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1. Introduction and results. Upper bounds of |L(1, x)| are mainly
useful in number theory to study class numbers of algebraic extensions.
In [1]-[3] Louboutin establishes bounds for |L(1, x)| that take into account
the behavior of y at small primes. His method uses special representations
of L(1, x) and does not extend to odd characters. For instance in [2] he uses
L(1,x) =2>,> 1<, x()/(n(n 4+ 1)(n + 2)) which comes from an integra-
tion by parts; such a formula fails in the odd case. But the effect of this
integration by parts is in fact similar to the introduction of a smoothing,
something we did in [5], the only difficulty being to handle properly the
Fourier transform of functions behaving like 1/t near co. This method gives
good numerical results in a uniform way.

In this note we improve on the results given in [2] and [3] and extend
them to the odd character case. Let us mention that we take this opportunity
to correct several typos occurring in [5].

We first state a general formula.

THEOREM. Let x be a primitive Dirichlet character modulo q and let h
be an integer prime to q. Let F' : R — R be such that f(t) = F(t)/t is in
C?(R) (also at 0), vanishes at +o00 and f' and f" are in L'(R). Assume
also that F is even if x is odd, and odd if x is even. Then, for every § > 0,
we have

1—F(on
(-0 = % =0

plh n>1
(n,h)=1
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Here the Gauss sum 7(x) is defined by

(1) T(x)= > xla)e(a/q)

amod q

and the Ramanujan sums cp,(m) by

(2) cn(m) =Y e(ma/q).
amod* h

Of course e(-) = %™, and amod* h denotes summation over all invertible

residue classes modulo h. We further restrict our attention to square-free h.

Here are two interesting choices for F' which we take directly from Propo-
sition 2 of [5]. Set

®) mi= (M) (2 ),

meZ

[e'e] 1
4 )=} F?’T(t)e(ut) dt =1y yy(u) | (x(1 —t) cot mt + 1) dt,

o0 Jul

sin 7t 2

o) R =1- (227)
which satisfies
(6) S FA‘T(t) e(ut)dt = —in(1 — ]u|)2]l[_171] (u).

Notice furthermore that F3 and Fj take their values in [0, 1].

In order to compute efficiently the resulting sums we select several levels
of hypotheses, starting by the most general ones. We use the Euler ¢-function
and the number w(t) of distinct prime factors of ¢.

COROLLARY 1. Let x be a primitive Dirichlet character modulo q¢ and
h an integer prime to q. Assume q is divisible by a square-free k and set
Ky = 0 if x is even, and Ky, =5 — 2log6 = 1.41648 ... if x is odd. Then

e )] 42

plh

1
logq—i-Q%;pO%ﬁ +w(h)log4 + Ky
P

2hk

is bounded from above if x is even and q > k24*M) by

o2t { log(q4—(M+1) if > k4™,
h\/q 1.81 +w(h)logd —logq if k=1,
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and if x is odd by
w(k)
3rp(hk) H p?—1 n % if k2 max(% .4w(h)7h24—w(h)+1>7
2 q
2hkq ip 0 if k=1.

p|hk

This improves on Theorems 1, 4 and 5 of [3] in the quality of the bounds
and in their range, and also by the fact that it covers the case of odd char-
acters. For instance in Theorem 5 of [3], where Louboutin studies separately
the cases h = 3 and k = 2, he gets the upper bound §(log g +4.83...+0(1))
for even characters, while we get ¢(log g+ 3.87... + 3(log q)/\/q). Recently
in [4], by generalizing his method introduced in [2], Louboutin has reached
a similar result for the case of even characters, albeit with a slightly larger
constant K, = 2+ v — log(4m) = 0.046.. .. instead of k, = 0. This enabled
him to replace #(logq +4.83... + o(1)) by §(logg+3.91...).

Notice that the upper bound in the case of even characters is non-positive
when k = 1 as soon as ¢ > 6.2 - 4«

When h = 2 we can get slightly more precise results:

COROLLARY 2. Let x be a primitive Dirichlet character modulo odd q.
Then

(1= x(2)/2)L(1,x)| < 3(logq + k(X))
where k(x) = 4log2 if x is even, and k(x) =5 — 21log(3/2) otherwise.

In [2], the value k(x) ~ 2.818.... is proved to hold true for even characters
while 4log2 = 2.772. ..

We introduce the character 1 induced by x modulo gh. Furthermore
(m,t) denotes the ged of m and ¢.

As for the typos in [5], first, Proposition 2 gives a wrong formula for
L(1,x) if x is even: the sign preceding 7(x) should be + and not —. Then
Lemma 8 gives a fancy value for g4. In fact g4(t) = —im(1 — [¢])*2_11)(¢),
which is what is proved and used throughout the paper! Finally, in the 6th
line of page 264, it is written, “and this last summand is non-negative”,
while this summand is without any doubt non-positive.

We thank the referee for his careful reading and for improving Lemma 11.

2. Lemmas. We essentially combine Louboutin’s proof [2] and ours [5],
while generalizing both situations.
First here is a generalization of the new part in Louboutin’s paper [2]:

LEMMA 1. For every m in Z, we have

> wlae(am/(gh)) = en(m)x(h)X(m)T(x)-

amod gh
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Proof. By the Chinese remainder theorem,

> Yaelam/(hg) = Y D lxq+ yh)e((xq + yh)m/(hq))

amod hq zmod h y mod ¢

= Z e(zxm/h) Z x(yh)e(ym/q)

zmod* h y mod q
= cn(m)x(R)x(m)7(x),
where ¢, (m) is the Ramanujan sum defined by (2).

Now, Lemma 3 of [5] can be extended to

LEMMA 2. The sum Y., f(0n)x(n) exists in the restricted sense given
in [5] and

S pomywtn) = XD S mym) | p(@t)etomt/(an) di
nez q meZ\{0} —00
Note: §7_ g(t)e(ut) dt = limp_.o STT g(t)e(ut) dt for u # 0.

Now we state and prove lemmas that give approximations of the relevant
quantities.

LEMMA 3. For 6 > 0 and hk > 2 we have

hk 1 — F3(on) log p

ML < et (U0 S S

o(hk) = n ry p—1
(n,hk)=1

Proof. We have

Z 1—F3 5n Z,u Z 1—F3(57”L)

n>1 d|hk n>1
(n,hk): d|n
) 1= Fy(don)
N Z d Z n ’
d|hk n>1

Lemma 16 of [5] gives the value of the above if hk = 1, which is —log d—14-6.
This equality is stated only for § < 1 but since only analytic functions are
involved, it naturally extends to § > 0. We infer that

3 1_F35” Z“ ~log(d5) — 1 + do)
n>1 d|hk

(n,hk)=1
_ ) OR) k) 5 logp

ko © hk hk p—1
plhk

provided hk > 2.



Approzimate formulae for L(1,x), IT 5

LEMMA 4. For duq > 1 we have

duq — 2log(eduq) < Z j(m/(duq)) < duq — log(2mduq/e).

1<m<duq

The upper bound is proved between (6.3) and (6.4) in [5]. There also
the restriction § < 1 can be dispensed with. The lower bound comes simply
from a comparison to an integral since j is non-increasing and since j(t) <
—2log |t| for t < 1 (shown to be true in Lemma 7 of [5]),

(7) Vit)dt < —2(rlogr—r) (re€[0,1]).
0

LEMMA 5. For 6 >0 and h' = h/(2,h) we have

> A o ama) < 24005041 Tog(aria) + ) 3 5
plh

Proof. Let us introduce the non-negative multiplicative function H =
w* ¢. We have H(p) = p — 2. We get

> o(mh)i(m/(5g)) =D H(d) > j(dm/(3q))

1<m<dq dlh 1<m<éq/d

< dz; %M)éq + ¢(h)(1 — log(2mdhq)) + d%; H(d)logd.

Now and since h is square-free we see that },, hH(d)/d = 2¢(h) ().

LEMMA 6. For § > k/q we have

3 ¢ m, h i(m/(5hq)) < 24 @&mew log(¢3q/2).

1<m<5q
(m,k)=

Proof. Following the proof of Lemma 5, our sum equals

D H@Y pl) >, i(dim/(5hq))

dlh Ik 1<m<édq/(dl)
w(h) p(k)
<0q2°Mo(h) ==+ H(d) Y 2log(edq/(dl)
dlh Ik
p(l)=-1

< 6q2°M9(h) 2 1 ()20 10gesq 2)

provided that dq/k > 1.
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LEMMA 7. For 6 > 0 and hk > 2 we have

hk 1 — Fy(on) 3 log p
— ———~ =logd+ = —log(2
D) ; - og +2 og( 7T)+Zp_1
n> p|hk
(n,hk)=1

1
2000 S (@) § (1 - 108

d|hk 0

wdot | dt
sin(wddt) | d -

When hk = 2 the last sumrrg(md is non-positive, and in general if § <
1/(2hk), it is not more than =4° Hp|hk(p2 —1)/p?.

Proof. Lemma 17 of [5] gives us

1
Z%‘l(én) :—log(S-l-g—IOg(27")+2§(1_t)10g
n>1 "

ot
sin(mdt)

and we use the same technique as in the previous lemma. The error term is
non-positive if hk = 2 as shown in [5] between (7.2) and (7.3). Furthermore
the integral is shown there (in Lemma 18) to be not more than 736%/12 as
soon as 6 < 1/2.

A simple comparison to an integral yields:
LEMMA 8. For duq > 1 we have
2
e 3 (1- ) <0
3 dugq 3
1<m<duq

LEMMA 9. For § > k/q we have

3 ¢((m, h)) <1 m >2 < 9K) 84 guhy | ot

where the last summand can be omitted if k = 1.
Proof. We proceed as in Lemma 6 to deduce that our sum is

Suay Y (1-4my

d|h 1|k 1<m<8q/(dl)

and the conclusion follows readily.

From [6, (3.22), (2.11) and (3.26)], we get
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LEMMA 10. We have

lo 1
Y B clogx —1.332 + (X > 319),
2log X
1<p<X
—1 2e7 1
H £ 16X<1+ 2 ) (X >1),
2ip<X og 2log“ X

where v is Fuler’s constant.

LEMMA 11. For h > 1, we have

p—2 logp
< 0.7414.
122y ker
2<p|h 2<p|h

Proof. First writing h = hip; where p; is a prime factor, the reader
readily checks that our quantity is a non-increasing function of p;. We thus
find that its maximum is obtained when h = [, <p<x P- As a function of X,
it numerically seems increasing and GP/PARI needs at most 10 seconds to
prove it is < 0.72 if the product is taken over primes < 10°. Using Lemma 10,
we get

logp 2logp logp log?2
K)= > 5= 2 oot 2 Y s

9epex P 2<p<X 1<p<X

<1.27+log X —1.332 + —0.346

2log X
<logX —04
for X > 10°. Furthermore, still invoking Lemma 10, we have
H p—=2

2<p<X

p—l
< 11 ( o) 11
2<p<X 2<p<X p
1 2e~ 7 1
< 1— 1
B H < (p—1)2>logX< +210g2X>

2<p<106

also for X > 10°. Since (1 —0.4y)(1+0.5y%) < 1if 0 < y < 0.4, our function
is not more than

(8) 27 ] <1 - ﬁ) < 0.7414.

2<p<106



8 O. Ramaré

3. Proof of the Theorem. Let us start with

1— F(én) F(én)
(9) LLy) =) $(n) ————=+ v(n)
n>1 n>1
Thanks to the hypothesis concerning the respective parities of ' and x, we
get
(10) > W Z Y(n)df(6n),

n>1 nEZ

to which we apply Lemma 2, and the Theorem follows readily.

4. Proofs of the corollaries. For even characters we take F' = Fjy.
Combining the Theorem with Lemmas 3 and 6, and noticing that |cp(m)| <

o((h,m)), we get

- H( B %) ‘¢
—logd —1+ Z logp <2“’( )6q + %:;) log(eéq/Z))

|hk

provided 6 > k/q. We simply have to choose § = 1/(2<(") v/q) and the
claimed formula follows readily.
For odd characters we use F' = F4 and Lemmas 7 and 9 to get

x(p) 3
12 jpst —logd + = — log(2
- ‘H< p> ‘cbhk' P80ty sl
plh
N Z logp 2117 <52“’(h)q+2w(k>—1 k >
ok P plhk \/5 3 ¢ (k)

provided § € [k/q,1/(2hk)]. We take § = 3/(2*("x,/g) and the claimed
formula follows readily.

To prove the second corollary (i.e. with & = 1), we simply adapt the
above proof, but we can simplify the bound in the even case. We first obtain

1 2 lo
(13) ﬁ<1—log((27r/e) Vg2 M) Hp 3 gp).

-2
2<Mh 2<Mhp

The last factor is bounded in Lemma 11 by 0.7414, so the above term is not
more than (1.81 + w(h)log4 —logq)/(2,/q) as announced.

When h = 2, the claimed upper bounds are proved if ¢ > 39, in part
because the term in §2 appearing in (12) disappears by Lemma 7. We com-
plete the verification by appealing to GP/PARI as indicated in [5]. The
maximum of k() for even characters of module < 1000 is < 1.705, attained
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for ¢ = 109, while the maximum of k() for odd characters of module < 1000
is < 3.360, attained for ¢ = 131.
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