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Abstract. We produce an explicit formula to perform the evaluation of averages
of type

∑
d≤D(g ? 1)(d)/d, where ? is the Dirichlet convolution and g a function

that vanishes at infinity (more precise conditions are needed, a typical example of

an acceptable function is g(m) = µ(m)/m). This formula enables one to exploit the
changes of sign of g(m). We then proceed by using this formula on the classical

family of sieve-related functions Gq(D) =
∑

d≤D,
(d,q)=1

µ2(d)
ϕ(d)

for a integer parameter

q, improving noticeably on earlier results. The remainder of the paper deals with
the special case q = 1 to show how to practically exploit the changes of sign of the

Moebius function. It is in particular proven that |G1(D)− logD − c0| ≤ 4/
√
D and

|G1(D)− logD − c0| ≤ 18.4/[
√
D logD] when D > 1, for a suitable constant c0.

1. Introduction

Evaluating the average of multiplicative functions is a classical and important prob-
lem. It has been approached in several manners, see [41], [19], [11] on the “elementary”
side; [15], [40], [4], [14], [17] on the tauberian side; and [10], [8], [22] following the Halász
method. See also [1], [2] for better analytical estimates valid for a more narrow class of
arithmetical functions.

The theory went also into special evaluations that were then systematized, like in
[38] or [16]. This first batch of work essentially handles the “main term” and treats
what remains as an error term. Subsequent investigations, as in [42] and [18], went to
study more precisely, in some very special cases, this term and a main term is indeed
extracted. The typical case corresponds to the characteristic function of the square-free
integers whose Dirichlet series is ζ(s)/ζ(2s). The first batch of investigation writes this
series in the form ζ(s)H(s) where the only hypothesis on H is that it is absolutely
convergent for <s > 1/2. The second batch uses the fact that 1/ζ(2s) can be controlled
beyond <s = 1/2.

The present work can be seen as an elementary and explicit counterpart of such
studies. The task of getting explicit estimates has been started on particular questions
by several authors as in [5], and systematically in [25, Lemma 3.2]. Concerning the
analytical approach, the amount of information available is sparse; one can find a very
explicit truncated Perron formula in [26, Theorem 7.1], but the bounds for the usual
Dirichlet series (like 1/ζ(s)) are still too weak or simply missing. We develop here a
strategy that achieves two things: Theorem 1.4 gets the most of the convolution method,
and Theorem 1.3 goes beyond in some problems and incorporates cancellations from the
Moebius function.

We use the following family of functions as our primary challenge:

(1.1) Gq(D) =
∑
d≤D,

(d,q)=1

µ2(d)

ϕ(d)
.

This family has been quite extensively studied (see for instance [38], [32], [25, Lemma
3.4]) and used, see for instance [35, Lemma 4.6] and [13, (7.12), (B.5)]. It occurs in the
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sieve, when bounding from above the number of primes in a given arithmetic progression
(the so-called Brun-Titchmarsh Theorem) via the Selberg sieve [12] or via Montgomery
sieve [21], or, more generally, when considering the resulting sequence as an enveloping
sieve as initially done in [25], [31] (see also [9]).

The question we address here is to find as good an explicit error term as possible.
We first give a fairly simple proof of the following theorem. As usual we use g = O∗(f)
to mean that |f | ≤ g.

Theorem 1.1. We have

Gq(D) =
ϕ(q)

q

(
logD + c(q)

)
+O∗

(
5.9 j(q)/

√
D
)

where

j(q) =
∏
p|q,
p 6=2

p3/2 + p−√p− 1

p3/2 −√p+ 1

∏
2|q

21

25

and (cf [33, (2.11)])

c(q) = c0 +
∑
p|q

log p

p
, c0 = γ +

∑
p≥2

log p

p(p− 1)
= 1.332 582 275 · · ·

For the moduli in the next array, the value 5.9 · j(q) may be replaced by the value j?(q)

given by:
q 6 30 210 2310 30 030 510 510

j?(q) 5.2 6.0 7.1 8.4 9.9 11.6

As usual, we use the notation f = O∗(g) to mean that |f | ≤ g. The above term is for
instance extremely important in [13, (7.29)]. The term “

∏
2|q

21
25” means that the factor

21
25 is present only when q is even.

The error term in Theorem 1.1 is limited to O(1/
√
D). Theorem 1.3 below enables

one to get O(1/
√
D logD) in a fully explicit manner. The details are however difficult

when considering a general modulus q, so we restricted our attention to q = 1.

Theorem 1.2. When D ≥ 1, we have G1(D) = logD + c0 +O∗
(
3.95/

√
D
)
.

When D > 1, we have G1(D) = logD + c0 +O∗
(
18.4/

√
D logD

)
.

If one has access to better bounds for the summatory function of the Moebius func-
tion, better than the ones given by Lemma 7.14, or if one can rely on larger computations
concerning the small values and further Lemma 8.4, then the saving will be automatically
transferred on the error term under examination. For instance, if the computations in
Lemma 8.4 were pushed till 1015, and expecting a similar output, we could get an error
term O∗

(
2.94/

√
D
)
. It is doubtless than these parts will be improved upon. Furthermore,

other sections of this proof can also be bettered.
Our main tool is the following general and fully explicit theorem.

Theorem 1.3. Let (g(m))m≥1 be a sequence of complex numbers such that both series∑
m≥1 g(m)/m and

∑
m≥1 g(m)(logm)/m converge. We define G](x) =

∑
m>x g(m)/m

and assume that
∫∞

1
|G](t)|dt/t converges. Let A0 ≥ 1 be a real parameter. We have∑

n≤D

(g ? 1)(n)

n
=
∑
m≥1

g(m)

m

(
log

D

m
+ γ
)

+

∫ ∞
D/A0

G](t)
dt

t
+O∗(R)

where R is defined by

R =

∣∣∣∣∣∣
∑

1≤a≤A0

1

a
G]
(
D

a

)
+G]

(
D

A0

)(
log

A0

[A0]
−R([A0])

)∣∣∣∣∣∣+
6/11

D

∑
m≤D/A0

|g(m)|

where [A0] is the integer part of A0, while the remainder R is defined in Lemma 2.1.
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By (2.1), when [A0] is large, R([A0]) is equivalent to 1/(2[A0]), and thus, on taking
A0 = [A0]+ 1

2 , we conclude that log A0

[A0]−R([A0]) decreases at least like 1/A2
0. In our case

study, we have be G] (D/A0)
(

log A0

[A0] −R([A0])
)

= O(D−1/2A
−3/2
0 ) while the bound for

the term
∑

1≤a≤A0
G] (D/a) /a grows with A0 and the last term of R is be bounded by

O(D−1/2A
−1/2
0 ).

Theorem 1.4 below corresponds to A0 ≤ 1. Both theorems are refinements of [25,
Lemma 3.2] obtained via the classical convolution method (see [3] for a pedagogical
presentation) to which we add a finite version of Dirichlet hyperbola principle as in [27,
(19)]. In particular, only on following the convolution method, I was for a very long time
unable to reach an error term of size Oq(1/

√
x) in Theorem 1.1 (see the beginning of

subsection 8.2 for an explanation regarding this bound); I could only get Oq((log x)/
√
x),

which is why I settled for the asymptotically lesser but numerically better Oq(1/x1/3).
Theorem 1.3 enables us to go even beyond Oq(1/

√
x). The additional ingredient

comes from a good upper bound for |G](x)| that is often accessible and is introduced
via the Covering Remainder Lemma below (this is Lemma 3.1). In the case study of
Theorem 1.1, Theorem 1.3 leads to

Gq(D) =
ϕ(q)

q

(
logD + c(q)

)
+Oq

(
exp
(
−c1

√
logD

)
/
√
D
)

for some constant c1 > 0.
They are several occasions when selecting A0 = 1 is in fact better: when the infor-

mation on G] is scarce, when g is rather large (see the example g(d) = µ(d)/d below) or
when g is non-negative. One can then modify the proof so as to get often a somewhat
better result.

Theorem 1.4. Let (g(m))m≥1 be a sequence of complex numbers such that both series∑
m≥1 g(m)/m and

∑
m≥1 g(m)(logm)/m converge. We define G](x) =

∑
m>x g(m)/m

and assume that
∫∞

1
|G](t)|dt/t converges. We then have, for any real number η ≥ 1,∑

n≤D

(g ? 1)(n)

n
=
∑
m≥1

g(m)

m

(
log

D

m
+ γ
)

+

∫ ∞
ηD

G](t)
dt

t

− (γ − log η)G](ηD) +O∗
( γ
D

∑
m≤ηD

|g(m)|
)
.

When η = 1, the constant γ in the error term can be reduced to 6/11.

This theorem applies for instance when g(m) = µ(m)/m. The above yields an error
term of size O((logD)/D). On following [39] (see also [24]), one can improve slightly
this bound but the paper [20] (see also the intriguing [16]) implies that one cannot even
replace the logD in this error term by a constant. The introduction of the A0 parameter in
Theorem 1.1 is thus useless, and it is better to play with the η parameter of Theorem 1.4.

The major difficulty one faces when putting this program in practice, for instance for
proving Theorem 1.1 or 1.2, are the coprimality conditions that come naturally into play,
even for Theorem 1.2, though no coprimality condition was introduced at the beginning.
This is apparent for instance in (7.7) which we recall here:

µ(k)

ϕ(k)
=

∑
dab2=k

µ(d)

d

µ2(abd)

aϕ(a)b2ϕ(b)
.

The most inner and main variable is d, but the factor µ2(abd) forces d to be coprime
to ab. This question has already been addressed in [30], [28] and [29] in some special
instances and these results are used here. In general though we are starting from a
non-negative function, we are aiming at studying the second term of the asymptotic
expansion. This implies that we may have to deal with oscillating function, as is the case
here. If this second term would correspond to a pole, like for the coefficients of ζ(s)ζ(2s),
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cancellations do not occur, but our series is closer to ζ(s)/ζ(2s). Most of our effort bore
on the function µ(k)/[kϕ(k)], and for instance two of our crucial (and novel) bounds are
given in Lemma 5.6 and Lemma 7.18. We state here a consequence of them for the reader
to appreciate their content:

Theorem 1.5. For any real number K ≥ 14 and any modulus q∗, we have∣∣∣∣ ∑
k>K,

(k,q∗)=1

µ(k)

ϕ(k)k

∣∣∣∣ ≤ 0.37

K
.

When further K > q∗, we have∣∣∣∣∣∣∣∣
∑
k>K,

(k,q∗)=1

µ(k)

kϕ(k)

∣∣∣∣∣∣∣∣ ≤
2.33

∏
p|q∗(1 + p−1)

K log(K/q∗)
+

5

K

√
q∗

K
+

6.6

K

√
q∗

K
1K≥1970q∗ .

We devised some special analysis for studying the low values of the parameters, but
we face a major hurdle: the low values of K/q∗ do not correspond to a finite set of
parameters. Overcoming this hurdle costs us quite a lot, hence the constant 2.33 above,
while for comparison, [27] shows for instance that when D ≥ 50 000, we have∣∣∣∣∑

d<D

µ(d)

d

∣∣∣∣ ≤ 3/100

logD
.

We also rely on precise local estimates for some particular functions. These esti-
mates have an independent interest, but apart from some local improvements, these are
essentially routine.

About the computations. We have to perform several computations by computer.
We have used commonly Pari/GP [23] with the GMP [37] multiprecision library and
checked the results with Sage [34] with interval arithmetic, thus using GMP, MPFR [6]
and MPFI. Both systems scripts have been run on independent machines; the GP-scripts
have been written and run by one author and the Sage-scripts have been written and
run by the other. Whenever required, we have speeded the GP script by using GP2C, a
software that converts the GP script in a C program that can then be compiled. Sage
being much slower than GP and this last process being absent, the last script used for
Lemma 8.4 has been run with Perl and the MPFI library for interval arithmetic. It ran
for three months (while the GP counterpart ran for ten days).

Let us describe some more how to compile a GP script, say contained in the file
Check.gp. We run the command gp2c -g Check.gp > Check.gp.c with the “-g” flag
to enable garbage collection. At the top of the file Check.gp.c, the reader will find the
compilation command starting by /*-*- compile-command: . This command has to be
run to get the compiled form. From then onward, a simple way to proceed is to start
GP with a large enough table of primes, say with gp -p10000000000. At the top of the
Check.gp.c, the reader will find several lines starting by GP; install. The install

commands have to be entered in GP, the first one being
install("init Check","v","init Check","./Check.gp.so").

Then one has to run the command allocatemem(7500000000) to extend the stack to a
bit more than 7 Giga, init Check() to take care of the global variables and one is finally
ready to use the functions in the script Check.gp.

Concerning the Perl scripts, the interesting part of the header reads:

use Math::MPFI qw(:mpfi);

use Math::Prime::Util qw(primes);

use Math::Factor::XS qw(factors prime_factors matches);

[...]

Rmpfi_set_default_prec(100); # Set default precision to 100 bits
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2. Proof of Theorem 1.4 and beginning of proof of Theorem 1.3

Lemma 2.1. When X ≥ 1 is a real number, we have∑
n≤X

1

n
= logX + γ +O∗

( 6

11X

)
.

When X > 0 is a real number, we have∑
n≤X

1

n
= logX + γ +O∗

( γ
X

)
.

In general, we define
∑
n≤X 1/n− logX − γ = R(X).

The first inequality with 7/12 = 0.583 · · · appears in [5, (3.1)]. The constant 6/11 =
0.545 · · · is near optimal: the optimum is 2(log 2 + γ − 1) = 0.540 · · · .

Proof. • We inspect x 7→ | log x+ γ− 1|x when x ∈ [1, 2) and find its maximum to
be 2(log 2 + γ − 1) = 0.540 725 · · · .

• We inspect x 7→ | log x + γ − 3/2|x when x ∈ [2, 3) and find its maximum to be
3(log 3 + γ − 3/2) = 0.527 · · · .

• We inspect x 7→ | log x+ γ − 11/6|x when x ∈ [3, 4) and find its maximum to be
3(log 3 + γ − 11/6) = 0.520 · · · .

We proceed in a similar fashion for all intervals up to 11 and obtained the following
maxima, all of them reached (almost!) at the endpoint of the studied interval:

[4,5) [5,6) [6,7) [7,8) [8,9) [9,10) [10,11)
0.516. . . 0.513. . . 0.511. . . 0.510. . . 0.508. . . 0.508. . . 0.507. . .

For larger values, the Euler-MacLaurin formula gives us (see for instance [36, Théorème
5])

(2.1)
∑
n≤N

1

n
= logN + γ +

1

2N
− 1

12N2
+O∗

( 1

60N4

)
for any positive integer N . We have N+1

N ( 1
2 −

1
12N + 1

60N3 ) ≤ 0.538 when N ≥ 11. The
lemma follows readily. �

Proof of Theorem 1.4. We write∑
n≤D

(g ? 1)(n)

n
=
∑
m≥1

g(m)

m

∑
n≤D/m

1

n
.

The summation in m can be restricted to m ≤ D, and more generally to m ≤ ηD for
some η ≥ 1. This together with the definition of R(x) in Lemma 2.1 gives us∑

n≤D

(g ? 1)(n)

n
=
∑
m≤ηD

g(m)

m

(
log

D

m
+ γ
)

+
∑
m≤ηD

g(m)

m
R

(
D

m

)
.

The next task is to complete the summation over m, for which we add and substract the

quantity
∑
m>ηD

g(m)
m (log D

m + γ) and we rewrite the substracted part by using G]:

−
∑
m>ηD

g(m)

m

(
log

D

m
+ γ
)

=
∑
m>ηD

g(m)

m

(
log

m

ηD
− γ + log η

)
=
∑
m>ηD

g(m)

m

∫ m

ηD

dt

t
− (γ − log η)G](ηD)

=

∫ ∞
ηD

∑
m>t

g(m)

m

dt

t
− (γ − log η)G](ηD)

=

∫ ∞
ηD

G](t)
dt

t
− (γ − log η)G](ηD)
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This leads to the following key expression:

(2.2)
∑
n≤D

(g ? 1)(n)

n
=
∑
m≥1

g(m)

m

(
log

D

m
+ γ
)

+

∫ ∞
ηD

G](t)
dt

t

− (γ − log η)G](ηD) +
∑
m≤ηD

g(m)

m
R

(
D

m

)
.

On appealing to Lemma 2.1, one gets Theorem 1.4. �

The main point above has been to write (when η = 1)∑
d>D

g(d)

d
log

d

D
=

∫ ∞
D

∑
d>t

g(d)

d

dt

t

while the usual treatment is comparable to using log d
D = log d− logD and treating the

two resulting sums independently.

Second proof of (2.2). Equation (2.2) being a linear identity in g, we can use algrebraic
means to prove it. The following decomposition holds:

g =
∑
k≥1

g(k)δ·=k.

It is thus enough to prove our identity for δ·=k. In this case, we readily check that

G](t) =

{
1
k when t ≤ k,
0 otherwise.

The function (g ?1) is the characteristic function of those integers that are divisible by k.
The proof of (2.2) splits in two cases:

(1) When k ≤ ηD, the LHS of (2.2) is (1/k)
∑
n≤D/k 1/n, while the RHS is 1

k (log D
k +

γ) + 0− (γ− log η)×0 + 1
kR(D/k). Both sides agree by the definition of R(D/k).

(2) When ηD < k, the LHS of (2.2) vanishes, while the RHS is

1

k

(
log

D

k
+ γ
)

+
1

k

∫ k

ηD

dt

t
− (γ − log η)

1

k

which is also verified to vanish.

The proof is complete. �

3. The Covering Remainder Lemma and proof of Theorem 1.3

Lemma 3.1 (The Covering Remainder Lemma). Let (g(m))m≥1 be a sequence of complex
numbers such that

∑
m≥1 g(m)/m converges for which we define G](x) =

∑
m>x g(m)/m.

The function R is given in Lemma 2.1. Let A0 ≥ 1 be a real number and let [A0] denotes
its integer part. We have∑

X
A0
<m≤X

g(m)

m
R

(
X

m

)
= γG](X) +

∫ A0

1

G]
(
X

t

)
dt

t
−

∑
1≤a≤A0

1

a
G]
(
X

a

)

−G]
(
X

A0

)(
log

A0

[A0]
−R([A0])

)
When g is non-negative, this lemma does not lead to any further saving. But other-

wise, the saving is interesting. In case g(m)/m = µ(m)/m2, the estimate R(x)� 1 leads
to a O(1/X) for the LHS while this lemma gives the bound O(exp(−c

√
logX)/X) for

some positive constant c. This would have the same effect as [20, Lemma 1]: shortening
the sum that was responsible for the size of the remainder term.
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Proof. We set B = [A0] to ease the typing. When a is a positive integer, b ∈ [a, a + 1],
and m is inside (X/b,X/a], we have

log
X

m
+ γ +R(X/m) =

∑
n≤X/m

1

n
=
∑
n≤a

1

n
= log a+ γ +R(a)

from which we infer that R(X/m) = R(a)−
∫X/m
a

dt/t. This implies that

∑
X
b <m≤

X
a

g(m)

m
R(X/m) =

∑
X
b <m≤

X
a

g(m)

m
R(a)−

∫ b

a

∑
X
b <m≤

X
t

g(m)

m

dt

t
.

We sum this construction step over a ∈ {1, · · · , B} with the choice b = min(a + 1, A0).
On using the notation G], we get

∑
X
A0
<m≤X

g(m)

m
R(X/m) =

∑
a≤B

(
G]
(

X

min(a+ 1, A0)

)
−G]

(
X

a

))
R(a)

+
∑
a≤B

∫ min(a+1,A0)

a

(
G]
(
X

t

)
−G]

(
X

min(a+ 1, A0)

))
dt

t

Some shuffling is called for. Here is the first step:

∑
X
A0
<m≤X

g(m)

m
R(X/m) =

∑
2≤a≤B+1

G]
(

X

min(a,A0)

)
R(a− 1)−

∑
a≤B

G]
(
X

a

)
R(a)

+

∫ A0

1

G]
(
X

t

)
dt

t
−
∑
a≤B

G]
(

X

min(A0, a+ 1)

)
log

min(A0, a+ 1)

a

which we rewrite in the form (we set R(0) = 0)

∑
X
A0
<m≤X

g(m)

m
R(X/m) =

∑
1≤a≤B

G]
(
X

a

)
(R(a− 1)−R(a)) +G]

(
X

A0

)
R(B)

+

∫ A0

1

G]
(
X

t

)
dt

t
−
∑
a≤B

G]
(

X

min(A0, a+ 1)

)
log

min(A0, a+ 1)

a
.

Here is the second step:

∑
X
A0
<m≤X

g(m)

m
R(X/m) = −G](X)R(1) +

∫ A0

1

G]
(
X

t

)
dt

t

+
∑

2≤a≤B

G]
(
X

a

)(
R(a− 1)−R(a)− log

a

a− 1

)
+G]

(
X

A0

)(
R(B)− log

A0

B

)
.

It is then obvious to establish the preliminary formula since R(1) = 1 − γ. The lemma
follows readily. �

Proof of Theorem 1.3. Theorem 1.3 is a simple application of this lemma. We start from
the key expression (2.2) of previous section, select η = 1, and treat the last term via the
Covering Remainder Lemma above. �
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4. A convolution identity

The convolution method consists in comparing an unknown arithmetical function to

a known one, here 1(d,q)=1
µ2(d)d
ϕ(d) together with 1.

Lemma 4.1. ∑
k2`r|d,
r|q,

(k`,q)=1,
(k,`)=1

µ(rk)µ2(`)k

ϕ(k)ϕ(`)
= 1(d,q)=1

µ2(d)d

ϕ(d)
.

Proof. Let g(d) be the multiplicative function of the right-hand side. When h ≥ 2, we
check that g(ph) = g(p2). It is then easy to verify the claimed identity. �

For the rest of this paper, we define

(4.1) r2(X; q) =
∑

k2`r>X,
r|q,

(k`,q)=(k,`)=1

µ(rk)µ2(`)

rkϕ(k)`ϕ(`)
,

as well as

(4.2) r1(X) =
∑

k2`r≤X,
r|q,

(k`,q)=(k,`)=1

µ2(rk`)k

ϕ(k)ϕ(`)

both quantities that we now proceed to evaluate.

5. Cancellation in
∑
k>K µ(k)/[ϕ(k)k]. Elementary methods

Evaluating
∑

k>K,
(k,q∗)=1

µ(k)
ϕ(k)k is a crucial step in bounding r2(X; q). This section is

devoted to rather elementary / algorithmical results, the highpoint being Lemma 5.7.
The proof of Theorem 1.1 requires in fact less work, but we prepare for the proof of
Theorem 1.2 and we have gathered in a single place results of a same flavor.

Lemma 5.1 ([25, Lemma 3.4]). For any real number K > 0, one has∑
k≤K

µ2(k)

ϕ(k)
= logK + c0 +O∗

(
7.3/K1/3

)
.

Note that the left-hand side is also G1(K).

Lemma 5.2. For K ≥ 50, we have

0.946 ≤ (1/K)
∑
k≤K

µ2(k)k

ϕ(k)
≤ 1.066.

After having proved Theorem 1.1, we can replace 0.946 by 0.989. Further assuming K ≥
106, we can replace 0.946 by 0.996 and 1.066 by 1.004.

Proof. We simply write∑
k≤K

µ2(k)k

ϕ(k)
= K

∑
k≤K

µ2(k)

ϕ(k)
−
∫ K

1

∑
k≤t

µ2(k)

ϕ(k)
dt

= K(logK + c0 +O∗(7.3/K1/3))−
∫ K

1

(log t+ c0 +O∗(7.3/t1/3))dt

= K + c0 +O∗
(

5
27.3K2/3

)
.
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We ran a GP-script [23] and a Sage script that checked that

(5.1) 0.98999 ≤ (1/K)
∑
k≤K

µ2(k)k

ϕ(k)
≤ 1.066 (100 ≤ K ≤ 108).

If we have already proved Theorem 1.1, we can replace the error term 5
27.3K2/3 by

3× 10.8
√
K. �

We will need later the following estimate, but it is clearer to keep it here.

Lemma 5.3. Assuming Theorem 1.1 has been proved, we have for K ≥ 50,

0.972 ≤ (2/K)
∑
k≤K,

(k,2)=1

µ2(k)k

ϕ(k)
≤ 1.066.

When K ≥ 106, we can replace the couple (0.972, 1.066) by (0.995, 1.005).

Lemma 5.4. Assuming Theorem 1.1 has been proved, and for K ≥ 106 and b within
{210, 2 310, 30 030, 510 510}, we have∑

k≤K,
(k,b)=1

µ2(k)k

ϕ(k)
=
ϕ(b)

bK
(1 +O∗(0.0001)).

Of course, the following factorisations hold: 210 = 2 · 3 · 5 · 7, 2 310 = 11 · 210,
30 030 = 13 · 2 310 and 510 510 = 17 · 30 030.

Proof. We proceed as in the proof of Lemma 5.2, though we have now Theorem 1.1 at
our disposal. We write, with c2(b) = j?(b)b/ϕ(b):∑

k≤K,
(k,b)=1

µ2(k)k

ϕ(k)
= K

∑
k≤K,

(k,b)=1

µ2(k)

ϕ(k)
−
∫ K

1

∑
k≤t,

(k,b)=1

µ2(k)

ϕ(k)
dt

= K
ϕ(b)

b
(logK + c(b) +O∗(c2(b)/K1/2))

−
∫ K

1

ϕ(b)

b
(log t+ c(b) +O∗(c2(b)/t1/2))dt

=
ϕ(b)

b
(K + c(b)) +O∗

(
3 · j?(b)K1/2

)
.

We ran a GP-script [23] that checked that claimed inequality for K ≤ 1010 (As a matter
of fact, it is enough to check this inequality until K = 6 · 109 when q = 210 and for all
the moduli considered, until K = 9.6 · 109). We have∑

k≤K,
(k,b)=1

µ2(k)k

ϕ(k)
=
ϕ(b)

bK
(1 +O∗(0.0001)) (106 ≤ K ≤ 1010).

�

Lemma 5.5. Assuming Theorem 1.1 has been proved, we have, when b belongs to
{210, 2 310, 30 030} and K ≥ K(b)

1− ε−b ≤
Kb

ϕ(b)

∑
k>K,

(k,b)=1

µ2(k)

kϕ(k)
≤ 1 + ε+b
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where the following choices are possible:

K(210) K(2310) K(30030) K(2310) K(30030)
9523 865 66 3500 5

ε+210 ε+2310 ε+30030 ε+2310 ε+30030

0.00169 0.0156 0.0911 0.0025 0.5344

ε−210 ε−2310 ε−30030 ε−2310 ε−30030

0.0265 0.0290 0.1073 0.0044 0.5488

.

Moreover ∑
k>K,

(k,210)=1

µ2(k)

kϕ(k)
≤

{
0.3/K when K ≥ 14,

0.24/K when K ≥ 190,

and ∑
k>K,

(k,30)=1

µ2(k)

kϕ(k)
≤

{
0.35/K when K ≥ 14,

0.276/K when K ≥ 190.

It is difficult to understand the choice of K(b) without reading the end of the proof
of Lemma 5.6. Let we say that these values are below 2 · 106/b and are chosen as small
as possible without degrading the chosen value of ε±b .

Proof. Summation by parts reduce the problem to using Lemma 5.4:∑
k>K,

(k,b)=1

µ2(k)

kϕ(k)
= 2

∫ ∞
K

∑
k≤t,

(k,b)=1

kµ2(k)

kϕ(k)

dt

t3
− 1

K2

∑
k≤K,

(k,b)=1

kµ2(k)

kϕ(k)

=
ϕ(b)

b

2 +O∗(0.0002)− 1 +O∗(0.0001)

K

when K ≥ 106. The lower bound is obtained similarly. It is easy to complete the proof
by a direct computation. �

Here is an intriguing lemma.

Lemma 5.6. Assuming Theorem 1.1 has been proved, we have, when K ≥ 200∣∣∣∣ ∑
k>K,

(k,q∗)=1

µ(k)

ϕ(k)k

∣∣∣∣ ≤ 0.3616

K
.

If q∗ is assumed to be odd, we can replace 0.3616 by 0.3464.

The bound K ≥ 200 will be reduced to K ≥ 14 in the next lemma. It is absolutely
not clear for the proof whether one can reach o(1/K) when K goes to infinity, due to
the presence of the coprimality condition. The proof goes by discussing the gcd of k with
the product of the prime factors below 11 or 13 in the odd case. One can think that by
selecting a larger bound, say B, the resulting constant would go to 0, i.e. that the RHS of
the equation (5.4) below (replacing 0.026 by 0) is o(logB) uniformy for q0|q∗ =

∏
p≤B p.

This seems difficult to prove. From a practical viewpoint, this lemma will have to be
completed by Lemma 5.7 below.

Proof. Let S(q∗,K) the sum to be estimated. When 30|q∗, the lemma follows from the
last estimate of Lemma 5.5. Let us now assume that 30 - q∗. We choose a base b within
the set {210, 2 310, 30 030, 510 510}, and set gcd(q∗, b) = b/q0. Notice that, when q∗ is
odd, then q0 is even. We class the summation variable k in S(q∗, x) according to its gcd
δ with q0. We get

S(q∗,K) =
∑
δ|q0

µ(δ)

ϕ(δ)δ

∑
`>K/δ,

(`,q0q
∗)=1

µ(`)

ϕ(`)`
=

∑
`>K/q0,

(`,q0q
∗)=1

µ(`)

ϕ(`)`

∑
δ|q0,
δ>K/`

µ(δ)

ϕ(δ)δ
.
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We order the divisors δ of q0 in 1 = δ1 < δ2 < · · · < δI = q0 and thus

(5.2) S(q∗,K) =
∏
p|q0

p2 − p− 1

p2 − p
∑
`>K,

(`,q0q
∗)=1

µ(`)

ϕ(`)`

+
∑

1≤i≤I−1

∑
K/δi≥`>K/δi+1,

(`,q0q
∗)=1

µ(`)

ϕ(`)`

∑
i<j≤I

µ(δj)

ϕ(δj)δj
.

Since b|q0q
∗, we have reached our main expression:

(5.3) |S(q∗,K)| ≤
∏
p|q0

p2 − p− 1

p2 − p
∑
`>K,

(`,b)=1

|µ(`)|
ϕ(`)`

+
∑

2≤i≤I

∑
K/δi−1≥`>K/δi,

(`,b)=1

|µ(`)|
ϕ(`)`

∣∣∣∣ ∑
i≤j≤I

µ(δj)

ϕ(δj)δj

∣∣∣∣.
When K/b ≥ K(b), this gives us, by Lemma 5.5,

(5.4)
b

ϕ(b)
K|S(q∗,K)| ≤

∏
p|q0

p2 − p− 1

p2 − p
(1 + ε+b )

+
∑

1≤i≤I−1

(
(1 + ε+b )δi+1 − (1− ε−b )δi

)∣∣∣∣ ∑
i<j≤I

µ(δj)

ϕ(δj)δj

∣∣∣∣.
It is easy to run a program to check every possibilities of q0.

{getlocbound(q0, epsplus, epsmoins, base, fixeddivisor = 1) =

my(res = 0.0, aux = 1.0, divisorlist, di);

forprime(p = 2, q0, if (q0%p==0, aux *= (1-1/p/(p-1)),));

res += aux*(1 + epsplus);

divisorlist = divisors(q0/fixeddivisor);

aux = moebius(q0)/eulerphi(q0)/q0;

forstep(i = length(divisorlist)-1, 1, -1,

di = divisorlist[i]*fixeddivisor;

res += ((1+epsplus)*divisorlist[i+1]

-(1-epsmoins)*di)* abs(aux);

aux += moebius(di)/eulerphi(di)/di);

return(res * eulerphi(base)/base);}

{getbound(epsplus=0.00214, epsmoins = 0.0265, base = 210, fixeddivisor = 1) =

my(res = 0.0);

fordiv(base/fixeddivisor, q0p,

res = max(res, getlocbound(q0p*fixeddivisor, epsplus,

epsmoins, base, fixeddivisor)));

return(res);}

Anticipating on Lemma 5.7 below, we have to cover the range K ≥ 200. We first use the
above script with the ideal choice epsplus=epsmoins=0 and found the following values:

210 2310 30030 510510
0.3827 · · · 0.3560 · · · 0.3340 · · · 0.3167 · · · Now we have to get true values with

effective epsplus and epsmoins, but it is better to be somewhat general to understand
our choices. Say some values for (ε±b ,K(b)) are available in Lemma 5.5; then the value
given by our script will be valid provided that K/b ≥ K(b). The resulting bound for K
will be too large: Lemma 5.7 covers only the range K ≤ 200, so we would need to have
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bK(b) ≤ 200. This is not realistic. Instead in the range K ∈ [200, bK(b)], we compute the
upper bound provided by (5.3). This enables us to extend the upper bound to K ≥ 200.
We are now blocked by a decent bound for bK(b) in these computations; we found that
going beyond 2 · 106 in general and beyond 107 for a specific choice would require too
much work, so we used these values. Here are the maxima obtained by this additional

script:
210 2310 30030

0.3967 · · · 0.3686 · · · 0.3405 · · · . The worst values are obtained from q0 = b

in each of the three cases. Now that this is fixed, we understand the values chosen in
Lemma 5.5.

This being, when q∗ is even, we select b = 2 310, and run the same computations but
only with this modulus and for all K ≤ 107. Note that we thus only need 2310K(2310) ≥
107, i.e. K(2310) ≥ 4329 is enough. We run getbound(0.0025,0.0044,2310) (where
the values 0.0025 and 0.0044 are given by Lemma 5.5) and reached the bound 0.3616.

We have 32 divisors q0 of b = 2 310 to consider, but we may discard the (four) ones
for which 30|2310/q0. This still took between three and four hours per divisor with GP.
For K ∈ [1000, 107] (resp. K ∈ [200, 107]), the worst constant was 0.3643 + O∗(10−4)
(resp. 0.3687 + O∗(10−4)) reached when q0 = 2310. We can exclude this divisor since
our q0 is even, the next worst constant is 0.3530 + O∗(10−4) (resp. 0.3608 + O∗(10−4))
reached when q0 = 210. We can again exclude this divisor, the next worst constant is
0.3369 +O∗(10−4) (resp. 0.3454 +O∗(10−4)) reached when q0 = 1155.

When q∗ is odd, q0 is even, we need only cover the range K ≥ 378. On this assumption,
getbound(0.5344,0.5487,30030,2)=0.3369... is small, so we only have to cover the
range [378, 30030× 5] on selecting b = 30 030. We ran beprimal(378, 160000, 13) and
saw that the worst case is when q0 = 30030 and K = 817 with value 0.3442 +O∗(10−4).

�

Lemma 5.7. For any positive real number K and any modulus q∗, we have∣∣∣∣ ∑
k>K,

(k,q∗)=1

µ(k)

ϕ(k)k

∣∣∣∣ ≤ 1.26

K
.

If Theorem 1.1 has been proved, and assuming K ≥ 14, we can further reduce this 1.26
to 0.3616. Assuming K ∈ [14, 202], we can further reduce this 1.26 to 0.3185.

If Theorem 1.1 has been proved, and assuming K ≥ 14 and q∗ to be odd, we can
further reduce this 1.26 to 0.3442.

See Lemma 7.18 for a much better result when q∗ is small. When K is large enough,
say larger than K0, Lemma 5.6 does the job. The present lemma completes the work for
K below K0; it relies on an algorithm of large complexity with respect to K0.

Proof. When K < 1, this is trivially checked. Let h(q) =
∏
p|q p(p− 1)/(p2 − p− 1) and

C =
∏
p≥2 h(p)−1 = 0.373959 · · · . We have∑

k>K,
(k,q∗)=1

µ(k)

ϕ(k)k
= Ch(q∗)−

∑
k≤K,

(k,q∗)=1

µ(k)

ϕ(k)k
.

• When 1 ≤ K < 2, this quantity is Ch(q∗) − 1 which is negative, ≥ C − 1 and
this later quantity is ≥ −1.26/2.

• When 2 ≤ K < 3, and q∗ is odd, this is Ch(q∗) − 1
2 and Ch(q∗) ∈ [h(2)−1, C].

We check that |h(2)−1 − 1/2| ≤ 1.26/3 and that |C − 1/2| ≤ 1.26/3.
• When 2 ≤ K < 3, and q∗ is even, this is Ch(q∗) − 1 and Ch(q∗) ∈ [2C, 1]. We

check that |2C − 1| ≤ 1.26/3 and that |1− 1| ≤ 1.26/3.

It is straightforward to write an algorithm. Let us assume we have a bound K0 and let
q[ be the product of all the primes below K0. Given q1 dividing q[, we consider all the
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q∗ that are such that (q[, q∗) = q1. We have

(5.5) Ch(q1) ≤ Ch(q∗) ≤ h(q1)/h(q[).

Note that when q[ is large enough, the difference between C and 1/h(q[) is small. Let us

now look at the sum S(K, q∗) =
∑

k≤K,
(k,q∗)=1

µ(k)
ϕ(k)k which we compare to S(K, q1). We have

S(K, q∗)− S(K, q1) = −
∑
k≤K,

(k,q1)=1,
(k,q∗)>1

µ(k)

ϕ(k)k
.

When K0 ≥ K, this new sum is empty. But since if (k, q1) = 1 and (k, q∗) > 1 then k has
at least a prime factors > K0. On assuming that K2

0 > K, only one such prime p divides
k. We write k = sp, where s ≤ K/K0 is prime to q1. Set q] =

∏
p≤c p and q0 = (q], q1).

Let

(5.6) Σ+(K, q0) =
∑

K0<p≤K

1

p(p− 1)
max

 ∑
s≤K/p,
(s,q0)=1

µ(s)

sϕ(s)
, 0


and let Σ−(K, q0) be the corresponding sum with max instead of min. We have

(5.7) S(K, q1)− Σ−(K, q) ≤ S(K) ≤ S(K, q1) + Σ+(K, q0).

On joining (5.5) and (5.7), we reach

Ch(q1)−S(K, q1)−Σ+(K, q0) ≤ Ch(q∗)−S(K) ≤ h(q1)/h(q[)−S(K, q1)+Σ−(K, q0).

Let us establish an algorithm from this inequality.

(1) We want to cover the range Kmin ≤ K ≤ cK0, where c ∈ [1,K0) is a (small) real
number.

(2) We define q] =
∏
p≤c p and q[ =

∏
p≤K0

p. It is easy to (pre)compute all the

Σ−(K, q0) and Σ+(K, q0) for K ≤ cK0 and q0 ≤ c.
(3) We loop over q[ and K.

We ran such a GP-script with up to 25 primes with c = 1, and this takes care of
K < 101. The worst constant has been 2(1 − C) = 1.252 · · · which is indeed not more
than 1.26. When K ≥ 5, the worst constant is 439/1008. When K ≥ 10, the worst
constant is 2/5.

On taking c = 1.99 and using the first 26 primes for q[ to go to K ≤ 202, we prove
that the worst constant is 0.3199 · · · provided that K ≥ 14 and K ≤ 202. Reached at
K = 202 with q1 = 6. Selecting c larger worsens the bound severely.

Assuming q∗ to be odd, on taking c = 3.5 and using the first 28 primes for q[ to go
to K ≤ 378, we prove that the worst constant is 0.3252 · · · provided that K ≥ 14 and
K ≤ 378. Reached at K = 378 with q1 = 3.5.7.17.19.23.29.

For K ≥ 50, we proceed by integration by parts as follows:∑
k>K,

(k,q∗)=1

|µ(k)|
ϕ(k)k

≤ 2

∫ ∞
K

∑
k≤t

|µ(k)|k
ϕ(k)

dt

t3
− 1

K2

∑
k≤K

|µ(k)|k
ϕ(k)

≤ 2× 1.066− 0.946

K
≤ 1.186

K
.

Theorem 1.1 is not required for this estimate, and when we assume Theorem 1.1, we can
rely directly on Lemma 5.6. �
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6. Proof of Theorem 1.1

Lemma 6.1. We have

r1(X) ≤ 4.95
√
Xj1(q) j1(q) =

∏
p|q

√
p(p3/2 + p−√p− 1)
√
p(p3/2 −√p+ 1) + 1

.

Proof. We have

r1(X) =
∑

k2`r≤X,
r|q,

(k`,q)=1,
(k,`)=1

µ2(rk`)k

ϕ(k)ϕ(`)
≤

∑
a2b2`r≤X,

r|q,
(ab`,q)=1,
(ab,`)=1

µ2(r`ab)

ϕ(a)ϕ(`)

≤
∑

a2`r≤X,
r|q,

(a`,q)=1,
(a,`)=1

µ2(r`a)

ϕ(a)ϕ(`)

√
X

a2`r
.

We then simply extend the summations in a, ` and r:

≤
√
X
∏
p|q

1 + 1√
p

1 + 1√
p(p−1) + 1

p(p−1)

∏
p≥2

(
1 +

1
√
p(p− 1) 1

1+ 1
p(p−1)

)∏
p≥2

(
1 +

1

p(p− 1)

)
≤ 4.95

√
X
∏
p|q

p(p− 1) +
√
p(p− 1)

p(p− 1) +
√
p+ 1

= 4.95
√
Xj1(q)

as required. �

Lemma 6.2. We have

|r2(X; q)| ≤ 3.9√
X
j2(q), j2(q) =

∏
p|q

p3/2 + p−√p− 1

p3/2 −√p+ 1
.

The expression given for j1 and j2 makes it clear that j1 ≤ j2 so we can simplify the
error term. Note however that j1(2) = 0.773 · · · which is quite smaller than j2(2) = 2.

Proof. The definition of r2 is given at (4.1). We treat the summation over k by Lemma 5.7
and obtain

|r2(X; q)| ≤ 1.26√
X

∑
`≥1,
r|q,

(`,q)=1

µ2(r)µ2(`)
√
r
√
`ϕ(`)

≤ 1.26√
X

∏
p|q

√
p(p− 1)

1 +
√
p(p− 1)

1 +
√
p

√
p

∏
p≥2

(
1 +

1
√
p(p− 1)

)
≤ 3.87√

X

∏
p|q

(p− 1)(1 +
√
p)

1 +
√
p(p− 1)

=
3.87√
X
j2(q).

�

Proof of Theorem 1.1. We use Theorem 1.4 together with Lemma 6.1 and 6.2. Notice
that G] = r2. We thus derive that

Gq(D) =
∑
k,`≥1,
r|q,

(k`,q)=1

µ2(k`)µ(rk)

ϕ(k)ϕ(`)k`r

(
log

D

k2`r
+ γ
)

+O∗
(

(2 + |γ − log η|) 3.9√
ηD

j2(q) +
γ

D
4.95

√
ηDj1(q)

)
.
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The main term is identified via [25, Lemma 3.4]. For the error term, we discuss according
to whether 2|q or not. When q is odd, we use j1(q) ≤ j2(q) and select η = eγ . This

leads to the error term O∗(5.82j2(q)/
√
D). When q = 2q′ with q′ odd, we select again

η = eγ , leading to the error term O∗(4.95j2(q′)/
√
D). For the cases q = 6, 30, 210, 2310

and q = 30 030 we again select η = eγ . Our formula follows readily. �

7. Cancellation in
∑
k>K µ(k)/[ϕ(k)k]. Analytical estimates

We continue with the problem of bounding
∑

k>K,
(k,q∗)=1

µ(k)
ϕ(k)k but we use the results on

the Moebius function recalled in Lemma 7.14. The main point is Lemma 7.18.

7.1. Some asymptotic estimates.

Lemma 7.1. We have, when L > 0,∑
`≤L

µ2(`)

ϕ(`)

∏
p|`

(1 + p−1) =
15

π2
(logL+ c2) +O∗

(
16.4/L1/3

)
where

c2 = γ −
∑
p≥2

2 log p

p3 − p2 + p
= 0.187 529 · · ·

Proof. We use [25, Lemma 3.4]. We define

f(`) =
µ2(`)

ϕ(`)

∏
p|`

(1 + p−1).

First note that∑
`≥1

f(`)

`s
=
∏
p≥2

(
1 +

p+ 1

(p− 1)ps+1

)

= ζ(s+ 1)
∏
p≥2

(
1 +

2

(p− 1)ps+1
− p+ 1

(p− 1)p2s+2

)
= ζ(s+ 1)H(s)

say, which gives `f(`) =
∑
d|` g(d) where g is the multiplicative function defined on prime

powers by

g(p) =
2

p− 1
, g(p2) = −p+ 1

p− 1
, g(pk) = 0 (k ≥ 3).

We note that

H(0) =
∏
p≥2

(
1 +

2

(p− 1)p
− p+ 1

(p− 1)p2

)
=
∏
p≥2

(
1 +

1

p2

)
=
ζ(2)

ζ(4)
=

15

π2
.

Furthermore
−1

H(0)

∑
m≥1

g(m) logm

m
=
H ′(0)

H(0)
= −

∑
p≥2

2 log p

p3 − p2 + p
,

while

H(−1/3) =
∏
p≥2

(
1 +

2

(p− 1)p2/3
+

p+ 1

(p− 1)p4/3

)
≤ 18.

�

Lemma 7.2. We have, when L > 0,∑
`≤L

µ2(`)
∏
p|`

p2 + p

p3 − p2 + p+ 1
= d0(logL+ c3) +O∗

(
9.7/L1/3

)
where d0 = 1.026 · · · and

c3 = γ −
∑
p≥2

(3p+ 1) log p

p4 − p3 + 3p2 − p− 2
= 0.048 757 · · ·
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Proof. We again use [25, Lemma 3.4]. We define

f(`) = µ2(`)
∏
p|`

p2 + p

p3 − p2 + p+ 1
.

First note that∑
`≥1

f(`)

`s
=
∏
p≥2

(
1 +

p2 + p

(p3 − p2 + p+ 1)ps

)

= ζ(s+ 1)
∏
p≥2

(
1 +

2p2 − p− 1

(p3 − p2 + p+ 1)ps+1
− p+ 1

(p3 − p2 + p+ 1)p2s

)
= ζ(s+ 1)H(s)

say, which gives `f(`) =
∑
d|` g(d) where g is the multiplicative function defined on prime

powers by

g(p) =
2p2 − p− 1

p3 − p2 + p+ 1
, g(p2) = − p3 + p2

p3 − p2 + p+ 1
, g(pk) = 0 (k ≥ 3).

We note that

d0 = H(0) =
∏
p≥2

(
1 +

2p2 − p− 1

(p3 − p2 + p+ 1)p
− p+ 1

p3 − p2 + p+ 1

)

=
∏
p≥2

(
1 +

p2 − 2p− 1

(p3 − p2 + p+ 1)p

)
= 1.026 · · ·

Furthermore

−1

H(0)

∑
m≥1

g(m) logm

m
=
H ′(0)

H(0)
= −

∑
p≥2

(3p+ 1) log p

p4 − p3 + 3p2 − p− 2
,

while

H(−1/3) =
∏
p≥2

(
1 +

2p2 − p− 1

(p3 − p2 + p+ 1)p2/3
+

p+ 1

(p3 − p2 + p+ 1)p−2/3

)
≤ 9.7.

�

7.2. Majorising tails of averages.

Lemma 7.3. When L > 0, we have
∑
`>L

µ2(`)
`ϕ(`) ≤ 1.96/L. When L ≥ 1, we can replace

1.96 by 1.14.

In [25, Lemma 3.10], a similar estimate is proved, but with a constant 4 instead of
the 1.14 above.

Proof. Let us denote by S(L) the sum we want. A summation by parts gives us

S(L) = 2

∫ ∞
L

∑
L<`≤t

µ2(`)`

ϕ(`)

dt

t3

= −
∑
`≤L

µ2(`)`

ϕ(`)L2
+ 2

∫ ∞
L

∑
`≤t

µ2(`)`

ϕ(`)

dt

t3

and this not more than (2× 1.004− 0.996)/L ≤ 1.012/L when L ≥ 106 (as in the proof
of Lemma 5.7) by Lemma 5.2. We complete by a direct verification up to 106. �

Lemma 7.4. When L ≥ 1, we have
∑

`>L,
(`,2)=1

µ2(`)
`ϕ(`) ≤ 0.592/L.
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Proof. On denoting by S(L) the sum we want, a summation by parts gives us

S(L) = 2

∫ ∞
L

∑
L<`≤t,
(`,2)=1

µ2(`)`

ϕ(`)

dt

t3

= −
∑
`≤L,

(`,2)=1

µ2(`)`

ϕ(`)L2
+ 2

∫ ∞
L

∑
`≤t,

(`,2)=1

µ2(`)`

ϕ(`)

dt

t3

and this not more than (2 × 1.005 − 0.995)/2 by Lemma 5.3. We complete by a direct
verification up to 106. �

Lemma 7.5. When L ≥ 1, we have
∑

`>L,
(`,2)=1

µ2(`)√
`ϕ(`)

≤ 1.19/
√
L.

Proof. We have ∑
`>L,

(`,2)=1

µ2(`)√
`ϕ(`)

=
∑
`>L,

(`,2)=1

µ2(`)
√
Y

`ϕ(`)
+

∫ ∞
Y

∑
`>t,

(`,2)=1

µ2(`)

`ϕ(`)

dt

2
√
t

and an appeal to Lemma 7.4 concludes when L ≥ 1. �

Lemma 7.6. When L > 0, we have
∑
`>L

µ2(`)
∏

p|`(1+p−1)

`ϕ(`) ≤ 2.83/L. When L ≥ 6, we

can decrease 2.83 to 1.85, and when L ≥ 30, we can decrease it further to 1.63.

Proof. We proceed as in the proof of Lemma 7.3. Let us denote by S(L) the sum we
want to bound and f(`) = µ2(`)

∏
p|`(1 + p−1)/ϕ(`). A summation by parts gives us, via

Lemma 7.1,

S(L) =

∫ ∞
L

∑
L<`≤t

f(`)
dt

t2
= −

∑
L<`≤t

f(`)

L
+

∫ ∞
L

∑
`≤t

f(`)
dt

t2

= − 15

π2L
(logL+ c2) +

∫ ∞
L

15

π2
(log t+ c2)

dt

t2
+O∗

(
16.4(1 + 3

4 )

L4/3

)
=

15

π2L
+O∗

(
29/L4/3

)
and this not more than 2.5 when L ≥ 105. We complete by a direct verification up to 106.

�

Lemma 7.7. When L > 0, we have
∑
`>L

µ2(`)
∏

p|`(1+p−1)

`2ϕ(`) ≤ 2.02/L2.

Proof. We denote by S(L) the sum to be bounded and f(`) = µ2(`)
∏
p|`(1 + p−1)/ϕ(`).

A summation by parts gives us, via Lemma 7.1,

S(L) = 2

∫ ∞
L

∑
L<`≤t

f(`)
dt

t3
= −

∑
L<`≤t

f(`)

L2
+ 3

∫ ∞
L

∑
`≤t

f(`)
dt

t3

= − 15

π2L2
(logL+ c2) + 3

∫ ∞
L

15

π2
(log t+ c2)

dt

t3
+O∗

(
16.4(1 + 3

7 )

L7/3

)
=

15

2π2L2
+O∗

(
24/L7/3

)
and this not more than 2 when L ≥ 104. We complete by a direct verification up to 106.

�

Lemma 7.8. When L > 0, we have
∑
`>L

µ2(`)
∏

p|`(1+p−1)
√
`ϕ(`)

≤ 4.43/
√
L. This is ≤ 3.80

when L ≥ 2, and ≤ 3.12 when L ≥ 100.
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Proof. We denote by S(L) the sum we want to bound and f(`) = µ2(`)
∏
p|`(1 + p−1)/ϕ(`).

A summation by parts gives us, via Lemma 7.1,

S(L) = 3
2

∫ ∞
L

∑
L<`≤t

f(`)
dt

t3/2
= −

∑
L<`≤t

f(`)√
L

+ 3
2

∫ ∞
L

∑
`≤t

f(`)
dt

t3/2

= − 15

π2
√
L

(logL+ c2) + 3
2

∫ ∞
L

15

π2
(log t+ c2)

dt

t3/2
+O∗

(
16.4(1 + 3

2 )

L2/3

)
=

30

π2
√
L

+O∗
(
41/L2/3

)
and this not more than 2 when L ≥ 104. We complete by a direct verification up to 106.

�

Lemma 7.9. When L > 0, we have
∑
`>L

µ2(`)
`2

∏
p|`

p2+p
p3−p2+p+1 ≤ 1.25/L2. When L ≥

20, we can decrease the constant 1.25 to 0.66.

Proof. We denote by S(L) the sum we need and f(`) = µ2(`)
∏
p|`

p2+p
p3−p2+p+1 . A summa-

tion by parts gives us, via Lemma 7.2,

S(L) = 2

∫ ∞
L

∑
L<`≤t

f(`)
dt

t3
= −

∑
L<`≤t

f(`)

L2
+ 3

∫ ∞
L

∑
`≤t

f(`)
dt

t3

= − d0

L2
(logL+ c3) + 2

∫ ∞
L

d0(log t+ c3)
dt

t3
+O∗

(
9.7(1 + 3

7 )

L7/3

)
=

d0

2L2
+O∗

(
13.9/L7/3

)
and this not more than 2 when L ≥ 104. We complete by a direct verification up to 106.

�

Lemma 7.10. When K > 0, we have
∑
k>K

µ2(k)
k2ϕ(k) ≤ 0.606/K2.

Proof. A summation by parts gives us

∑
k>K

µ2(k)

k2ϕ(k)
= 3

∫ ∞
K

∑
K<`≤t

µ2(k)k

ϕ(k)

dt

t4

= −
∑
k≤K

µ2(k)k

ϕ(k)K3
+ 3

∫ ∞
K

∑
k≤t

µ2(k)k

ϕ(k)

dt

t4

and this not more than ( 3
2 × 1.004− 0.996)/K ≤ 0.51/K when K ≥ 106 (as in the proof

of Lemma 5.7) by Lemma 5.2. We complete by a direct verification up to 106. �

Lemma 7.11. When X > 0, we have

∑
a2b3>X

µ2(ab)

aϕ(a)b2ϕ(b)
≤ 2.45√

X
.

Proof. We split the sum in two:

∑
a2b3>X

µ2(ab)

aϕ(a)b2ϕ(b)
≤

∑
b3>X,a≥1

µ2(ab)

aϕ(a)b2ϕ(b)
+
∑
b3≤X

∑
a2>X/b3,
(a,b)=1

µ2(ab)

aϕ(a)b2ϕ(b)
.
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In the second sum, we forget the condition (a, b) = 1 when b is odd, and degrade it to
(a, 2) = 1 when b is even. We get via Lemma 7.3 and 7.4

∑
a2b3>X

µ2(ab)

aϕ(a)b2ϕ(b)
≤ 1.96

∑
b3>X

µ2(b)

b2ϕ(b)

+ 1.14
∑
b3≤X,
(b,2)=1

µ2(b)

b2ϕ(b)

√
b3

X
+ 0.592

∑
b3≤X/8,
(b,2)=1

µ2(b)

4b2ϕ(b)

√
b3

X

and, via Lemma 7.10∑
a2b3>X,
(ab,q∗)=1

µ2(ab)

aϕ(a)b2ϕ(b)
≤ 1.96× 0.606

X2/3
+

1.14 + 0.592/4√
X

∑
b3≤X,
(b,2)=1

µ2(b)

b1/2ϕ(b)

getting the upper bound

1.19

X2/3
+

2.32√
X

We check directly that our quantity is below 2.45/
√
X when 1 ≤ X ≤ 106. Assuming

that X ≥ 5000, we can reduce the 2.45 to 2.2. We would have to be more careful in the
above analysis. �

Lemma 7.12. When X > 0, we have∑
a2b3>X

µ2(ab)
∏
p|ab(1 + p−1)

aϕ(a)b2ϕ(b)
≤ 6.21√

X
.

Proof. We proceed as in Lemma 7.11 and split the sum in two:

∑
a2b3>X

µ2(ab)
∏
p|ab(1 + p−1)

aϕ(a)b2ϕ(b)
≤

∑
b3>X/62,a≥1

µ2(ab)
∏
p|ab(1 + p−1)

aϕ(a)b2ϕ(b)

+
∑

b3≤X/62

∑
a2>X/b3

µ2(ab)
∏
p|ab(1 + p−1)

aϕ(a)b2ϕ(b)

and thus via Lemma 7.6 and on using
∏
p≥2(1 + p+1

p2(p−1) ) ≤ 2.42,

∑
a2b3>X

µ2(ab)µ2(ab)
∏
p|ab(1 + p−1)

aϕ(a)b2ϕ(b)
≤ 2.42

∑
b3>X/62

µ2(b)
∏
p|b

p+ 1

p(p3 − p2 + p+ 1)

+ 1.85
∑
b3≤X

µ2(b)
∏
p|b(1 + p−1)

b2ϕ(b)

√
b3

X
.

Lemma 7.9 gives us∑
a2b3>X,
(ab,q∗)=1

µ2(ab)µ2(ab)
∏
p|ab(1 + p−1)

aϕ(a)b2ϕ(b)
≤ 2.42× 0.66 · 64/3

X2/3
+

1.85√
X

∏
p≥2

(
1 +

1
√
p(p− 1)

)

getting the upper bound

5.69√
X

+
17.5

X2/3
.

We check directly that our quantity is below 4.4/
√
X when 1 ≤ X ≤ 1.5 · 109. �
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7.3. External lemmas concerning the Moebius function. Here is part of [7, Lemma
10.2]. See also [28, Theorem 1.1].

Lemma 7.13. We have, when q∗ ≥ 1 and x > 0,∣∣∣∣ ∑
d≤x,

(d,q∗)=1

µ(d)

d

∣∣∣∣ ≤ 1.

Here is part of [29, Theorem 1.12, 1.13].

Lemma 7.14. We have, when x > q∗ ≥ 1,∣∣∣∣ ∑
d≤x,

(d,q∗)=1

µ(d)

d

∣∣∣∣ ≤ κ1(x/q∗)
∏
p|q∗

(1 + p−1)/ log(x/q∗).

where

κ1(t) =



4/5 when 1 < t < 296,

1/2 when 296 ≤ t < 687,

5/16 when 687 ≤ t < 882,

5/38 when 882 ≤ t < 11 811,

1/7 when 11 811 ≤ t.

7.4. Taking care of the 1/ log(X/`) factor. In several instances, the usage of Lem-
ma 7.14 leads to expressions of the shape

Sκ(f ;U, c) =
∑
u≤U/c

κ(U/u)f(u)

log(U/u)

where c is uniformly taken as = 50. This value is however irrelevant in the general
discussion. The function κ being either the function κ1 defined in Lemma 7.14 or the
constant function 1 and f is some non-negative arithmetical function such that

∑
u≥1 f(u)

converges. Since κ is a decreasing step function with jumps at c = a1 < a2 < · · · < aI ,
we have

Sκ(f ;U, c) = κ(a+
I )S(f ;U, aI) +

∑
1≤i≤I−1

κ(a+
i )
(
S(f ;U, ai)− S(f ;U, ai+1)

)
where

S(f ;U, a) =
∑

u≤U/a

f(u)

log(U/u)
.

This gives

(7.1) Sκ(f ;U, c) = κ(c+)S(f ;U, c)−
∑

2≤i≤I

S(f ;U, ai)
(
κ(a+

i−1)− κ(a+
i )
)
.

We first handle S(f ;U, a) by an integration by parts:

(7.2) S(f ;U, a) =
∑

u≤U/a

f(u)

log a
−
∫ U

a

∑
u≤U/t

f(u)
dt

t(log t)2
.

This expression is usable to compute S(f ;U, a) for bounded values of U . Let us introduce
the notation C(f) =

∑
u≥1 f(u) and G(f ; t) =

∑
u≤t f(t) as well as

(7.3) S0(f ;U, a) =

∫ U

a

∑
U/t<u

f(u)
dt

t(log t)2
.

We have

S(f ;U, a) =
∑

u≤U/a

f(u)

log a
− C(f)

( 1

log a
− 1

logU

)
+ S0(f ;U, a).
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i.e.

(7.4) S(f ;U, a) = −
∑

u>U/a

f(u)

logU
+
C(f)

logU
+ S0(f ;U, a).

In order to evaluate S(f ;U, a) for large U , we use some upper bound for
∑
U/t<u f(u). In

this process, the numerical difficulty comes from the fact that we need such an evaluation
when U/t can be as small as 1, and this required uniformity is a drag on the constants. For
instance, when we have a bound of the shape

∑
x<u f(u) � 1/

√
x, the term S0(f ;U, a)

is� 1/(log x)2, but this happens only when x is rather large. It is much better to handle
the values when x (i.e. initially U/t) is small by direct computations, when f is indeed
directly computable (this is not the case for instance when f(u) vanishes as soon as u is
not co-prime to some parameter q). We have, for an integer parameter H ≥ 1:

0 ≤ S0(f ;U, a)−
∑

1≤h≤min(H,U/c)

∫ U/h

max(a,U/(h+1))

(
C(f)−G(f ;U/t)

) dt

t(log t)2

≤
∫
a≤t≤U/(H+1)

∑
U/t<u

f(u)
dt

t(log t)2
.

We have used the notation
∫
a≤t≤b and not

∫ b
a

: in the first case the integral has value

0 when b < a while the second one is usually understood as −
∫ a
b

. This upper bound
develops into:

(7.5) 0 ≤ S0(f ;U, a)−
∑

1≤h≤min(H,U/a)

(
C(f)−

∑
u≤h

f(u)
)( 1

log U
h

− 1

log max(a, U
h+1 )

)

≤
∫
a≤t≤U/(H+1)

∑
U/t<u

f(u)
dt

t(log t)2
.

The very last problem consists in estimating the first summand in (7.4). We use

(7.6)
∑

u>U/a

f(u) =

{
C(f)−

∑
u≤U/a f(u) when U/a ≤ H + 1,

O∗(
∑
u>H+1 f(u)) when U/a ≥ H + 1.

The cutting point a · (H + 1) in the conditions U ≤ a · (H + 1) and U > a · (H +
1) is somewhat arbitrary. It turns out that the small values of U are going to have
a predominant role; for such values, the partial sum

∑
u≤U/a f(u) may be noticeably

smaller than C(f). In case, there is too large a jump between around c(H + 1), it can be
dampened by increasing the value of H.

If we gather the above, here is how we proceed:

• We split Sκ(f ;U, c) according to (7.1).
• We compute a lower bound S(1)(f ;U, a) and an upper bound S(2)(f ;U, a) for
S(f ;U, a) on following (7.4), (7.5) and (7.6) and a given bound for

∑
U/t<u f(u).

• We produce form these bounds an upper bound for Sκ(f ;U, c). This bound is
a “simple” function that we simply study. Practically it is enough to compute
and plot it a large enough range; It vanishes at infinity, and this infinity is close
enough that the remaining range can be covered by computations.

This is what we do in the next two lemmas.

Lemma 7.15. When x ≥ 1800, we have

(log x)
∑

a2b3≤x/50

µ2(ab)κ1(x/(a2b3))
∏
p|ab(1 + 1/p)

aϕ(a)b2ϕ(b) log(x/a2b3)
≤ 1.89.
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Proof. We use equation (7.5) with

f(`) =

{
µ2(ab)

∏
p|ab(1+1/p)

aϕ(a)b2ϕ(b) when ` = a2b3 with µ2(ab) = 1,

0 else.

and c = 50. We have

C(f) =
∏
p≥2

(
1 +

1 + 1/p

p(p− 1)
+

1 + 1/p

p2(p− 1)

)
.

We selectH = 106 in the method above. The bound for the tail is provided by Lemma 7.12.
The lengthy discussion above results in the following simple script:

{getval30(n)=

my(res=1.0, p, fac = factor(n)~);

if(n==1, return(1),);

for(k = 1, length(fac),

p = fac[1,k];

if(fac[2, k] == 2, res *= (p+1)/p^2/(p-1),

if(fac[2, k] == 3, res *= (p+1)/p^3/(p-1),

return(0))));

return(res);}

cc8 = prodeuler(p = 2,1000000,1.0+(p+1)^2/p^3/(p-1));

{upper8inner(x, c, H, notail=0)=

my(res = 0.0, aux = 0.0);

for(h = 1, min(x/c, H),

aux += getval30(h);

res += (cc8 - aux)*(-1/log(x/h)+1/log(max(c,x/(h+1)))));

if(x <= c*(H+1), res += aux/log(x), res += cc8/log(x));

if(notail==1, return(res - 6.21/sqrt(H+1)/log(x)),);

if((x <= c*(H+1)), return(res),

res += 6.21/sqrt(x)*intnum( t = c, x/(H+1), 1/sqrt(t)/log(t)^2));

return(res);}

{upper8lower(x, c=50, H=300) = upper8inner(x, c, H, 1);}

{upper8upper(x, c=50, H=300) = upper8inner(x, c, H, 0);}

{upper8(x, H=300)=

4/5*upper8upper(x, 50, H)

-(4/5-1/2)*upper8lower(x,296,H)

-(1/2-5/16)*upper8lower(x,687,H)

-(5/16-5/38)*upper8lower(x,882,H)

-(5/38-1/7)*upper8lower(x,11811,H);}

{bupper8(x, H=400)= upper8(x,H)*log(x);}

�

Lemma 7.16. When x ≥ 50, we have

(log x)
∑

`≤x/50

µ2(`)
∏
p|`(1 + p−1)

√
`ϕ(`) log(x/`)

≤ 5.02.
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Proof. We use equation (7.5) with f(`) = µ2(`)
∏
p|`(1 + p−1)/(

√
`ϕ(`)) and c = 50. We

have

C(f) =
∏
p≥2

(
1 +

p+ 1

p3/2(p− 1)

)
.

We use Lemma 7.8 and select H = 106 in the method above. The bound for the tail is
provided by Lemma 7.8. �

7.5. Usage.

Lemma 7.17. We have, when K/q∗ ≥ 1800,∣∣∣∣∣∣∣∣
∑
k>K,

(k,q∗)=1

µ(k)

ϕ(k)

∣∣∣∣∣∣∣∣ ≤
1.89

log(K/q∗)

∏
p|q∗

(
1 +

1

p

)
+ 17.4

(
q∗

K

)1/2

.

Proof. Let us denote by S(K) the sum we want to bound. We check by multiplicativity
that

(7.7)
µ(k)

ϕ(k)
=

∑
dab2=k

µ(d)

d

µ2(abd)

aϕ(a)b2ϕ(b)
.

This identity leads to the following expression for S(K):

S(K) =
∑
a,b≥1,

(ab,q∗)=1

µ2(ab)

aϕ(a)b2ϕ(b)

∑
d>K/(ab2),
(d,q∗ab)=1

µ(d)

d
.

Since
∑

d≥1,
(d,q∗ab)=1

µ(d)/d = 0, we also have

S(K) = −
∑
a,b≥1,

(ab,q∗)=1

µ2(ab)

aϕ(a)b2ϕ(b)

∑
d≤K/(ab2),
(d,q∗ab)=1

µ(d)

d
.

When q∗a2b3 ≤ K/50, we can use Lemma 7.14, while otherwise we rely on Lemma 7.13.
We get:

|S(K)| ≤
∑

q∗a2b3≤K/50,
(ab,q∗)=1

κ1(K/(q∗a2b3))µ2(ab)

aϕ(a)b2ϕ(b) log(K/(q∗a2b3))

∏
p|q∗ab

(1 + p−1)

+
∑

q∗a2b3>K/50,
(ab,q∗)=1

µ2(ab)

aϕ(a)b2ϕ(b)
.

We use Lemma 7.15 with x = K/q∗: the first sum is not more than 1.89
∏
p|q∗(1 +

p−1)/ log(K/q∗). This together with Lemma 7.11 (and noting that 2.45
√

50 ≤ 17.4)
yields

|S(K)| ≤
∏
p|q∗

p+ 1

p

1.89

log(K/q∗)
+ 17.4

(
q∗

K

)1/2

.

�

Lemma 7.18. We have, when K > q∗ and K ≥ 14,∣∣∣∣∣∣∣∣
∑
k>K,

(k,q∗)=1

µ(k)

kϕ(k)

∣∣∣∣∣∣∣∣ ≤
1.89

∏
p|q∗(1 + p−1)

K log(K/q∗)
+

5

K

(
q∗

K

)1/2

+
6.6

K

(
q∗

K

)1/2

1K≥1970q∗ .

The last statement means that the third summand is to be added only when K/q∗ is larger
than 1 970.
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This lemma is qualitatively much better than Lemma 5.7 when q∗ is small: it indeed
uses the oscillations of the Moebius function.

Proof. When K ≥ 14 and K/q∗ ≤ 1970, this is a consequence of Lemma 5.7. Otherwise,
we use an integration by parts to get∑

k>K,
(k,q∗)=1

µ(k)

kϕ(k)
=

∫ ∞
K

∑
k>t,

(k,q∗)=1

µ(k)

ϕ(k)

dt

t2
.

The lemma follows readily after invoking Lemma 7.17. �

8. Bounding r2(X; 1)

8.1. Some asymptotic estimates.

Lemma 8.1. We have, when L > 0,
∑
`>L

µ2(`)√
`ϕ(`)

≤ 3.08/
√
L. When L ≥ 1, we can

replace 3.08 by 2.28.

Proof. We have ∑
`>L

µ2(`)√
`ϕ(`)

=
∑
`>L

µ2(`)
√
Y

`ϕ(`)
+

∫ ∞
Y

∑
`>t

µ2(`)

`ϕ(`)

dt

2
√
t

and an appeal to Lemma 7.3 concludes when L ≥ 1. Else a direct computation of∏
p≥2(1 + 1√

p(p−1) ) is enough. �

Lemma 8.2. We have, when A > 0,
∑
a≤A µ

2(a)a1/4/ϕ(a) ≤ 4A1/4.

Proof. We use Theorem 1.1 and an integration by parts:∑
a≤A

µ2(a)a1/4/ϕ(a) = A1/4

(
logA+ c0 +O∗

( 5.9√
A

))
− 1

4

∫ A

1

(
log t+ c0

) dt
t3/4

− 1

4

∫ ∞
1

(G(t)− log t− c0)
dt

t3/4
+O∗

(
5.9

∫ ∞
A

dt

t5/4

)
i.e. ∑

a≤A

µ2(a)a1/4/ϕ(a) = 4A1/4 + c1 +O∗
( 30

A1/4

)
where

c1 = −4 + c0 −
1

4

∫ ∞
1

(G(t)− log t− c0)
dt

t3/4
= −1.424 · · ·

We compute this constant directly. �

8.2. Main engine. Most of the remainder term is controlled by r2(X; q) from (4.1).
The p-factor of the Dirichlet series associated with its summand reads, with the notation
u = 1/p and v = 1/ps,

Dp(s) = 1− v2

1− u
+

uv

1− u
= 1− v2 +

(1− v)uv

1− u

= (1− v2)

(
1 +

uv

(1− u)(1 + v)

)
and thus D(s) =

∏
p≥2Dp(s) is given by

(8.1) D(s) =
1

ζ(2s)

∏
p≥2

(
1 +

1

(p− 1)(ps + 1)

)
.

The second series is absolutely convergent (in the sense of Godement, i.e. that
∑
p≥2 |1/[(p−

1)(ps + 1)]| < ∞) when <s > 0. Finding an extension of it beyond this line, or showing
that this line is a natural boundary is open. The main part of D(s) comes from 1/ζ(2s),
which implies in particular that r2(X; q)�q,ε 1/X3/4+ε under the Riemann Hypothesis.
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Numerical computations (see Lemma 8.4) concerning |r2(X; q)/X3/4| when q = 1 exhibit

an oscillating behavior that is as mysterious as the one of |
√
X
∑
n>X µ(n)/n|.

Lemma 8.3. We have, when X ≥ (700 q)3

|r2(X; q)| ≤
∏
p|q(1 + p−1/2)(1 + p−1)
√
X log(X/q3)

(
6.4 +

18.3 log(X/q3)

X1/6

√
q
)
.

Proof. Recall (4.1):

r2(X; q) =
∑

k2`r>X,
r|q,

(k`,q)=(k,`)=1

µ(rk)µ2(`)

rkϕ(k)`ϕ(`)
.

We split the summation on ` according to whether `q ≤ Y = X1/3/50 ≥ 14q or not, say
in Σ(`q ≤ Y ) + Σ(`q > Y ). For the second sum, we use Lemma 5.7 and 8.1, and get

Σ(`q > Y ) ≤
∑

`>Y/q,
(`,q)=1

µ2(`)

`ϕ(`)

∑
r|q

µ2(r)

r
0.3616

√
r`

X

≤ 0.3616× 2.28

∏
p|q(
√
p+ 1)

√
XY

≤
0.825

∏
p|q(
√
p+ 1)

√
XY

.

As for the first sum, we use Lemma 7.18 with q∗ = `q and K =
√
X/(`r), as well as

θ = 50/(1970)2/3, and get

∣∣Σ(`q ≤ Y )
∣∣ ≤ ∑

`≤Y/q,
(`,q)=1

µ2(`)

`ϕ(`)

∑
r|q

µ2(r)

r

∏
p|q`

(
1 +

1

p

) 1.89
√
r`√

X 3
2 log(X1/3/(q`))

+
5 q1/2

X3/4

∑
r|q

µ2(r)r−1/4
∑

`≤50Y/(rq2)1/3,
(`,q)=1

µ2(`)`5/4

`ϕ(`)

+
6.6 q1/2

X3/4

∑
r|q

µ2(r)r−1/4
∑

`≤θY/(rq2)1/3,
(`,q)=1

µ2(`)`5/4

`ϕ(`)

i.e., with Lemma 7.16, and Lemma 8.2∣∣Σ(`q ≤ Y )
∣∣ ≤ 1.89× 5.02× 2

3√
X log(X1/3/q)

∏
p|q

(1 + p−1/2)(1 + p−1) +
5 · 501/4 + 6.6θ1/4

X3/4

∏
p|q

(p1/3 + 1)4Y 1/4

≤ 6.33√
X log(X1/3/q)

∏
p|q

(1 + p−1/2)(1 + p−1) +
12.46

X2/3

∏
p|q

(1 + p1/4)

On putting the pieces together, we reach

|r2(X; q)| ≤ 6.33√
X log(X/q3)

∏
p|q

(1 + p−1/2)(1 + p−1) +
0.825× 501/2 + 12.46

X2/3

∏
p|q

(
√
p+ 1)

which one simplifies into

|r2(X; q)| ≤
∏
p|q(1 + p−1/2)(1 + p−1)
√
X log(X/q3)

(
6.33 +

18.3 log(X/q3)

X1/6

∏
p|q

√
p
)
.

�

Lemma 8.4. When 106 ≤ X ≤ 1.3 · 1011, we have

|r2(X; 1)| ≤ 1.03/X3/4.
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The quantity |r2(X; 1)|X3/4 is larger than 1.02 for some X inside [8 · 107, 9 · 107] and
some X inside [358 · 107, 359 · 107].

Proof. We wrote the script Cr2.gp, which we converted into a C-program with garbage
collecting via gp2c -g Cr2.gp > Cr2.gp.c. We then started gp -s600000000 -p1000000000,
installed the relevant function and let the program run. A very similar script was devel-
opped in Perl and used interval arithmetic and much more RAM memory. The C-program
stopped at 1.1 · 1011 while the Perl script went up to 1.3 · 1011 in about three months.
We describe the algorithm used, the times indicated are relevant to the C-program and
are of course much larger for its Perl counterpart.

We did part of these computations twice. The first batch went up to 2 · 1010 by
intervals of length 107, while the second batch went up to 1.1 ·1011 by intervals of 2 ·107.
The computation took about sixty-five hours in the first case and about ten days in the
second one. Let us give some details concerning the general process. We treated every
interval I = [k · 107, (k + 1) · 107] as a whole. A loop over primes ≤

√
k · 107 detected

integers from I divisible by such a prime, a second loop over primes ≤
√
k · 107 detected

integers from I divisible by a square of such a prime, a third loop over primes ≤ (k·107)1/3

discarded integers from I divisible by the cube of such a prime. Since we store the product
P (n) of all the divisors of the previous shape for a given n, the integers that are such
that P (n) < n are of the shape n = P (n) · n/P (n) where n/P (n) is a prime co-prime
with n/P (n). In this manner we avoided decomposing every integers in prime factors.
Each interval of 107 integers took about 120 seconds to proceed: closer to 115 at the
beginning of the range and closer to 125 at the end of it. The limitation of this method
is the live-memory size; with blocks of size 107 we used a bit less than 6 Gigaoctets. (For
the second batch: about 145 seconds at the beginning of the range and about 160 at the
end, and 12 Gigaoctets of RAM).

This drawing plots an approximation of

ρ(t) = max
t<u/107≤t+1

|r2(u; 1) · u3/4|

where t ranges the integers from [1, 1999]. The points are simply joined by segments. The
bottom horizontal line is x = 0, the top one is x = 1. One can see that the behavior
seems to vary less when the variable becomes larger. However a plot in logarithmic scale
would be somewhat less regular. Here is the plot of the value from 107 to 1.3 · 1011.
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Here is a sample of approximate values obtained, to enable checking.
t ρ(t)
1 0.8272
2 0.8435
3 0.6276
4 0.6920
5 0.6525
6 0.6044
7 0.5746
8 1.0249
9 0.9370

10 0.5984
11 0.4799
12 0.4245
13 0.7654
14 0.6972
15 0.5337

t ρ(t)
16 0.6010
17 0.2590
18 0.2065
19 0.2516
20 0.3682
21 0.3110
22 0.4012
23 0.2566
24 0.2861
25 0.2757
26 0.4099
27 0.4210
28 0.4534
29 0.4599
30 0.3937

t ρ(t)
31 0.3915
32 0.3759
33 0.4291
34 0.4437
35 0.4742
36 0.7747
37 0.7761
38 0.8418
39 0.9435
40 0.6719
41 0.7976
42 0.9013
43 0.7998
44 0.6974
45 0.6805

t ρ(t)
46 0.4391
47 0.1331
48 0.2502
49 0.3323
50 0.4734
51 0.4998
52 0.5777
53 0.6271
54 0.5811
55 0.6851
56 0.6705
57 0.7157
58 0.8566
59 0.7082
60 0.6620

t ρ(t)
61 0.4649
62 0.3243
63 0.1487
64 0.1577
65 0.3828
66 0.4008
67 0.2505
68 0.1798
69 0.1893
70 0.3084
71 0.3009
72 0.1862
73 0.2029
74 0.1363
75 0.2491

t ρ(t)
76 0.2475
77 0.3051
78 0.1468
79 0.1169
80 0.0629
81 0.0898
82 0.2136
83 0.2601
84 0.2455
85 0.1508
86 0.2774
87 0.4153
88 0.4321
89 0.5492
90 0.3114

�

Lemma 8.5. When 49 ≤ X, we have

|r2(X; 1)| ≤ 0.508/
√
X.

Proof. We use Lemma 8.3 when X ≥ 1.1 · 1011, Lemma 8.4 when 106 ≤ X ≤ 1.1 · 1011

and direct computation otherwise. �

Lemma 8.6. When 2 ≤ X, we have

|r2(X; 1)| ≤ 13√
X logX

.

Proof. We use Lemma 8.3 when X ≥ 1.3 · 1011, Lemma 8.4 when 106 ≤ X ≤ 1.1 · 1011

and direct computation otherwise. �

9. Proof of Theorem 1.2

We prove the first estimate. We use Theorem 1.3 with R′. The function G] is r2(X; 1)
defined in (4.1) and bounded in Lemma 8.5, while

∑
m≤D |g(m)| is r1(X) defined in (4.2)

and bounded in Lemma 6.1 with q = 1. When A0 ∈ [1, 2), we see that is is best to use
A0 around 5.526, with value 3.9800 · · · . We readily check that

G1(D) = logD + c0 +O∗
(
1/
√
D
)
, (2 ≤ D ≤ 100)

and that
G1(D) = logD + c0 +O∗

(
1.5/
√
D
)
, (1 ≤ D ≤ 100).
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The proof of the theorem is complete.

The second estimate is slightly more difficult to prove, though most of the work has
been done. We select A0 = logD in Theorem 1.3 together with Lemma 6.1 (with q = 1)
and Lemma 8.6. We have (in the notation of Theorem 1.3):
(9.1)

R ≤

∣∣∣∣∣∣
∑

1≤a≤A0

13
√
a

a
√
D log(D/a)

+
13
√
A0√

D log(D/A0)

(
log

A0

A0 − 1
− 6/11

A0 − 1

)∣∣∣∣∣∣+
6
114.95
√
DA0

.

We use 0 ≤ log A0

A0−1 ≤ 1/(A0−1) and (we single out the term with a = 1) the inequality∑
2≤a≤A0

1/
√
a ≤

∫ A0

1
dt/
√
t ≤ 1

2 (
√
A0 − 1). This yields

R
√
D ≤ 13

logD
+

13.2

2

√
A0 − 1

log(D/A0)
+

13
√
A0

log(D/A0)

5/11

A0 − 1
+

6
114.95
√
A0

.

We have to add 13
√
D
∫∞
D/A0

dt/[t3/2 log t]. This quantity is not more than 26/ log(D/A0).

Some numerical analysis shows that, when D ≥ exp(21.25),

13

logD
+

13

2

√
A0 − 1

log(D/A0)
+

13
√
A0

log(D/A0)

5/11

A0 − 1
+

6
114.95
√
A0

+
26

log(D/A0)
≤ 18.4√

A0

=
18.4√
logD

When D ≤ exp(21.25), the wanted estimate follows from the first part of Theorem 1.2.
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[27] O. Ramaré. From explicit estimates for the primes to explicit estimates for the Moebius function.

Acta Arith., 157(4):365–379, 2013.
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Laboratoire Paul Painlevé, CNRS / Université Lille 1, 59 655 Villeneuve d’Ascq, cedex,
France

E-mail address: ramare@math.univ-lille1.fr

Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India

E-mail address: akhileshp.clt@gmail.com


