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Abstract. We consider Dirichlet L-functions Lps, χq where χ is a non-principal

quadratic character to the modulus q. We make explicit a result due to Pintz
and Stephens by showing that |Lp1, χq| ď 1

2
log q for all q ě 2 ¨ 1023 and

|Lp1, χq| ď 9
20

log q for all q ě 5 ¨ 1050.

1. Introduction and results

A central problem in number theory concerns estimates on Lp1, χq, where χ
is a non-principal Dirichlet character to the modulus q, and where Lps, χq is its
associated Dirichlet L-function. Bounding sums of χpnq trivially leads to the bound
|Lp1, χq| ď log q ` Op1q. The Pólya–Vinogradov inequality allows one to improve
this to p1{2q log q `Op1q. An interesting history of these developments is given by
Pintz [27].

Explicit versions of the above results date back to Hua [9]. See also work by
Louboutin [21] and the second author [31, 32] for finding small pairs c, q0 such that
Lp1, χq ď p1{2q log q ` c for all q ě q0. It appears difficult to improve on these
bounds for generic q.

When q is prime, the best result is due to Stephens [36], namely that |Lp1, χq| ď
1
2 p1 ´ e´1{2 ` op1qq log q, where 1

2 p1 ´ e´1{2q “ 0.1967 . . .. This result has been
extended to arbitrary moduli by Pintz in [28, 27]. We aim at making the Pintz–
Stephens result partially explicit in the following theorems.

Theorem 1. Let χ be a quadratic odd primitive Dirichlet character modulo q ě
2 ¨ 1023. We have Lp1, χq ď plog qq{2.

For even characters, this is proved for q ě 2 in [31] after several papers by
Louboutin, the last of which is [21]. Bounds relying on additional constraints on
the characters at the small primes have been investigated by Louboutin in [22], by
the second author in [32], by Saad Eddin in [35] and by Platt and Saad Eddin in
[29]. On taking q to be larger, we can improve on the factor 1{2 in Theorem 1.

Theorem 2. Let χ be a quadratic primitive Dirichlet character modulo q. The
inequality Lp1, χq ď p9{40q log q holds true when χ is even and q ě 2 ¨ 1049 or χ is
odd and q ě 5 ¨ 1050.

We note that, on the Generalized Riemann hypothesis much more is known.
Littlewood [20] showed that Lp1, χq ! log log q. This has been made explicit for
large q in [14] by Lamzouri, Li and Soundararajan, and then for all q in [16] by
Languasco and the third author. Finally, although we do not consider lower bounds
on Lp1, χq, we direct the reader to a survey of explicit and inexplicit bounds of
Mossinghoff, Starichkova and the third author in [24], and to the recent work [15].

The outline of this paper is follows. In §2 we collect the necessary explicit
results on character sums. In §4 we prepare the technical preliminaries to Stephens’
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approach, and analyse these in §5. Our §6 is purely centred on the optimization
in (an improved version of) Stephens’ method, and contains no number-theoretic
input. Finally, in §7 we prove Theorems 1 and 2.

We use the notation fpxq “ O˚pgpxqq to mean that fpxq ď |gpxq| for the range
of x considered. We also make use of the following notation. We define

(1) hpχ, yq “
ÿ

nďHy

χpnqΛpnq

n
, hp1, yq “

ÿ

nďHy

Λpnq

n

as well as

(2) fpxq “
ÿ

nďHx

χpnq

Hx
, F pxq “

ż x

0

fptqdt “
ÿ

nďHx

χpnq

n logH
´

fpxq

logH
.

Our aim is to majorize F p1q. We further define

(3) `pyq “ H´y
ÿ

nďHy

χpnq log n.

It is also convenient to introduce the points

(4) xm “ 1´
logm

logH
.

2. Preliminary results

We now list a trivial result that follows immediately from partial summation.

Lemma 3. When x ě 0, we have
ř

nďx 1{
?
n ď 2

?
x.

The following result is slightly more subtle.

Lemma 4. When x ě y ě 1, we have
ř

yďnďx 1{n ď 1` logpx{yq.

Proof. Using Euler–Maclaurin summation one can show that

ÿ

nďx

1

n
“ log x` γ `

`

1
2 ´ txu

˘

x
`O˚

ˆ

1

8x2

˙

,

whence

(5)
ÿ

yďnďx

1

n
“ logpx{yq `O˚

ˆ

1

2x
`

1

2y
`

1

8x2
`

1

8y2

˙

.

The lemma is clearly true when x “ 1. Therefore, for x ě 2 and y ě 1 we have, by
(5) that

ř

yďnďx n
´1 ´ logpx{yq “ O˚p29{32q, and we are done. �

We now list some bounds related to the prime number theorem. The first is (a
simplification of) a classical result from Rosser and Schoenfeld, see [34, Thm 12].

Lemma 5. When x ě 0, we have ψpxq ď 1.04x.

We note that the result of Rosser and Schoenfeld gives 1.03883 in Lemma 5,
which is an approximation to ψp113q{113. To improve the bound in Lemma 5 it
would be necessary to take x ě x0 ą 113, which, while possible, would complicate
greatly the ensuing analysis for only a marginal improvement.

The second is an explicit bound of the form ψpxq ´ x “ opxq coming from [3,
Table 15] by Broadbent, Kadiri, Lumley, Ng, and Wilk.

Lemma 6. When x ě 105, we have |ψpxq ´ x| ď 0.64673x{plog xq2.

On the Riemann hypothesis we have ψpxq´x “ Opx1{2`εq. The following result,
from [5, Thm 2] of Büthe, gives an explicit version of an even sharper bound for a
finite range.
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Lemma 7. When 11 ă x ď 1019, we have |ψpxq ´ x| ď 0.94
?
x.

We remark that slightly weaker versions of Lemma 7, but ones that hold in a
longer range of x have been provided by the first author in [11]. We require the
following result to be used in tandem with Lemma 7.

Lemma 8. When e40 ď x, we have |ψpxq ´ x| ď 1.994 ¨ 10´8 x.

This is obtained directly from [3, Table 8]. The key feature here is that e40 ă 1019

so that Lemma 7 and Lemma 8 between them cover all values of x ą 11. Better
results are available when x is very large, say log x ě 1000 — see [30] by Platt and
Trudgian, and [12] by the first author and Yang — but Lemmas 7 and 8 suffice for
our needs.

We now turn to estimates on ψ̃puq :“
ř

nďu Λpnq{n to aid in the evaluation of
hpχ, yq and hp1, yq in (1). To obtain such estimates we correct a result of the second
author in [33].

Lemma 9. For x ě 71 we have

ÿ

nďx

Λpnq

n
“ log x´ γ `

ψpxq ´ x

x
`

0.047
?
x
`

logp2πq ` 10´4

x
` Epxq,

where

Epxq “

#

1.75 ¨ 10´12, 1 ď x ă 2R log2 T0

1`2
?
plog xq{R

2π expp´2
a

plog xq{Rq, x ě 2R log2 T0,

with1 R “ 5.69693 and T0 “ 2.44 ¨ 1012.

Proof. As discussed by Chirre, Simonič, and Val̊as Hagenin in [6], by fixing a couple
of small typos, Lemma 2.2 in [33] can be replaced by

ÿ

nďx

Λpnq

n
“ log x´ γ `

ψpxq ´ x

x
´
ÿ

ρ

xρ´1

ρpρ´ 1q

`

ż 8

x

log 2π ` 1
2 logp1´ u´2q

u2
du.

Following [33, §5], we have
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ρ

xρ´1

ρpρ´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
0.047
?
x
` Epxq.

Finally, since x ě 71,
ˇ

ˇ

ˇ

ˇ

ż 8

x

log 2π ` 1
2 logp1´ u´2q

u2
du

ˇ

ˇ

ˇ

ˇ

ď
logp2πq

x
`
| logp1´ 71´2q|

2x

ď
logp2πq ` 10´4

x
. �

Lemma 10. We have
ÿ

nďx

Λpnq{n “ log x´ γ `O˚p1.3{ log2 xq, x ą 1,(6)

ÿ

nďx

Λpnq{n “ log x´ γ `O˚p1{
?
xq, 1 ď x ď 1019.(7)

1The value of R comes from work by Kadiri [13] on the classical zero-free region for the zeta-
function. This can be lowered using more recent results [25] and [26], respectively by Mossinghoff
and Trudgian and by Mossinghoff, Trudgian and Yang, but it is inconsequential for our purposes.
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Proof. Using Lemma 9 with the bounds from Lemmas 6 and 7, we obtain that,

ÿ

nďx

Λpnq

n
“ log x´ γ `O˚

ˆ

0.67

log2 x

˙

for x ě 105, and
ÿ

nďx

Λpnq

n
“ log x´ γ `O˚

ˆ

1
?
x

˙

for 105 ď x ď 1019. We then extend these estimates to smaller values of x by direct
computation, giving (6) and (7). �

An immediate consequence of this result is as follows.

Lemma 11. We have
ÿ

nďx

Λpnq{n ď log x´ 0.545, x ě 103,

ÿ

nďx

Λpnq{n ě log x´ 0.576, x ě 106.

We now examine the weighted average of
ř

nďu Λpnq{n.

Lemma 12. We have
ż 8

1

ˇ

ˇ

ˇ

ˇ

ÿ

nďu

Λpnq

n
´ log u` γ

ˇ

ˇ

ˇ

ˇ

du

u
ď 0.411.

This integral may be of interest in its own right. While the true value of this
integral seems close to 0.41, we have no idea of the conjectured limiting value of
the integral. To this end, see a similar problem discussed in [2].

Proof. We define ∆puq “
ř

nďu Λpnq{n ´ log u ` γ. When the variable u is small,

we compute directly by using the fact that ψ̃puq is constant on rn, n` 1q and that,

with τ “ ψ̃pnq ` γ, the integral
şn`1

n
|∆puq|du{u is equal to

$

’

&

’

%

log2
pn`1q´log2 n

2 ´ τ log n`1
n when τ ď log n,

log2
pn`1q`log2 n´2τ2

2 ` τp2τ ´ logpn2 ` nq when log n ă τ ă logpn` 1q,

´
log2

pn`1q´log2 n
2 ` τ log n`1

n when τ ě logpn` 1q.

The second case is treated by splitting the integral at u “ eτ . We compute in this
manner that

ż 106

1

|∆puq|
du

u
ď 0.408.

We use Lemma 10 to infer that
ż 1019

106

|∆puq|
du

u
ď

ż 1019

106

1

u3{2
du ď

2
?

106
“

2

1000
“ 0.002.

We now use Lemma 8 and Lemma 9 to show that, for some x1 ě 1019,
ż x1

1019

|∆puq|
du

u
ď

ż x1

1019

ˆ

2 ¨ 10´8

u
`

0.05

u3{2

˙

du

“ 2 ¨ 10´8plog x1 ´ 19 log 10q `
0.2
?

1019
´

0.2
?
x1
.

To handle the integration beyond x1 we use (6) in Lemma 10, whence the total
integral is

0.408` 0.002` 2 ¨ 10´8plog x1 ´ 19 log 10q `
0.2
?

1019
´

0.2
?
x1
`

1.3

log x1
.
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Choosing x1 “ expp500q gives the result. �

We remark that we could further divide the range to use more entries in the
tables in [3], but the above result is sufficient for our purposes.

3. Character sum estimates

The work of Stephens and Pintz relied on the Burgess bound from [4]. Explicit
versions of this are known but are still numerically rather weak. When the mod-
ulus is prime, such bounds have been provided by Francis [7] improving on work
by Treviño [37] and McGown [23]. If we restrict our attention here to quadratic
characters to prime modulus congruent to 1 modulo 4, we may rely on the slightly
stronger bounds of Booker in [1]. Recently, Jain-Sharma, Khale and Liu have pro-
duced in [10] an explicit version of the Burgess inequality for a composite modulus,
but only for q ď exp expp9.6q.

Instead of the Burgess bound we shall rely on versions of the Pólya–Vinogradov
inequality. We first require an explicit version of the Pólya–Vinogradov inequality
due to Frolenkov and Soudararajan in [8, Corollary 1]. In both lemmas that follow,
we let V denote the bound on the character sum. We shall, depending on the
conditions, invoke these bounds for V later in the paper.

Lemma 13. When q ě 100 and χ is a non-principal Dirichlet character modulo q,
we have

ˇ

ˇ

ˇ

ˇ

ÿ

AďnďB

χpnq

ˇ

ˇ

ˇ

ˇ

ď
1

π
?

2

?
qplog q ` 6q `

?
q “ V.

The following is from [17, 18] by Lapkova, which makes a small improvement on
the earlier result from [8, Theorem 2] by Frolenkov and Soundararajan.

Lemma 14. When q ą 1 and χ is a primitive Dirichlet character modulo q, we
have

ˇ

ˇ

ˇ

ˇ

ÿ

AďnďB

χpnq

ˇ

ˇ

ˇ

ˇ

ď

#

2
π2

?
q log q ` 0.9467

?
q ` 1.668 “ V when χp´1q “ 1,

1
2π

?
q log q ` 0.8204

?
q ` 1.0286 “ V when χp´1q “ ´1.

When A “ 0 and χ is even, we may divide this bound by 2.

Here is a smoothed version of the Pólya–Vinogradov that we take from Levin,
Pomerance and Soundararajan in [19].

Lemma 15. Let χ be a primitive Dirichlet character modulo q ą 1. Let M and N
be real numbers with 0 ă N ď q. With Hptq “ maxp0, 1´ |t´ 1|q, we have

ˇ

ˇ

ˇ

ˇ

ÿ

MďnďM`2N

χpnqH

ˆ

n´M

N

˙
ˇ

ˇ

ˇ

ˇ

ď
?
q ´

N
?
q
.

Lemma 16. Let χ be a primitive Dirichlet character modulo q ą 1. Let M and N
be real numbers with 0 ă N ď q. When χ is odd,we have

ˇ

ˇ

ˇ

ˇ

ÿ

MănďM`N

χpnq

ˇ

ˇ

ˇ

ˇ

ď
?

2Nq1{4 `
?
q.

When χ is even, we have
ˇ

ˇ

ˇ

ˇ

ÿ

nďN

χpnq

ˇ

ˇ

ˇ

ˇ

ď
?
Nq1{4 ` 1

2

?
q.
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Proof. We may assume that M is an integer. Notice first that the lemma is trivial
when N ď

?
q, so we may assume N ą

?
q. Let K ě 1 be an integer and let

A “ N{K. Keeping the notation of Lemma 15, we first notice that

H

ˆ

t´ pM ´A{2q

A

˙

`H

ˆ

t´ pM `A{2q

A

˙

` . . .`H

ˆ

t´ pM ` pK ´ 1{2qAq

A

˙

“

$

’

’

’

’

&

’

’

’

’

%

H

ˆ

t´pM´A{2q
A

˙

when M ´A{2 ď t ďM `A{2,

1 when M `A{2 ď t ďM ` pK ` 1{2qA,

H

ˆ

t´pM`pK´1{2qAq
A

˙

when M ` pK ´ 1{2qA ď t ďM ` pK ` 1{2qA.

Therefore
ˇ

ˇ

ˇ

ˇ

ÿ

MănďM`N

χpnq ´
ÿ

1ďkďK

ÿ

n

χpnqH

ˆ

t´ pM ` pk ´ 1{2qAq

A

˙
ˇ

ˇ

ˇ

ˇ

ď
4

A

ÿ

1ďaďA{2

a

which is readily seen to be of size at most A
2 ` 1. On using Lemma 15, we get

(8)

ˇ

ˇ

ˇ

ˇ

ÿ

MănďM`N

χpnq

ˇ

ˇ

ˇ

ˇ

ď K
?
q ´

KA
?
q
`
A

2
` 1 ď K

?
q ´

N
?
q
`

N

2K
` 1.

We let K “ 1 ` rq´1{4
a

N{2s and write K “ c ` q´1{4
a

N{2 with c P p0, 1s. We
find that

K
?
q `

N

2K
“

c

N
?
q

2
` c
?
q `

N

2c` q´1{4
?

2N
.

By computing the derivative with respect to c, we check that this quantity is max-
imised at c “ 1. The lemma follows readily. �

Lemma 17. We have Lp1, χq “ F p1q logH ` O˚pV H´1q, where V is defined in
Lemma 13.

Proof. By summation by parts, we find that

ÿ

nąH

χpnq

n
“

ż 8

H

ÿ

Hďnďt

χpnq
dt

t2
,

hence

Lp1, χq “ F p1q logH ` fp1q `

ż 8

H

ÿ

Hďnďt

χpnq
dt

t2

“ F p1q logH `
ÿ

nďH

ż 8

H

dt

t2
`

ż 8

H

ÿ

Hďnďt

χpnq
dt

t2

“ F p1q logH `

ż 8

H

ÿ

nďt

χpnq
dt

t2
“ F p1q logH `O˚pV {Hq. �

4. Preliminaries to Stephens’ approach

From (2) and (3) in §1 it follows that

(9) `pxq “
ÿ

mďHx

χpmqΛpmq

m
f

ˆ

x´
logm

logH

˙

.

We now recast this for greater ease of use in what follows.
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Lemma 18. We have

`pxq

logH
“ xfpxq ´

ż x

0

fpuqHudu{Hx.

If H ě V ě 1 we also have
ş1

0
fpuqHudu{H “ O˚p1{ logHq and

(10)
ÿ

mďH

χpmqΛpmq

m logH
fpxmq “ fp1q `O˚

ˆ

RχpH,V, qq

logH

˙

.

where
(11)

RχpH,V, qq “

$

&

%

p3.66` logpV 2{qqq
?
q

H ` logp4e2?qH{V 2q V2H when χ is even,

p7.2` logpV 2{qqq
?
q

H ` logp2e2?qH{V 2q VH when χ is odd.

The final proof uses only the upper bound part of (10), see (21).

Proof. We find that

ÿ

kďHx

χpkq log k “
ÿ

kďHx

χpkq logpHxq ´
ÿ

kďHx

χpkq

ż Hx

k

dt

t

“ Hxxfpxq logH ´

ż Hx

1

f
´ log t

logH

¯

t
dt

t

“ Hxxfpxq logH ´

ż x

0

fpuqplogHqHudu

and the first part of the lemma follows readily. Concerning the upper bound for

|
ş1

0
fpuqHudu|{H, we proceed as follows.

Case of even characters. By Lemma 14 and 16, we have three upper bounds
for |fpuq|: either 1, q1{4H´u{2 ` 1

2q
1{2H´u or V {p2Huq. We have q1{4H´u{2 `

1
2q

1{2H´u ď 1 when Hu{
?
q ě 1`

?
3. We momentarily set V ˚ “ V {2. We define

(12) u0 “
logp1`

?
3q ` 1

2 log q

logH
.

Define the real parameter a by 1
2 p1´ aq logH “ logp

a?
qH{V ˚q. We get

ż 1

0

|fpuq|Hudu ď

ż u0

0

Hudu`

ż a

u0

pq1{4Hu{2 ` 1
2q

1{2qdu`

ż 1

a

V ˚du

ď
Hu0 ´ 1

logH
`

2q1{4pHa{2 ´Hu0{2q

logH
`
a´ u0

2
q1{2 ` p1´ aqV ˚

ď

?
q

logH

`

1`
?

3` 2

b

1`
?

3
˘

`
2q1{4

?
H

logH

V ˚
a?

qH

`
log V ˚2

qp1`
?

3q

logH

?
q `

logp
?
qH{V ˚2q

logH
V ˚

ď

?
q

logH

ˆ

1`
?

3` 2

b

1`
?

3` log
V ˚2

qp1`
?

3q

˙

`
2V ˚

logH
`

logp
?
qH{V ˚2q

logH
V ˚.
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Case of odd characters. Again by Lemma 14 and 16, we have three upper bounds
for |fpuq|: either 1, q1{4

?
2H´u{2 ` q1{2H´u or V {Hu. We have q1{4

?
2H´u{2 `

q1{2H´u ď 1 when Hu{
?
q ě 2`

?
3. We define

(13) u0 “
logp2`

?
3q ` 1

2 log q

logH
.

Define the real parameter a by 1
2 p1´ aq logH “ logp

a

2
?
qH{V q. We get

ż 1

0

|fpuq|Hudu ď

ż u0

0

Hudu`

ż a

u0

pq1{4
?

2Hu{2 ` q1{2qdu`

ż 1

a

V du

ď
Hu0 ´ 1

logH
`

2
?

2q1{4pHa{2 ´Hu0{2q

logH
` pa´ u0qq

1{2 ` p1´ aqV

ď

?
q

logH

`

2`
?

3` 2
?

2

b

2`
?

3
˘

`
2
?

2q1{4
?
H

logH

V
a

2
?
qH

`
log V 2

2qp2`
?

3q

logH

?
q `

logp2
?
qH{V 2q

logH
V

ď

?
q

logH

`

2`
?

3` 2
?

2

b

2`
?

3` log
V 2

2qp2`
?

3q

˘

`
2V

logH
`

logp2
?
qH{V 2q

logH
V.

Resuming the proof. Inequality (10) follows: indeed, by (9), the left-hand side is
`p1q{ logH which we compute with the first formula of the present lemma. We

complete the proof by using the bound above for
ş1

0
|fpuq|Hudu. �

Lemma 19. We have
ˆ

x´
1

logH

˙

F pxq “

ż x

0

F px´ yqdy

`
ÿ

mďHx

χpmqΛpmq

m logH
F

ˆ

x´
logm

logH

˙

`O˚p1{ log2Hq.

Proof. On joining (9) and Lemma 18, we get

(14) xfpxq ´

ż x

0

fpuqHudu{Hx “
ÿ

mďHx

χpmqΛpmq

m logH
f

ˆ

x´
logm

logH

˙

.

This is the equivalent of [36, (55)] by Stephens. The next step is to integrate the
above relation:
ż x

0

yfpyqdy ´

ż x

0

ż y

0

fpuqHu´ydudy “

ż x

0

ÿ

mďHy

χpmqΛpmq

m logH
f

ˆ

y ´
logm

logH

˙

dy

“
ÿ

mďHx

χpmqΛpmq

m logH

ż x

logm
logH

f

ˆ

y ´
logm

logH

˙

dy

“
ÿ

mďHx

χpmqΛpmq

m logH
F

ˆ

x´
logm

logH

˙

.

As for the left-hand side, we first check that

(15)

ż x

0

yfpyqdy “ xF pxq ´

ż x

0

F px´ yqdy.
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And finally
ż x

0

ż y

0

fpuqHu´ydudy “

ż x

0

fpuqHu

ż x

u

H´ydydu

“

ż x

0

fpuqHuH
´u ´H´x

logH
du “

F pxq

logH
`O˚p1{ log2Hq

by bounding |fpuq| by 1. �

Lemma 20. We have, when x ě 0
ż x

0

F px´ yqdy “
ÿ

mďHx

Λpmq

m logH
F

ˆ

x´
logm

logH

˙

´ F pxq
γ

logH
`O˚

ˆ

0.411

log2H

˙

.

Proof. We start from the right-hand side:

ÿ

mďHx

Λpmq

m logH
F

ˆ

x´
logm

logH

˙

“
ÿ

mďHx

Λpmq

m logH

ż x´ logm
logH

0

fptqdt

“

ż x

0

fptq
ÿ

mďHx´t

Λpmq

m logH
dt.

We approximate ψ̃pHx´tq by px ´ tq logH ´ γ, getting the main term and this is
şx

0
F ptqdt´ F pxq γ

logH and treat the error term by bounding |fptq| by 1:

ż x

0

ˇ

ˇ

ˇ

ˇ

fptq

ˆ

ψ̃pHx´tq

logH
´ x´ t´

γ

logH

˙
ˇ

ˇ

ˇ

ˇ

dt ď

ż x

0

ˇ

ˇ

ˇ

ˇ

ψ̃pHx´tq

logH
´ x´ t´

γ

logH

ˇ

ˇ

ˇ

ˇ

dt

ď

ż x

0

ˇ

ˇ

ˇ

ˇ

ψ̃pHtq

logH
´ t´

γ

logH

ˇ

ˇ

ˇ

ˇ

dt

ď

ż Hx

1

|ψ̃puq ´ log u´ γ|
du

u log2H
.

We then majorize this last term by Lemma 12: it is not more than 0.411{ log2H. �

Lemma 21. We have, when x ě 0,

xF pxq “
ÿ

mďHx

Λpmqp1` χpmqq

m logH
F

ˆ

x´
logm

logH

˙

` F pxq
1´ γ

logH
`O˚

ˆ

1.411

log2H

˙

.

Proof. Join the first equality of Lemma 19 together with Lemma 20. �

5. A comparison and the main inequality

This section is devoted to the comparison between

ÿ

mďH

Λpmq

m logH
fpxmq

and F p1q. The important observation, essentially due to Stephens, is that since
f has tame variations, both should be about equal. One look at the final proof
discloses that it is enough to bound the initial sum from below by F p1q plus some
error term.

We first connect F p1q with the bounds on character sums, that is, with the V
from Lemmas 13 and 14.

Lemma 22. We have, for any D ě 1,

F p1q “
ÿ

nďH{D

χpnq

n logH
´

fp1q

logH
`O˚

ˆ

pD ´ 1qV {H

logH

˙

.
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Proof. We have

ÿ

H{DănďH

χpnq

n
“

ÿ

H{DănďH

χpnq

ˆ
ż H

n

dt

t2
`

1

H

˙

“

ż H

H{D

ÿ

H{Dănďt

χpnq
dt

t2
`

1

H

ÿ

H{DănďH

χpnq.

Using that |
ř

AďnďB χpnq| ď V yields the desired result. �

Lemma 23. Let D0 ě 1, and A2 be such that

(16) |ψpxq ´ x| ď A2

?
x, D0 ď x ď 1019.

We then have, for any D ě D0,
ÿ

mnďH

χpnqΛpmq “ H
`

F pxDq logH`fpxDq
˘

`O˚
`

1.6¨10´5H`2A2HD
´1{2`1.04DV

˘

.

Please notice that we would need only the lower estimate in the last bound.

Proof. We write
ÿ

mnďH

χpnqΛpmq “
ÿ

nďH{2

χpnq
ÿ

mďH{n

Λpmq

“
ÿ

nďH{D

χpnq
ÿ

mďH{n

χpmq `
ÿ

mďD

Λpmq
ÿ

H{DănďH{m

χpnq.(17)

By Lemma 3, the last sum over n is bounded in absolute value by V . It then follows
by Lemma 5 that the second summand of (17) satisfies

ÿ

mďD

Λpmq
ÿ

H{DănďH{m

χpnq ď 1.04DV.

Concerning the first summand of (17), we use three steps. For the first step, we
restrict to the range H{1019 ă n ď H{D and use (16). Note that Lemma 7 tells us
that we can take A2 “ 0.94 provided D0 ą 11. A quick calculation also shows that
A2 “

?
2 works for D0 ě 1, or A2 “ 0.956 works for D0 ě 7. Now,

ÿ

H
1019

ănďHD

χpnq
ÿ

mďH{n

Λpmq

“
ÿ

H
1019

ănďHD

χpnq
ÿ

mďH{n

Λpmq

“ H
ÿ

H
1019

ănďHD

χpnq

n
`O˚

¨

˝

ÿ

H
1019

ănďHD

A2

c

H

n

˛

‚

“ H
ÿ

H
1019

ănďHD

χpnq

n
`O˚

´

2A2HD
´1{2

¯

,

where for the second equality we used Lemma 3.
For the second step, we use Lemma 8 and consider the range H{A ă n ď H{1019,

where A ě expp40q is to be chosen later. That is,

ÿ

H
Aănď

H
1019

χpnq
ÿ

mďH{n

Λpmq “ H
ÿ

H
Aănď

H
1019

χpnq

n
`O˚

¨

˝1.93378 ¨ 10´8
ÿ

H
Aănď

H
1019

H

n

˛

‚

“ H
ÿ

H
Aănď

H
1019

χpnq

n
`O˚

`

1.93378 ¨ 10´8p1` logpA{1019qqH
˘

,(18)
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where for the second equality we used Lemma 4.
For the third step we consider the sum over n ď H{A. First, if H ă A then

there is nothing to add. On the other hand, if H ě A we use Lemma 6 to get

(19)
ÿ

nďHA

χpnq
ÿ

mďH{n

Λpmq “ H
ÿ

nďHA

χpnq

n
`O˚

¨

˝

ÿ

nďHA

1.83H

n log2
pH{nq

˛

‚.

Since n log2
pH{nq is increasing when n ď H{e2, we have that

ÿ

nďH{A

1.83H

n log2
pH{nq

ď
1.83H

log2H
`H

ż H{A

1

1.83dt

t log2
pH{tq

ď
1.83H

log2H
` 1.83H

ˆ

1

logA
´

1

logH

˙

“ 1.83H

ˆ

1

log2H
`

1

logA
´

1

logH

˙

.

Since the above is decreasing in H, and H ě A, we can set A “ expp574q to bound
the O˚ terms in (18) and (19) by 1.6 ¨ 10´5H. �

Lemma 24. For any D ě D0 ě 1
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

mďH

Λpmq

m logH
fpxmq ´ F p1q ´

fp1q

logH

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1.6 ¨ 10´5 ` 2A2D

´1{2 ` p2.04D ´ 1qV H´1

logH
,

where A2 is as in Lemma 23.

The main proof only requires a lower bound for
ř

mďH Λpmqfpxmq{m, see (23).

Proof. By using the definition of f , we get

ÿ

mďH

Λpmq

m logH
fpxmq “

ÿ

mnďH

χpnqΛpmq

H logH

and we appeal to Lemma 23. This leads to

ÿ

mďH

Λpmq

m logH
fpxmq “

ÿ

nďH{D

χpnq

n logH
`O˚

ˆ

1.6 ¨ 10´5 ` 2A2D
´1{2 ` 1.04DVH´1

logH

˙

.

Note further that, by Lemma 22 (we need only the upper estimate), we have

(20) F p1q “
ÿ

nďH{D

χpnq

n logH
´

fp1q

logH
`O˚

ˆ

pD ´ 1qV {H

logH

˙

.

�

We are now in a position to prove the following crucial lemma.

Lemma 25. Let H ě 106 and x ě 1{2. Then we have

0 ď
hp1, xq ` hpχ, xq

logH
ď 2x

as well as, if H also satisfies H ě V ,

hp1, xq ` hpχ, xq

logH
ď2´ F p1q ` fp1q ´

fp1q

logH

`
´1.15` 3.81A

2{3
2 pV {Hq1{3 ´ V H´1 `RχpH,V, qq

logH
,

where A2 is as in Lemma 23 when D is taken to be
`

A2

2.04
H
V

˘2{3
(see (24)).
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This is the equivalent of [36, Lemma 2] by Stephens.

Proof. The first inequality follows by Lemma 11. Concerning the second one, we
proceed as follows. Define

(21) S “
ÿ

mďH

Λpmq

m logH

`

1´ fpxmq
˘

´
ÿ

mďH

χpmqΛpmq

m logH

`

1´ fpxmq
˘

.

Since |χpmq|, |fpxmq| ď 1, we have S ě 0. Furthermore, on expanding and using
the second part of Lemma 18, we find that

(22) S “
ÿ

mďH

Λpmq

m logH
´

ÿ

mďH

Λpmq

m logH
fpxmq

´
hpχ, 1q

logH
` fp1q `O˚

ˆ

RχpH,V, qq

logH

˙

.

Now we use Lemma 24. Since S ě 0, this leads to the inequality

hpχ, 1q

logH
ď
hp1, 1q

logH
´ F p1q ´

fp1q

logH
` fp1q

`
1.6 ¨ 10´5 ` 2A2D

´1{2 ` p2.04D ´ 1qV H´1 `RχpH,V, qq

logH
.

(23)

We select

(24) D “
´ A2

2.04

H

V

¯2{3

so that the expression in ((23)) involving D is minimised. This then gives

hpχ, 1q

logH
ď
hp1, 1q

logH
´ F p1q ´

fp1q

logH
` fp1q

`
1.6 ¨ 10´5 ` 3.81A

2{3
2 pV {Hq1{3 ´ V H´1 `RχpH,V, qq

logH

.

Let us extend this inequality to hpχ, xq. We simply write

hpχ, xq “ hpχ, 1q ´
ÿ

HxămďH

χpmqΛpmq

m

ď hpχ, 1q ` hp1, 1q ´ hp1, xq,

hence the result, since 2hp1, 1q{ logH ď 2 ´ 2 ˆ 0.576{ logH by Lemma 11 and
1.6 ¨ 10´5 ´ 2ˆ 0.576 ď ´1.15. �

6. A result in optimization

This section contains a refined version of a theorem of Stephens. No further
arithmetical material is being introduced. We start with a technical lemma.

Lemma 26. We have

´ 4

ż x

θ

px´ uq log u du` 2

ż θ

x´θ

udu`

ż x

θ

2θdu

“ 2xpx´ x log x´ θq ` p2x´ θqθp1` 2 log θq.

Proof. Notice that 2
ş

u log udu “ u2 log u´ pu2{2q and thus

4

ż x

θ

px´ uq log u du “ 4xpx log x´ x´ θ log θ ` θq ´ 2x2 log x` x2 ` 2θ2 log θ ´ θ2

“ 4xp´θ log θ ` θq ` 2x2 log x´ 3x2 ` 2θ2 log θ ´ θ2.
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Next,

2

ż θ

x´θ

udu`

ż x

θ

2θdu “ θ2 ´ px´ θq2 ` 2θpx´ θq “ ´x2 ` 4xθ ´ 2θ2,

and thus

´ 4

ż x

θ

px´ uq log u du` 2

ż θ

x´θ

udu`

ż x

θ

2θdu

“ 4xpθ log θ ´ θq ´ 2x2 log x` 3x2 ´ 2θ2 log θ ` θ2 ´ x2 ` 4xθ ´ 2θ2,

whence the lemma follows after some simple algebraic rearrangement. �

Lemma 27. Let H ą 1 be a real parameter. Suppose we are given a sequence
of non-negative real numbers pumq1ďmďH and a continuous function G over r0, 1s.
Assume we have, for every x P r0, 1s, that

(H0) Gpxq ď x,

that for some parameters a and ε2, we have, when x ě 1{2,

(H1) px` aqGpxq ď
ÿ

mďHx

um
logH

G

ˆ

x´
logm

logH

˙

` ε2,

that

(H2) 0 ď
ÿ

mďHx

um
logH

ď 2x

and that, for some parameter ε1 we have, when x ě 1{2,

(H3)
ÿ

mďHx

um
logH

ď 2´Gp1q ` ε1.

Then either Gp1q ď 2p1´ 1{
?
eq or

(25) 2aθ log θ ´ 2θp1{
?
e´ θqp2` log θq ` ε1 ` ε2 ě 0

where θ “ 1´Gp1q{2 belongs to r1{2, 1{
?
es.

Proof. Set

(26) θ “ 1´Gp1q{2, ϕpyq “ 2py ´ y log y ´ θq.

The function ϕ is increasing (its derivative is ´2 log y) on p0, 1s and takes the
positive value ´2θ log θ at y “ θ. Note that θ ě 1{2 since Gp1q ď 1, and that
when θ ě 1{

?
e, our result is immediate. Let us assume that θ ă 1{

?
e so that

θ ` 2θ log θ ă 0. Assume that, when θ ď y ď Z, we have Gpyq ď ϕpyq. This latter
inequality translates into

Gp1q ´Gpyq ě 2p1´ y ` y log yq.

Our initial remark is that θ is such a number.

Proof. Indeed, if it where not, we would have

Gp1q “ Gpθq `Gp1q ´Gpθq ď θ ` 2p1´ θ ` θ log θq

since Gpxq ď x. We notice next that Gp1q “ 2 ´ 2θ, so that the above inequality
can be rewritten as Gp1q ď Gp1q ` θ ` 2θ log θ ă Gp1q by the inequality assumed
for θ, leading to a contradiction. �
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We define for this proof

(27) gpyq “
ÿ

mďHy

um{ logH.

We find that, for Z ě x ě θ,

ÿ

mďHx

um
logH

G

ˆ

x´
logm

logH

˙

ď
ÿ

mďHx´θ

um
logH

ϕ

ˆ

x´
logm

logH

˙

`
ÿ

Hx´θămďHx

um
logH

ˆ

x´
logm

logH

˙

by bounding above Gpyq by y pH0) when y ď θ. We study separately the two right-
hand side sums, say S1 and S2. First we note that, on recalling the definition (27)
of g:

S1 “
ÿ

mďHx´θ

um
logH

ż x´ logm
logH

θ

ϕ1puqdu` gpx´ θqϕpθq

“ gpx´ θqϕpθq ´ 2

ż x

θ

gpx´ uq log u du

while

S2 “
ÿ

Hx´θămďHx

um
logH

ż x

logm
logH

du “

ż x

x´θ

pgpuq ´ gpx´ θqqdu

and this amounts to

S1 ` S2 “ gpx´ θqpϕpθq ´ θq ´ 2

ż x

θ

gpx´ uq log u du`

ż x

x´θ

gpuqdu.

In the first integral, we bound above gpx ´ uq by 2px ´ uq by pH2q. We split the
second integral at u “ θ; between x ´ θ and θ, we bound above gpuq again by 2u
while in the later range, we bound above gpuq by 2θ ` ε1 by pH ´ 3q (valid since
u ě θ ě 1{2). We infer in this manner that

S1 ` S2 ď gpx´ θqpϕpθq ´ θq

´ 4

ż x

θ

px´ uq log u du` 2

ż θ

x´θ

udu`

ż x

θ

p2θ ` ε1qdu.

By Lemma 26 and noticing that ϕpθq´ θ “ ´θp1`2 log θq, we get (again bounding
above gpx´ uq by 2px´ uq by pH2q)

S1 ` S2 ď xϕpxq `
`

gpx´ θq ` θ ´ 2x
˘

pϕpθq ´ θq ` ε1

ď xϕpxq ` θ2p1` 2 log θq ` ε1.

By pH1q and the above, we infer that

px` aqGpxq ď xϕpxq ` θ2p1` 2 log θq ` ε1 ` ε2.

We also find that, when θ ď 1{
?
e, we have

0´ θ2p1` 2 log θq “

ż 1{
?
e

θ

2up2` log uqdu ě 2θp1{
?
e´ θqp2` log θq.

Hence, we get

px` aqGpxq ď px` aqϕpxq ´ aϕpxq ´ 2θp1{
?
e´ θqp2` log θq ` ε1 ` ε2.

We can now use ϕpxq ě ϕpθq “ ´θ log θ, getting

px` aqGpxq ď px` aqϕpxq ` 2aθ log θ ´ 2θp1{
?
e´ θqp2` log θq ` ε1 ` ε2.



AN EXPLICIT UPPER BOUND FOR Lp1, χq WHEN χ IS QUADRATIC 15

When 2aθ log θ´2θp1{
?
e´θqp2` log θq`ε1`ε2 ă 0, we would have Gpxq ă ϕpxq.

However the function G is continuous and Gp1q “ ϕp1q, there exists an x0 between
θ and 1 for which Gpx0q “ ϕpx0q and Gpxq ď ϕpxq for x between θ and x0. The
above inequality then leads to a contradiction. Hence we have

2aθ log θ ´ 2θp1{
?
e´ θqp2` log θq ` ε1 ` ε2 ě 0. �

7. Proof of Theorems 1 and 2

We use Lemma 27 with Gpxq “ F pxq and um “ p1` χpmqqΛpmq{m.

Initial upper bound. Lemma 17 gives us

(28) Lp1, χq ď F p1q logH `
V

H
.

Hypotheses pH0q, pH1q, pH2q and pH3q. Hypothesis pH0q is granted by the bound
|fpuq| ď 1. By Lemma 21 we can then set

(29) a ď
γ ´ 1

logH
, ε2 ď

1.411

log2H
,

and this gives us Hypothesis pH1q.
Lemma 10 is enough to grant Hypothesis pH2q. Finally, by Lemma 25 and

provided that H ě maxpV, 106q, Hypothesis pH3q is satisfied with

(30) ε1 ď fp1q ´
fp1q

logH
`
´1.15` 3.81A

2{3
2 pV {Hq1{3 ´ V H´1 `RχpH,V, qq

logH
.

We will further majorize fp1q by V {2 when χ is even and by V {H when χ is odd.

Using Lemma 27. So we infer that

(31) Lp1, χq ď 2p1´ θq logH `
V

H

where θ P r1{2, 1{
?
es satisfies

(32) 2aθ log θ ´ 2θp1{
?
e´ θqp2` log θq ` ε1 ` ε2 ě 0.

Since a ă 0, if this inequality is satisfied for H0 then it remains true for H ě H0.
We select H “ BV , for some parameter B, and bound |fp1q| by V {H. Therefore,
for q ě q0 we have that

(33) D ě

ˆ

A2B

2.04

˙2{3

“ D0.

So, here are possible choices:

B ě
?

2{2.04 Ñ A2 “
?

2,(34)

B ě 39.6 Ñ A2 “ 0.956,(35)

B ě 79.5 Ñ A2 “ 0.94.(36)

Setting the numerics. We can now prove Theorems 1 and 2. We use the expression
for V given in Lemma 13. We take H “ BV which we assume to be ě 106, we also
assume that q ě q0 so that V ě V0. Given a choice of B, we select

a “
γ ´ 1

logpBV0q
,(37)

ε2 “
1.411

logpBV0q
2
,(38)

ε1 “
δpχq

B
´

δpχq

B logpBV0q
`
´1.15` 3.81A

2{3
2 B´1{3 ´B´1 `RpBV0, V0, q0q

logpBV0q
.(39)
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where δpχq “ p3´χp´1qq{4. We then compute the smallest solution θ˚ to (31) and
infer that

(40)
Lp1, χq

log q
ď 2p1´ θ˚q

logB ` log V0

log q0
`

1

B log q0
.

Result for χ even and primitive: We select B “ 51, and infer that Lp1, χq ă
1
2 log q when q ě 7 ¨1022. But this is already known for all q’s by [31]. Even more is
true if we combine the theorem of Saad Eddin in [35] together with [32, Corollary
1].

We select B “ 80, and infer that Lp1, χq ă 9
20 log q when q ě 2 ¨ 1049.

Result for χ odd and primitive: We select B “ 90, and infer that Lp1, χq ă
1
2 log q when q ě 2 ¨ 1023.

We select B “ 145, and infer that Lp1, χq ă 9
20 log q when q ě 5 ¨ 1050.

Acknowledgements. We are grateful to Enrique Treviño for some preliminary
discussions on this topic.
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[5] J. Büthe. An analytic method for bounding ψpxq. Math. Comp., 87(312):1991–2009, 2018.
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