
ON PRIME κ-TUPLES: SMALL VALUES OF κ

OLIVIER RAMARÉ

Abstract. Given a positive integer κ and an admissible κ-uplet (h1, · · · , hκ),

we prove that there exists infinitely many integers n such that the product
(n+ h1) · · · (n+ κ) has not more than n(κ) prime factors, where n(κ) is given

in a table. These values are at least as good as the all the previous ones,
and improve on them when κ = 8 (we have n(8) = 28) or κ ≥ 10. A similar

statement concerning the almost prime values of an integer polynomial is also

proved. Incidentaly we extend the results of [14] to cover the case of more
general sieve coefficients.

1. Introduction and some results

We continue here the work started in [14] on the weighted sieve, with an accent
on prime κ-tuples. Let us recall rapidly the question at hand. We select a positive
integer κ and κ integers h1 < · · · < hκ. We assume that the κ-uplet (h1, · · · , hκ)
is admissible, by which we mean that, for each prime p, the cardinality of the set
{h1, · · · , hκ mod p} is strictly less than p. The final goal is to prove that there
exist infinitely many integers n such that n + h1, · · · , n + hκ are simultaneously
prime. From a historical viewpoint, let us mention that the first appearance of this
conjecture seems to be A. Polignac’s memoir [1], where the author considers only
the case κ = 2, namely couples of primes (p, p′) with p′ = p + 2k. In case k = 1,
the terminology “twin” arose much later and is attributed in the first chapter of
[21] to the german mathematician P. Stäckel in the late 19th century. The general
conjecture known as the prime κ-tuples conjecture has been first stated by G.H.
Hardy & J.E. Littlewood in [7].

Such results are far out of reach, so we follow a line that we trace back to A.
Renyi in [15] (translated in [16]): we strive only to produce infinitely many integers
n such that the total number of prime factors of

(1) Π(h1,··· ,hκ)(n) =
∏

1≤i≤κ

(n+ hi)

is as small as possible. This problem is readily generalized by selecting a polynomial
P of degree κ, with integer coefficients and no fixed divisors (a condition equivalent
to the admissibility hypothesis of the κ-uplet), and aiming at proving the existence
of infinitely many integers such that P(n) has not more than h prime factors, where
h is the number of prime factors of P in Q[X] (see [20] and [19]). This problem is
equally out of reach.
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Theorem 1.1. Let (h1, · · · , hκ) be a κ-tuple of admissible shifts. We can find
infinitely many integers n such that

∏
1≤i≤κ(n+hi) has at most n(κ) prime factors,

where n(κ) is given in the table below.

These values are not valid for the case of a general weighted sieve of dimension κ
as we use a combinatorial trick that is numerically as efficient and sometimes more
efficient that Richert logarithmic coefficients.

In a general context, we have only these coefficients at our disposal. We just
specialize slightly the situation (see [5] or [3] for more details) and prove:

Theorem 1.2. Let P be a polynomial of degree κ, with integer coefficients and
without any fixed divisors. We can find infinitely many integers n such that P(n)
has at most nR(κ) prime factors, where nR(κ) is given in the table below.

In both these results, we do not count the prime factors according to their
multiplicity. We may have to add some hypothesis in order to be able to do so.

We included the results from [12], [22], [18], [8], [2], [9] and [3, table 11.1]. The
reader may also consult [5], [6] and [10] with benefit. It emerges from this table
that the method we propose equals the best of the others for small values of κ and
start showing its teeth when κ = 8.
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nR(κ) n(κ)

1 3 2 2
2 9 6 5 5 5 5 5
3 14 10 9 8 8 9 8

4 20 14 14 13 12 12 12 12
5 27 18 18 17 16 16 16 16
6 33 23 23 21 20 20 20 20

7 40 27 26 25 24 24 24
8 46 32 32 29 29 29 28
9 53 37 39 34 33 33 33

10 60 42 45 39 38 37 37
11 44 42 42
12 48 47 46
13 53 51 51

14 58 56 56

15 63 61 60
16 69 66 65

17 74 70 70

18 80 75 75
19 85 80 80

20 91 85 85

21 97 91 90
22 103 96 96

Notice that the shown values are upper bounds for what is accessible via the
method developped here, though we believe our choice of parameters to be very
close to the optimal one.

Here is a corollary is a somewhat less specialized language:

Corollary 1.1. There are infinitely many integers n such that the product

n(n+ 2)(n+ 6)(n+ 8)(n+ 12)(n+ 18)(n+ 20)(n+ 26)
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has at most 28 disctinct prime factors.

This means that each factor has on average 3.5 prime factors. The prime κ-tuple
conjecture asserts that 28 could be replaced by 8, as examplified by

11, 13, 17, 19, 23, 29, 31, 37.

The main conjecture thus has (1+o(1))κ as an ultimate goal, while the asymptotic
in Theorem 1.1 is of size (1 + o(1))κLog κ as shown in [14]. The asymptotic is thus
in a sense as “bad” as the one corresponding for other methods, but the numerical
approach detailled here shows that we recover here the best of the previously known
reults, and even better, even for small values of κ. Since we are not able to produce
optimal choice of the parameters, we provide here numerical data so that later
mathematicians may be able to come up with a fuller understanding of the situation.

The proof (and this paper in itself) relies heavily on [14] (see section 3). We only
specify here that, in the course of the proof, we study a sum

S̃
(
(ad∗)d∗

)
=
∑
n≤N

c(n)β(n)

with c(n) =
∑

d∗|Π(h1,··· ,hκ)(n)

ad∗ and β(n) =

( ∑
d|Π(h1,··· ,hκ)(n)

λd

)2

and show that, for proper choices of all the involved parameters, S̃((ad∗)d∗) tends
to infinity (read section 5 for the full argument). Once κ is fixed, there are essen-
tially two parameters that have to be chosen in this approach: the sequence (ad∗)
occurring in the sieve coefficient c(n) and the weight function w that appears in
the host sequence β(n). In [14], we restricted the choice of (ad∗) to the sequence
ar[P ] of integers that are the product of exactly r prime factors, all distincts and
all not more than P . Our first task here is to extend this choice to ar[P ; g], the
sequence that takes value

∏
i g
(
(Log pi)/LogP

)
on products of exactly r prime

factors p1p2 . . . pr, again all distincts and all not more than P . The function g will
be assumed to be regular enough. This will enable us to handle Richert’s weights
as detailed below.

The second and main point is the choice of the weight function w that is used to
build (β(n)). In [14], we restricted our attention to the choice w(t) = max(0, 1−t)ν .
We investigate here more thoroughly the choice of w in case r = 1. We produce
a general formula that leads to an extremal problem in w, but we are not able
to determine a best choice (if one exists). We thus ran computations (and these
require much more complicated formulae) when κ is fixed; we report here the results
as well as the formulae we have used. Concerning (β(n)), the reader should look at
[13, Chapter 11] and at [4].

Notation. We shall use the following four quadratic forms:

(2) I1(w, κ) =

∫ 1

0

tκ−1w(t)2dt

is the norm by which we shall measure w. We shall use

(3) K1(w, κ) = −
∫ 1

0

Log(1− t) tκ−1w(t)2dt,
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as well as

(4) I2(w, κ) = 2

∫
0≤t≤t2≤1

(w(t2)− w(t1))2

t2 − t1
tκ−1
1 dt1dt2,

(5) J2(w, κ) = 2

∫
0≤t1≤t2≤1

w′(t1)w′(t2)(1− t2)tκ1dt1dt2.

2. A rather smooth sum over primes

In [14, Section 8], we proved some general Lemmas pertaining to sums over
primes. It is better to generalize them some more. We consider a function φ that
satisfies:

(H1(φ)) φ has a finite number of bounded discontinuities.
(H2(φ)) φ is piecewise C1 and

(6) W (φ, t) = max
2≤y≤t

(
|φ(y)|+ Log y

y

∫ y

2

x|φ′(x)|dx
Log x

)
<∞

In particular, φ is a finite linear combination of functions φk whose support is an
interval, satisfies W (φk, t) <∞ and is C1 on its support. The supports of all these
φk are furthermore disjoint. For such a function φ, the conclusions of [14, Lemma
8.1, Lemma 8.3] are valid, and this Lemma thus holds true for φ:

Lemma 2.1. For every B ≥ 1, we have∑
P0<p≤t

φ(p) =

∫ t

P0

φ(t)dt

Log t
+OB

(
tW (φ, t)

RB Log t

)
and ∑

P0<p≤t

φ(p)/p =

∫ t

P0

φ(t)dt

tLog t
+OB

(
W (φ, t)

RB Log t

)
.

This lemma will replace [14, Lemma 8.3].

3. A generalization of the weighted sieve Theorem

We prove here a generalization of [14, Theorem 1.2]. This part relies heavily
on [14]. We assume the function g to be have a finite number of bounded dis-
continuities, to be C1 per pieces ad to have a bounded derivative. The function
φ(t) = g((Log t)/LogP ) satisfies hypotheses (H1(φ)) and (H2(φ)). Given some ad-
missible κ-tuple (h1, · · · , hκ) and recalling (1), we considered, when i ∈ {1, · · · , κ},
the quantity

(7) Si((ad∗)d∗) =
∑
n≤N

( ∑
d∗|n+hi

ad∗

)
β(n) with β(n) =

( ∑
d|Π(h1,··· ,hκ)(n)

λd

)2

.

which is generalized in [14, (2.5)]. There are essentially two interesting cases:
looking at the condition d∗|n + hi or looking more classically at the condition
d∗|Π(h1,··· ,hκ)(n). Both cases are covered in the general sum [14, (2.5)]. In this lat-

ter case, we denote the sum by S̃ and hypotheses (H6) and even (H7) are satisfied
with κ′ = κ. The final result will be multiplied by κ′r as is evident from [14, (10.3)].

Let us now turn our attention to the modification of ad∗ we mentionned above.
The first remark is that the main assumptions for a long part of [14] are (H5) and
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(H6). If the support of ad∗ is limited to integers having at most r prime factors
and |ad∗ | is bounded (by a constant that may depend on r), the bounds provided
there for the error terms are valid here. From [14, Section 9], the sequence (ad∗) is
specialized. We select

(8) ar[P ; g](p1 · · · pr) = g̃(p1 · · · pr) g̃(p1 · · · pr) =
∏

1≤i≤r

g
(
(Log pi)/LogP

)
when the primes pi are all distinct and less than P , and ar[P ; g](d∗) = 0 otherwise,
where g is some integrable function, that is furthermore bounded in absolute value.
The fact that we multiply the expression by ar[P ](p1 · · · pr) only means that the
primes pi are distinct and all below P . We define

(9) L (ε, τ) =

∫ 1

ε/τ

g(u)du/u� Log(τ/ε).

By Lemma 2.1, we get

(10)
∑

P0<p≤P

g
(
(Log p)/LogP

)
/p = L (ε, τ) +O(1/LogP0).

We can then continue the analysis of [14, Section 9], but with L (ε, τ) instead of
Log(τ/ε), getting

Z2S
(3)
0 (a)

/(
Aκ′r

)
=∑?

`0,`1,`2,
ω(`0`1`2)≤r

µ(`1)µ(`2)µ2(`0`1`2)

`0`1`2
Θ(`0`1, `0`2)g̃(`0`1`2)

Log(τ/ε)r−ω(`0`1`2)

(r − ω(`0`1`2))!

+O
(
Z Log(τ/ε)2r/P0

)
.

In [14, (10.1)], we also have to add a factor g̃(`0`1`2) as above, so that, in the next
formula, the term

∏
i dxi

∏
i dyi

∏
i dzi is to be replaced by∏

i

g((Log xi)/LogP )dxi
∏
i

g((Log yi)/LogP )dyi
∏
i

g((Log zi)/LogP )dzi.

The main consequence is that in [14, (10.2)], the term
∏
i dui

∏
i dvi

∏
i dwi is to

be replaced by

(11)
∏
i

g(ui/τ)dui
∏
i

g(vi/τ)dvi
∏
i

g(wi/τ)dwi.

The next point in [14, Section 12], equations before and after (12.6). We reach [14,
(12.7)] where we should replace Log(τ/ε) by L (ε, τ) as expected. Apart from these
rather superficial changes, nothing is to be modified in [14, Sections 12-13]. As a
conclusion, [14, (14.1)] still holds true when

∏
i dui

∏
i dvi

∏
i dwi is again replaced
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by (11), i.e.

(12) Gκ,r(t1, t2, τ, g) = lim
ε→0

∑
b+c+d=r

∑
B⊂{1,··· ,b},
C⊂{1,··· ,c},
D⊂{1,··· ,d}

(−1)b+|B|+|C|+|D|

b!c!d!

∫
ε≤u1,··· ,ub≤τ,
ε≤v1,··· ,vc≤τ,
ε≤w1,··· ,wd≤τ

(
min(t1 −

∑
i∈C

vi, t2 −
∑
i∈D

wi)−
∑
i∈B

ui
)+κ

∏
i g(ui/τ)dui

∏
i g(vi/τ)dvi

∏
i g(wi/τ)dwi∏

i ui
∏
i vi
∏
i wi

.

Here is the result we have reached:

Theorem 3.1. Let four parameters be given: a non-negative integer r, an integer
parameter κ, a parameter τ > 0, a function g over [0, 1] that has a finite number
of bounded discontinuities, is piecewise C1 and has a bounded derivative. There
exists a bounded continuous function Gκ,r(t1, t2, τ, g) with the following property.
Let (h1, · · · , hκ) be an admissible κ-tuple, let Q ≥ 1 be a parameter and w be a
function as above. We consider the sum S(ar[Q

τ ; g]) from (7) when β(n) is as
above. We have

S̃(ar[Q
τ ; g])

Nκr/(LogQ)κ
= C (h1, · · · , hκ)

∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,r(t1, t2, τ, g)dt1dt2

+O
(
1/(LogQ)1/9

)
+O(Qrτ+2N−1(LogQ)κ)

where the constant C (h1, · · · , hκ) is given by

C (h1, · · · , hκ) =
∏
p≥2

(
1− #{h1, · · · , hκ mod p}

p

)(
1− 1

p

)−κ
.

The expression we find for Gκ,r(t1, t2, τ, g) is fairly explicit but too complicated
to get even the asymptotic dependence in κ. Let us summarize here the properties
we prove:

(1) Gκ,r is symetrical in t1 and t2, i.e. Gκ,r(t1, t2, τ, g) = Gκ,r(t2, t1, τ, g).
(2) Gκ,r(t1, 0, τ, g) = Gκ,r(0, t2, τ, g) = 0 and we extend Gκ,r(t1, t2, τ, g) to

negative values of t1 and/or t2 by attributing it the value 0.
(3) Gκ,r is a bounded continuous function.
(4) When τ > 0, we have Gκ,0(t1, t2, τ, g) = min(t1, t2)κ and

(13)

∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,0(t1, t2, τ)dt1dt2 = κ

∫ 1

0

w(t)2tκ−1dt.

Note that we found no recursion formula similar to [14, (1.3)]. However, when Gκ,r
is twice differentiable in the domain 0 ≤ t1 ≤ t2 ≤ τ , we have the exact analog of
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[14, (14.2)], namely

(14)

∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,r(t1, t2, τ, g)dt1dt2

=

∫ 1

0

w(t1)2 dGκ,r(t1, 1, τ, g)

dt1
dt1

− 1
2

∫
0≤t1,t2≤1

(w(t2)− w(t1))2 d
2Gκ,r(t1, t2, τ, g)

dt1dt2
dt1dt2.

4. Handling Richert’s logarithmic coefficients

Richert introduced in [17] logarithmic sieve coefficients; they have been used in
our context by [18]. As far I can see, they do not lead to asymptotically smaller
values for n(κ) or nR(κ). They are however numerically efficient.

We handle these logarithmic coefficients by selecting g(x) = x. We restrict our
attention to the case r = 1, as it will be enough for the sequel. Our starting point
is equation (12). We get

(15) Gκ,1(t1, t2, τ, x)τ =
∑

b+c+d=1

∑
B⊂{1,··· ,b},
C⊂{1,··· ,c},
D⊂{1,··· ,d}

(−1)b+|B|+|C|+|D|

b!c!d!

∫
0≤u1,··· ,ub≤τ,
0≤v1,··· ,vc≤τ,
0≤w1,··· ,wd≤τ

(
min

(
t1 −

∑
i∈C

vi, t2 −
∑
i∈D

wi
)
−
∑
i∈B

ui

)+κ∏
i

dui
∏
i

dvi
∏
i

dwi.

We unfold it and get, assuming that t1 ≤ t2,

Gκ,1(t1, t2, τ, x) = tκ1

+

∫ τ

0

(
min(t1 − u, t2 − u)+κ −min(t1 − u, t2)+κ −min(t1, t2 − u)+κ

)du
τ

where min(a, b)+κ is to be understood as max(0,min(a, b))κ. This expression sim-
plifies in

Gκ,1(t1, t2, τ, x) =

{
0 when τ ≤ t2 − t1,
tκ1 −

tκ1 (t2−t1)
τ − tκ+1

1 −(t2−min(τ,t2))κ+1

(κ+1)τ when t2 − t1 ≤ τ .

We shall only use the case τ ≥ 1 (i.e. P ≥ Q), in which we have access to the
shorter form

(16) Gκ,1(t1, t2, τ, x) = tκ1 −
tκ1 t2
τ

+
κtκ+1

1

(κ+ 1)τ
, (0 ≤ t1 ≤ t2 ≤ 1 ≤ τ).

We readily deduce from this expression that∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,1(t1, t2, τ, x)dt1dt2 = κ

∫ 1

0

w2(t)tκ−1dt

+
κ

τ

∫ 1

0

w2(t)tκdt− 2

τ

∫
0≤t1≤t2≤1

w′(t1)w′(t2)tκ1 t2dt1dt2.



8 O. RAMARÉ

We prefer to write it in the form:∫
0≤t1,t2≤1

w′(t1)w′(t2)Gκ,1(t1, t2, τ, x)dt1dt2 = κ

∫ 1

0

w2(t)tκ−1dt

+
κ

τ

∫ 1

0

w2(t)tκdt− κ
τ

∫ 1

0

w2(t)tκ−1dt+
2

τ

∫
0≤t1≤t2≤1

w′(t1)w′(t2)tκ1 (1−t2)dt1dt2.

5. Using Richert’s logarithmic coefficients

We can assume without loss of generality that hi ≤ 0 for every i. We use the
sieve coefficients given by:

(17) c(n) = b−
∑
p|m,
p≤P

Log(P/p)

LogP

where m = Π(h1,h2,··· ,hκ)(n). To infer results from these sieve coefficients, we notice
that ∑

p|m,
p≤P

Log(P/p) ≥
∑
p|m

LogP − Logm ≥ ω(m) LogP − Logm

yielding (this is to get the exact inequality Logm ≤ κLogN that we have assumed
that hi ≤ 0 for every i):

(18) c(n) ≤ b− ω
(
Π(h1,··· ,hκ)(n)

)
+ κ

LogN

LogP
.

We consider the quantity

(19)
(
bS̃(a0[Qτ ])− S̃(a1[Qτ ]) + S̃(a1[Qτ ;x])

)/(
κ2NC (h1, · · · , hκ)/(LogQ)κ

)
.

This quantity equals (recall [14, (18.2)])

(20)
b

κ
I1(w, κ)− Log τ I1(w, κ)−K1(w, κ)− I2(w, κ)

+ I1(w, κ) +
I1(w, κ+ 1)− I1(κ,w)

τ
+
J2(w, κ)

τκ

+O
(
1/(LogQ)1/9

)
+O(Qτ+2N−1(LogQ)κ).

Let ε > 0 be given. The main term is strictly positive when

(21)
b

κ
≥ ε+ Log τ − 1 +

1

τ
+
K1(w, κ) + I2(w, κ)

I1(w, κ)
− I1(w, κ+ 1) + (1/κ)J2(w, κ)

τI1(w, κ)
.

We further take Q = Nθ with 1/θ = τ + 2 + εθ. This ensures in particular that the
error term in (20). We ensure in this way the existence of infinitely many integers
n for which c(n) > 0. On using (18), we get

ω
(
Π(h1,··· ,hκ)(n)

)
< b+ κ

LogN

LogP
= b+ 1 +

2

τ
+ ε.

After some time, we get

ω
(
Π(h1,··· ,hκ)(n)

)
/κ < Log τ +

3

τ
+ 2ε

+
K1(w, κ) + I2(w, κ)

I1(w, κ)
− I1(w, κ+ 1) + (1/κ)J2(w, κ)

τI1(w, κ)
.
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We let ε go to zero and get finally

(22) ω
(
Π(h1,··· ,hκ)(n)

)
/κ ≤ Log τ +

3

τ

+
K1(w, κ) + I2(w, κ)

I1(w, κ)
− I1(w, κ+ 1) + (1/κ)J2(w, κ)

τI1(w, κ)
.

We have thus reached a minimisation problem in w. We do not know how to solve
it. We decided in [14] to select an explicit family of weights and carry out the
formal computations. We adopt here the viewpoint of numerical investigations.

6. ... Or not!

When using Richert’s logarithmic coefficients as in the preceding section, we do
not use that fact that Π(h1,h2,··· ,hκ)(n) is split. The simpler approach we propose
here uses this fact. We again assume without loss of generality that hi ≤ 0 for
every i.

We use the coefficients historically introduced in [11] and which are

c(n) = b−
∑

p|Π(h1,h2,··· ,hκ)(n),
p≤P

1.

Each factor n+ hi can have at most⌊
LogN

LogP

⌋
prime factors larger than P . We consider the sum

(23)
(
bS̃(a0[Qτ ])− S̃(a1[Qτ ])

)/(
κ2NC (h1, · · · , hκ)/(LogQ)κ

)
.

This quantity equals (recall [14, (18.2)])

(24)
b

κ
I1(w, κ)− Log τ I1(w, κ)−K1(w, κ)− I2(w, κ)

+O
(
1/(LogQ)1/9

)
+O(Qτ+2N−1(LogQ)κ).

We again take Q = Nθ with 1/θ = τ + 2 + εθ. This ensures in particular that the
error term above is indeed negligible

This time, we detect integers having at most

bbc+ κ

⌊
LogN

LogP

⌋
= bbc+ κ

⌊
1 +

2

τ
+ ε

⌋
prime factors provided that

(25)
b

κ
≥ Log τ + ε+

K1(w, κ) + I2(w, κ)

I1(w, κ)
.

We let ε go to zero and finally get

(26) ω
(
Π(h1,··· ,hκ)(n)

)
≤
⌊
κLog τ + κ

K1(w, κ) + I2(w, κ)

I1(w, κ)

⌋
+ κ

⌊
1 +

2

τ

⌋
.

As shown in the main table, this simple trick enables us to reach at a lesser cost
(and sometimes improve on) the values obtained by using Richert sieve coefficients.
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Let us state explicitely the optimization problem we have reached:

Determine the minimum of

−
∫ 1

0

Log(1− t) tκ−1w(t)2dt+ 2

∫
0≤t1≤t2≤1

(w(t2)− w(t1))2

t2 − t1
tκ−1
1 dt1dt2

under the condition
∫ 1

0
tκ−1w(t)2dt = 1.

7. The bilinear forms associated with I2 and J2

We deploy I2 and J2 defined respectively in (4) and (5) in:

(27) I∗2 (w1, w2, κ) = 2

∫
0≤t≤t2≤1

(w1(t2)− w1(t1))(w2(t2)− w2(t1))

t2 − t1
tκ−1
1 dt1dt2,

and

(28) J∗2 (w1, w2, κ) = 2

∫
0≤t1≤t2≤1

w′1(t1)w′2(t2)(1− t2)tκ1dt1dt2.

We want here an expression of J∗2 that avoids the notion of derivative. We write

1
2J
∗
2 (w1, w2, κ) =

∫ 1

0

w′1(t1)

∫ 1

t1

(w2(t2)− w2(t1))dt2t
κ
1dt1

=

∫ 1

0

∫ t2

0

(w2(t2)− w2(t1))w′1(t1)tκ1dt1dt2

=

∫ 1

0

∫ t2

0

(w2(t2)− w2(t1))(w1(t2)− w1(t1))tκ1dt1dt2.

8. Extending the class of possible weights

Inequalities (22) and (26) a priori require w to be continuous, piecewise dif-
ferentiable with a bounded derivative and such that w(1) = 0. This class is al-
most enough for our purpose, aside from the last condition, but extending it is
not difficult. The factor I2(w, κ) is the main trouble. One can use for w any
L2([0, 1], tκ−1 − tκ−1 Log(1− t)) weight such that I2(w, κ) <∞. Indeed, instead of
I2(w, κ), we may consider

I2(w, κ, η) =

∫ 1

0

∫ 1

t

(w(u)− w(t))2

u− t+ η
dutκ−1dt

and replace I2(w, κ) by I2(w, κ, 1/LogP ) in (20) and (24) above (that’s in fact the
quantity that appears in the proof!). It is then straightforward to approximate w
by C1 functions. We finally notice that I2(w, κ, η) ≤ I2(w, κ) when η > 0. The
Lebesgue Theorem of dominated convergence then applies.

The class obtained is a vector space and exact computations contained in the next
chapter shows that it contains piecewise affine (and even not necessarily continuous)
function. As a matter of fact, computations tend to show that there are optimal
functions, and that these are very regular. It is theoretically more satisfactory to
have a larger class, and may help in studying the problem.
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9. Piecewise affine weights

Since we are not able to get an explicit solution, if it exists, to the optimization
problem arising from (22) or (26), we do some direct optimization for small values
of κ. We look only at continuous and locally affine functions. Note that they are
Lipschitz so the definition of I2 does not present any problem. Note furthermore
that the functions we shall choose at the end are non-increasing, indeed ensuring
that |λ̃d| ≤ 1, thanks to [14, Lemma 4.1].

Our strategy runs as follows: we split the interval [0, 1] is a finite number of
intervals, say 0 = a1 < a2 < · · · < aI = 1 and fix a value of τ . Given a (I+1)-tuple
of real numbers (α0, α1, · · · , αI), we consider the function w that is affine on each
(ai, ai+1) and takes value αi at ai. If we ignore the integer parts in (22) and (26),
the upper bound is a quadratic form in the parameter (α0, α1, · · · , αI) divided by
another quadratic form (namely I1(w, κ)). We thus optimize the quadratic form
of the numerator under the condition I1(w, κ) = 1; this is a classical problem. We
determine an extremal point w and then recompute the upper bound with this
function, but this time by inserting the integer parts.

The object of this section is to work out formulae for the quadratic forms that
appear.

Note that in what follows we consider chunks of two functions, one with param-
eters a, α, b, β and a second one with parameters a′, α′, b′, β′. We will shorthen the
first by calling it w and the latter by calling it w′, which does not have anything to
do with the derivative!

We select functions

(29) wa,α,b,β =

{
0 when t /∈ [a, b],
(β−α)t+αb−βa

b−a = γt+ η when t ∈ [a, b].

from which we build

(30) w =
∑

1≤i≤I

wai,αi,bi,βi

with 0 = a1 < b1 = a2 < b2 = a3 < · · · < bI = 1 and βi = αi+1.

Formulae for I1 and K1. We immediately see from (2) that

(31) I1(wa,α,b,β , κ) = γ2 b
κ+2 − aκ+2

κ+ 2
+ 2γη

bκ+1 − aκ+1

κ+ 1
+ η2 b

κ − aκ

κ
.

The computation of K1 is equaly trivial but the wwiting will be easier by setting

(32) Σ(x, κ) = −
∫ 1

0

tκ−1 Log(1− t)dt =
∑
`≥1

xκ+`

`(`+ κ)
.

From (3), we readily find that

K1(wa,α,b,β , κ) = γ2(Σ(b, κ+ 2)− Σ(a, κ+ 2))

+ 2γη(Σ(b, κ+ 1)− Σ(a, κ+ 1)) + η2(Σ(b, κ)− Σ(a, κ)).
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Formulae for I2. This quantity is rather intricate to evaluate. Let us first assume
that 0 ≤ a ≤ b ≤ a′ ≤ b′ ≤ 1. We find in this case that

1
2I2(wa,α,b,β , wa′,α′,b′,β′ , κ) =

∫ b′

a

∫ b′

t

(w′(u)− w′(t))(w(u)− w(t))

u− t
dutκ−1dt

=

∫ b

a

∫ b′

a′

(w′(u)− w′(t))(w(u)− w(t))

u− t
dutκ−1dt

+

∫ b′

b

∫ b′

t

(w′(u)− w′(t))(w(u)− w(t))

u− t
dutκ−1dt

= −
∫ b

a

∫ b′

a′

w′(u)w(t)

u− t
dutκ−1dt

= −
∫ b

a

(
γ′(b′ − a′) + (γ′t+ η′) Log

b′ − t
a′ − t

)
w(t)tκ−1dt

so that we have reached the formula

1
2I2(wa,α,b,β , wa′,α′,b′,β′ , κ) = −γ′(b′ − a′)

(
γ(bκ+1 − aκ+1)

κ+ 1
+
η(bκ − aκ)

κ

)
− γ′γp(κ+ 2, a, b, a′b′)− (γη′ + ηγ′)p(κ, a, b, a′b′)− η′ηp(κ, a, b, a′b′)

where, to render the writing less cumbersome, we have used the auxiliary function
p defined by:

(33) p(κ, a, b, a′b′) =

∫ b

a

tκ−1 Log
b′ − t
a′ − t

dt

=
bκ − aκ

κ
Log

b′

a′
− b′κ

(
Σ
(
κ,
b

b′

)
− Σ

(
κ,
a

b′

))
+ a′κ

(
Σ
(
κ,

b

a′

)
− Σ

(
κ,
a

a′

))
.

We next have to handle the case when wa,α,b,β = wa′,α′,b′,β′ . In that case

1
2I2(wa,α,b,β , wa,α,b,β , κ) =

∫ a

0

∫ b

a

w(u)2

u− t
dutκ−1dt

+

∫ b

a

∫ 1

t

(w(u)− w(t))(w(u)− w(t))

u− t
dutκ−1dt+

∫ 1

b

∫ 1

t

(w(u)− w(t))w(u)

u− t
dutκ−1dt

= W +

∫ b

a

∫ b

t

(w(u)− w(t))(w(u)− w(t))

u− t
dutκ−1dt+

∫ b

a

∫ 1

b

w(t)w(t)

u− t
dutκ−1dt

= W + γ2

∫ b

a

(b− t)2

2
tκ−1dt+

∫ b

a

w(t)2tκ−1 Log
1− t
b− t

dt

= W +
γ2

2

(
b2(bκ − aκ)

κ
− 2

b(bκ+1 − aκ+1)

κ+ 1
+
bκ+2 − aκ+2

κ+ 2

)
+ γ2p(κ+ 2, a, b, b, 1) + 2γηp(κ+ 1, a, b, b, 1) + η2p(κ, a, b, b, 1)
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where W is defined and computed now:

W =

∫ a

0

∫ b

a

w(u)2

u− t
dutκ−1dt

=

∫ a

0

(
γ2 b

2 − a2

2
+ (γ2t+ 2γη)(b− a) + (γt+ eta)2 Log

b− t
a− t

)
tκ−1dt

=

(
γ2 b

2 − a2

2

)
aκ

κ
+ γ2(b− a)

aκ+1

κ+ 1
+ 2γη(b− a)

aκ

κ

+γ2p(κ+ 2, 0, a, a, b) + 2ηγp(κ+ 1, 0, a, a, b) + η2p(κ, 0, a, a, b).

Formulae for J2. The quantity J2 is again rather intricate to evaluete explicitly.
We separate two cases. In the first case we assume that 0 ≤ a ≤ b ≤ a′ ≤ b′ ≤ 1.
We get:

1
2J2(wa,α,b,β , wa′,α′,b′,β′ , κ) =

∫ b′

a

∫ b′

t

(w′(u)− w′(t))(w(u)− w(t))dutκ−1dt

=

(∫ b

a

∫ b′

a′
+

∫ b′

b

∫ b′

t

)
(w′(u)− w′(t))(w(u)− w(t))dutκ−1dt

= −
∫ b

a

∫ b′

a′
w′(u)w(t)dutκ−1dt

= −
(
γ′
b′2 − a′2

2
+ η′(b′ − a′)

)(
γ
bκ+1 − aκ+1

κ+ 1
+ η

bκ − aκ

κ

)
.

This settles the case a 6= a′. We next have to handle the case when wa,α,b,β =
wa′,α′,b′,β′ . In that case

1
2J2(wa,α,b,β , wa,α,b,β , κ) =

∫ a

0

∫ b

a

w(u)2dutκ−1dt

+

∫ b

a

∫ 1

t

(w(u)−w(t))(w(u)−w(t))dutκ−1dt+

∫ 1

b

∫ 1

t

(w(u)−w(t))w(u)dutκ−1dt

so that

1
2J2(wa,α,b,β , wa,α,b,β , κ) =

aκ

κ

(
γ2 b

3 − a3

3
+ 2γη

b2 − a2

2
+ η2(b− a)

)
+

∫ b

a

∫ b

t

(w(u)− w(t))(w(u)− w(t))dutκ−1dt+

∫ b

a

∫ 1

b

w(t)w(t)dutκ−1dt

=
aκ

κ

(
γ2 b

3 − a3

3
+ 2γη

b2 − a2

2
+ η2(b− a)

)
+ γ2

∫ b

a

(b− t)3

3
tκ−1dt+ (1− b)

∫ b

a

w(t)2tκ−1dt
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which results in the following expression

1
2J2(wa,α,b,β , wa,α,b,β , κ) =

aκ

κ

(
γ2 b

3 − a3

3
+ 2γη

b2 − a2

2
+ η2(b− a)

)
+
γ2

3

(
b3(bκ − aκ)

κ
− 3

b2(bκ+1 − aκ+1)

κ+ 1
+ 3

b(bκ+2 − aκ+2)

κ+ 2
− bκ+3 − aκ+3

κ+ 3

)
+ (1− b)I1(wa,α,b,β , wa,α,b,β , κ).

10. Results

We ran a Pari/GP-script to get the results below. The process has been to
optimize the resulting quadratic form under the constraint I1(κ,w) = 1; this is a
classical problem. We then found rational coefficients close enough to the optimal
ones obtained and recomputed the resulting n(κ) (resp. nR(κ)).

We do not give all the parameters we used to get the main table, but detailled
three examples.

Case κ = 1. This first example is here only for the reader to check formulae and
compare his/her results with ours. We reach n(1) = 2 with 1/τ = 0.15 and the
simplest affine function w that takes the values

w(0) = 1, w(1) = 133/500.

Case κ = 3. We reach n(3) = 8 and nR(3) = 9. On splitting the interval [0, 1] in
25 sub-intervals of length 1/25, here is a plot of the function we used for n(3) and
nR(3): The function corresponding to n(3) is slightly below the one used for nR(3),

1/4 1/2 3/4 1

1/2

1

kappa = 3

but both are extremely close one to another. Two things appear numerically, when



ON PRIME κ-TUPLES: SMALL VALUES OF κ 15

one increasing the number of pieces into which we decompose the unit interval:
first the optimal functions seem to converge towards a given function; secondly, the
value κw(1) does not approach zero.

Case κ = 12. We reach n(12) = 46 and nR(12) = 47. On splitting again the interval
[0, 1] in 25 sub-intervals of length 1/25, here is a plot of the function we used for
n(12) and nR(12): The function corresponding to n(12) is slightly below the one

1/4 1/2 3/4 1

1/2

1

kappa = 12

used for nR(12), but both are extremely close one to another. Two things appear
numerically, when one increasing the number of pieces into which we decompose
the unit interval: first the optimal functions seem to converge towards a value;
secondly, the value w(1) does not approach zero.

In order to enable checking, here is a simple function that leads to nR(12) = 47:
it is the function that is affine on each of the interval [0, 1/3], [1/3, 2/3] and [2/3, 1]
and that takes the four values:

t 0 1/3 2/3 1
w(t) 1 0.1998 0.029 0.0005

(1/τ = 0.38).

To reach n(3) = 46, we use the function w that is affine on each of the interval
[i/5, (i+ 1)/5], when i ∈ {0, · · · , 4} and that takes the values:

t 0 1/5 2/5 3/5 4/5 1
w(t) 1 0.37037 0.13157 0.04051 0.00952 0.00051

and with the choice 1/τ = 0.48.

General remarks. We gather here some comments on the numerical results. When
κ increased, the optimal function normalized by w(0) = 1 tends to dip faster when
κ increases. We investigated the slope at t = 0, and its seems to be
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