET) VNHIogU
QL(W) =, n' 7PN T NT VUQ

In total, we get the error term bounded above by a constant multiple of

N NlogH NHlogU C'N3? , H? H?+ (logN)® )
— N logH)? +— 4+ —> 22 )
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It is best to take U as large as possible, so we select U = C’/2. In turn, we
select C' = QH'/3/N?/?> and we check that C' = C' (see (42)). The error term

becomes not more than a constant multiple times

N  N°3logH N°6H/3 H? + (log N)®
NN leH (log VY2 + 20BN o) e
QH  Q*H'Y3 Q QH/3

We then check that this reduces to

N N NH5/3 N5/6H1/3
A A 1 N 2 2
(g7 * o gms + g —oE NP )l

when H < N8, And we check further that N6 H/3Q~'(log N)? « N/(QH)
when H < N'Y8(log N)~%/2. The second term equally disappears, as N «
OH. 0

Hervé Queffélec has kindly pointed out to me that when ¢ = 1, this process
bears similarities with the one devised independently by [41] and [46], and which
is nicely presented in [5, Section 3].

On recalling the definition of the operator ¥ j, in (7), here is another manner
of writing (71):

S D5 Is(eafa)l? = (V)R + O(r/)
g amod*q
- hZH %[RN’}L(@N%’}L RN o,

(H « NY3(log N)™32 N « QH,Q « N?). (74)

15 Using spectral analysis

Formula (74) involves the operators 7, o U;_,. In this section, we first di-
agonolize them as local operators (i.e. on a space that depends on h), and
control the dependance in h and 7. We then lift this diagonalization to the
global space (where the sequence ¢ lives) and show that the resulting family of
eigenvectors, h varying, is near-orthonormal (see Lemma 15.3). We encounter
a problem (that may be only technical): the control we have of the modulus of
continuity of these eigenfunctions is weak when they are associated with very
small eigenvalues. But then, their total contribution is small, and we then in-
troduce a trade-off point with the condition |Ap ¢ = &€no(N )1/8. We conclude
this part with another consequence of the near-orthonormality which enables us
to control the quadratic form resulting from taking some upper bound for the
eigenvalues. This is required because, when using (80) to simplify our statement,
the near-orthogonality is not apparent anymore.
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15.1 Decomposing the implied operators

The operator ¥; j, does not touch the b-variable, from which we infer that (recall
the definition of the rothonormal projector U;_, in (49))

Uﬁ—»h o 7/7,}7, = %—,h © Uﬁ—»h'

This has two consequences: first the image of 77, lies inside Li (X3) and sec-
ond, its couples eigenvalues / eigenvectors are simply (tensor) products of the
respective couples coming from the two operators:

Fe L*(Z/hZ) — (b — % > oen(b— c)F(c)>
cmod h

where the only difference with the operators U;_,, and 77 ;, are the spaces. The
first operator is covered by Theorem 11.2. We are left with the second one which
belongs to the class described in Section 12 (if we ignore the first variable, as we
may). The regularity assumptions (R;), (Rz2) and (R3) are met by Lemma 5.9.
15.2 Diagonalisation in the local spaces

We use the eigenvectors / eigenvalues (Gh ¢y, An,¢)y,e of 75 as well as the ones
of R, (see Theorem 11.2) to write

[Rnvn(0)| 0 RN,h(Sﬁ)]hX[OJ] = 2 At Z [Rnn(0)| Enx ®Gh,z]ix[011]~

=1 x mod h

We then divide this quantity by A and sum that over h. Before proceeding, let
us note the following lemma.

Lemma 15.1.

I

We will use the latter when h < 27 and the former otherwise. It is however
better for questions of uniformly to state them in general

Proof. When h > 27, we use Lemma 5.9 and bound the value [W*(7z/h)| by
O(exp —co+/log(h/T)). When h < 27, we use
1 2 1 2 7/h
L[ TZ L[ TW 2h . N9
W — < - < — :
Jo <h>dz QLW(h)dw TL W*(w)“dw < h/T

The lemma is proved. [

Since |Ap¢| « 1/€ by (60) and Lemma 15.1, we can explicitly shorten the
spectral decomposition in (recall also Lemma 13.1)

[Rnn (@) 2n RN,h(‘P)]hx[O,l] =
2 _
Z Ahe Z [RN,h(Sﬁ)\ gh7X®Gh»£]hx[O,1] +OWN 1‘|('0H§/L)

(<L x mod h
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We can similarly restrict the summation to |A¢| = 7o(N)V* (with no(x) =
exp — % +/log x) and get, for any £ € [0, 1]:

[Rv (@)Y R0y 00 =
Z Ahe Z [Rnv.n(0)| Enx ®Gh7£]}21><[0,1]

(<L, x mod h
[An,e|=Eno (V)4

+ O(N lBmo(N)* +1/L)).
The parameter £ is here for flexibility, in case we want the sum not to depend

on the parameter N. We may rewrite formula (74) by introducing the adjoint
RN of Ry, as follows.

w
Z%Q) DT 1S(e a/g))> = To(W)lel3
q q amod*q
T 2
NN T Y e Y [P REA S ®G)
h<H <L, xmod h

[An,e|=Emo (V)

(log H logH 1 9
+O(<exp6gm+ =+ )7lel3). (75)

Our task is now to replace R’}i, hEhx @G e by a simpler expression.

15.3 Approximate diagonalization in the global space

We define
Ghtx N =RNpERx®Ghe =T} 1 Eny ®@Ghy, (76)
as well as ( )
b (X, n
Ih,e, ,N,T(n) = Ghel ) (77)
x oo ()

The function gy ¢, n,- inherits from &, , ® G, ¢ a similar separation of be-
haviour between arithmetic and size characters.

Lemma 15.2. When |t —n| < NY? and Q < N, we have

Th(X, 1) t o(h) co
Ay = XY g (D) o X2 ok (— L flog N
Gh,t,x,N, (n) o(h) h,e(N) + <|)\h,é(7)| eXp( 5 \/?)
where ¢y is defined in Lemma 5.9. Moreover, we have

o <A/ ¢(h).

In particular, g} , . approximates gn ¢ .n.r-

Ao (T gn,e.x, N7

Proof. We have by (65):

1 n—ah(n)Jrh
N/
Th(X»n) Gh,e(y)dy~
o(h

n—op(n)
U

gh,e,X,N,r(”) =

==
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We next use (55) together with Lemma 5.9 to infer that, when ¢ € [0, 1], we
have, for any y € [0,1 — 4],

. 70
M e (T|Ghe(y + ) — Gre(y)| < exp —co\/— logmm(l, %) (78)

We note that 7 < 1 and that h > 1. Hence, for any ¢ such that |t —n| < VN,
we have

) i) i)

Th(X, ) ¢
O<|/\h,£?7;<|mexp(£«/log]\7)>

from which the stated estimate readily follows, up to two blemishes: the factor
N/N’" = 1+ O(N~/2) and the G(t/N’) instead of G(t/N). This last modifi-
cation follows from (78), the former one being trivial. For the L*-norm, note
that (see (54))

w0 < 2AW* (7 W)/ S(R)/Pn e (7).

th,f,XJV,T

Lemma 15.3. When h,h/ < H < N5 and N' < N ++/N, we have

1 Hexp(—“—o logN)
Gt NN = Ohen Opepr Oy s + O — 4
[9n,0x. N7 G 0 3 N IN = On=h =00y =y + (\/N+ A e (T [ Ao ()]

where cq is defined in Lemma 5.9. The same applies when replacing gn s N+
. b b
and gns o x',N,- Tespectively by gy, n - and gy ooy -

Proof. In order to compute [gh ¢y, N,rs Gh' .0/ 5/ N+ N, We split the interval [1, N]
in O(N/(hh')) sub-intervals containing hh’ consecutive integers and a remaining
one. We employ Lemma 15.2 on each sub-interval, selecting a ¢ that is indepen-
dent on the point n, for instance choosing it at the origin of such a segment,
but we shall use the freedom on choice in ¢ to shorten the argument below. We
bound the L*-norm of the other factor by Lemma 15.2. The error term for each
interval is

smax([W*(r - /W) [W* (- DN/ [ o
«hh P (e (0)] exp( = Viog V)

which we have to sum over all intervals and divide by N (since the scalar product
[, ]~ is scaled in this manner). The total error term incurred is thus

H max(|W*(7 - /h) |1, [W*(r - /I)|1) [ H? N
[ Ao (T) [ Ane(7)] (N + eXp(_4\/@)).

The summand H?/N comes from the end interval. Concerning this end interval,
we should have had |W*(7- /)| - |W*(7-/h)|:1 rather than the maximum, but
each norm is bounded (uniformly in 7), which legitimates the bound above.
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Whenever h # h' or x # X', the summation over the remaining intervals
vanishes by orthogonality. We are left with the case when h = A’ and x = Y/,
in which case we have to evaluate

R
et rwea)

The sum upon n is h?| &, |3 = h?. Concerning the sum upon ¢, we employ
the following trick: given any interval we can use any t from within, hence we
can integrate over ¢t and divide by the length h? of the interval. Concerning
the final interval, the reader will check that the contribution to include it is not
more than what we already paid for discarding it. As a result, we get as a main
term

1
f Gt (w)Crp (@) du
0

which is 5@:2’ . O

15.4 External control of the eigenvectors

Let us recall an inequality due to Selberg (given in [4, Proposition 1] or in
extended form in [35, Lemma 1.1-1.2]).

Lemma 15.4. Let (g;)icr be a finite family of vectors in the Hilbert space M,
and f be some fized vector in this same space. We have

2 ILAg1P/ D gilgsll < 1711

iel jel
We apply Lemma 15.4 to the family
{honnr i h < Hx mod h,0 < L, A7) = mo(N)Y4}.

By Lemma 15.3, we infer that

N oYY Y [lgheoneln < lel3(1+ B Lexp—2/logN). (79)

h<H ¢{<L xmodh
[An,e|=exp — 2 +/log N
Finally we use the identity:

> |2 e ™Elo(1)] - ¥

x mod h'n<N amod *h

2 (80)

Z gp(n)e(na/h)G(%)

n<n

16 Deducing Theorem 1.6 and 1.1

16.1 Proof of Theorem 1.6

The spectral decomposition is treated in Subsection 15.2. The family gn ¢, N+
is defined in the next subsection at (76) and its near orthonormal property
in proved in Lemma 15.3. The global decomposition is given in (75) once
R}k\r,h Ehx ®Gh,e is replaced by gn e, v~ and the relative sizes are taken into
account. The final property is in (79).
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Note that, for each h, we have at a positive and a negative eigenvalue.
Recalling (9), we see that maxy |Ap ¢(7)| goes to zero. Hence these positive or
negative values of Ay ¢(7) cannot be the same one save for finitely many h’s.
This is how we prove that infinitely many of them are positive (resp. negative).

16.2 Proof of Theorem 1.1

To prove Theorem 1.1, we first introduce a smooth non-negative function W
verifying (W7), (Ws) and (W3) stated in the introduction and write

S Y Sl z Y YYD S 56 /)2

1<q/Q<2 amod*q g=1 q amod*q

We then use Theorem 1.2. Theorem 1.6 is our next step, with £ = 1. We select
H = L = expcy/log N7 for some small but positive ¢. Given h < H, we may
first employ the first statement of Theorem 12.6 together with (1) and (3) to
get that TAp e < Io(W) 4+ O(1/4/Q). This already ensures us that

NY 3 Me Y, IS(eiafa)f?

h<H (<L, amod*q
[An,e|=€ exp —c3/log N

< Io(W)N] |2 (1 + H?Lexp —cs/log N + Q*W).

This is not quite enough. The full strength of Theorem 1.6 uses the non-
negativity of W. We employ this theorem with Uy = 7/h, and this gives us
that

-

h)\h,e < y(W)(1 — cefc‘”/h) + (9(1/\/@)

Theorem 1.1 readily follows.
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