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IntrodutionThe idea of the large sieve appeared for the �rst time in the foun-dational paper of (Linnik, 1941). Later (Rényi, 1950), (Barban, 1964),(Roth, 1965), (Bombieri, 1965), (Davenport & Halberstam, 1966b) de-veloped it and in partiular, two distint parts emerged from these works:(1) An analyti inequality for the values over a well-spaed set ofpoints of a trigonometri polynomial S(α) =
∑

1≤n≤N une(nα),whih, in arithmetial situations, most often redues to(0.1) ∑

q≤Q

∑

amod∗q

∣

∣S(a/q)
∣

∣

2 ≤ ∆
∑

n

|un|2for some ∆ depending on the length N of the trigonometripolynomial and on Q. The best value in a general ontext is
∆ = N − 1 +Q2 obtained independently in (Selberg, 1972) andin (Montgomery & Vaughan, 1973).(2) An arithmetial interpretation for∑amod∗q

∣

∣S(a/q)
∣

∣

2, where thistime, information on the distribution of (un) modulo q is intro-dued. The most popular approah goes through a lower boundand is due to Montgomery, leading to what is sometimes referredto as Montgomery's sieve, by referene to (Montgomery, 1968).Today the terminology large sieve refers to a ombination of the twoaforementioned steps. We refer the reader to the exellent leture notes(Montgomery, 1971) and the survey paper (Montgomery, 1978) for theearly part of the development, but ite here the papers of (Bombieri &Davenport, 1968) and (Bombieri, 1971).Almost simultaneously, (Selberg, 1949) introdued another way ofsieving, whih we now desribe rapidly in the following simple form forthe primes: to �nd an upper bound for the number of primes in theinterval ]
√
N,N ], onsider the following inequality(0.2) ∑

√
N<p≤N

1 ≤
∑

n≤N

(

∑

d|n
λd

)2valid for any λd's subjet to λ1 = 1 and λd = 0 if d > z for someparameter z ≤ √N . This leads to the determination of the minimum ofthe quadrati form on the R.H.S. of (0.2), a method for whih Selbergdesigned an appropriate elementary method.



2 0 IntrodutionThe similarity between the large sieve proedure and Selberg's is farfrom obvious, but one readily notes that both of these are based on an L2-kind of argument, and that both rely on an arithmetial inequality whihis ontrolled only extremely loosely. Moreover it turns out that both,despite their simpliity, lead to best results in sieve theory (provided thesieve dimension is ≥ 1).That both of these proedures were related beame apparent at leastin the early seventies as an be seen from the papers of (Huxley, 1972b),(Kobayashi, 1973) and (Motohashi, 1977), so word went around thatboth sieves are dual to eah other, at least in a vague sense, though thepapers quoted above of ourse give a preise meaning to this suggestedduality. Things get somewhat more intriate if one noties that the largesieve inequality may be proved via its dual form as in (Elliott, 1971). Letus mention here that this very �exible proess usually leads to boundsof good quality.Our aim in these letures is to develop a unique setting for the largesieve and Selberg sieve, based on hermitian inequalities. This an beseen as an elaboration of ideas due to Selberg, as exposed in (Bombieri,1987). Along the way, we shall meet, reognize and show links betweennotions used at di�erent plaes.In the �rst stage, we extend the lassial arithmeti form of the largesieve, in a fashion very muh inspired by (Bombieri & Davenport, 1968).This generalization will have onsequenes, and we shall in partiularimprove on the large sieve inequality when applied to sifted sequenes.Our loser srutiny will provide a large sieve extension of the sieve boundbut only under a spei� ondition, thus showing some disrepany be-tween both sieving proesses, besides the fat that the large sieve appliesonly when sieving intervals while Selberg sieve enompasses the ase ofgeneral sequenes. By a large sieve extension, we mean that we areable to bound not only the number of points satisfying some ongru-ene onditions, but also are able to give an upper bound for quantitiesmeasuring distribution in arithmeti progressions, as in the theorems of(Barban, 1963), (Barban, 1964), (Barban, 1966), (Davenport & Halber-stam, 1966a) and (Davenport & Halberstam, 1968).In the seond stage, we develop a theory of what we all loal models,essentially through examples. Roughly speaking, we build an approxi-mation of the funtion we are interested in modulo q by multiplying amodel for its redution modulo q and a model for its behavior from thepoint of view of size ondition (our plae at in�nity, to use the languageof number theory). As an appliation we shall prove a large sieve typeinequality but with an error term similar to the one appearing in Selberg



0 Introdution 3sieve and improve on the asymptoti Brun-Tithmarsh inequality. Thisthird approah will show how the two previous ones, via the large sieveand via Selberg sieve, are onneted. But it will also lead to further de-velopments and, in partiular, to some results on some binary additiveproblems, via a method not unlike an abstrat irle method. We notehere that (Heath-Brown, 1985) has already pointed in this diretion.In the third stage, drawing on what we introdued earlier, we presentthe Selberg sieve in an elementary fashion so as to enompass the ase ofnon-squarefree sifting onditions. This approah will apply to sequenesas well, while earlier expositions in (Selberg, 1976) or (Motohashi, 1983)did not. Moreover we shall also understand Selberg's pseudo-haraters(see for instane (Motohashi, 1983) for a de�nition) and extend the resultof (Kobayashi, 1973) to our more general situation. This part will alsoshow links between this sieving proess and approximation of the vanMangoldt funtion Λ as it appears, for instane, in (Motohashi, 1978),(Heath-Brown, 1985), (Goldston, 1992) or (Iwanie, 1994). As a matterof fat, this line of thought arose from ideas at the very origin of Selbergsieve, see (Selberg, 1942).In the fourth and �nal stage, we develop our material in several di-retions. We �rst show the lassial theorem of (Bombieri & Davenport,1966) on prime gaps by our method, and in partiular without any useof the irle method. We also handle in a similar fashion the ase of therepresentation of an integer by a sum of two squarefree numbers. It is atthis that we shall prove a general approximation theorem for a funtionby loal models: we delayed suh a statement this muh beause it re-quires a lari�ation of the notion of loal model, notably onerning theway to handle the in�nite plae. We end our journey by disussing whihbinary problems are aessible through this pass, meeting here with somematerial due to (Brüdern, 2000-2004) and some due to (Friedlander &Iwanie, 1992).In between, we shall expand on the partiularly elegantsmoothing funtions due to (Holt & Vaaler, 1996) that will allow us toprove a novel generalization of the large sieve inequality, while simplify-ing estimations in the ontext of our loal models.We have attempted to present all this material in a manner as ele-mentary as possible, and this sometimes prevents us from gaining someheight. Already as suh, we require several unusual de�nitions. Forthis reason we have supplemented our exposition with the hapter 4and 14, whih desribe with greater are the surroundings and preparethe ground for a more axiomati approah. In partiular, we insist ongetting what we all a geometrial interpretation to onnet our ombina-torial onstrutions with properties of sets suh as Z/dZ. The situation



4 0 Introdutionis more di�ult than that, and indeed, eventually, we will ontend withproperties on the spae of funtions on suh sets.We �nally mention that Motohashi has developed the arithmetialsetting of the large sieve in a very di�erent diretion, see for instane (Mo-tohashi, 1983). Moreover, many arithmetial appliations of the largesieve inequality stem from its multipliative form, a subjet whih weshall not touh upon: the reader is referred to the exellent broahof (Bombieri, 1987). Among general referenes on the subjet, we men-tion the books of (Halberstam & Rihert, 1974) and of (Huxley, 1972a).Furthermore, Elsholtz has developped ombinatorial uses of the largesieve inequality, a subjet we shall not touh at all; We simply referto (Elsholtz, 2001), (Elsholtz, 2002), (Elsholtz, 2004) and (Croot III &Elsholtz, 2004). Finally, the reader will �nd in (Huxley, 1968), (Huxley,1970) and (Huxley, 1971) material pertaining to a large sieve inequalityfor algebrai number �elds as well as several appliations of it.Individual hapters in these notes are meant to present a irle ofideas, with referenes given therein to other parts where a di�erent pointof view is taken, or where one has an easier aess to ertain lemmas ornotions. Suh a hoie is rendered neessary by the subjet itself: weintend showing di�erent developments in a uni�ed ontext, but thesedevelopments are in fat quite entangled one with another. We studyseveral examples, some of them leading to new results, but limited someof the proofs to illuminating speial ases.A �nal word on averages of non-negative multipliative funtions.Evaluating suh averages is a most ommonly met question, and wehave deided to present the onvolution method as well as a number ofresults originating from (Levin & Fainleib, 1967). We have isolated themain result of this elebrated paper in an appendix, in a slightly moregeneral form required in our ontext and took the opportunity to detailthere two lassial examples. However, sine these results are satteredthroughout the monograph, here is an index:(1) Lemma 2.3 is a generalization of a lemma due to (van Lint &Rihert, 1965).(2) Proof of Theorem 2.2, page 23: an ad-ho lower bound.(3) Setion 5.3, page 42 starts with a sketh of the onvolutionmethod.(4) Proof of Theorem 5.4 ontains page 45 another example on theonvolution method.(5) Proof of Lemma 6.2, page 57 relies on the idea of (Levin &Fainleib, 1967).



0 Introdution 5(6) Theorem 9.2, page 77 is yet another use of this idea.(7) Setion 13.3, page 112 ontains an appliation of our version ofthe Levin-Fainleib Theorem, namely Theorem 21.1, while se-tion 13.5 ontains another one.(8) The appendix presents statement and proof of this Theorem 21.1,together with yet another instane of its use.The reader should however be aware that the theory is in no way re-strited to these two lines of approah and will onsult with bene�t(Wirsing, 1961), (Halász, 1971/72), (Montgomery & Vaughan, 2001)and (Granville & Soundararajan, 2003).Multipliativity and its numerous variations are freely used through-out this book, as is the arithmetial onvolution. We have tried to stikto ommon notations and to summarise most of them page 187. Wehope that this summary, together with the referene index, will help thereader navigate at his or her own will within this monograph!





1 The large sieve inequalityWe begin with an abstrat hermitian setting whih we will use toprove the large sieve inequality. We develop more material than is re-quired for suh a task. This is simply to prepare the ground for futureuses, and we shall even expand on this setting in hapter 7; the �nalstroke will only appear in setion 10.1.1.1. Hilbertian inequalitiesLet us start with a omplex vetor spae H endowed with a hermitianform [f |g], left linear and right sesquilinear. To be onsistent with laternotations, the norm of ϕ is denoted by ‖ϕ‖2.The easiest exposition goes through a formal de�nition:De�nition 1.1. By an almost orthogonal system in H, we mean aolletion of three sets of data(1) a �nite family (ϕ∗i )i∈I of elements1 of H,(2) a �nite family (Mi)i∈I positive real numbers,(3) a �nite family (ωi,j)i,j∈I of omplex numbers with ωj,i = ωi,j,all of them given so that(1.1) ∀(ξi)i ∈ CI ,
∥

∥

∥

∑

i

ξiϕ
∗
i

∥

∥

∥

2

2
≤
∑

i

Mi|ξi|2 +
∑

i,j

ξiξjωi,j.We omment on this de�nition. If the family (ϕ∗i )i∈I were orthogonal,we ould ask for equality with Mi = ‖ϕ∗i ‖22. As it turns out, in theappliations we have in mind, this family is not orthogonal, but almostso. It is this almost orthogonality that the above ondition is meant tomeasure.Our �rst lemma reads as followsLemma 1.1. For any �nite family (ϕ∗i )i∈I of points of H, the systembuilt with Mi =
∑

j |[ϕ∗i |ϕ∗j ]| and ωi,j = 0 is almost orthogonal.So that if [ϕ∗i |ϕ∗j ] is small for i 6= j then Mi is indeed lose to ‖ϕ∗i ‖221The reader may wonder why I hose to denote the members of this family witha star . . . It is to be onsistent and to avoid onfusion with notation that will appearlater on.



8 1 The large sieve inequalityProof. We write
∥

∥

∥

∑

i

ξiϕ
∗
i

∥

∥

∥

2

2
=
∑

i,j

ξiξj[ϕ
∗
i |ϕ∗j ]and simply apply 2|ξiξj| ≤ |ξi|2 + |ξj|2. The lemma readily follows. ⋄ ⋄ ⋄Here is an enlightening reading of this lemma: the hermitian formthat appears has a matrix whose diagonal terms are the ‖ϕ∗i ‖22's. Atheorem of Gershgorin says that all the eigenvalues of this matrix lie inthe union of the so alled Gershgorin's diss entered at the points ‖ϕ∗i ‖22,with radius ∑j 6=i |[ϕ∗i |ϕ∗j ]|. This approah is due to (Elliott, 1971). Ithas a drawbak: we do not know that eah Gershgorin dis does indeedontain an eigenvalue, a �aw that is somehow repaired in the abovelemma.In general, and only assuming (1.1), we get the following kind ofParseval inequality:Lemma 1.2. For any almost orthogonal system, and any f ∈ H, let usset ξi = [f |ϕ∗i ]/Mi. We have

∑

i

M−1
i |[f |ϕ∗i ]|2 ≤ ‖f‖22 +

∑

i,j

ξiξjωi,j.One again, the orthogonal ase is enlightening: if the (ϕ∗i ) are or-thogonal, then we may take Mi = ‖ϕ∗i ‖22 and ωi,j = 0. The L.H.S.beomes the square of the norm of the orthonormal projetion of f onthe subspae generated by the ϕ∗i 's.Without the ωi,j and appealing to Lemma 1.1, this is due to Selberg,as mentioned in setion 2 of (Bombieri, 1987) and in (Bombieri, 1971).Proof. For the proof, we simply write
∥

∥

∥f −
∑

i

ξiϕ
∗
i

∥

∥

∥

2

2
≥ 0and expand the square. We take are of ‖∑i ξiϕ

∗
i ‖22 by using (1.1),getting

‖f‖22 − 2ℜ
∑

i

ξi[f |ϕ∗i ] +
∑

i

Mi|ξi|2 +
∑

i,j

ξiξjωi,j ≥ 0.We now hoose the ξi's optimally, negleting the bilinear form ontainingthe ωi,j. We take ξi = [f |ϕ∗i ]/Mi, the lemma readily follows. ⋄ ⋄ ⋄Combining Lemma 1.2 together with Lemma 1.1 yields what is usu-ally known as �Selberg's lemma� in this ontext. The introdution ofthe ωi,j is due to the author to enable a re�ned treatment of the error



1.2 The large sieve inequality 9term as well as provide a hybrid between the weighted large sieve resultsand Selberg sieve results. In these letures however, we shall only have aglimpse of this aspet. Nevertheless we show in hapter 9 a simplemindeduse of this bilinear part.The atual value of ξi in the statement is usually of no importane,only its order of magnitude being relevant.Let us end this setion with a historial remark: though the materialpresented here is reent, the reader will �nd in the seventh part of (Rényi,1958) a similar approah, relying on the notion, borrowed from (Boas,1941), of quasi-orthogonal sequene of random variables. Furthermore,(Rényi, 1949) already introdues a notion of quasi-orthogonality in theontext of the large sieve inequality. We lose this parenthesis and referthe reader to (Montgomery, 1971) for more historial material.1.2. The large sieve inequalityThe large sieve inequality reads as follows.Theorem 1.1. Let X be a �nite set of points of R/Z. Set
δ = min

{

‖x− x′‖, x 6= x′ ∈ X
}

.For any sequene of omplex numbers (un)1≤n≤N , we have
∑

x∈X

∣

∣

∣

∑

n

une(nx)
∣

∣

∣

2
≤
∑

n

|un|2(N − 1 + δ−1).The L.H.S. an be thought as a Riemann sum over the points in X ;at least when the set X is dense enough. The spaing between two on-seutive points being at least δ, this L.H.S. multiplied by δ an thoughtas approximating
∫ 1

0

∣

∣

∣

∑

n

une(nα)
∣

∣

∣

2
dα =

∑

n

|un|2.This is essentially so if δ−1 is muh greater than N , but it turns out thatthe ase of interest in number theory is the opposite one. In this ase,we an look at∑n une(nx) as being a linear form in (un)n. The spaingondition implies that X has less than δ−1 elements, so that the numberof linear forms implied is indeed less than the dimension of the ambientspae (whih is N). In that ase these linear forms are independentas shown by omputing a van der Monde determinant, and otherwise,there is some redundany. So what is really at stake here is more almost



10 1 The large sieve inequalityorthogonality than approximation, whih is why I hose this method ofproof.The theorem in this version is due to Selberg. The same year and bya di�erent method, a marginally weaker version (without the −1 on theright) was proved by (Montgomery & Vaughan, 1973). We shall prove aslightly weaker result, namely with N+1+2δ−1 instead of N−1+δ−1 inthis hapter and delay a full proof until hapter 15, where we shall alsoprovide a generalization. First we reall what is the Fourier transformof the de la Vallée-Poussin kernel.1.2.1. A Fourier transform. Let N ′ and L be two given positive in-tegers. Consider the funtion F (n) whose graph is:
We are to ompute its Fourier transform whih an be umbersome.We present two proofs, the �rst one being more geometrial but onlyadapted to the present situation while the seond one is less visual butoften trivialises omputations of this kind.First proof. To simplify alulations, we write F = (G−H)/L where
G and H are drawn below. We write
L
∑

n∈ZF (n)e(ny) =
∑

n∈ZG(n)e(ny)−
∑

n∈ZH(n)e(ny)

=
∑

0≤|n|≤N ′+L

(N ′ + L− |n|)e(ny)−
∑

0≤|n|≤N ′

(N ′ − |n|)e(ny)and obtain
L
∑

n∈ZF (n)e(ny) =

∣

∣

∣

∣

∑

0≤m≤N ′+L

e(my)

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∑

0≤m≤N ′

e(my)

∣

∣

∣

∣

2

.This �nally amounts to(1.2) ∑

n∈ZF (n)e(ny) =
1

L

∣

∣

∣

∣

sinπ(N ′ + L)y

sinπy

∣

∣

∣

∣

2

− 1

L

∣

∣

∣

∣

sinπN ′y
sinπy

∣

∣

∣

∣

2

,the value at y = 0 being given by ∑n∈Z F (n) = 2N ′ + L.



1.2 The large sieve inequality 11

Seond proof. Let us de�ne(1.3) f(y) =
∑

n∈ZF (n)e(ny)and introdue the operator on ompatly supported sequenes:(1.4) ∆(F ) = ∆
(

(F (n))n∈Z) =
(

(F (n)− F (n− 1))n∈Z).We readily see that
f(y)(e(y)− 1) =

∑

n∈ZF (n)e(ny)(e(y) − 1)

= −
∑

n∈Z∆(F )(n) e(ny)whih is our main equation. Iterating one, we get(1.5) f(y)(e(y) − 1)2 =
∑

n∈Z∆2(F )(n) e(ny).The reader will hek that ∆2(F )(n) = F (n)−2F (n−1)+F (n−2) andfrom there derive(1.6) L∆2(F ) = 1n=−N ′−L+1 − 1n=−N ′+1 − 1n=N ′+1 + 1n=N ′+L+1.



12 1 The large sieve inequalityThis �nally yields
Lf(y) =

e(y)
(

e(−(N ′ + L)y)− e(−N ′y)− e(N ′y) + e((N ′ + L)y)
)

(e(y) − 1)2

=
cos(2π(N ′ + L)y)− cos(2πN ′y)

−2 sin(πy)2

=
sin2(π(N ′ + L)y)− sin2(πN ′y)

sin(πy)2as required.1.2.2. Proof of (a weak form of) Theorem 1.1. We use Lemma 1.2together with Lemma 1.1. First notie that we may assume N tobe an integer. Next set N ′ = ⌊N/2⌋ the integer part of N/2 and
f(n) = uN ′+1+n (with uN+1 = 0 if N is even) so that f is supported on
[−N ′, N ′]. The Hilbert spae we take is ℓ2(Z) with its standard salarprodut so that f belongs to it when extended by setting f(n) = 0 forany integer n not in the interval above. Notie also that(1.7) ‖f‖22 =

∑

n

|un|2.We need to de�ne our almost orthogonal system. We take(1.8) ∀x ∈ X , ϕ∗x(n) = e(nx)
√

F (n),where F is as de�ned in setion 1.2.1. Sine f vanishes outside [−N ′, N ′],we �nd that(1.9) [f |ϕ∗x] = e(−(N ′ + 1)x)
∑

1≤n≤N

une(nx).The omputations of the preeding setion show that(1.10) ‖ϕ∗x‖22 = 2N ′ + L, |[ϕ∗x|ϕ∗x′ ]| ≤ 1

4L‖x− x′‖2 if x 6= x′by using the lassial inequality | sinx| ≤ 2‖x‖/π. When x is �xed, we�nd that
∑

x′∈X
x′ 6=x

|[ϕ∗x|ϕ∗x′ ]| ≤
∑

x′∈X
x′ 6=x

1

4L‖x− x′‖2

≤ 2
∑

k≥1

1

4L(kδ)2
≤ π2

12Lδ2sine the de�nition of δ implies that the worst ase that ould happenfor the sequene (‖x − x′‖)x′ would be if all x′'s were loated at x+ ℓδwith ℓ an integer taking the values ±1,±2,±3, . . . . Next we hoose L



1.3 Introduing Farey points 13an integer so as to nearly minimize 2N ′+L+ π2/(12Lδ2), i.e., with ⌈x⌉denoting the least integer larger than x,(1.11) L =

⌈

π

2
√

3δ

⌉whih yields 2N ′ + L+ π2/(12Lδ2) ≤ N + 1 + π√
3
δ−1. We onlude bynoting that π/√3 ≤ 1.82 ≤ 2.Let us end this setion by a methodologial remark : (Montgomery,1971) proves in an appendix the inequality (sinπx)−2 ≤ (π‖x‖)−2 + 1valid for 0 ≤ x ≤ 1/2. On using it we obtain a better bound for [ϕ∗x|ϕ∗x′ ]above and onsequently, improve our N + 1 + πδ−1/

√
3 to N + 3 +

2δ−1/
√

3.1.3. Introduing Farey pointsIn most arithmetial appliations, the set X is simply a trunation ofthe Farey series, that is(1.12) X =
{

a/q, q ≤ Q, a mod∗ q}where Q is a parameter to be hosen and a mod∗ q means a ranging overall the invertible residue lasses modulo q. Next when a/q and a′/q′ aretwo distint points of X , we have(1.13) ∣

∣

∣

∣

a

q
− a′

q′

∣

∣

∣

∣

=
|aq′ − a′q|

qq′
≥ 1

qq′
≥ Q−2sine aq′ − a′q is an integer that is distint from 0.2 We set lassially(1.14) S(x) =

∑

1≤n≤N

une(na/q)and get(1.15) ∑

q≤Q

∑

amod∗q

|S(a/q)|2 ≤
∑

n

|un|2(N +Q2)whih is essentially what is referred to as the large sieve inequality. Inhapter 20, we shall provide some ases where we are able to omputean asymptoti for the L.H.S.. Moreover, but only for a restrited familyof sequenes, we shall even be able to do so with Q being larger than√
N � while the main term will still be of order of N∑n |un|2 �, thusdramatially improving on this inequality.2By disussing whether q = q′ or not, one an enlarge this bound to 1/(Q(Q−1)).



14 1 The large sieve inequality1.4. A digression: dual form and double large sieveThe large sieve inequality bounds ∑x∈X |S(x)|2. If we open one S(x),we see that this quantity is also(1.16) ∑

n,x

unS(x)e(nx)whih an now be onsidered a bilinear form in the two sets of vari-ables (un)n and (S(x))x, simply by forgetting how S(x) is de�ned interms of the un's. Suh an expression has been onsidered in (Bombieri& Iwanie, 1986) where they obtain a bound for it now known as thedouble large sieve inequality (see also (Selberg, 1991)). This bound is ofsimilar strength as the one given by Theorem 1.1, up to a multipliativeonstant, when applied to our situation. This line of ideas leads us �though historially, it is the reverse proess that oured � to onsiderthe so-alled dual form of the large sieve inequality, whih onerns theexpression obtained simply by exhanging the variables n and x:(1.17) ∑

n

∣

∣

∣

∣

∑

x∈X
S(x)e(nx)

∣

∣

∣

∣

2where this time (S(x))x is any sequene of omplex numbers. Proeedingas before but with the variable x, the above expression is also(1.18) ∑

n,x

S(x)W (n)e(−nx) with W (n) =
∑

y∈X
S(y)e(ny)to whih we apply the Cauhy-Shwarz inequality in the x-variable toget

(

∑

n

∣

∣

∣

∣

∑

x∈X
S(x)e(nx)

∣

∣

∣

∣

2
)2

≤
∑

x

|S(x)|2
∑

x

∣

∣

∣

∣

∑

n

W (n)e(−nx)
∣

∣

∣

∣

2

.Applying the usual large sieve inequality to the latter sum, we end upwith the dual form of the large sieve inequality:(1.19) ∑

n

∣

∣

∣

∣

∑

x∈X
S(x)e(nx)

∣

∣

∣

∣

2

≤
∑

x

|S(x)|2(N − 1 + δ−1).1.5. Maximal variantWe reord here a maximal version of Theorem 1.1 whose proof is notyet ompletely satisfatory. This theorem is due to (Montgomery, 1981),improving on an earlier result of (Uhiyama, 1972).



1.5 Maximal variant 15Theorem 1.2. There exist a onstant C > 0 with the following property.Let X be a �nite set of points of R/Z. Set
δ = min

{

‖x− x′‖, x 6= x′ ∈ X
}

.For any sequene of omplex numbers (un)1≤n≤N , we have
∑

x∈X
max
K≤N

∣

∣

∣

∑

1≤n≤K

une(nx)
∣

∣

∣

2
≤ C

∑

n

|un|2(N + δ−1).The problem remains to evaluate the onstant C, at least asymp-totially in N . (Elliott, 1985) gives a � next to trivial � proof of theinequality
∑

x∈X
max

u<v≤N,
v−u≤H

∣

∣

∣

∑

u≤n≤v

une(nx)
∣

∣

∣

2
≤
∑

n

|un|2(H + 2δ−1 Log(e/δ))whih is better in that the interval whih the variable n ranges is arbi-trarily loated and further restrained in size. Furthermore, no impliedonstant appear, but the dependane in δ is worse. Montgomery's proofrelies on Hunt's quantitative form of Carleson's theorem on almost sureonvergene of L2 Fourier series. As an e�et, the onstant C above ise�etive but no expliit version of it have been given � as of today, atleast!





2 An extension of the lassial arithmetialtheory of the large sievePart of the material given here has already appeared in (Ramaré &Ruzsa, 2001). Theorem 2.1 is the main landmark of this hapter. Fromthere onwards, what we do should beome learer to the reader. Inpartiular, we shall detail an appliation of Theorem 2.1 to the Brun-Tithmarsh Theorem.2.1. Sequenes supported on ompat setsWe introdue in this setion some voabulary that allows us handle mod-ular arithmeti. All of it is trivial enough but will make life easier lateron.
◦◦ By a ompat set K, we mean a sequene K = (Kd)d≥1 satisfying(1) Kd ⊂ Z/dZ for all d ≥ 1.(2) For any divisor d of q, we have σq→d(Kq) = Kd where σq→d isthe anonial surjetion (also alled the restrition map) fromZ/qZ to Z/dZ:(2.1) σq→d : Z/qZ→ Z/dZ

x mod q 7→ x mod d.When K is not empty, we have K1 = Z/Z. As examples, we an take
Kd = Z/dZ for all d or Kd = Ud, where Ud is the set of invertible lassesmodulo d. The intersetion and union of ompat sets is again a ompatset.We an also onsider K a subset of Ẑ = lim←−Z/dZ, in whih ase it isindeed a ompat set. Furthermore we shall sometimes onsider Kd as asubset of Z: the set of relative integers whose redution modulo d fallsinside Kd.
◦◦ We say that the ompat set K is multipliatively split if for any d1and d2 oprime positive integers, the Chinese remainder map(2.2) Z/d1d2Z −→ Z/d1Z× Z/d2Zsends Kd1d2 onto Kd1 × Kd2 . In this ase, the sets Kpν for prime p and
ν ≥ 1 determine K ompletely. Notie that when K is multipliativelysplit:(2.3) |K[d,d′]||K(d,d′)| = |Kd||Kd′ |



18 2 An extension of the lassial theoryfor any d and d′, where [d, d′] is the lm and (d, d′) the gd of d and d′.Here |A| stands for the ardinality of a set A.
◦◦ A ompat set is said to be squarefree if

Kq = σ−1
q→d(Kd)whenever d divides q and has the same prime fators. For instane, U issquarefree sine being prime to q or to its squarefree kernel is the same.

◦◦ A partiularly suessful hypothesis on K was introdued by (John-sen, 1971) in the ontext of polynomials over a �nite �eld and used inthe ase of the integers by (Gallagher, 1974) (see also (Selberg, 1976)).It reads
∀d|q, ∀a ∈ Kdthe quantity ∑

n≡a[d]
n∈Kq

1 is independent of a.(2.4)Another way to present this quantity would be to say it is the ardinalityof σ−1
pν→pν−1({a}). Sine the introdution of this ondition in our ontextis due to (Gallagher, 1974), we shall refer to it as the Johnsen-Gall-agher ondition. Note that this ondition does not require K to bemultipliatively split, although all our examples will also satisfy thisadditional hypothesis.Any squarefree ompat set automatially satis�es the Johnsen-Gall-agher hypothesis. Sine the sieve kept to suh sets for a very long time,and the ombinatorial sieve still does, this ondition does not show upin lassial expositions. We present in Theorem 13.1 a result that isunreahable if we were to on�ne ourselves to squarefree sieves.2.2. A family of arithmetial funtionsLet us start with a multipliatively split ompat set K. We onsiderthe non-negative multipliative funtion h de�ned by(2.5) h(d) =

∏

pν‖d

(

pν

|Kpν | −
pν−1

|Kpν−1 |

)

≥ 0, h(1) = 1where q‖d means that q divides d in suh a way that q and d/q areoprime. We shall say that q divides d exatly. Note that(2.6) d

|Kd|
=
∑

δ|d
h(δ).



2.2 A family of arithmetial funtions 19We further de�ne(2.7) Gd(Q) =
∑

δ≤Q,
[d,δ]≤Q

h(δ)whih we also denote by Gd(K, Q) when mentioning the ompat set Kis of any help. Let us note that in the extremal ase Kd = Z/dZ, wehave h(d) = 0 exept when d = 1 in whih ase we have h(1) = 1. Thisimplies that Gd(Q) = 1 for all d's. These fairly unusual funtions appearin the following form:Lemma 2.1. We have
Gd(Q) =

∑

q≤Q
d|q

(

∑

f/d|f |q
µ(q/f)f/|Kf |

)

.This is easily proved using (2.6). We present in hapter 3 a more ab-strated approah to this set of funtions.Often, the set K is squarefree, in whih ase the above expressionsimpli�es and we reognize, up to a fator, the usual funtions from theSelberg sieve (see (2.8) below). In partiular, we know how to evaluatethem. We shall give two examples of suh an evaluation in setions 2.4and 5.4 and a general theorem in the Appendix. The reader should on-sult (Levin & Fainleib, 1967), (Halberstam & Rihert, 1971) and (Hal-berstam & Rihert, 1974) for the general theory. Meanwhile, we moveto another lemma.Lemma 2.2. We have
|Kd|

∑

q≤Q
d|q

µ(q/d)Gq(Q) = d
∑

ℓ≤Q
d|ℓ

µ(ℓ/d).We refer to setion 11.3 for an interpretation of the above lemma andbakground information on how it ame to be.Proof. We appeal to Lemma 2.1 and write:
∑

q≤Q
d|q

µ(q/d)Gq(Q) =
∑

q≤Q
d|q

µ(q/d)
∑

ℓ≤Q
q|ℓ

(

∑

q|f |ℓ
µ(ℓ/f)f/|Kf |

)

=
∑

ℓ≤Q
d|ℓ

∑

d|f |ℓ
µ(ℓ/f)

f

|Kf |
∑

q≤Q
d|q|f

µ(q/d)in whih only the term d = f remains, thus proving our assertion. ⋄ ⋄ ⋄



20 2 An extension of the lassial theoryWe onlude by a lemma that is in fat a generalization of a lemmaof (van Lint & Rihert, 1965) but whih is trivial in our setting.Lemma 2.3. We have Gℓ(Qℓ/d) ≤ Gd(Q) ≤ Gℓ(Q) for ℓ|d.When the ompat set is squarefree, the reader will hek from (2.5)that h(d) = 0 as soon as d is not squarefee. In that ase, the summandappearing in Lemma 2.1 vanishes whenever q/d and d are oprime. Wean thus write q = dℓ with (ℓ, d) = 1 in this Lemma, whih leads to (seealso (5.9))(2.8) Gd(Q) =
d

|Kd|
∑

ℓ≤Q/d
(ℓ,d)=1

h(ℓ).Sine in lassial literature K is always squarefree, authors tend to all
Gd(Q) what is in fat |Kd|Gd(Q)/d in our notation. We had the optionof introduing another name, but we prefered to retain the same namein these letures, for the reason that the most important value G1(Q) isunhanged. Note that it is usual to simply denote this latter value by
G(Q), a usage that we avoid.2.3. An identityWe say that the sequene (un)n≥1 of omplex numbers is arried by Kup to level Q when the support of (un)n≥1 belongs to Kq for all q ≤ Q,or formally:(2.9) un 6= 0 =⇒ ∀q ≤ Q,n ∈ Kq.As examples, note that every sequene is arried by (Z/qZ)q≥1 up to anylevel, and that the sequene of primes > Q is arried by U up to level Q.Here is a generalization of known identities, see (Rényi, 1958), (Rényi,1959), (Bombieri & Davenport, 1968), (Montgomery, 1971) as well as(Bombieri, 1987):Theorem 2.1. When K is multipliatively split and veri�es the John-sen-Gallagher ondition (2.4) and (un) is a sequene arried by K up tolevel Q we have
∑

q≤Q

Gq(Q)|Kq|
∑

b∈Kq

∣

∣

∣

∣

∑

ℓ|q
µ
(q

ℓ

) |Kℓ|
|Kq|

∑

m≡b[ℓ]

um

∣

∣

∣

∣

2

=
∑

q≤Q

∑

amod∗q

∣

∣

∣

∣

∑

n

une(
na

q
)

∣

∣

∣

∣

2

.



2.3 An identity 21The same identity holds true but with the set {q ≤ Q} replaed byany set Q of moduli losed under division, by whih we mean that if
q ∈ Q and d|q then d is also in Q. It is easy to see, simply by followingthe proof below, that ondition (2.4) is indeed required. Note that inorder to handle the non-square-free q, a proper de�nition of Gq is needed.Proof. Let ∆(Q) be the R.H.S. of the above equality. We have

∆(Q) =
∑

m,n

umun

∑

d|m−n

d
∑

q≤Q/d

µ(q).On using Lemma 2.2 to modify the inner sum we obtain
∆(Q) =

∑

q

Gq(Q)

{

∑

d|q
µ(q/d)|Kd|

∑

m≡n[d]

umun

}

.Let us set(2.10) Θ(q) = |Kq|
∑

b∈Kq

∣

∣

∣

∣

∑

ℓ|q
µ(q/ℓ)

|Kℓ|
|Kq|

∑

m≡b[ℓ]

um

∣

∣

∣

∣

2

.On expanding the square we get
Θ(q) =

∑

m,n

umun

∑

ℓ1|q,ℓ2|q
µ(q/ℓ1)µ(q/ℓ2)

|Kℓ1 ||Kℓ2 |
|Kq|

∑

b∈Kq,
m≡b[ℓ1],
n≡b[ℓ2]

1.We introdue d = (ℓ1, ℓ2). Our onditions imply that m ≡ n[d]. Onethis is guaranted, b is determined modulo [ℓ1, ℓ2] by m and n; the John-sen-Gallagher ondition (2.4) then implies that there are |Kq|/|K[ℓ1,ℓ2]|hoies for b. Realling (2.3), we reah
Θ(q) =

∑

d|q

∑

m≡n[d]

umun|Kd|
∑

ℓ1|q,ℓ2|q
(ℓ1,ℓ2)=d

µ(q/ℓ1)µ(q/ℓ2).We are left with omputing the most inner sum whih is readily done:
∑

ℓ1|q,ℓ2|q
(ℓ1,ℓ2)=d

µ(q/ℓ1)µ(q/ℓ2) =
∑

r1|q/d
r2|q/d

µ((q/d)/r1)µ((q/d)/r2)
∑

δ|r1

δ|r2

µ(δ)

= µ(q/d)as required. ⋄ ⋄ ⋄



22 2 An extension of the lassial theoryTo understand the L.H.S. of this theorem, onsider the ase Kd =Z/dZ due to (Montgomery, 1968) but redue it to the ase when q = pa prime numberas in (Rényi, 1958). We get(2.11)
|Kp|

∑

b∈Kp

∣

∣

∣

∣

∑

ℓ|p
µ(p/ℓ)

|Kℓ|
|Kp|

∑

m≡b[ℓ]

um

∣

∣

∣

∣

2

= p
∑

bmod p

∣

∣

∣

∣

∑

m≡b[p]

um −
∑

m um

p

∣

∣

∣

∣

2so this quantity measures the distortion from equidistribution in arith-meti progressions. This is also true of the quantity with general q, asthe reader will realize after some thought. However, if we know the se-quene an only reah some ongruene lasses, namely the ones in some
Kp, then the proper approximation is ∑m um/|Kp| and not ∑m um/p.This is what is put in plae in the above result. In hapter 4 we providea more geometrial interpretation.We reover in this manner a theorem of (Gallagher, 1974). This is ananalogue of a similar theorem proved in (Johnsen, 1971) in the ontextof polynomials over �nite �elds.Corollary 2.1 (Gallagher). Assume K is multipliatively split and veri-�es the Johnsen-Gallagher ondition (2.4). Let Z denotes the number ofintegers in the interval [M +1,M +N ] that belongs to Kd for all d ≤ Q.We have

Z ≤ (N +Q2)/G1(Q).It was (Bombieri & Davenport, 1968) who �rst used the large sieveto get this kind of result, namely for primes, and (Montgomery, 1968)worked out a general theorem along lines loser to that of (Rényi, 1958).We derive some lassial bounds from this inequality in the Appendix.It will also give the reader the opportunity to manipulate the onept ofa ompat set in onnetion with sieve problems.Proof. We take for (un)n≥1 the harateristi funtion of the set whoseardinality is to be evaluated and apply Theorem 2.1 together with thelarge sieve inequality. We �nally disard all terms on the L.H.S. exeptthe one orresponding to q = 1. ⋄ ⋄ ⋄Note that (Selberg, 1976) proves a similar theorem but without theJohnsen-Gallagher ondition. We shall do so in hapter 13, this timeenabling also the sieving of a general sequene instead of an interval,but note that our present way of doing o�ers what is sometimes knownas a large sieve extension of this bound, in the spirit of the theoremof (Bombieri & Davenport, 1968) we reall in setion 2.5. See also The-orem 15.3 for a generalization in another diretion.



2.4 The Brun-Tithmarsh Theorem 232.4. The Brun-Tithmarsh TheoremThis theorem reads as follows:Theorem 2.2. Let M ≥ 0 and N > q ≥ 1 be given and let a be aninvertible residue lass modulo q. The number Z of primes in the interval
[M + 1,M +N ] lying in the residue lass a modulo q veri�es

Z ≤ 2N

φ(q) Log(N/q)
.This neat and e�etive version is due to (Montgomery & Vaughan,1973). Earlier versions essentially had 2 + o(1) instead of simply 2. Thename �Brun-Tithmarsh� Theorem stems from (Linnik, 1961). Indeed,Tithmarsh proved suh a theorem for q = 1 with a Log Log(N/q) terminstead of the 2 to establish the asymptoti for the number of divisorsof the p + 1, p ranging through the primes, and he used the methodof Brun. The onstant 2 (with a o(1)) appeared for the �rst time in(Selberg, 1949).To larify the argument we restrit our attention to the ase q = 1and get 2+o(1) instead of 2. Start with Corollary 2.1 applied to K = U .To make this possible we restrit our attention to primes > Q. We then�nd that(2.12) |Kd| = φ(d), and h(d) = µ2(d)/φ(d).So we are left with �nding a lower bound for G1(Q). Write

µ2(d)

φ(d)
=
µ2(d)

d

∏

p|d

1

1− 1
p

=
µ2(d)

d

∏

p|d

(

1 +
1

p
+

1

p2
+ . . .

)

= µ2(d)
∑

k≥1,d|k
[p|k =⇒ p|d]

1

kwhih we sum to get(2.13) G1(Q) =
∑

d≤Q

µ2(d)
∑

k≥1,d|k
[p|k =⇒ p|d]

1

k
≥
∑

k≤Q

1

k
≥ LogQ.It an be fairly easily shown that in fat G1(Q) = LogQ+O(1), eitherby reading setion 5.3 or by applying Theorem 21.1 from the appendix.We now hoose Q =

√
N/LogN , getting(2.14) Z ≤ 2N(1 +O(Log−2N))

LogN − 2Log LogN
+Q



24 2 An extension of the lassial theorywhih is indeed not more than 2(1 + o(1))N/LogN . To prove the theo-rem for primes in a residue lass, sieve the arithmeti progression a+mq,where m varies in an interval, up to a level Q =
√

N/q/Log(N/q).2.5. The Bombieri-Davenport TheoremThis setion is somewhat astray from our main line but deserves a plaesine it is this result that led the author to believe that something likeTheorem 2.1 ought to exist.Theorem 2.3 (Bombieri & Davenport). When (un)n≤N is suh that unvanishes as soon as n has a prime fator less than Q, we have
∑

q≤Q

Log(Q/q)
∑

χmod∗q

∣

∣

∣

∣

∑

n

unχ(n)

∣

∣

∣

∣

2

≤
∑

n

|un|2(N +Q2)where χ mod∗ q denotes a summation over all primitive haraters mod-ulo q.With K = U and our terminology above, the hypothesis says that
(un) is arried by K upto the level Q. We now dedue this result fromTheorem 2.1.Proof. We �rst show that what we termed Θ(q) in (2.10) is in fatthe summand of the L.H.S. above. When χ is a harater, we denote itsondutor by fχ. On deteting the ongruene ondition m ≡ b[ℓ] usingmultipliative haraters (this is possible beause b and un are prime to
ℓ), we get for any �xed multiple q of ℓ:

∑

m≡b[ℓ]

um =
1

φ(ℓ)

∑

χmod ℓ

∑

m

χ(b)χ(m)um

=
1

φ(ℓ)

∑

χmod q
fχ|ℓ

∑

m

χ(b)χ(m)um.From whih we easily dedue
∑

ℓ/ℓ|q
µ(q/ℓ)

φ(ℓ)

φ(q)

∑

m≡b[ℓ]

um =
∑

ℓ|q

µ(q/ℓ)

φ(q)

∑

χmod q
fχ|ℓ

∑

m

χ(b)χ(m)um

=
1

φ(q)

∑

χmod∗q

∑

m

χ(b)χ(m)um.



2.5 The Bombieri-Davenport Theorem 25Squaring this quantity, summing it over all redued residue lasses mod-ulo q and multiplying the result by φ(q) indeed gives
Θ(q) =

∑

χmod∗q

∣

∣

∣

∣

∑

m

χ(m)um

∣

∣

∣

∣

2

.This last step amounts to applying Planherel formula on (Z/dZ)∗. To�nd a lower bound for the fator Gq(Q) we use Lemma 2.3 and get
Gq(Q) ≥ G1(Q/q), whih using (2.13) this is indeed ≥ Log(Q/q). Thetheorem now follows. ⋄ ⋄ ⋄The proof that Bombieri & Davenport gave uses the value of theGauss sums, and my �rst motivation was to remove this part, sineit seemed lear, it was only a matter of orthonormal systems. Thenthe multipliativity of these haraters is not used either and bak in1992, I started developing a general theory of �haraters� to prove asimilar result. This was however not very onvenient beause I had toexplain what these were; after having understood the Selberg sieve in asimilar setting, something we shall do in hapter 11, I �nally found theidentity of Theorem 2.1 with a proof from whih my abstrat haratersdisappeared.Note further that it is not enough to substitute Theorem 1.2 to The-orem 1.1 to get a maximal variant of this theorem (i.e. a result in whihthe |∑n unχ(n)| would be replaed by maxK≤N |

∑

1≤n≤K unχ(n)|). See(Elliott, 1991).The strength of this theorem seems to have been underestimated, andwe onlude on this aspet, somewhat antiipating the proof of Theo-rem 5.2. (Elliott, 1983) improving on (Elliott, 1977) proves that
∑

q≤Q,
q prime(q − 1)

∑

amod ∗q

∣

∣

∣

∣

∑

p≤N,
p≡a[q]

up −
∑

p≤N up

q − 1

∣

∣

∣

∣

2

≪
( N

LogN
+Q54/11+ε

)

∑

p≤N

|up|2.As it turns out, the summand is simply ∑χmod ∗q

∣

∣

∑

p≤N upχ(p)
∣

∣

2, theonly non primitive harater being the prinipal one, sine q is prime.We an thus use the Bombieri-Davenport Theorem up to level √N andrestrit then summation to q ≤ Q (as in the proof of Theorem 5.2 below),getting the upper bound
2N

Log(
√
N/Q)

∑

p≤N

|up|2



26 2 An extension of the lassial theoryinstead of the above, whih allows Q up to N1/2−ε. Note further that inthis approah, we may replae the set p ≤ N , by any set of primes in aninterval of length N .Theorem 2 and Corollary 4 of (Puhta, 2003)1 follow similarly fromthis same remark, sine this author diretly disusses primitive haratersums. However, the methods used therein apply also to shorter sets ofharaters modulo a single modulus, and are now beyond the presentapproah. They still belong to the realm of almost orthogonality, andLemma 1.1 is still being used, but with �ne harater sum bounds.2.6. A detour towards lower boundsThe L.H.S. of Theorem 2.1 will be very small when our sequene is verywell distributed in arithmeti progressions. On an other hand, the R.H.S.may be expeted to approximate ∑n |un|2Q2, if one follows for instanethe proof in terms of Riemann sums given by (Gallagher, 1967). Indeed(Roth, 1964) proved that dense sequenes that are not too dense ouldnot be evenly distributed in arithmeti progressions. (Huxley, 1972b)strengthened this work to the ase of neither too thin nor too dense siftedsequenes, by whih we mean a sequene whose harateristi funtionis �arried� � see (2.9)� by some squarefree ompat set. The proof goesby �nding a lower bound for a ertain variane expression. It seemsplausible that with ideas from the proof of Theorem 2.1, one an extendthis result to the ase of non-squarefree ompat sets verifying the John-sen-Gallagher ondition, and that one ould also introdue a more preisekind of �variane� expression. See also setion 20.7 for a reversed largesieve inequality.

1I had very interesting disussions with J.-C. Puhta in spring 2006 on this verysubjet, whih is how I got to notie what I all here an �underestimation�.



3 Some general remarks on arithmetialfuntionsWe present here some general material pertaining to the family offuntions we onsider in our sieve setting (see hapter 2, in partiularsetion 2.2).When d ≥ 1 is an integer, let us write δd to denote the arithmetialfuntion whih takes the value 1 at d and the value 0 at all other integers
≥ 1. Let 1d·N denote the arithmetial funtion 1⋆ δd. It is easily veri�edthat 1d·N is the harateristi funtion of the set of multiples of d andthat (µ ⋆ δd)(m) = µ(m/d)1d·N(m), for all m ≥ 1.We reall that a subset X of the integers ≥ 1 is said to losed underdivision if every divisor of eah element of X is also in X. We write
A (X) to denote the set of omplex valued funtions on X. It is easilyseen that A (X) is a ommutative ring with respet to addition and(dirihlet) onvolution.Lemma 3.1. Let X be a subset of the integers ≥ 1 that is losed underdivision. Let φ be in A (X) and let ψ = µ ⋆ φ. For all f and g �nitelysupported funtions in A (X) we have the identities(3.1) ∑

k∈X

f(k)φ(k) =
∑

m∈X

ψ(m)
∑

k∈X,
m|k

f(k) =
∑

m∈X

∑

k∈X,
m|k

ψ(k/m)f(k)and(3.2) ∑

k∈X

∑

ℓ∈X

f(k)g(ℓ)φ((k, ℓ)) =
∑

m∈X

ψ(m)
∑

k∈X,
m|k

f(k)
∑

ℓ∈X,
m|ℓ

g(ℓ).Equation (3.2) is the heart of the Selberg diagonalization proess, asit is used for instane in setion 11.3.Proof. Sine f and g are �nitely supported and sine all terms in (3.1)are linear in f and both sides in (3.2) are bilinear in f and g, it su�es toverify these relations when f = δa and g = δb, for any integers a, b ∈ X.When this is the ase, and sine X is divisor losed, these relationsredue respetively to the obvious relations
φ(a) =

∑

m|a
ψ(m) =

∑

m|a
ψ(a/m) and φ((a, b)) =

∑

m,
m|a,m|b

ψ(m).

⋄ ⋄ ⋄



28 3 General remarks on arithmetial funtionsCorollary 3.1. Let a be an integer ≥ 1 and d a divisor of a. We thenhave that(3.3) δd(a) =
∑

k|a,
d|k

µ(a/d) =
∑

k|a,
d|k

µ(k/d).Proof. We apply (3.1) with f = δa and φ = δd and X the set of divisorsof a. ⋄ ⋄ ⋄Corollary 3.2. Let X be a subset of the integers ≥ 1 that is losed underdivision and d be an integer in X. For any �nitely supported funtion fin A (X) we have(3.4) f(d) =
∑

k∈X,
d|k

∑

q∈X,
k|q

µ(q/k)f(q) =
∑

k∈X,
d|k

µ(k/d)
∑

q∈X,
k|q

f(q).Proof. It su�es to verify (3.4) when f is of the form δa, for any integer
a ∈ X. When this is the ase, and beause X is losed under divisionand δa(d) = δd(a), (3.4) redues to (3.3). ⋄ ⋄ ⋄Corollary 3.3. Let q be an integer ≥ 1 and d be a divisor of q. We thenhave the relation(3.5) ∑

k|q,ℓ|q,
(k,ℓ)=d

µ(q/k)µ(q/ℓ) = µ(q/d).Proof. We apply (3.2) with X taken to be the set of divisors of q, fand g both taken to be the funtion k 7→ µ(q/k) on X and φ = δd. Then
ψ(m) = µ(m/d)1d·N(m) and, using (3.3), the right hand side of (3.5)redues to µ(m/d)1d·N(m)δm(q) = µ(q/d). ⋄ ⋄ ⋄Let f be an arithmetial funtion and Q be a real number ≥ 1. foreah integer d in the interval [1, Q] we de�ne(3.6) Gd(f,Q) =

∑

q/[d,q]≤Q

f(q).This set of funtions will be required to de�ne the λd's of setion 13.1.Corollary 3.4. Let f be an arithmetial funtion and let g = 1 ⋆ f .When Q is a real number ≥ 1, and for eah integer d in [1, Q], we have(3.7) Gd(f,Q) =
∑

k≥1,
d|k

g(k)
∑

q≤Q,
k|q≤Q

µ(q/k).



3 General remarks on arithmetial funtions 29Proof. We redue to the ase when f = δa, where a is an integer ≥ 1.Then g = 1a·N. On writing χQ to denote the harateristi funtion ofthe integers in the interval [1, Q] and using (3.4) with X taken to be theset of all integers ≥ 1 we then have
∑

[q,d]≤Q

δa(q) = χQ([a, d])

=
∑

k≥1,
[a,d]|k

∑

q,
k|q

µ(q/k)χQ(q)
∑

k≥1,
d|k

1a·N(k)
∑

q≤Q,
k|q

µ(q/k).

⋄ ⋄ ⋄Corollary 3.5. Let f be an arithmetial funtion and let g = 1 ⋆ f .When Q is a real number ≥ 1, and d is an integer in [1, Q], we have
∑

q≥1,
d|q

µ(q/d)Gq(f,Q) = g(d)
∑

q≤Q,
d|q

µ(q/d).Proof. Sine the arithmetial funtion
k 7→ g(k)

∑

q≤Q,
k|q

µ(q/k)vanishes when k > Q, it is of �nite support. Thus the orollary followsfrom (3.7) and (3.4) applied with X taken to be the set of all integers
≥ 1. ⋄ ⋄ ⋄





4 Geometri interpretationThe expression appearing in Theorem 2.1 may look unpalatable, butis in fat simply the norm of a suitable orthonormal projetion, as weshow here. The reader may skip this hapter. While it does di�erentinsights on what we are doing, it will not be invoked before hapter 19,with two short detours at setions 9.4 and 11.4.Throughout this hapter, we �x a multipliatively split ompatset K verifying the Johnsen-Gallagher ondition (2.4). For �xed q let
F (Kq) be the vetor spae of omplex valued funtions over Kq . Suhfuntions may also be seen as funtions over Z/qZ that vanish outside
Kq. We endow this vetor spae with a hermitian produt by setting(4.1) [f |g]q =

1

|Kq|
∑

nmod q

f(n)g(n).We should emphasize that the split multipliativity is an essential partof the present study. In terms of sieving as the problem is exposed inhapter 11 the ompat set K orresponds to the host sequene andthus will often be taken to be Ẑ also denoted by (Z/dZ)d dependingon the de�nition you prefer. But we have seen in Bombieri & Daven-port's approah how the host sequene ould beome the sifted one (seesetions 2.3 and 2.5)!4.1. Loal ouplingsOur �rst task is to link together the arithmeti modulo distint moduli.To do so, we onsider the usual lift when d|q:(4.2) Ld̃
q̃ : F (Kd)→F (Kq)

f 7→ f ◦ σq→d : Kq → C
x 7→ f(x mod d)This funtion is a natural one. The reader may wonder why we hose q̃instead of q; it will avoid troubles latter on. In order to further omparethe hermitian strutures, we onsider the operator J q̃

d̃
from F (Kq) to

F (Kd) whih assoiates to f ∈F (Kq) the funtion(4.3) J q̃

d̃
(f) : Kd → C, x 7→ |Kd|

|Kq|
∑

n∈Kq,
n≡x[d]

f(n).



32 4 Geometri interpretationThis operator veri�es the fundamental:(4.4) [Ld̃
q̃(f)|g]q = [f |J q̃

d̃
(g)]d.Proof. We simply hek diretly that

[Ld̃
q̃(f), g]q =

1

|Kq|
∑

x∈Kd

f(x)
∑

n∈Kq,
n≡x[d]

g(n)

=
1

|Kd|
∑

x∈Kd

f(x)

( |Kd|
|Kq|

∑

n∈Kq,
n≡x[d]

g(n)

)as required. ⋄ ⋄ ⋄Thus the maps Ld̃
q̃ and J q̃

d̃
are adjoint one to another, even if the readermay be unfamiliar with the onept when applied to linear funtions thatare not homomorphisms! Let us de�ne(4.5) Uq̃→d̃ = Ld̃

q̃J
q̃

d̃
.The next setion is devoted to understanding these operators. Note thatthey depend on K even if our notation does not make this apparent.4.2. The Fourier strutureWe start with the following fundamental property.Lemma 4.1. The operator Uq̃→d̃ is hermitian. Furthermore, Uq̃→d̃1

and
Uq̃→d̃2

ommute with eah other and we have(4.6) Uq̃→d̃1
Uq̃→d̃2

= U
q̃→ ˜(d1,d2)

.Proof. The hermitian harater is readily proved:
[Uq̃→d̃(f)|g]q = [Ld̃

q̃J
q̃

d̃
(f)|g]q = [J q̃

d̃
(f)|J q̃

d̃
(g)]q

= [J q̃

d̃
(g)|J q̃

d̃
(f)]q = [Ld̃

q̃J
q̃

d̃
(g)|f ]q = [f |Ld̃

q̃J
q̃

d̃
(g)]q ,where, in fat, we have not used any property of K. The ommutingproperty requires more hypothesis. By using the de�nition of Uq̃→d̃1

, we�nd that
Uq̃→d̃1

Uq̃→d̃2
(f)(x) =

|Kd1 |
|Kq|

∑

n∈Kq,
n≡x[d1]

Uq̃→d̃2
(f)(n)



4.2 The Fourier struture 33into whih we plug the de�nition of Uq̃→d̃2
to reah

Uq̃→d̃1
Uq̃→d̃2

(f)(x) =
|Kd1 |
|Kq|

∑

n∈Kq,
n≡x[d1]

|Kd2 |
|Kq|

∑

m∈Kq ,
m≡n[d2]

f(m)

=
|Kd1 ||Kd2 |
|Kq|

∑

m∈Kq

W (m;x)f(m),say, where we have written W (m;x) to denote(4.7) W (m;x) =
∑

n∈Kq,
n≡x[d1],n≡m[d2]

1.The reader will hek thatW (m;x) = 0 when m and x are not ongruentmodulo (d1, d2) and that W (m;x) = |Kd1 ||Kd2 |/|K(d1 ,d2)| when they are.This proves (4.6), and hene the fat that the operators Uq̃→d̃ ommutewith eah other. Note that this argument depends ruially on the splitmultipliativity of K. ⋄ ⋄ ⋄A onsequene of the above lemma is that Uq̃→d̃ is a hermitian pro-jetion. Let us further de�ne(4.8) Uq̃→d =
∑

ℓ|d
µ(d/ℓ)Uq̃→ℓ̃.The main struture Theorem is the following:Theorem 4.1. The operators (Uq̃→d)d|q are two by two orthogonal her-mitian projetions. For eah divisor r of q, we further have

Uq̃→r̃ =
∑

d|r
Uq̃→d.Note that Uq̃→q̃ is the identity.Proof. On applying the preeding lemma, we get

Uq̃→d1Uq̃→d2 =
∑

ℓ1|d1,ℓ2|d2

µ(d1/ℓ1)µ(d2/ℓ2)Uq̃→(̃ℓ1,ℓ2)

=
∑

t|(d1,d2)

(

∑

ℓ1|d1,ℓ2|d2

(ℓ1,ℓ2)=t

µ(d/ℓ1)µ(d/ℓ2)

)

Uq̃→t̃.The inner oe�ient is multipliative and is readily seen to vanish when
d1 6= d2 and to equal µ(d1/t) otherwise, thus establishing that Uq̃→d is



34 4 Geometri interpretationindeed a projetion and that Uq̃→d1 and Uq̃→d2 are orthonormal when
d1 6= d2. The remaining statements follow. ⋄ ⋄ ⋄Theorem 4.1 is the main basis of what now follows. Let us set(4.9) M(q̃ → d) = Uq̃→dF (Kq)whih we endow with the salar produt of F (Kq). This set dependson q: it is made of funtions over Kq but this dependene is immaterialsineLemma 4.2.(4.10) J q̃

d̃

M(q̃ → d) −→←− M(d̃→ d)

Ld̃
q̃are isometries, inverses of eah other.This lemma legitimates a speial name for M(d̃ → d), whih wesimply all M(d).Proof. We �rst note that Ld̃

q̃Ud̃→dJ
q̃

d̃
(F ) = Ud̃→d(F ), whih in passingproves that Ld̃

q̃M(d̃ → d) = M(q̃ → d). Next, given any two elements
Ud̃→d(f) and Ud̃→d(g) of M(d̃→ d), we have

[Ld̃
q̃Ud̃→d(f)|Ld̃

q̃Ud̃→d(g)]d = [Ld̃
q̃Ud̃→dJ

q̃

d̃
(F )|Ld̃

q̃Ud̃→dJ
q̃

d̃
(G)]dif we write f = J q̃

d̃
(F ) and g = J q̃

d̃
(G). We ontinue simply:

[Ld̃
q̃Ud̃→dJ

q̃

d̃
(F )|Ld̃

q̃Ud̃→dJ
q̃

d̃
(G)]d = [Uq̃→d(F )|Uq̃→d(G)]d

= [Uq̃→d(F )|G]d = [Ld̃
q̃Ud̃→dJ

q̃

d̃
(F )|G]d = [Ud̃→dJ

q̃

d̃
(F )|J q̃

d̃
(G)]d

= [Ud̃→d(f)|g]d = [Ud̃→d(f)|Ud̃→d(g)]dindeed proving that the restrition of Ld̃
q̃ to M(q̃ → d) is an isometry.To show that both operators are inverses of eah other, we note that

Ld̃
q̃

(

J q̃

d̃
Ld̃

q̃Ud̃→d(f)
)

= Uq̃→dUq̃→d(F ) = Uq̃→d(F ) = Ld̃
q̃

(

Ud̃→d(f)
)and sine L is an injetion, this indeed implies that

J q̃

d̃
Ld̃

q̃Ud̃→d(f) = Ud̃→d(f).The reverse equation
Ld̃

q̃J
q̃

d̃
Uq̃→d(f

′) = Uq̃→d(f
′)is readily proved. ⋄ ⋄ ⋄



4.3 Speial ases 35Thus in the relation(4.11) F (Kq) =
⊥
�
r|q

M(q̃ → r)we may regroup ⊥�
r|d

M(q̃ → r) for some divisor d of q and identify it with
F (Kd) via L or J , and this identi�ation respets eah summand. Wemay then identify F (Kd) with the set of funtions of F (Kq) that dependonly on the lass of the variable modulo d, and M(q̃ → r) as being thefuntions that depend only on the lass of the variable modulo r, where
r is minimal subjet to this ondition. Naturally, r is some kind of aondutor.We may split f aording to (4.11), whih we term deomposing f inFourier omponents, and this is done via(4.12) f =

∑

r|q
Uq̃→r(f).Note �nally that(4.13) ∥

∥Uq̃→r(f)
∥

∥

2

q
=

1

|Kq|
∑

n∈Kq

∣

∣

∣

∣

∑

d|q
µ(q/d)

|Kd|
|Kq |

∑

m≡n[d]

f(m)

∣

∣

∣

∣

2where the reader will reognize the expression appearing in Theorem 2.1.4.3. Speial asesIt is ustomary when working with the large sieve to split sums ontain-ing e(nb/q) aording to the redued form a/q = b/d with (b, d) = 1;when suh sums ontain Dirihlet haraters then aording to the on-dutor of this harater. We show below that suh deompositions arespeial ases of the one exhibited in (4.11).No restrition. When the ompat set K is (Z/qZ)q, we have at ourdisposal the usual Fourier deomposition(4.14) f(n) =
∑

d|q

∑

amod∗d

f̂(q, a/d)e(na/d)where(4.15) f̂(q, a/d) =
1

q

∑

nmod q

f(n)e(−na/d).



36 4 Geometri interpretationThis deomposition is in fat exatly the one given by (4.12), for wereadily hek that(4.16) Uq̃→d(f)(n) =
∑

amod∗d

f̂(q, a/d)e(na/d).Proof. Using (4.8), we infer
Uq̃→d(f)(n) =

∑

r|d
µ(d/r)

r

q

∑

m≡n[r]

f(m) =
1

q

∑

mmod q

f(m)
∑

r|d,
r|m−n

rµ(d/r)where we reognize the Ramanujan sum cd(n−m), getting
Uq̃→d(f)(n) =

1

q

∑

mmod q

f(m)cd(n−m)

=
1

q

∑

amod d

∑

mmod q

f(m)e(−ma/d)e(na/d)whih is exatly (4.16). ⋄ ⋄ ⋄Restriting to the invertible elements. When the ompat set K is U ,we an also write(4.17) f =
∑

d|q

∑

χmod q
χmod∗d

f̂(q, χ)χwhere the expression "χ mod q and χ mod∗ d" represents all Dirihletharaters modulo q of ondutor d and where(4.18) f̂(q, χ) =
1

φ(q)

∑

nmod∗q

f(n)χ(n).The reader will hek that here too that(4.19) Uq̃→d(f) =
∑

χmod q
χmod∗d

f̂(q, χ)χholds.4.4. Redution to loal propertiesGiven a sequene (un)n≥1 arried by K up to level D (see setion 2.3),we onsider(4.20) ∆d(u)(n) = |Kd|
∑

m≡n[d]

um



4.4 Redution to loal properties 37whih is a funtion of F (Kd) provided d ≤ D, whih we assume. Wehave hosen this normalisation beause it yields(4.21) J q̃

d̃
∆q = ∆d,allowing us to use either notion. In partiular, it implies(4.22) ∥

∥Uq̃→d(∆q(u))
∥

∥

2

q
=
∥

∥Ud̃→d(∆d(u))
∥

∥

2

dwhenever d|q. With these notations, the L.H.S. of Theorem 2.1 reads(4.23) ∑

d≤D

Gd(Q)
∥

∥Ud̃→d(∆d(u))
∥

∥

2

dwhih was the aim of this whole hapter. We have interpreted eahsummand from the L.H.S. of Theorem 2.1 as a (square of a) norm ofa suitable orthonormal projetion of our initial funtion (un)n≥1. The
∥

∥Ud̃→d∆d

∥

∥ are independent of eah other and we even have a geometriinterpretation for these norms. Note that our spae is in fat(4.24) ⊥
�

d≤D
M(r)where one should point out a peuliarity: we do not really have a spaeof funtions over a given set, whih is why we have to go through fun-tions in the �rst plae. What we have is either a sequene of points in

∏

r≤D M(r) or, if we want to keep some geometri �avour, a sequene
(fd)d with the property that J q̃

d̃
(fq) = fd, as we heked in (4.21).In hapter 19, we shall de�ne a very natural adjoint for∆q (see (19.7)).A di�erent proof of Theorem 2.1. Let U ′q̃→d be the sequene of oper-ators U assoiated with K = (Z/dZ)d and we note ‖ · ‖′q the assoiatednorm (reall that this norm depends on the ambient ompat set). Wealso use ∆′. We reserve Uq̃→d for the operators assoiated with K, andexeptionally here ‖ · ‖Kq for the relevant norm. Note that if f is in

F (Kd), then ‖f‖′2q = |Kq|‖f‖2Kq
/q and ∆′d = d∆d/|Kd|. The large sieveinequality gives a bound for(4.25) ∑

d≤D

∥

∥U ′
d̃→d

(∆′d(u))
∥

∥

′2
d
,sine in this ase Gd(Q) = 1 for every d. When we know our sequene isarried by a smaller ompat set K, we may introdue this information



38 4 Geometri interpretationvia the following transformation (see (4.8)):
∥

∥U ′q̃→q(∆
′
q(u))

∥

∥

′2
q

=
∑

d|q
µ(q/d)

∥

∥∆′d(u)
∥

∥

′2
d

=
∑

d|q
µ(q/d)

d

|Kd|
∥

∥∆d(u)
∥

∥

2

Kd
.

=
∑

d|q
µ(q/d)

d

|Kd|
∑

r|d

∥

∥Ur̃→r∆r(u)
∥

∥

2

Kr
.Plugging this last expression into (4.25) and rearranging some terms wereah (4.23).



5 Further arithmetial appliations5.1. On a large sieve extension of the Brun-TithmarshTheoremIn this setion, we use the large sieve extension of the Brun-Tithmarshinequality provided by Theorem 2.1 to detet produts of two primesis arithmeti progressions. Let us onsider the ase of primes in [2, N ],of whih the prime number theorem tells us there are about N/LogN .Next selet a modulus q. The Brun-Tithmarsh Theorem 2.2 impliesthat at least(5.1) φ(q)

2

(

1− Log q

LogN

)ongruene lasses modulo q ontains a prime ≤ N , so roughly speakingslightly less than φ(q)/2 when q is N ε. If this ardinality is > φ(q)/3, oneould try to use Kneser's Theorem and derive that all invertible residuelasses modulo q ontain a produt of three primes, but the proof getsstuk: all the primes we detet � to show the ardinality is more than
φ(q)/3 � ould belong to a quadrati subgroup of index 2 ... Howeverthe following theorem shows that if this is indeed the ase for a givenmodulus q then the number of lasses overed modulo some q′ prime to
q is muh larger:Theorem 5.1. Let N ≥ 2. Set P to be the set of primes in ]

√
N,N ], ofardinality P , and let (qi)i∈I be a �nite set of pairwise oprime moduli,not all more than √N/LogN . De�ne

A(qi) = {a ∈ Z/qiZ/ ∃p ∈ P, p ≡ a[qi]}.As N goes to in�nity, we have
∑

i∈I

(

1− 2Log qi
LogN

)(

φ(qi)

|A(qi)|
− 1

)

≤ 1 + o(1).A similar Theorem is an essential ingredient of (Ramaré, 2007b).Let us note for historial referene that (Erdös, 1937) already showeda result of similar �avour, though weaker in several respets. See alsohapter 6 for a di�erent hindsight on the problem and Theorem 21.3 ofthe appendix for a similar reasoning in a more general ontext.



40 5 Further appliationsProof. We �rst present a proof when qi's are prime numbers. ApplyingTheorem 2.1 to the harateristi funtion (un) of the primes in P andthe ompat set K = U and then reduing the summation to summandsfrom (qi), we get(5.2)
G1(Q)P 2 +

∑

i∈I

Gqi(Q)φ(qi)
∑

bmod∗qi

∣

∣

∣

∣

∑

p∈P
p≡b[qi]

1− P/φ(qi)

∣

∣

∣

∣

2

≤ P (N +Q2).Now applying Lemma 2.3 to get a lower bound for Gqi(Q) in terms of
G1, whih we bound in turn by (2.13), we infer that
P 2 LogQ+

∑

i∈I

Log(Q/qi)φ(qi)
∑

bmod∗qi

∣

∣

∣

∣

∑

p∈P
p≡b[qi]

1−P/φ(qi)

∣

∣

∣

∣

2

≤ P (N+Q2).With i �xed, set(5.3) xb =
∑

p∈P
p≡b[qi]

1.We know that ∑b xb = P and that xb is zero when b is not in A(qi) andwe seek the minimum of ∑b(xb − P/φ(q))2. This is most immediatelydone on setting the non-zero xb to be all equal to P/|A(qi)|. A modestalulation then reveals that(5.4) ∑

i∈I

(

1− Log qi
LogQ

)(

φ(qi)

|A(qi)|
− 1

)

≤ N +Q2

P LogQ
− 1.Setting Q =

√
N/LogN yields the inequality we laimed. To extendthe proof to non prime moduli, we have to hek that (5.2) still holds inthis ase, provided the qi's are pairwise oprime. The required identityfollows on ombining (5.6) below together with(5.5) ∑

d|q
|Kd|

∑

b∈Kd

∣

∣

∣

∣

∑

ℓ|d
µ(d/ℓ)

|Kℓ|
|Kd|

∑

m≡b[ℓ]

um

∣

∣

∣

∣

2

= |Kq|
∑

b∈Kq

∣

∣

∣

∣

∑

m≡b[q]

um

∣

∣

∣

∣

2whenever um vanishes ifm is not in Kq, and where K is a multipliativelysplit ompat set verifying the Johnsen-Gallagher ondition. The ase
K = U would of ourse be enough for us here, but we an as easily getto the general ase. To prove this latter identity, rewrite the L.H.S. as
∑

d|q Θ(d) where Θ(d) is being de�ned in (2.10). We showed there that
Θ(d) =

∑

r|d
µ(d/r)|Kr|

∑

m≡n[r]

umun



5.1 On an extension of the Brun-Tithmarsh Theorem 41so that
∑

d|q
Θ(d) = |Kq|

∑

m≡n[q]

umun.Our laim follows readily on noting that(5.6)
|Kq|

∑

b∈Kq

∣

∣

∣

∣

∑

m≡b[q]

um

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∑

m

um

∣

∣

∣

∣

2

= |Kq|
∑

b∈Kq

∣

∣

∣

∣

∑

m≡b[q]

um −
∑

m um

|Kq|

∣

∣

∣

∣

2

.An alternative proof in the ase of primes an be worked out by usingthe expression of Θ(q) obtained in the proof of the Bombieri-DavenportTheorem, here Theorem 2.3. A third and muh more oneptual proofis available to the reader who has gone through hapter 4: it proeedsby notiing that (5.5) may simply be rewritten as
∑

d|q

∣

∣[Uq̃→d(∆q(u))|∆q(u)]q
∣

∣

2
= ‖∆q(u)‖2qon joining (4.1) and (4.13) with (4.20), a relation whih holds by (4.12).

⋄ ⋄ ⋄Corollary 5.1. Let us onsider the set of primes ≤ N . Let q1 and q2be two oprime moduli both not more than N1/5. Then modulo q1 or q2,when N is large enough, all invertible residue lasses ontain a produtof two primes.The limit of this orollary is qi ≤ N 1
4−ε. Taking three or more moduliwould of ourse redue this limitation.Proof. We apply the preeding theorem to obtain that for q1 or q2, sayfor q, we have

2

(

1− 2Log q

LogN

)(

φ(q)

|A(q)| − 1

)

≤ 1 + o(1)from whih we infer that |A(q)|/φ(q) > 1/2. It is then lassial ad-ditive number theory (applied to the multipliative group of Z/qZ) toprove the result: for eah invertible residue lass b modulo q, the set
{ba−1, a ∈ A(q)} has more than φ(q)/2 elements and this implies thatits intersetion with A(q) is non-empty. On onsidering an element inthis intersetion, one gets an expression of b as a1a2 as required. ⋄ ⋄ ⋄We shall use this approah in a di�erent example in setion 21.4. Itmay appear surprising at �rst sight that we should be able to �nd aprodut of two primes (exatly two primes, and not "having at most twoprime fators�) in an arithmeti progression to a better level than what



42 5 Further appliationsone gets for a single prime. This is due to the additionnal struture thisset has and whih we put to use.5.2. Improving on the large sieve inequality for siftedsequenesWe next use Theorem 2.1 to re�ne the large sieve inequality.Theorem 5.2. Assume K is multipliatively split and veri�es the John-sen-Gallagher ondition (2.4). Let (un) be a sequene arried by K up tolevel Q. Then for Q0 ≤ Q, we have
∑

q≤Q0

∑

amod∗q

∣

∣

∣

∣

∑

n

une(na/q)

∣

∣

∣

∣

2

≤ G1(Q0)

G1(Q/Q0)

∑

n

|un|2(N +Q2)Proof. Call Σ(Q0) the L.H.S. of the above inequality. By Theorem 2.1and using the notation Θ(q) that appears in its proof, we get
Σ(Q0) =

∑

q≤Q0

Gq(Q)
Gq(Q0)

Gq(Q)
Θ(q) ≤ max

q≤Q0

(

Gq(Q0)

Gq(Q)

)

∑

q≤Q0

Gq(Q)Θ(q)

≤ max
q≤Q0

(

Gq(Q0)

Gq(Q)

)

∑

q≤Q

Gq(Q)Θ(q) = max
q≤Q0

(

Gq(Q0)

Gq(Q)

)

Σ(Q)from whih we onlude via Lemma 2.3. ⋄ ⋄ ⋄This inequality re�nes the large sieve inequality when Q0 is smallwhile Q is large (but ≤ √N in what we have in mind). Using diretlythe large sieve inequality for Q0 would lose the fat that we an indeedsieve up to Q, information that we preserve in the above theorem.Without going into any further details, let us mention that this in-equality is optimal, at least in full generality and that even its speial-ization to the ase of primes below is optimal, up to the onstant impliedin the ≪-symbol.This re�ned inequality has been used in (Ramaré & Ruzsa, 2001).5.3. An improved large sieve inequality for primesWe proved in setion 2.4 that the G1-funtion assoiated with K = Uveri�es G1(Q) ≥ LogQ. This is in fat the true order of magnitude,but the proof is somewhat more di�ult and relies on the onvolutionmethod. Here is rough sketh.



5.3 An improved large sieve inequality for primes 43Proof. We start with
∑

q≥1

µ2(q)

φ(q)qs
= ζ(s+ 1)

∏

p≥2

(

1 +
1

(p− 1)ps+1
− 1

p2s+1

)

.The latter series, say H(s) whih appears on the R.H.S. is onvergentfor ℜs > −1/2. We expand it in Dirihlet series in this half plane:
H(s) =

∑

n≥1

h(n)

ns
.We have

µ2(q)

φ(q)
=
∑

d|q

d

q
h(d)whih in turn yields

G1(z) =
∑

d≤z

dh(d)
∑

q≤z
d|q

1

q
=
∑

d≤z

h(d) (Log(z/d) + γ +O(d/z)) .We hek that |h(d)| ≪ d−1.4 (this 1.4 is any number < 1.5 and theonstant in the ≪-symbol depends on this hoie), from whih we infer
G1(z) = Log z + γ +H ′(0) +O(Log z/z0.4).

⋄ ⋄ ⋄In Lemma 3.5 of (Ramaré, 1995), it is proved that(5.7) G1(z) ≤ Log z + 1.4709 (∀z ≥ 1).Theorem 5.3. If (un)n≤N is suh that un vanishes as soon as n has aprime fator less than √N , then
∑

q≤Q0

∑

amod∗q

∣

∣

∣

∣

∑

n

une(na/q)

∣

∣

∣

∣

2

≤ 7
N LogQ0

LogN

∑

n

|un|2for any Q0 ≤
√
N and provided N ≥ 100.Proof. One again, we translate our hypothesis by saying that (un) isarried by K = U upto level Q =

√
N . If Q0 ≥ N3/10, the proof followsdiretly from the large sieve inequality. Else, Theorem 5.2 gives us abound that our estimates on the G-funtions translate into the requiredstatement, the ontant being majorized by

α+ 1.4709/Log(100)
1
2 − α

× 2



44 5 Further appliationswhere Q0 = Nα and by using (5.7) together with (2.13). A numerialappliation onludes. ⋄ ⋄ ⋄An inequality of similar strength is stated in Lemma 6.3 of (Elliott,1985). The reader may have di�ulties in notiing the onnetion withour result, sine, in Elliott's Lemma, the sum is restrited to primemoduli and onerns primes in progressions instead of exponential sumsas here, but it is really the same mehanism that makes both proofswork.5.4. A onsequene for quadrati sequenesHere, to alleviate typographial work, we use Logk to denote the k-thiterated logarithm.Theorem 5.4. For every real numbers Q0 ≥ 10 and N , and any se-quene of omplex numbers (un), we have
∑

q≤Q0

∑

amod ∗q

∣

∣

∣

∣

∣

∣

∑

n≤N

une(n
2a/q)

∣

∣

∣

∣

∣

∣

2

≤ c(Q0)Q0 · (N +Q0g(Q0)) ·
∑

n≤N

|un|2with g(x) = exp(20Log2(3x) Log3(9x)) and c(Q0) = 4000Log2
2(3Q0).A similar result with n2 being replaed with a �xed quadrati poly-nomial is easily aessible by the method given here. In between, (GyanPrakash & Ramana, 2008) generalized greatly this result by a di�erentmethod and in partiular, they are able to handle the ase of arbitrarypolynomials (instead of only quadrati ones), provided the oe�ientsare integers. They are even able to handle the ase of arbitrary intervals.The above is still slightly better where it applies.Proof. We �rst slightly modify the proof of Theorem 5.2 : we are tomajorize

max
d≤Q0

{Gd(Q0)/Gd(Q) }.Next, we should de�ne our set K and the funtions G. The level ofsieving is Q = max(N,Q0g(Q0)).When d is squarefree we take for Kd the set of squares and when dis not squarefree we trivially lift Kℓ to Z/dZ, where ℓ is the squarefreekernel of d. This set K satis�es the Gallagher-Johnsen ondition (2.4)



5.4 A onsequene for quadrati sequenes 45and is multipliatively split. Furthermore(5.8) 





|Kpν |p−ν =
p+ 1

2p
if p 6= 2 and ν ≥ 1,

|K2ν |2−ν = 1 if ν ≥ 1.The assoiated funtion h vanishes on non-squarefree integers and oth-erwise veri�es
h(2) = 0, h(p) =

p− 1

p+ 1
if p 6= 2.In this situation, we have

Gd(Q) =
∑

δ/ [d,δ]≤Q

h(δ) =
∑

q,r
(q,d)=1,r|d,

q≤Q/d

h(r)h(q)i.e.(5.9) Gd(Q) =
|Kd|
d

∑

q≤Q/d
(q,d)=1

h(q)(by writing δ = qr) as soon as d ≤ Q. When f is an odd integer we inferthat(5.10) G2uf (Q) =
∏

p|f

2p

p+ 1

∑

q≤Q/(2uf)
(q,2f)=1

µ2(q)
∏

p|q

(

p− 1

p+ 1

)

.Note that we should pay attention to the dependene in u and f whileevaluating these averages. De�ne the multipliative funtions a and b by






a(p) =
p− 1

p+ 1
when p ∤ 2f ,

a(pν) = 0 otherwise, 

































b(p) =
−2

p+ 1
when p ∤ 2f ,

b(p) = −1 otherwise,
b(p2) = −p− 1

p+ 1
when p ∤ 2f ,

b(pν) = 0 otherwise,so that a = 1 ⋆ b and we have
G2uf (Q) =

∏

p|f

2p

p+ 1

∑

q≤Q/(2uf)

a(q).We ontinue by appealing to Rankin's method. We use
∑

n≤X

1 = X +O∗(Xα) (α > 0,X ≥ 0)



46 5 Further appliationsto get
∑

q≤D

a(q) =
∑

d≥1

b(d)

{

D

d
+O∗((D/d)α)

}

= B(f)D +O∗
(

DαB∗
∏

p|2f

(

1 +
1

pα

))where B(f) =
∑

d≥1 b(d)/d veri�es
B(f) =

∏

p≥2

(

1− 3p− 1

p2(p+ 1)

)

∏

p|2f

(

1− 1

p

)(

1− 3p − 1

p2(p+ 1)

)−1

≥ 0.35
∏

p|2f

(

1− 1

p

)(

1− 3p− 1

p2(p+ 1)

)−1(

1 +
1

p

)

∏

p|2f

(

1 +
1

p

)−1

≥ 0.35
∏

p|2f

(

1 +
1

p

)−1

.We hoose α = max(3/4, 1 − 1/Log2(3f)). Note that, for α ≥ 3/4,
B∗ =

∏

p≥3

(

1 +
2

(p+ 1)p3/4
+

p− 1

(p+ 1)p3/2

)

≤ 2.3,hene, by getting rid of the Euler fator at 2, we get
∑

q≤D

a(q) = B(f)D

(

1 +O∗
(

6.7Dα−1
∏

p|f

(

1 +
1

pα

)2)
)

.Odd integers f ≤ ee
4
/3 have not more than 18 prime fators, sine theprodut of the 18 �rst odd primes is greater than ee

4
/3. This impliesthat ∏p|f

(

1 + p−3/4
) not more than 55 for those f 's. We proeed tomajorize this produt when f ≥ ee

4
/3. Setting L = Log 3f , we readilyhek that

∏

p|f
p≥L

(

1 +
1

pα

)2

≤ exp

(

2Log(f)

Lα LogL

)

≤ 1.2sine there are at most Log(f)/LogL prime divisors of f that are ≥ L.On the other hand, and on using the elementary Log(1+x)−Log(1+
y) ≤ x− y when 0 ≤ y ≤ x, we get
∏

p≤L

(

1 +
1

pα

)(

1 +
1

p

)−1

≤ exp
∑

p≤L

( 1

pα
− 1

p

)

≤ exp
∑

p≤L

e(1−α) Log p − 1

p
.



5.5 A Bombieri-Vinogradov type Theorem 47We now utilize ex − 1 ≤ ex when 0 ≤ x ≤ 1, getting
∏

p≤L

(

1 +
1

pα

)2(

1 +
1

p

)−2

≤ exp

(

2.4(1 − α)
∑

p≤L

Log p

p

)

≤ e2.4 ≤ 12sine ∑p≤L(Log p)/p ≤ LogL by (3.24) of (Rosser & Shoenfeld, 1962).This leads to
∏

p|f,p≤L

(

1 +
1

pα

)2

≤ 12
∏

p≤L

(

1 +
1

p

)2

≤ 12 exp

(

∑

p≤L

2

p

)

≤ 12 exp(2Log LogL+ 2) ≤ 89Log2(3f)2sine (
∑

p≤L 1/p ≤ Log LogL + 1 when L ≥ 3 by (3.20) of (Rosser &Shoenfeld, 1962). Gathering our estimates, we infer
1− 716Log2(3f)2 exp(−LogD/Log2(3f))

≤ 1

DB(f)

∑

q≤D

a(q) ≤ 716Log2(3f)2when 3f ≥ ee
4 . The reader will easily get a better bound when f issmaller. We will use this lower estimate with D = Q0/(2

uf) and theupper one with D = Q/(2uf). Sine(5.11) Log(D) ≥ Log(Q/Q0) ≥ 20Log2(3Q0) Log3(9Q0)we get
1− 716Log2(3f)2 exp(−LogD/Log2(3f)) ≥ 1− 716

Log2(9Q0)18
≥ 1/5.Finally

max
d≤Q0

{Gd(Q0)/Gd(Q) } ≤ 4000(Log2(3Q0))
2Q0/Qending the proof. ⋄ ⋄ ⋄5.5. A Bombieri-Vinogradov type TheoremWe an establish Bombieri-Vinogradov type of results from Theorem 5.4by adapting the sheme developed in (Bombieri et al., 1986). We usethe notation p ∼ P to say P < p ≤ 2P .



48 5 Further appliationsTheorem 5.5. For every A ≥ 1, there exists B suh that for all D ≤
P (LogP )−B and D ≤ N/g(N), we have
∑

d≤D

max
amod∗d

∣

∣

∣

∣

∑

n∼N,p∼P
(n2+1)p≡a[d]

α(n)− π̃(P )

φ(d)

∑

(n2+1,d)=1

α(n)

∣

∣

∣

∣

≪A
PN1/2‖α‖
(LogP )Afor any sequene of omplex numbers (α(n))n and where π̃(P ) is thenumber of primes p ∼ P .The funtion g appearing in this statement is of ourse the one ap-pearing in Theorem 5.4.For instane, this implies that the level of distribution of the sequeneof (p2

1 + 1)p2 with p1 and p2 prime numbers suh that N ≤ p1, p2 ≤ 2Nis larger than N . Using the general theory of the weighted sieve (see forinstane (Greaves, 2001)), we infer that the sequene 1+(p2
1 +1)p2 with

1
2 ≤ p1/p2 ≤ 2 ontains in�nitely many elements having at most fourprime fators. This speial result has already been proved by (Greaves,1974); Greaves's result is more general than ours in some aspets whileours prevails in some other. For the sequene 2 + p2

1p2, it is possibleto simplify the following proof by appealing to the Barban-Davenport-Halberstam Theorem.Proof. Let us put D = P/(Log P )2A+4. We study
Σ =

∑

d≤D

max
amod∗d

∣

∣

∣

∣

∑

n∼N,p∼P
(n2+1)p≡a[d]

α(n)− π̃(P )

φ(d)

∑

(n2+1,d)=1

α(n)

∣

∣

∣

∣

.We have
Σ =

∑

d≤D

max
amod ∗d

∣

∣

∣

∣

1

φ(d)

∑

χmodd
χ 6=χ0

S(χ)T (χ)χ̄(a)

∣

∣

∣

∣

≤
∑

d≤D

1

φ(d)

∑

χmod d
χ 6=χ0

|S(χ)| |T (χ)|with(5.12) S(χ) =
∑

n∼N

α(n)χ(n2 + 1) and T (χ) =
∑

p∼P

χ(p).



5.5 A Bombieri-Vinogradov type Theorem 49As usual, we infer that
Σ≪ LogD

∑

1<q≤D

1

φ(q)

∑

χmod ∗q

|S(χ)| |T (χ)|

≪ (LogD)2
(

∑

1<q≤D0

∑

χmod ∗q

|S(χ)|2
)1/2

max
χmod∗q
1<q≤D0

|T (χ)|

+(LogD)Σ′.Let us reall the lassial inequality of (Gallagher, 1967)
∑

χmod ∗q

|S(χ)|2 ≤ φ(q)

q

∑

amod ∗q

∣

∣

∑

n∼N

α(n) e((n2 + 1)a/q)
∣

∣

2
.(5.13)Using the Siegel-Wal�sh Theorem (whih we reall later in Lemma 10.4in setion 10.4) for T (χ) and Theorem 5.4 for S(χ) through the aboveinequality, we get

Σ≪C1 (LogP )−C1PD
1/2
0 (LogD0)(N +D0g(D0))

1/2‖α‖2 + (LogD)Σ′for D0 = (LogP )2A+6 and C1 = 2A + 6. As for Σ′, we split the sum-mation over q aording to the size of this parameter. We are then leftwith the problem of �nding an upper bound for
Σ′′(Q) =

LogQ

Q

∑

Q<q≤2Q

∑

χmod∗q

|S(χ)| |T (χ)|whih we treat using the Cauhy-Shwarz and the large sieve inequality :
Σ′′(Q)≪ LogQ

Q
(P + P 1/2Q)

(

∑

Q<q≤2Q

∑

χmod ∗q

|S(χ)|2
)1/2

.Invoking Theorem 5.4, we get for N ≥ Dg(D)

Σ′′(Q)≪ Log2Q

Q
(P + P 1/2Q)Q1/2‖α‖2N1/2

≪ ‖α‖2P 1/2N1/2
(P 1/2

Q1/2
+Q1/2

)

Log2QHene
Σ≪A ‖α‖2(LogD)3PN1/2

(

(LogP )−C1D
1/2
0 +

1

D
1/2
0

+
D1/2

P 1/2

)and the theorem follows readily. ⋄ ⋄ ⋄





6 The Siegel zero e�etWhen dealing with the Brun-Tithmarsh Theorem (Theorem 2.2 ofthis monograph), and in general, with sieve methods, the question of theonnetions between the parity priniple, the onstant 2 in this theoremand the so-alled Siegel zeros annot be avoided. (Selberg, 1949) showsthat the onstant 2 + o(1) in the Brun-Tithmarsh Theorem is optimal,if we stik to a sieve method in a fairly general ontext. He expandedthis theory into what is known as the "parity priniple" in (Selberg,1972). See also (Bombieri, 1976). However, this objetion is methologialand belongs muh more to the realm of the ombinatorial sieve. In therestrited framework of the Brun-Tihmarsh Theorem, or in the evenmore restrited framework of this Theorem for the initial interval only,the onstant 2 and "the parity priniple" are indeed two di�erent issues.This hapter is �rst devoted to links and parallels between Siegel zerosand the onstant 2 in the aforementioned Theorem.We omplete this hapter with large sieve estimates on the numberof quadrati haraters χ for whih the least prime p with χ(p) = −1(resp. χ(p) = 1) is large.6.1. Zeros free regions and Siegel zerosLet us start with a Theorem initially due to de la Vallée-Poussin in 1896,whih we present in the re�ned form given in (Kadiri, 2002):Theorem 6.1. The Dirihlet L-funtions assoiated to the modulus qdo not vanish in the region
ℜs ≥ 1− 1

R log(qmax(1, |ℑs|)) with R = 6.4355,with the exeption of at most one of them. This exeption orreponds toa real harater and has at most one real zero in the given region.This zero is alled the "Siegel zero�, or sometimes the "exeptionalzero�. The reader should note that suh a de�nition depends on theshape of the region, and partiularly on the value of R. Some authorsall "Siegel zero� a sequene of suh zeros when R goes to 0. We knowsine Dirihlet in 1839-40 that suh a zero annot be in s = 1, but it anbe very lose to it. First there is a link between this zero and the size of
L(1, χ), where χ is the assoiated real Dirihlet harater. This link is



52 6 The Siegel zero e�etnot as tight as one ould expet, but is strong enough for our purpose.The �rst part is a theorem due to Heke around 1915 whih an be foundin (Landau, 1918). The preise form we state omes from (Pintz, 1976).Theorem 6.2. When an L-funtion belonging to the real non-prinipalharater χ modulo q ≥ 200 has no zero in the interval [1− α, 1], where
0 < α < (20Log q)−1, we have L(1, χ) > 0.23α.Whih implies that if L(1, χ) = o(1/Log q), then there is an exep-tional zero. A onverse statement arises from the following lemma:Lemma 6.1. When an L-funtion belonging to the real non-prinipalharater χ modulo q, where q ≥ 200, has a real zero β ≥ 1− (Log q)−1,then L(1, χ) ≤ 2(1− β) Log2 q.Proof. The mean value Theorem tells us that there exists a u in [β, 1]suh that L(1, χ) − 0 = (1 − β)L′(u, χ). We bound the latter quantitytrivially:

L′(u, χ) =
∑

n≤q

χ(n) Log n

nu
+

∫ ∞

q

∑

q<n≤t

χ(n)
uLog t− 1

tu+1
dtand hene

|L′(u, χ)| ≤ e
(

Log2 q

2
− Log2 3

2
+

Log 3

3
+

Log 2

2

)

+ q
Log q

qu

≤ e
(

Log2 q

2
+ Log q + 0.11

)

≤ 2Log2 q.

⋄ ⋄ ⋄See also (Goldfeld & Shinzel, 1975), as well as the mentioned paperof Pintz for more preise links between L(1, χ) and 1− β.(Landau, 1918) proved that the modulus assoiated to any two suhzeros annot be lose one to the other. Here is the latest result due to(Kadiri, 2007) in this diretion:Theorem 6.3. Let χ1 modulo q1 and χ2 modulo q2 be two real primitiveharaters, and let β1 > 0 (resp. β2 > 0) be a real zero of L(s, χ1) (resp.
L(s, χ2)). Assume that q1 and q2 are oprime. Then

min(β1, β2) ≤ 1− 1

2.31Log(q1q2/47)
.The reader may wonder why suh zeros are alled Siegel zeros, andindeed the name Landau-Siegel zeros may well be better suited, sine



6.2 Gallagher's prime number Theorem 53(Landau, 1935) is the very �rst suess at proving a result like Theo-rem 6.4 below with an ε < 1/2 (Landau still required ε > 3/8). Here isa version from (Tatuzawa, 1951) of the Theorem of (Siegel, 1935) thatwarranted this nomenlature.Theorem 6.4. For any ε > 0, and any primitive real harater χ modulo
q, we have L(1, χ) ≥ ε/(10qε) with the exeption of at most one valueof q.The reader may onsult (Ho�stein, 1980) as well as (Ji & Lu, 2004).for improved versions of this result. Theorem 6.4 has the following on-sequene: for any ε > 0, there exists a onstant c(ε) > 0 suh that
L(1, χ) > c(ε)q−ε. However, this proof does not allow us to e�etivelyompute the onstant c(ε), even if we take ε = 1/3 for instane. As amatter of fat, we know an e�etive solution only in the ase ε = 1/2.On this subjet, the reader may read the groundbreaking paper of(Goldfeld, 1985) as well as (Gross & Zagier, 1983) and (Oesterlé, 1985).6.2. Gallagher's prime number TheoremThe existene of a possible exeptional zero has a deep impat on the dis-tribution of primes in arithmeti progressions. The theorem we presenthere is one of the �nest ahievements in this diretion and lari�es greatlythe situation. Some of the results we seek an be shown without havingto appeal to suh a heavyweight, but using it is enlightening.The prime number theorem of (Gallagher, 1970) has a long anestry,steming originally from (Linnik, 1944a) and (Linnik, 1944b). Anothermodern form of these elebrated papers an be found in (Bombieri, 1987),Theorem 16. See also (Motohashi, 1978).One of the key to suh results is the Deuring-Heilbronn phenomenon:when there is an exeptional zero, all other L-funtions have no zeroin a region wider than usual, and this region beomes wider as thisexeptional zero loses to 1.Let us now state Gallagher's Theorem. Assume L(β, χ) = 0 for a βsuh that 1− β = o(1/Log q). We set δ = 1− β. In this ase(6.1) ψ(X; q, ℓ) =

X

φ(q)

(

1− χ(ℓ)
X−δ

β

)

+O
(

Xδ Log T

φ(q)

(

e−c1
Log X
Log T

LogX
+
q LogX√

T
+
T 5.5

√
x

)

)



54 6 The Siegel zero e�etif X ≥ T c2 ≥ T ≥ q where c1, c2 > 0 are two e�etive onstants. Theonstant implied in the O-symbol is equally e�etive. If no exeptionalzero exists modulo q (that is, also for no divisor of q), the preedingformula holds with minor modi�ations: we use β = 1
2 in the main termand δ Log T = 1 in the remainder term.6.3. Siegel zero and Brun-Tithmarsh TheoremWe prove here the following Theorem whose idea omes from (Motohashi,1979), where a similar result is proved by a very di�erent method.Theorem 6.5. There exist two e�etive onstants c3 and c4, suh thatfor q ≥ c4, the following two onditions are equivalent.(1) For any real harater modulo q, we have L(1, χ)≫ 1/Log q.(2) There exist a onstant ξ > 0 suh that for any ℓ prime to q, wehave, with X = qc3:(6.2) ∑

X<p≤2X,
p≡ℓ[q]

1 ≤ 2− ξ
φ(q)

∑

X<p≤2X

1.Suh a statement is always somewhat triky. For instane, we indeeduse haraters and not only primitive haraters. We an take c3 =
max(36, 3c2), where c2 appears in (6.1).Proof. We shall use Gallagher's Theorem (6.1) with T = q3 and X ≥
qmax(36,3c2), so that the error term there is O of X/(φ(q) Log q). First,assume L(1, χ) = o(1/Log q) for one harater χ. Then, by Heke'stheorem, there is indeed an exeptional zero, say β, assoiated to aharater χ. We have X−δ = 1 + o(1). In partiular, if we take aninvertible residue lass ℓ suh that χ(ℓ) = −1, we have ψ(X; q, ℓ) ∼
2X/φ(q), and this readily implies that ξ annot exist.For the reverse impliation, we follow (Ramahandra et al., 1996). Bysumming our upper bound over all ℓ suh that χ(ℓ) = −1, we disoverthat the number of primes in ]X, 2X] with χ(p) = 1 is at least

ξ
∑

X<p≤2X

1/2.Consider next G(s) = ζ(s)L(s, χ) =
∑

n≥1 g(n)n−s where g(n) = 1 ⋆
χ(n). Note that g(n) is non-negative. Note, furthermore, that g(p) = 2when χ(p) = 1, from whih we infer

∑

X<n≤2X

g(n) ≥
∑

X<p≤2X

g(p)≫ ξX/LogX.



6.3 Siegel zero and Brun-Tithmarsh Theorem 55This readily yields
1

2iπ

∫ c+i∞

c−i∞
G(s+ 1)Γ(s)

(

(2X)s −Xs
)

ds

=
∑

n≥1

g(n)

n

(

e−n/(2X) − e−n/X
)

≫
∑

X<n≤2X

g(n)

X
≫ ξ/LogX.Next, shifting the path of integration in the above integral to ℜs = −1/4,we see that it is

L(1, χ) Log 2 +O
(

X−1/4

∫ c+i∞

c−i∞
|G(s + 1)Γ(s)|ds

)

.The exponential deay of Γ(s) in vertial strips (a onsequene of theStirling formula) as well as the bound |G(3/4+it)| ≪ q1/4(1+|t|) ensuresus that this last error term is at most O((q/X)1/4), whih in turn is
O(q−1) sine c3 ≥ 5. So that we �nd that L(1, χ)≫ 1/LogX ≫ 1/Log qas required. ⋄ ⋄ ⋄Thus, improving on the onstant 2 in the Brun-Tithmarsh Theoremwhen X is a power of q would remove any Siegel zero. Note that we useonly the Brun-Tithmarsh Theorem for the initial range. Drawing onsimilar ideas, (Basquin, 2006) established a theorem linking an e�etivelower bound for L(1, χ) of the shape 1/qc for some c ∈]0, 1/2] with theimprovement on the onstant 2 in the Brun-Tithmarsh Theorem, butin a di�erent range for X:Theorem 6.6. Let c > 0 be a parameter. The following three problemsare equivalent:(1) For every ε > 0, and every real harater χ, prove in an e�etiveway that L(1, χ)≫ q−c−ε.(2) For every ε > 0, prove (6.2) for every q ≤ (LogX)(1/c)−ε.(3) For every ε > 0, prove in an e�etive way that ψ(X; q, ℓ) ∼

X/φ(q) for every q ≤ (LogX)(1/c)−ε.This statement also tells us that, if we are able to beat the fator 2in the upper bound, then a muh stronger onlusion follows, namely anequivalent for ψ(X; q, ℓ). This situation is similar to what happens withthe elementary proof of the prime number theorem, a proof this timeheavily linked to the parity priniple. See (Selberg, 1949b), (Selberg,1949a) and (Erdös, 1949).



56 6 The Siegel zero e�et6.4. The Siegel zero e�etWe have seen that the distribution of primes in arithmeti progressionsmodulo q stumbles on the possible existene of the so alled Siegel zero.The existene of suh a zero would have the e�et that only about halfthe residue lasses would ontain primes. However, the reader shouldnotie that this philosophial statement is sustained by theorems onlywhen q is a small power of X.When approahing the problem of this distribution through zerosof L-funtions, this e�et is well ontrolled and is avoided by a simplefat: two moduli q1 and q2 oprime and not too far apart in size annotsimultaneously have a Siegel zero by Theorem 6.3. For instane, thisremedy is used in (MCurley, 1984) and (Cook, 1984). The onditionof oprimality is not minor in any sense: if q has a Siegel zero, thenthe distribution of primes modulo 3q for instane is still going to beunbalaned.From the sieve point of view, zeros do not appear as suh, but asimilar role is played by the fat that we an only prove that the numberof primes in a given arithmeti progression is about twie what it shouldbe. Indeed, this implies that, then, primes annot aumulate on asubset of (Z/qZ)∗ that ontains less than (1−ε)φ(q)/2 elements. Again,this is true only when q is small when ompared to X, but, when q islarger, we an still prove that a subset of positive density (with respetto (Z/qZ)∗) is attained.We also have a similar e�et to Landau's, even if we are not a-tually able to produe a orresponding zero. And, indeed, by using alarge sieve extension of the Brun-Tithmarsh inequality, we saw in The-orem 5.1 that primes annot aumulate in some small sets modulo twooprime moduli of similar size. Further the density of the set attainedan even be shown to be rather lose to 1 if we are ready to hose onemodulus among say T andidates. Exatly how large depends on thesize of the modulus, say q and of T , but we an roughly show that morethan (1 + 2LogX/(T Log(X/q2))
)−1

φ(q) lasses are reahed and thisindeed will be larger than a half provided T is large enough dependingon Log(X/q2).This is what we loosely all the Siegel zero e�et, though no zeros areinvolved. And sine it �nds its justi�ation in sieves, it an be used onother sequenes as well; we provide suh an example in Theorem 21.3 ofhapter 21.



6.5 A detour: the preursory theorem of Linnik 576.5. A detour: the preursory theorem of LinnikProving that L(s, χ) has no zero lose to 1 has to do with proving that
L(1, χ) annot be small, whih means, when χ is quadrati, proving that
χoften takes the value 1. Curiously enough, we do not know how to proveeither that χ(p) often takes the value −1 1, or that it takes often thevalue 1 2, where here it is neessary to speify that we seek the valueat prime argument for the problem to be non trivial. One of the �rstarithmetial use of the large sieve tehnique ourred in (Linnik, 1942),where the author provesTheorem 6.7. For every ε > 0, there exists c(ε) suh that, for every N ,the number of prime numbers ≤ N that have no non-quadrati residue
≤ N ε is at most c(ε).We refer the reader to (Montgomery, 1971) for a more thorough treat-ment of the history of the subjet. We now present a proof of this result.As usual we shall have to ompute a density, for whih we rely on thefollowing lemma.Lemma 6.2.The number of integers ≤ N whose prime fators are all ≤ N ε is
≫ε N .There exist better proofs than the one we give now, and it is knownin partiular that this set has a ardinality equivalent to a onstant(depending on ε) times N . However, the one we present relies one moreon the idea of (Levin & Fainleib, 1967). Moreover, it appears to be novel.Proof. Set ǫ = 1/k, where k ≥ 1 is an integer. Let S be the set ofintegers that have no prime fators ≤ N ǫ and let Z be the number ofthem that are ≤ N . Let us �rst write
Z LogN =

∑

n∈S,
n≤N

LogN ≥
∑

n∈S,
n≤N

∑

p|n
Log p ≥

∑

p≤Nǫ

Log p
∑

n∈S,
np≤N

1

≥
∑

n∈S,
N1−ǫ<n≤N

∑

p≤N/n

Log p ≥ C6N
∑

n∈S,
N1−ǫ<n≤N

1/n − C7Z1If the ondutor, say f, of χ is prime, then p is a non quadrati residue, i.e. isnot a square in Z/fZ.2This time, when the ondutor of χ is prime, p would be a quadrati residue.



58 6 The Siegel zero e�etfor some onstants C6, C7 > 0. We shall get a lower bound for the sumof 1/n when n ranges S and in above interval by following a similarpath. We will ahieve this by a reursion whose main ingredient is thefollowing fat: There exist two onstants c1 = c1(ǫ) et N0 = N0(ǫ) suhthat for every ℓ ∈ {0, . . . , k − 1} and N ≥ N0, we have(6.3) ∑

n∈S,
2ℓN1−(ℓ+1)/k<n≤N1−ℓ/k

1/n ≥ c1
∑

n∈S,
2ℓ+1N1−(ℓ+2)/k<n≤N1−(ℓ+1)/k

1/n.Let us �rst establish this inequality. We write
LogN

∑

n∈S,
2ℓN1−(ℓ+1)/k<n≤N1−ℓ/k

1/n ≥
∑

n∈S,
2ℓN1−(ℓ+1)/k<n≤N1−ℓ/k

(Log n)/n

≥
∑

n∈S,
2ℓN1−(ℓ+1)/k<n≤N1−ℓ/k

(

∑

p|n
Log p

)

/n

≥
∑

p≤Nǫ

Log p

p

∑

m∈S,
2ℓN1−(ℓ+1)/k<mp≤N1−ℓ/k

1/mand an interhange of summations yields the lower bound
∑

m∈S,
2ℓ+1N1−(ℓ+2)/k<m≤N1−ℓ/k

(1/m)
∑

p≤Nǫ,
N1−(ℓ+1)/k<mp≤N1−ℓ/k

Log p

p
.If m ≤ N1−(ℓ+1)/k, then the only upper bound for p is p ≤ N ǫ. Thelower bound reads N1−(ℓ+1)/k < mp, and

∑

p≤Nǫ,
N1−(ℓ+1)/k/m<p

Log p

p
≥ C1 Log(mN−1+(ℓ+2)/k)− C2for some onstants C1, C2 > 0. When m > N1−(ℓ+1)/k, the only lowerbound for p is 2, but its upper bound this time depends on m. We get

∑

p≤N1−ℓ/k/m

Log p

p
≥ C3 Log(N1−ℓ/k/m)− C4for some onstants C3, C4 > 0. On the other hand, when m veri�es

2ℓ+1N1−(ℓ+2)/k < m ≤ N1−(ℓ+1)/k, then for all p ∈ [12N
ǫ, N ǫ], we have
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N1−(ℓ+1)/k < m′ = mp ≤ N1−ℓ/k. Sine there exists C5 > 0 (indepen-dent of x ≥ 2 !) suh that ∑x/2≤p≤x 1/p ≥ C5, we reah
C1 Log(mN−1+(ℓ+2)/k)−C2 +

∑

1
2Nǫ≤p≤Nǫ

1

p

(

C3 Log(N1−ℓ/k/m′)−C4

)

≥ C1 Log(mN−1+(ℓ+2)/k)− C2 + C5

(

C3 Log(N1−(ℓ+1)/k/m)− C4

)

≥ min(C1, C5C3) Log(N1/k)− C2 − C5C4 ≫ LogNifN ≥ N0(ǫ). We simply ollet our estimates together to establish (6.3).A repeated use of it yields
∑

n∈S,
N1−1/k<n≤N

1/n ≥ ck−1
1

∑

n∈S,
2k−1<n≤N1/k

1/n.whih is≫ LogN ǫ sine the ondition n ∈ S is there super�uous. Hene
(C6 LogN + C7)Z ≫ǫ N LogNwhih is what we wished to prove. ⋄ ⋄ ⋄Proof of Theorem 6.7. Let P be the set of prime numbers ≤ Q = N1/4that have no quadrati non-residue ≤ N ε, and let S be the set of integerswhose prime fators are ≤ N ε. The ompat set we use is de�ned in thefollowing way: Kp is the set of quadrati residues if p ∈ P, of ardinality

(p + 1)/2. If p /∈ P, we take simply Kp = Z/pZ. We extend thisde�nition to Kpν by taking the inverse image of Kp under the anonialsurjetion when ν ≥ 2. We get a squarefree ompat set. In order toapply Gallagher's theorem we �rst hek that
G(Q) ≥

∑

p∈P,
p≤Q

p− 1

p+ 1
≥ #{p ≤ Q, p ∈ P}/3and thus

Z ≤ (N +Q2)/G(Q)whih yields G(Q) ≤ (N + Q2)/Z. Next, we notie that in the pointsounted in Z, we �nd all the integers n whose prime fators are lessthan N ε: indeed eah of its prime fator belongs to K, whih impliesthat n belongs to it also. Here we use the fat that we are lookingfor a quadrati residue; a similar proof would not work in the ase ofquadrati non-residues. As a onsequene, Z ≥ c(ε)N for a onstant
c(ε) > 0, whih in turns implies that the number of elements of P thatare not more than Q = N1/4 is �nite. But what if we go upto N ? Wesimply use this result with N4 instead of N and ε/4 instead of ε. ⋄ ⋄ ⋄



60 6 The Siegel zero e�etAnd what if we were to onsider non-quadrati residues modulo nonprime q ? If q = q1q2 where q1 and q2 are oprime, and every integer
≤ N ε is a square modulo q, then the same property holds also for q1and q2. Let us restrit the problem to squarefree moduli q. Start from aset S of S moduli q suh that every integer ≤ N ε is a quadrati residue.The set P of prime divisors of every elements of S ontains at least
(LogS)/Log 2 elements and is bounded by the theorem above. Thisimplies that S is also bounded.6.6. And what about quadrati residues ?The situation onerning prime quadrati residues is muh less satisfa-tory and we are not able to prove that there exist suh a prime lessthan the ondutor, even if we are to admit a �nite number of exep-tions! (Elliott, 1983) and (Puhta, 2003) prove results in this dire-tion. In this preise ase, they are all a onsequene of the Bombieri-Davenport Theorem 2.3. Let ε > 0 be given. Consider the set Q ofmoduli q ≤ Q = N (1/2)−ε and suh that there exists a primitive realharater χq satisfying

∀p ≤ N, χq(p) = −1.We take for (un) the harateristi funtion of those primes in [
√
N,N ]and use Theorem 2.3. We get

Log
√
N
∣

∣

∣

∑

√
N≤p≤N

1
∣

∣

∣

2
+
∑

q∈Q
Log(

√
N/q)

∣

∣

∣

∑

√
N≤p≤N

χq(p)
∣

∣

∣

2
≤ 2N

∑

√
N≤p≤N

1.After some shu�ing, we onlude that |Q| ≪ 1/ε. Hene, apart froma �nite number of exeptions, for every primitive real harater modulo
q ≤ Q, there is a prime p ≤ Q2+ε suh that χq(p) = 1.Note here that a smaller bound (namely Q1+ε instead of Q2+ε) followsfrom the beautiful result of (Heath-Brown, 1995), though with a largerset of exeptions. We state this result for ompleteness.Theorem 6.8. Let X (Q) be the set of primitive quadrati haraters ofondutor ≤ Q. Then for every ε > 0, we have

∑

χ∈X (Q)

∣

∣

∣

∑

n

♭
unχ(n)

∣

∣

∣

2
≪ε (NQ)ε(N +Q)

∑

n

|un|2where ∑♭ denotes a summation restrited to squarefee integers.



7 A weighted hermitian inequalityWe ontinue to develop the theory in the general ontext of hapter 1with a view to an appliation in the hapter that follows.Sometimes, a partial treatment of the bilinear form is readily availablein the form of(7.1) ∀(ξi)i ∈ CI ,
∥

∥

∥

∑

i

ξiϕ
∗
i

∥

∥

∥

2
≤
∑

i

Mi|ξi|2 +

(

∑

i

|ξi|ni

)2for some positive Mi, and ni (here again, Mi is generally an approx-imation to ‖ϕ∗i ‖2). This leads, naturally, to the de�nition of a mixedalmost orthogonal system. With suh an inequality at hand, the proof ofLemma 1.2 leads to the inequality(7.2) ‖f‖2 − 2ℜ
∑

i

ξi[f |ϕ∗i ] +
∑

i

Mi|ξi|2 +

(

∑

i

|ξi|ni

)2

≥ 0.When using it, we shall take for ϕ∗i a "loal approximation" to f in asense to be made preise later on, but it already implies we an assume
[f |ϕ∗i ] to be a non-negative real number. It is also readily seen thatthe ξi's minimizing the R.H.S. are non-negative. Finally, we are led tohoosing these ξi's so as to minimize

‖f‖2 − 2
∑

i

ξi[f |ϕ∗i ] +
∑

i

Miξ
2
i +

(

∑

i

ξini

)2

.We handle this optimization using alulus by setting ξi = ζ2
i . Easymanipulations then allow us to onlude that there exists a subset I ′ of

I suh that ξi = 0 if i ∈ I \ I ′ and(7.3) ∀i ∈ I ′, ξi =
[f |ϕ∗i ]−Xni

Mi
, X =

∑

j∈I′ nj[f |ϕ∗j ]/mj

1 +
∑

j∈I′ n
2
j/mjprovided that(7.4) ∀i ∈ I ′, [f |ϕ∗i ]/ni ≥ X.With these hoies and hypotheses, we infer the bound(7.5) ‖f‖2 +X2

(

1 +
∑

j∈I′

n2
j/mj

)

≥
∑

i∈I′

M−1
i |[f |ϕ∗i ]|2.However, determining optimal I ′ is di�ult: the ondition (7.4) is om-pliated by the appearane of the ontribution from the index i on both



62 7 A weighted hermitian inequalitysides. It is easier to set(7.6) ξi =
[f |ϕ∗i ]− Y ni

Mi
,for a Y to be hosen but whih guarantees ξi ≥ 0. The optimal Y is ofourse Y = X. Next we note that we ould add a general innouous term

∑

i,j ξiξjωi,j to (7.1) and still follow the above reasoning. Continuing inthis diretion, we see that it is enough to start from (1.1), but to hoosethe weight ξi given by (7.6), where this time the ni's are to be hosen!Of ourse the above disussion tells the user when to use suh weights,how to hoose the ni's as well as whih set of moduli to selet (namelytake the indies i suh that ξi ≥ 0).Here is the theorem we have reahed:Theorem 7.1. Suppose that we are given an almost orthogonal systemin the notations of de�nition 1.1. Let f be an element of H and Y bea real number ≥ 0. Let (ni)i be a olletion of omplex numbers. Set
ξi = ([f |ϕ∗i ]− Y ni)/Mi for eah i. Then we have that

∑

i

Mi|ξi|2 + 2Y ℜ
∑

i

niξi −
∑

i,j

ξiξjωi,j ≤ ‖f‖2With ni = 0, this is lemma 1.2.



8 A �rst use of loal modelsWe now turn towards another way of using the large sieve inequalityin an arithmetial way, here on prime numbers. This appliation omesfrom (Ramaré & Shlage-Puhta, 2008). A exposition in the Frenhaddressing a large audiene an be found in (Ramaré, 2005).8.1. Improving on the Brun-Tithmarsh TheoremWe prove the following result:Theorem 8.1. There exists an N0 suh that for all N ≥ N0 and all
M ≥ 1 we have

π(M +N)− π(M) ≤ 2N

LogN + 3
.As we remarked earlier, (Selberg, 1949) shows that the onstant 2 +

o(1) in the above numerator is optimal, if we are to stik to a sievemethod in a fairly general ontext.It is thus of interest to try to quantify the o(1) in 2 + o(1). The �rstupper bound of the shape 2N/(LogN + c) with an unspei�ed but verynegative c is due to (van Lint & Rihert, 1965) though (Selberg, 1949)mentions suh a result around equation (6) of this paper, albeit withoutgiving a proof. (Bombieri, 1971) gave the value c = −3 and (Montgomery& Vaughan, 1973) the valuec = 5/6. In setion 22 of �letures on sieves�,(Selberg, 1991) gives a proof for c = 2.81, a proof from whih we havetaken several elements. The treatment we present here leads to a valueof c that is slightly larger than 3; it is further developed in (Ramaré &Shlage-Puhta, 2008) where the value c = 3.53 is obtained.In our problem, we selet an integer f that will be taken to be 210at the end of the proof and onsider the harateristi funtion w of thepoints in [M + 1,M + N ] that are oprime with f. This being hosen,our salar produt on sequenes over [M + 1,M +N ] is de�ned by(8.1) [g|h] =
∑

M+1≤n≤M+N

w(n)g(n)h(n).We need very re�ned estimates onerning this salar produt, and thisis the subjet of next setion.We write ρ = φ(f)/f to simplify the typography.



64 8 Loal models8.2. Integers oprime to a �xed modulus in an intervalWe study here the quantities






























θ−
f

(u) = min
y∈R min

0≤x≤u
x∈R ( ∑

y<n≤y+x,
(n,f)=1

1− ρx
)

,

θ+
f (u) = max

y∈R max
0≤x≤u

x∈R ( ∑

y<n≤y+x,
(n,f)=1

1− ρx
)

.In order to ompute these funtions, we need to restrit both x and
y to integer values. This is the role of next lemma.Lemma 8.1. We have


































θ−f (u) = min
ℓ∈N( min

k∈N,
0≤k≤u

(

∑

ℓ+1≤n≤ℓ+k−1,
(n,f)=1

1− ρk
)

,
∑

ℓ+1≤n≤ℓ+[u],
(n,f)=1

1− ρu
)

,

θ+
f (u) = max

k,ℓ∈N,
k<u+1

(

∑

ℓ≤n≤ℓ+k−1,
(n,f)=1

1− ρ(k − 1)

)

The funtion θ+
f
is a non dereasing step funtion whih is left ontin-uous with jumps at integer points. The funtion θ−f is non-inreasingontinuous : it alternates from linear piees with slope −ρ to onstantpiees. The hanges our at integer points. Both are onstant if u ≥ f.Proof. We start with θ+

f
. First �x y. The funtion∑y<n≤y+xw(n)−ρxis linear non-inreasing in x from 0 to 1−{y}, then from 1−{y} to 2−{y}and so on. Its maximum value is reahed at x = 0 or x = k − {y} forsome integer k, thus

θ+
f (u) = max

y∈R max
k∈N,

k≤u+{y}

(

∑

y<n≤[y]+k

w(n) + ρ(−k + {y})
)

.The ondition is inreasing in {y} and so is the term that is to be max-imized. We may take y to be just below an integer ℓ, reahing theexpression we announed.Let us now onsider θ−f . We start similarly by �xing y. The minimumis reahed at x = k − {y} − 0 or at x = u, where k is an integer and the
−0 means we are to take x just below this value. We get θ−f (u) equals
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min
y∈R( min

k∈N,
k≤u+{u}

(

∑

y<n≤[y]+k−1

w(n) + ρ({y} − k)
)

,
∑

y<n≤[y]+u

w(n)− ρu
)

.As for the last sum, the worst ase is when y is an integer ℓ ≥ 0, getting(8.2) min
ℓ∈N( ∑

ℓ+1≤n≤ℓ+u

w(n)− ρu
)

.For the �rst minimum, we distinguish between k ≤ [u] and k = [u] + 1(whih an happen only if u is not an integer). If k ≤ [u], we may take
y to be integral. If k = [u] + 1, then {y} ≥ 1− {u} whih is indeed theworst ase: we take y = ℓ+ 1−{u}. This last ontribution turns out tobe exatly the same as the one in (8.2). ⋄ ⋄ ⋄Next we onsider the funtion(8.3) θ∗f (v) = max(θ+

f (1/v),−θ−f (1/v))whih this time is right ontinuous with jump points at 1/m, where mranges integers from 1 to f. Of ourse, θ∗f (1) = 0.Case of f = 210. Here is our funtion:
θ∗210(1/u) =







































1 if 0 < u ≤ 1

54/35 if 1 < u ≤ 3

57/35 if 3 < u ≤ 7

76/35 if 7 < u ≤ 9

79/35 if 9 < u ≤ 79/8

8u/35 if 79/8 ≤ u ≤ 10































16/7 if 10 < u ≤ 13

82/35 if 13 < u ≤ 17

94/35 if 17 < u ≤ 41/2

8u/35 − 2 if 41/2 ≤ u ≤ 22

106/35 if 22 < u ≤ 210Polynomial approximation to θ∗f (v). Starting from a polynomial ap-proximation to θ∗f (v) of the form
∣

∣θ∗f (v)−
∑

0≤r≤R

b̃rv
r
∣

∣ ≤ ǫfor 0 ≤ v ≤ V we infer the upper bound(8.4) θ∗f (v) ≤
∑

0≤r≤R

brv
r.We build our approximation from Bernstein polynomials, sine theyare usually good andidates for approximating a ontinuous funtion inthe L∞ sense. We let(8.5) Bn,k(x) =

(

n

k

)

xk(1− x)n−k
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1

1

2

3

Figure 8.1. Graph of θ∗210and we onsider(8.6) B∗n =
∑

0≤k≤n

Bn,k(v/V )θ∗210(V k/n).in order to approximate θ∗210 on [0, V ], where we shall hoose V later on.But beause of the disontinuities, this approximation annot be loserthan half the maximal jump, that is to say 1
2(76/35− 57/35) = 19/70 =

0.27 . . . . We an reover a part of this loss sine we are only onernedwith an upper bound of a noninreasing funtion.8.3. Some auxiliary estimates on multipliative funtionsWe shall require some umbersome estimates for ertain multipliativefuntions, and we prefer learing these questions before entering into themain part of the proof. To alleviate somewhat the typographial work,we de�ne(8.7) ηr(k) =
∏

p|k

1 + pr+1

p− 1
, η♭

r(k) =
∏

p|k

1 + pr+2−2pr+1

(p− 1)2
.



8.3 Some auxiliary estimates on multipliative funtions 67Lemma 8.2. Let f∗ be a positive integer. We set ρ∗ = φ(f∗)/f∗ and use
t(q) = 1− σ(q)/S∗. For any real number S∗ going to in�nity, we have

∑

q/σ(q)≤S∗,
(q,f∗)=1

t(q)2

φ(q)
= ρ∗(LogS∗ + κ(f∗)) + o(1)with

κ(f∗) = γ +
∑

p≥2

(

Log p

p(p− 1)
− Log(1 + p−1)

p

)

+
∑

p|f∗

Log(p+ 1)

p
− 3

2(κ(210) = 1.115 37 . . . ) and
∑

q/σ(q)≤S∗,
(q,f∗)=1

ηr(q)t(q) =
ρ∗

2(r + 1)

∏

p∤f∗

(

1− pr − 1

pr+1(p + 1)

)

S∗(r+1)(1 + o(1)).Proof. The �rst estimate omes from (Selberg, 1991), who follows amethod already used by (Bateman, 1972). We follow losely Selberg'sproof and get
∑

q/σ(q)≤S∗,
(q,f∗)=1

ηr(q)t(q)

qr
=
ρ

2

∏

p∤f∗

(

1− pr − 1

pr+1(p+ 1)

)

S∗ + o(S∗).We onlude by using an integration by parts. ⋄ ⋄ ⋄Note that the quantities we end up omputing are the same as theones that appear in (Selberg, 1991), though we have one less to handle.We de�ne(8.8) Cr(∆) =
φ(∆)2

∆2

∑

δ1δ2δ3|∆

η♭
r(δ1)ηr(δ2δ3)

σ(δ1)2r+2σ(δ2)r+1σ(δ3)r+1as well as(8.9) cr(p) = (p − 1)2(p+ 1)2r+2
(

(p+ 1)r+1(p− 1) + 2pr+1 + 2
)

+
(

1 + pr+1(p − 2)
)(

(p+ 1)r+1(p− 1) + pr+1 + 1
)The next lemma gives a multipliative expression for Cr.Lemma 8.3.

Cr(∆) =
∏

p|∆

cr(p)

(p− 1)p2(p+ 1)3r+3



68 8 Loal modelsProof. We start with δ3:
∑

δ3|∆/(δ1δ2)

ηr(δ3)

σ(δ3)r+1
=

∏

p|∆/(δ1δ2)

(

1 +
1 + pr+1

(p+ 1)r+1(p− 1)

)

=
∏

p|∆/(δ1δ2)

(p + 1)r+1(p− 1) + pr+1 + 1

(p+ 1)r+1(p − 1)
.Our sum redues to

∏

p|∆

(

(p+ 1)r+1(p− 1) + pr+1 + 1
)

(p− 1)

p2(p+ 1)r+1

×
∑

δ1δ2|∆

∏

p|δ1
(

1 + pr+1(p − 2)
)

ηr(δ2)

φ(δ1)2σ(δ1)2r+2σ(δ2)r+1

∏

p|δ1δ2

(p+ 1)r+1(p− 1)

(p + 1)r+1(p − 1) + pr+1 + 1
.We ontinue with δ2:

∑

δ2|∆/δ1

1 + pr+1

(p− 1)(p + 1)r+1

(p + 1)r+1(p− 1)

(p+ 1)r+1(p− 1) + pr+1 + 1

=
∏

p|∆/δ1

(

1 +
pr+1 + 1

(p+ 1)r+1(p− 1) + pr+1 + 1

)

=
∏

p|∆/δ1

(p+ 1)r+1(p− 1) + 2pr+1 + 2

(p+ 1)r+1(p− 1) + pr+1 + 1
.Hene Cr(∆) redues to

∏

p|∆

(

(p+ 1)r+1(p− 1) + 2pr+1 + 2
)

(p− 1)

p2(p+ 1)r+1

×
∑

δ1|∆

∏

p|δ1

1 + pr+1(p − 2)

(p− 1)2(p+ 1)2r+2

(p+ 1)r+1(p− 1) + pr+1 + 1

(p+ 1)r+1(p− 1) + 2pr+1 + 2whih reads
∏

p|∆

(

(p+ 1)r+1(p− 1) + 2pr+1 + 2
)

(p− 1)

p2(p+ 1)r+1

× cr(p)

(p− 1)2(p+ 1)2r+2
(

(p+ 1)r+1(p− 1) + 2pr+1 + 2
)

=
∏

p|∆

cr(p)

(p − 1)p2(p+ 1)3r+3

⋄ ⋄ ⋄



8.4 Loal models for the sequene of primes 698.4. Loal models for the sequene of primes8.4.1. Choie of the loal system. First, some remarks on what�sieving� means. Sieving is about gaining information on a sequenefrom what we know of it modulo d for several d's. If one looks at thesequene of primes modulo d and if we neglet the prime divisors of d,it simply is the set of redued residue lasses modulo d, whih we havealled Ud. Thus, on the one hand we have the harateristi funtion ofprimes in the interval [M + 1,M + N ], say f , and on the other handthe harateristi funtion ϕd of the integers in this interval that areoprime to d for all d ≤ √N . Notie here that it is enough to restritour attention to squarefree d's.Realling what we did in setion 1.1, we ould simply try to get anapproximation to f in terms of the ϕd's. However, the study there is pat-terned for almost orthogonal ϕq 's, whih is not the ase of the sequene
(ϕd)d: if q|d, knowing that a given integer is oprime with d implies itis oprime with q, so there is redundany of information. It implies inturn that these funtions are far from being linearly independent. Weunsrew the situation in the following way. When d is squarefree, we set(8.10) d

φ(d)
ϕd =

∑

q|d
ϕ∗qwhere(8.11) ϕ∗q(n) = µ(q)cq(n)/φ(q)and cq(n) is Ramanujan sum given by(8.12) cq(n) =

∑

amod∗q

e(na/q) =
∑

ℓ|q
ℓµ(q/ℓ).Verifying (8.10) is easy:

∑

q|d
µ(q)cq(n)/φ(q) =

∏

p|d

(

1−
{

1 if p|n
−1/(p − 1) otherwise) .To understand better the funtions ϕ∗q de�ned by (8.10), the reader mayonsult setion 11.8 and in partiular equation (11.33).Here is our set of moduli q:(8.13) {

q / σ(q) ≤ S, µ2(q) = 1, (q, f) = 1
}

,where σ(q) =
∑

d|q d. The reason for this hoie will beome lear lateron.



70 8 Loal models8.4.2. Study of the loal models. Note that(8.14) [ϕ∗q |ϕ∗q′ ] =
µ(q)

φ(q)

µ(q′)
φ(q′)

∑

n

w(n)cq(n)cq′(n).We note that when q and q′ have a prime fator in ommon, say δ, then
cδ(n)2 = φ((n, δ))2 would fator out: this ontribution is non-negativeand we use this fat here. Let ∆ be a squarefree integer oprime with f.Write (q, q′,∆) = δ, so that [ϕ∗q |ϕ∗q′ ] equals(8.15)
µ(q)µ(q′)
φ(q)φ(q′)

∑

ℓ|q/δ
ℓ′|q′/δ

h|δ

ℓµ

(

q

ℓ

)

ℓ′µ

(

q

ℓ′

)

(µ ⋆ φ2)(h)

(

ρN

h[ℓ, ℓ′]
+Rh[ℓ,ℓ′](M,N, f)

)

where(8.16) Rd(M,N, f) =
∑

M+1≤n≤M+N
d|n

w(n)− ρN

d
.The reader will hek that the main term (orresponding to ρN/[ℓ, ℓ′])vanishes if q 6= q′ and is ρN/φ(q) otherwise. We arry over this hangeto the bilinear form ∥

∥

∑

q ξqϕ
∗
q

∥

∥

2, whih equals to the diagonal term
ρN

∑

q |ξq|2/φ(q) to whih we add
R =

∑

δ1δ2δ3|∆

µ(δ2δ3)

φ(δ1)2φ(δ2)φ(δ3)

∑

(ℓ,f∆)=1
(ℓ′,f∆)=1

µ(ℓ)ξδ1δ2ℓ

φ(ℓ)

µ(ℓ′)ξδ1δ3ℓ′

φ(ℓ′)

×
∑

d|ℓδ2
d′|ℓ′δ3
h|δ1

dd′µ(ℓδ2/d)µ(ℓ′δ3/d
′)(µ ⋆ φ2)(h)Rh[d,d′](M,N, f).The simpliity of the method is somewhat obsured by the preise han-dling of R, but this is the prie we pay for an improved bound. Howeverthe reader might want to start with ∆ = 1 and bound Rd(M,N, f) by

O(1). We may even use what follows in this speial ase: simply take
R = 1 and b0 = 2 in (8.17). In the general ase, we treat the error termby invoking say (8.4):(8.17) ∣

∣Rh[d,d′](M,N, f)
∣

∣ ≤ θ∗f (h[d, d′]/N) ≤
∑

0≤r≤R

br(h[d, d
′]/N)r.



8.4 Loal models for the sequene of primes 71We infer
R ≤

∑

0≤r≤R

brN
−r

∑

δ1δ2δ3|∆

1

φ(δ1)2φ(δ2)φ(δ3)

∑

(ℓ,f∆)=1
(ℓ′,f∆)=1

|ξδ1δ2ℓ|
φ(ℓ)

|ξδ1δ3ℓ′ |
φ(ℓ′)

×
∑

d|ℓδ2
d′|ℓ′δ3
h|δ1

dd′(µ ⋆ φ2)(h)hr [d, d′]r.Realling (8.7), it is straightforward to simplify the oe�ient of brN−rinto
∑

δ1δ2δ3|∆
η♭

r(δ1)ηr(δ2δ3)
∑

(ℓ,f∆)=1
(ℓ′,f∆)=1

|ξδ1δ2ℓ|ηr(ℓ)|ξδ1δ3ℓ′ |ηr(ℓ
′)

×
∏

p|(ℓ,ℓ′)

1 + 2pr+1 + pr+2

(1 + pr+1)2
.The fator that depends on (ℓ, ℓ′) is somewhat troublesome. We handleit in the following way: for r = 0, it is equal to 1. Otherwise, let P bethe smallest prime number that does not divide f∆. This prime fatoris going to go to in�nity, and we approximate the fator depending on

(ℓ, ℓ′) essentially by 1 +O(P−1). More preisely, we write
∑

(ℓℓ′,f∆)=1

|ξδ1δ2ℓ|ηr(ℓ)|ξδ1δ3ℓ′ |ηr(ℓ
′)

∣

∣

∣

∣

∏

p|(ℓ,ℓ′)

1 + 2pr+1 + pr+2

(1 + pr+1)2
− 1

∣

∣

∣

∣

≪r

∑

p≥P

∑

(m,pf∆)=1,
(m′,pf∆)=1

|ξδ1δ2pm|ηr(pm)|ξδ1δ3pm′ |ηr(pm
′)

≪r

∑

p≥P

p2r
∑

m,m′

|ξδ1δ2pm|ηr(m)|ξδ1δ3pm′ |ηr(m
′)The idea here is that the fator ξδ1δ2pm fores m to be rather small.Indeed, antiipating the values of ξ in (8.18) and using Lemma 8.2, weget the above to be not more than

(

Z

ρN

)2
∑

p≥P

p2r (S/p)2r+2 ≪r

(

Z

ρN

)2

S2r+2P−1.This will give rise to the error term
(

Z

ρN

)2
∑

δ1δ2δ3|∆

η♭
r(δ1)ηr(δ2δ3)

σ(δ1δ2)r+1σ(δ1δ3)r+1

∑

1≤r≤R

S2r+2|br|
N rP



72 8 Loal modelswhih up to a multipliative onstant is not more than
(

Z

ρN

)2
∏

p|∆
(1 + p−1)2

∑

1≤r≤R

S2r+2|br|
N rP

.The fator P−1 will indeed be enough to ontrol this quantity. Hene,again antiipating (8.18), we reah
∥

∥

∥

∑

q

ξqϕ
∗
q

∥

∥

∥

2
≤ ρN

∑

q

|ξq|2/φ(q)

+
∑

0≤r≤R

br
N r

∑

δ1δ2δ3|∆
η♭

r(δ1)
∑

(ℓ,f∆)=1,
(ℓ′,f∆)=1

|ξδ1δ2ℓ|ηr(δ2ℓ)|ξδ1δ3ℓ′ |ηr(δ3ℓ
′)

+O
((

Z

ρN

)2
∏

p|∆
(1 + p−1)2

∑

1≤r≤R

S2r+2|br|
N rP

)

.8.5. Using the hermitian inequalityOptimizing in ξ is too di�ult. We stik to the simplest hoie: Mi =
ρN/φ(q), [f |ϕ∗i ]/Mi = Z/(ρN), ni = σ(q)/φ(q) and Y = Z/S.(8.18) ξq =

Z

ρN
t(q), t(q) = 1− σ(q)

Sfor a parameter S we shall hoose later on.We invoke Lemma 8.2 to ompute ∑(ℓ,f∆)=1 |ξδ1δ2ℓ|ηr(ℓ) with S∗ =

S/σ(δ1δ2) and f∗ = f∆. There appear onstants in the form of an Eulerprodut, say Sr(f
∗), whih we again approximate by 1 +O(P−1). In a�rst step we reah

Z ≥
(

Z

ρN

)2

ρ2N (LogS + κ(f)) +
2Z2

ρNS

∑

(q,f)=1

σ(q)t(q)

φ(q)

−
∑

0≤r≤R

Z2br
ρ2N r+2

∑

δ1δ2δ3|∆
η♭

r(δ1)
∑

(ℓ,f∆)=1
(ℓ′,f∆)=1

t(δ1δ2ℓ)ηr(ℓδ2)t(δ1δ3ℓ
′)ηr(ℓ

′δ3)

+O
(

(

Z

ρN

)2
∏

p|∆
(1 + p−1)2

∑

1≤r≤R

S2r+2|br|
N rP

)

.



8.6 Generalization to a weighted sieve bound 73After some rearrangement, we obtain:
N/Z ≥ LogS + κ(f) + 1−

∑

0≤r≤R

br(S
2/N)r+1

4(r + 1)2
Cr(∆)2Sr(f∆)2

+O
(

∏

p|∆
(1 + p−1)2P−1

∑

1≤r≤R

|br|(S2/N)r+1
)

+ o(1)And sine Sr(f∆) = 1 +O(P−1), we �nally reah
N/Z−1

2 LogN ≥ 1
2 Log(S2/N)+κ(f)+1−

∑

0≤r≤R

br(S
2/N)r+1

4(r + 1)2
Cr(∞/f)2

+O
(

∏

p|∆
(1 + p−1)2P−1

∑

1≤r≤R

|br|(S2/N)r+1
)

+ o(1).At this level, we send ∆ (and P ) to in�nity and we are left with �nding anoptimal value for S2/N . It would be satisfatory to have an expressionfor the �nal onstant, but we are not able to reah suh preision. Inpartiular, the br's should not appear in suh an expression. We are,however, able to get numerial results.Some numerial results:
n V S2/N

10 1.2 0.883 867 2.958 900
40 1.2 0.903 740 2.990 585
60 1.2 0.922 038 3.004 986

100 1.2 0.923 831 3.009 657
100 1.1 0.926 587 3.010 5368.6. Generalization to a weighted sieve boundWe antiipate somehow the forthoming hapters. To get similar re-sults in the general ase, we would start from (11.21) with ψ∗q de�nedin (11.13). When sieving an interval, |R([ℓ, ℓ′])| an be bounded by

|Lℓ||Lℓ′ |, and some work later, we end up in the situation of a mixed al-most orthogonal system as in setion 1.1. Following the theory therein,we end up with a weighted sieve bound as in the example above. Weshould add that (Montgomery & Vaughan, 1973) (see also (Preissmann,1984)) already gave weighted bounds, and for instane, (Siebert, 1976)employed them to prove a neat upper bound for the number of twinprimes, see setion 21.3. Note that these weights do not depend on theused ompat set. The path presented here is inomplete in more than



74 8 Loal modelsone aspet, and the main de�ieny being that fairly intriate averagesare required, similar to the ones studied in Lemma 8.2, nevertheless, itdoes lead to a weighted bound depending on K.



9 Twin primes and loal modelsWe saw in the previous setion, and in an extremely simple example,how loal models enter into the game of sieving. Further, we took theopportunity of exploring somewhat more intriate weights. While doingthis, we missed one ruial fat: the good almost orthogonality boundsfor our loal models in the previous hapter ome from the simple stru-ture of the set we are sieving, as will be more evident in Lemma 19.4.Tehnially speaking, the expression for cq in terms of additive hara-ters has φ(q) summands, while the one in terms of divisors (8.12) hasonly 2ω(q) summands. We now give further details in the ase of primetwins, where this feature will learly show up. A general treatment isgiven in setion 11.6.We prove here the following lassial result:Theorem 9.1. The number of primes p in the interval [M,M +N ] thatare suh that p+ 2 is also a prime number is not more than
(16 + o(1))

∏

p≥3

(

1− 1

(p− 1)2

)

N

Log2Nwhere the o(1) denotes a quantity that goes to 0 when N goes to in�nity.This bound is believed to be 8 times too large. The ase M = 0 hasseen a number of re�nements: using the Bombieri-Vinogradov Theoremdiretly redues this bound by 2 (ase M = 0) and further works led toredue the 16+o(1), among whih we selet the redution to 7.835+o(1)due to (Chen, 1978), to 6.836 due to (Wu, 1990), reently to 6.812+o(1)by (Cai & Lu, 2003) and even more reently to 6.7992 + o(1) by (Wu,2004).9.1. The loal model for twin primesLet us �rst de�ne our set of moduli:(9.1) Q = {q ≤ Q, q odd and squarefree}.To eah ouple (q, d) where q in Q and d is a divisor of q, we assoiate
uq,d the unique integer between 1 and d suh that (q/d)uq,d ≡ 1[d]. Our



76 9 Twin primesloal model is then(9.2) ϕ∗q(n) =
µ(q)

φ2(q)

∑

d|q
cq(n+ 2uq,dq/d)with φ2(q) =

∏

p|q(p − 2). We take the simplest hermitian produt,namely
[f |g] =

∑

M<n≤M+N,
(n,2)=1

f(n)g(n).The next step is to evaluate pairwise the salar produts of our loalmodels:
[ϕ∗q |ϕ∗q′ ] =

µ(q)µ(q′)
φ2(q)φ2(q′)

∑

d|q,
d′|q′

∑

n

cq(n+ 2uq,dq/d)cq′(n+ 2uq′,d′q
′/d′)

=
µ(q)µ(q′)
φ2(q)φ2(q′)

∑

d|q,
d′|q′

∑

δ|q,
δ′|q′

δµ(q/δ)δ′µ(q′/δ′)
∑

n/



n≡−2uq,dq/d[δ],
n≡−2uq′,d′q

′/d′[δ′]

1.The last two ongruenes are not always ompatible: if p divides δ and δ′,and if it divides q/d and q′/d′, both ongruenes redue to n ≡ 0[p]. If pdivides neither q/d nor q′/d′, then the ongruenes redue to n ≡ −2[p].Whih means we need p to divide (q/d, q′/d′) or (d, d′). As a result, weinfer that [ϕ∗q |ϕ∗q′ ] equals
Nµ(q)µ(q′)
φ2(q)φ2(q′)

∑

d|q,
d′|q′

∑

δ|q,δ′|q′
(δ,δ′)|(d,d′)(q/d,q′/d′)

δµ(q/δ)δ′µ(q′/δ′)
[δ, δ′]

+O∗
(

2ω(q)σ(q)

φ2(q)

2ω(q′)σ(q′)
φ2(q′)

)

.We evaluate the arithmeti part of the main term by plugging the sum-mations over d and d′ inside: the part of d that divides q/(δ, δ′) is freelyhosen, giving 2ω(q)−ω((δ,δ′)) hoies, and similarly for d′ with q′. Next aprime divisor of δ and δ′ either divides both of d and d′ or divides noneof them. Thus there is a divisor, say h, of (δ, δ′) that divides exatly dand d′. We have 2ω((δ,δ′)) suh divisors. Colleting these observations,we readily disover our inner sum to be equal to 2ω(q)+ω(q′)−ω((δ,δ′)) sothat we get
[ϕ∗q |ϕ∗q′ ] =

2ω(q)+ω(q′)N

φ2(q)φ2(q′)

∑

δ|q,δ′|q′

δµ(δ)δ′µ(δ′)

[δ, δ′]2ω((δ,δ′))
+O∗

(

2ω(q)σ(q)

φ2(q)

2ω(q′)σ(q′)
φ2(q′)

)

.



9.2 Estimation of the remainder term 77When there is a prime that divides q but not q′, the main term vanishes.We are thus left with the ase q = q′, getting(9.3) [ϕ∗q |ϕ∗q′ ] =
2ω(q)N1q=q′

φ2(q)
+O∗

(2ω(q)σ(q)

φ2(q)

2ω(q′)σ(q′)
φ2(q′)

)

.Conerning the almost orthogonality hypothesis, we take the easiest wayout: we setMq = 2ω(q)N/φ2(q) and send the error term into the bilinearform, i.e. we write(9.4) ∣

∣

∣

∑

q

ξqϕ
∗
q

∣

∣

∣

2
≤
∑

q

Mq|ξq|2 +
∑

q,q′

ξqξq′mq,q′with(9.5) |mq,q′ | ≤
2ω(q)σ(q)

φ2(q)

2ω(q′)σ(q′)
φ2(q′)

.9.2. Estimation of the remainder termTo handle the error term, we are to ompute or at least give an upperbound for the average
∑

q∈Q
µ2(q)2ω(q)σ(q)/φ2(q).This is standard theory: one possibility would be to �rst evaluate the av-erage of the summand above divided by q via the onvolution method asin setion 5.3 and then reover the one we are interested in by a summa-tion by parts. The Levin-Fainleib like theorem presented in hapter 21as Theorem 21.1 would also su�e: however the summation by partswould lead to a anellation of the "main terms", leaving us only with a

O-result of the good order of magnitude, while Theorem 21.2 or the on-volution method would give rise to an asymptoti expression. We presentan alternative path that also leads only to an upper bound. First, weprove the following theorem that relies on a theme initially developedin (Hall, 1974). The best result in this diretion is in (Halberstam &Rihert, 1979). Of ourse, we also extend it to enompass values at pow-ers of primes. The starting idea is still taken from the elebrated (Levin& Fainleib, 1967).Theorem 9.2. Let D ≥ 2 be a real parameter. Assume g is a multi-pliative non-negative funtion suh that
∑

p≥2,ν≥1
pν≤Q

g
(

pν
)

Log
(

pν
)

≤ KQ+K ′ (∀Q ∈ [1,D])



78 9 Twin primesfor some onstants K,K ′ ≥ 0. Then for D > exp(K ′ − 1), we have
∑

d≤D

g(d) ≤ (K + 1)D

LogD −K ′ + 1

∑

d≤D

g(d)/d.Proof. Let us set G̃(D) =
∑

d≤D g(d)/d. Using Log D
d ≤ D

d − 1, we get
G(D) LogD =

∑

d≤D

g(d) Log
D

d
+
∑

d≤D

g(d) Log d

≤ DG̃(D)−G(D) +
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

g(ℓ)where we get the seond summand by writing Log d =
∑

pν‖d Log
(

pν
).Finally

∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

g(ℓ) =
∑

ℓ≤D

g(ℓ)
∑

p≥2,ν≥1
pν≤D/ℓ
(p,ℓ)=1

g
(

pν
)

Log
(

pν
)

≤
∑

ℓ≤D

g(ℓ)
(KD

ℓ
+K ′

)from whih the theorem follows readily. ⋄ ⋄ ⋄One we apply this result, we are again left with getting an upperbound for the average of µ2(q)2ω(q)σ(q)/(qφ2(q)), where we apply The-orem 21.1. As a result, we get the bound(9.6) ∑

q∈Q
µ2(q)2ω(q)σ(q)/φ2(q)≪ QLog(3Q).9.3. Main proofLet f be the harateristi funtion of the twin primes in our interval.Note that(9.7) [f |ϕ∗q ] = µ2(q)2ω(q)Z/φ2(q)with Z =

∑

n f(n). We apply Lemma 1.2. We have ξq = µ2(q)Z/N , sowe get
G1(Q)Z2/N ≤ Z + (Z/N)2

(

∑

q

2ω(q)σ(q)/φ2(q)
)2

≤ Z +O
(

(ZN−1QLogQ)2
)



9.4 Guessing the loal model 79with(9.8) G1(Q) =
∑

q∈Q
2ω(q)/φ2(q)whih is evaluated by standard means. We give suh an evaluation inhapter 21. We even onsider this very speial ase in setion 21.3 wherewe show how the standard sieve bound (that is Corollary 2.1, page 22)works on this speial ase. The evaluation of the remainder term omesfrom (9.6), and we reah

(

G1(Q)−O
(

N−1Q2 Log2Q
))

Z ≤ Nwith
G1(Q) ∼ 1

4

∏

p≥3

(p− 1)2

p(p− 2)
Log2Q.We an thus take Q = o(

√
N), improving on the usual proof via Selberg'ssieve whih a priori only allows for Q = o(

√
N/LogN). When arefullystudied, a similar improvement is aessible there, as shown in the notesof the orresponding hapter of (Halberstam & Rihert, 1974).9.4. Guessing the loal modelWe simply exhibited ϕ∗q , taken straight from our hat... But now theproof has been shown to funtion, some more explanations are surelyalled for! As a matter of fat, most of the mystery gets leared one werewrite cq(n+ 2uq,dq/d) in a multipliative form (remember that sine qis squarefree, d and q/d have distint prime fators):

cq(n+ 2uq,dq/d) =
∏

p|d
p|n+2

(p− 1)
∏

p|d
p∤n+2

(−1)
∏

p|q/d
p|n

(p− 1)
∏

p|q/d
p∤n

(−1)

= µ(q)
∏

p|d
p|n+2

(1− p)
∏

p|q/d
p|n

(1− p)so that
ϕ∗q(n) =

1

φ2(q)

∏

p|q

(

1− p1p|n+2 + 1− p1p|n
)

=
1

φ2(q)

∏

p|q

(

2− p1Lp(n)
)and this in turn implies (reall that |Kr| = φ2(r))(9.9) ∑

q|r
ϕ∗q(n) =

∏

p|r

(

1 +
2− p1Lp(n)

p− 2

)

=
r

|Kr|
1Kr(n)



80 9 Twin primesunveiling at one most of the hidden mehanism! The orreting oe�-ient r/|Kr| has however still to be explained: imagine we were startingfrom 1Kr(n) and onsidered "the solution� (ϕ∗q)q|r of (9.9). Then wewould disover that eah ϕ∗q in fat depend on r. A way to explain theorreting oe�ient is simply to say that, with it, this dependane dis-appears. But, why does it indeed disappear? One way of explainingthis fat is to say that this funtion is invariant under the operators J q̃

d̃introdued in hapter 4 (with K = Ẑ), so that (9.9) is simply the Fourierdeomposition. We an however go one step further and preisely pointout where this invariane omes from: we are to have
[c(q)1q|Ld̃

q̃f ]q = [c(d)1d|f ]dfor d|q, some oe�ients (c(d))d|q and every time for every funtion fthat depends only on its argument modulo d. This equation reads
c(q)

q

∑

a∈Kq

f(a mod d) =
c(d)

d

∑

b∈Kd

f(b).On taking for f the harateristi funtion of a single point modulo d,we see that c(q)/q = 1/|Kq| is the only hoie. As a by-produt of thisonstrution, we see that we an only extend the method to ompatathat verify the Johnsen-Gallagher ondition.9.5. Prime k-tuplesWe were looking at pairs (n, n + 2) for whih eah omponent is prime.Extending the problem to k-tuples means looking for in�nitely manyintegers n for whih all the omponents of (n+h1, . . . , n+hk) are simul-taneously prime. Determining whih tuples (h1, . . . , hk) should have thisproperty is a non trivial problem; Notie �rst that (0, 1) is learly not agood hoie! Here the obstrution omes from what happens modulo 2.In general the onjeture known as the prime k-tuples onjeture, �rststated by (Hardy & Littlewood, 1922) is that obtrutions an only beloal. This warrants a de�nition:De�nition 9.1. A k-tuple (h1, . . . , hk) of inreasing integers is said tobe a k-tuple of admissible shifts if the set {h1, . . . , hk} does not over allof Z/pZ for any prime p.The length of suh tuple of a admissible shifts being hk − h1 + 1, itis enough to restrit p to be not more than this length in the statement.For example (0, 2, 6, 9, 12) is admissible of length 13.



9.5 Prime k-tuples 81An interesting problem is to �nd as dense as possible suh tuples,where the density is best quanti�ed in terms of the length N = hk −
h1 + 1 ompared to the number of primes less than N , whih we denoteexeptionally here by π(N). (Hensley & Rihards, 1974) proved thatthere exist k-tuples of admissible shifts of size

k ≥ π(N) + (Log 2− ε) N

Log2Nfor every ε > 0 and provided N is large enough in terms of ε. Note thatthe Brun-Tithmarsh Theorem says that k is bounded by 2N/LogN .If one is ready to believe the prime k-tuple onjeture, suh extremeexamples of admissible shifts thus provides us with a lower bound forthe best possible upper bound in the Brun-Tithmarsh Theorem. Inorder to avoid to appeal to the prime k-tuple onjeture, it would beneessary to indeed exhibit spei� examples of suh tuples, but this isstill beyond the power of nowadays algorithms and omputers. As oftoday, the best(Dusart, 1998) has built a 1 415-uple of admissible shifts of length
11 763, while π(11 763) = 1 409, but no one has been yet able to produea orresponding prime 1 415-uple. The reader will �nd on the site of(Forbes, n.d.) a list of long prime tuples, for instane:

1 906 230 835 046 648 293 290 043 + 0, 4, 6, 10, 16, 18, 24, 28,

30, 34, 40, 46, 48, 54, 58, 60, 66, 70due to J. Waldvogel & P. Leikauf in 2001. It ontains 18 primes for alength of 70, while π(70) = 19.Let us mention �nally (Elsholtz, 2004) where the reader will �ndanother appliation of sieve tehnique to k-tuple problems, but this timewith a k of size LogN for primes of size N .





10 Handling an additive problem with thelarge sieve: a new proof of the three primestheoremWe prove here the elebrated theorem of (Vinogradov, 1937):Theorem 10.1.Every large enough odd integer is a sum of three prime numbers.The proof we present uses our large sieve setting intensively, both thelarge sieve inequality and the notion of loal models. The novelty hereis in dispensing with the irle method. Proofs exhibiting suh a featurehave already been given by both (Heath-Brown, 1985) and (Iwanie,1994) via, if not exatly, the dispersion method, or at least using ideasderived from it. The �rst author establishes as a preliminary step anestimate for the L2-mean of the number of representations as a sum oftwo primes, as we do here, while the seond one goes diretly to thenumber of representations of an integer as a sum of three primes. Weuse yet another path, though part of the tehniques developed here areinspired by hapter XX of (Iwanie & Kowalski, 2004).The proof will unfold in two steps: we �rst prove the required asymp-toti for(10.1) R =
∑

m

r2(m)2 where r2(m) =
∑

n1+n2=m

Λ̃(n1)Λ̃(n2)and Λ̃(n) = Λ(n)FN (n), FN being a smoothing funtion desribed innext setion. The forthoming proof will show a use of the large sieveinequality lose to that of the Parseval identity. It has already beenpartially used in (Ramaré, 1995). The asymptoti for R also implies thefollowing result.Theorem 10.2 (Thudakov, van der Corput, Estermann).Almost every even integer is a sum of two prime numbers.We sketh the proof in setion 10.6. In the seond step we shall provethe three primes theorem. We shall use a loal model for the (suitablymodi�ed) number of representations of an integer as a sum of two primesand not for the primes. It turns out that both are proportional here, upto the in�nite fator.



84 10 An additive problem10.1. An approximate Bessel inequalityLet us keep the notations of Lemma 1.2 and onsider the following her-mitian produts:(10.2) 〈f |g〉 =
∑

i

M−1
i [f |ϕ∗i ][g|ϕ∗i ]and(10.3) Jf |gK = [f |g]− 〈f |g〉+
∑

i,j

ξi(f)ξj(g)ωi,j.Lemma 1.2 tells us that this last one is non-negative, so that we may ap-ply the Cauhy-Shwarz inequality. When the ontribution of the ωi,j'sis indeed an error term, and when 〈f |f〉 approahes ‖f‖22 �su�ientlywell�, then Jf |fK is small and 〈f |g〉 is an approximation to [f |g] for rea-sonable g's. This is the key to our approah to some binary additiveproblems.10.2. Some Fourier analysis to handle the size onditionThe funtion F we use is essentially Fejer kernel and its graph is the onebelow.
1

1
0 1/2

2x 1− 2x

F

Its Fourier transform is given by(10.4) F̂ (y) =

∫ ∞

−∞
F (x)e(xy)dx = e(y/2)

(

sin πy
2

πy

)2

.



10.3 A general problem 85Fourier inversion yields(10.5) F (x) =

∫ ∞

−∞
F̂ (y)e(−xy)dy.We also set FN (x) = F (x/N). Finally(10.6) ∫ ∞

−∞

(

sin π
2 y

πy

)8

dy =
151

40 320a onstant we shall meet at several di�erent plaes, and whih we all
C0.Of ourse, this funtion is nothing speial and we ould have hosenany funtion that vanishes at 0 and 1 whose Fourier transform dereasesfast enough. This smoothing funtion is introdued to handle the sizeondition 0 ≤ n1 ≤ N on all our variables. By approximating theharateristi funtion of the interval [0, 1] by suh funtions in the L1-sense, we ould of ourse dispense with them and produe the asymptotifor ∑p1+p2+p3=N 1.10.3. A general problemIn order not to do twie the same work, let us look at the somewhatmore general problem of estimating(10.7) R =

∑

n1+n2=h+k

Λ̃(n1)Λ̃(n2)uhvkFN (k)where Λ̃(n) = Λ(n)FN (n) and(10.8) vk = −
∑

ℓ|k
ℓ≤L

µ(ℓ) Log ℓfor some L ≤ N and general (uh). We de�ne(10.9) S(α) =
∑

n

Λ̃(n)e(αn), U(α) =
∑

h

uhFN (h)e(αh),and get the following lemma, reminisent of the treatment designedin (Ramaré, 1995):



86 10 An additive problemLemma 10.1. For D ≥ 1/2 and not more than (LogL)B for some B,we have
R =

∑

q≤D

µ(q)

φ(q)

∑

amod∗q

∫ ∞

−∞
S

(

a

q
− y

N

)2

U

(

a

q
+
y

N

)

F̂ (y)dy

+OB

(

N(ND−1 + L)max
α
|U(α)|(LogN)3

)

.This lemma is also reminisent of the irle method, but the readershould notie that, F̂ (y) having a sharp peak in 0 and dereasing rapidlyas |y| inreases, the perturbation y/N in the exponential is a lot easierto treat than the one arising in the ontext of the irle method.Proof. With the aid of (10.8), we reah
R = −

∑

ℓ≤L

µ(ℓ) Log ℓ
∑

n1,n2,h
ℓ|n1+n2−h

Λ̃(n1)Λ̃(n2)uhFN (n1 + n2 − h).We separate variables in FN (n1 +n2−h) by using the Fourier transform,getting(10.10) R =

∫ ∞

−∞
F̂ (y)Rydywhere(10.11)

Ry = −
∑

ℓ≤L

µ(ℓ) Log ℓ
∑

n1,n2,h
ℓ|n1+n2−h

Λ̃(n1)Λ̃(n2)uhe
(y(h− n1 − n2)

N

)

.We now detet ondition ℓ|n1 + n2 − h through additive haraters:(10.12) 1{ℓ|n} =
1

ℓ

∑

amod ℓ

e(na/ℓ) =
1

ℓ

∑

q|ℓ

∑

amod∗q

e(na/q).Set(10.13) w(q, L) = −
∑

ℓ≤L
q|ℓ

µ(ℓ) Log ℓ

ℓ
.We get(10.14) Ry =

∑

q≤L

w(q, L)
∑

amod∗q

S

(

a

q
− y

N

)2

U

(

a

q
+
y

N

)



10.4 Asymptoti for R 87We propose to restrit this summation to q ≤ D. To do so, we �rstnotie that |w(q, L)| ≪ (LogL)2/q and then proeed as follows.
∑

D<q≤L

|w(q, L)|
∑

a mod∗q

∣

∣

∣

∣

S

(

a

q
− y

N

)∣

∣

∣

∣

2 ∣
∣

∣

∣

U

(

a

q
+
y

N

)∣

∣

∣

∣

≪ (LogL)2 max
α
|U(α)|

∑

D<q≤L

1

q

∑

amod∗q

∣

∣

∣

∣

S

(

a

q
− y

N

)∣

∣

∣

∣

2and we bound the last sum by partial summation and the large sieveinequality applied to sets of points of the form
X =

{

a

q
− y

N
/ q ≤ Q, a mod∗ q}.One this redution is done, we simplify the remaining w(q, L)'s, forwhih the prime number theorem yields(10.15) w(q, L) =

µ(q)

φ(q)
+O(2ω(q)D−4)and suh an estimate is enough. ⋄ ⋄ ⋄10.4. Asymptoti for RLet us set(10.16) S2,2 =

∏

p≥2

(

1 +
1

(p− 1)3

)

.We state formally what we establish here:Theorem 10.3. For any A ≥ 1 and as N goes to in�nity
R = C0S2,2N

3 +OA(N3(LogN)−A).From now on, we selet A ≥ 1.First we note that
Λ(n) = −

∑

d|n
µ(d) Log d = −

∑

d|n
d≤
√

N

µ(d) Log d−
∑

d|n
d>
√

N

µ(d) Log d

= Λ♯(n) + Λ♭(n)(10.17)say. Sine µ(d) is supposed to vary onsiderably in signs, we expet thelast sum to ontribute only to the error term. Here we follow notations



88 10 An additive problemof Iwanie. We deompose Λ(n4) = Λ♯(n4) + Λ♭(n4) in(10.18) R =
∑

n1+n2−n3=n4

Λ̃(n1)Λ̃(n2)Λ̃(n3)Λ̃(n4)to split R into R = R♯ + R♭.Disarding R♭. We write(10.19) Λ(n3) = −
∑

d|n3

µ(d) Log dso that Lemma 10.1 applies with h = n4, k = n3, vk = Λ(n3) and
uh = Λ̃♭(n4). We hoose D = 1/2. To handle the ontribution from U ,we use the following lemma from (Davenport, 1937a; Davenport, 1937b)Lemma 10.2 (Davenport). Uniformly in α and for every positive B,we have

∣

∣

∣

∣

∣

∣

∑

h≤H

µ(h)e(hα)

∣

∣

∣

∣

∣

∣

≪B H/(LogH)B .This proof ontains the innovation due to Vinogradov onerning theestimation of exponential sums with prime argument through a ombi-nation of sieve method and bilinear forms tehniques. We do not provethis lemma here, as it is way out of our ground. But we note it also re-quires the use of the prime number theorem in arithmeti progressions,whih we reall below.Using this lemma, we getLemma 10.3. |U(α)| ≪B N/(LogN)B.Proof. We write k = ℓn and
U(α) = −

∫ ∞

−∞
F̂ (y)

∑

n≤
√

N

∑

√
N<nℓ≤N

µ(ℓ)(Log ℓ)e((α − y/N)ℓn)dywhile, by partial summation, we have
∣

∣

∣

∣

∣

∣

∑

nℓ≤N

µ(ℓ)(Log ℓ)e(βℓ)

∣

∣

∣

∣

∣

∣

≪ N

n
/LogB(N/n)≪ N

n
/LogB N.The lemma follows readily. ⋄ ⋄ ⋄This �nally yields with B = A+ 3(10.20) R♭(y) = OA(N3(LogN)−A).



10.4 Asymptoti for R 89Treating R♯. First, we take the opportunity of this setion to state aresult that is so often used in this monograph.Lemma 10.4 (The prime number theorem for arithmeti progressions).For every onstants B and C and as N goes to in�nity, we have
∑

n≤N
n≡a[q]

Λ(n) =
N

φ(q)
(1 +OB,C(1/LogB N))for every q ≤ LogC N and any a oprime to q.We now resume the ourse of the proof and use Lemma 10.1 with

h = n3, k = n4, vk = Λ♯(n4) and uh = Λ̃(n3). We get
R♯

y =
∑

q≤D

µ(q)

φ(q)

∑

amod∗q

S

(

a

q
− y

N

)2

S♯

(

a

q
− y

N

)

+O(N3(LogN)−A)where D is (LogN)A+3. At this level we an omplete S♯ by S♭ toreover S up to an a�ordable error term, where the reader has alreadyunderstood that S♯ (resp. S♭) stands for the trigonometri polynomialassoiated to Λ♯ (resp. Λ♭).Lemma 10.5. We have for all q ≤ D
S

(

a

q
+
y

N

)

=
µ(q)N

φ(q)
F̂ (y) +O(ND−4(1 + |y|)).Proof. First set F̌N (y) =

∑

n FN (n)e(ny/N) and write
S

(

a

q
+
y

N

)

−µ(q)

φ(q)
F̌N (y) =

∑

n

(

Λ(n)e(na/q) − µ(q)

φ(q)

)

FN (n)e(ny/N).The key to this lassial evaluation is to use summation by parts withrespet to n. This may be surprising at start beause we are trying toderive a result in (a/q) + (y/N) from one in a/q. But remember thisdeviation has been introdued preisely to handle the size ondition.This also means that we use the prime number theorem not only at size
N but also for nearby values. We thus note that

FN (n)e(ny/N) = −
∫ N

n
∆(t)dtwith ∆(t) = (F ′(t) + 2iπyF (t))e(yt)/N whih enables us to write

S

(

a

q
+

y

N

)

− µ(q)

φ(q)
F̌N (y) = −

∫ N

1

∑

n≤t

(

Λ(n)e(na/q) − µ(q)

φ(q)

)

∆(t)dt.



90 10 An additive problemHere, we simply split the inner summation into the ongruene lassesof n modulo q. The n's that are not oprime with q ontribute to
∑

p|q
Log p

∑

r≥1
pr≤t

1 ≤ ω(q) Log t≪ Log2Nwhile Lemma 10.4 yields
∑

bmod∗q

∑

n≤t
n≡b[q]

Λ(n)e(na/q) =
t

φ(q)

∑

bmod∗q

e(ba/q) +O(qN/LogB N)

=
tµ(q)

φ(q)
+O(ND−4)on seleting B suh that (LogN)B ≥ D5. Gathering our estimates, wereah(10.21) S

(

a

q
+
y

N

)

− µ(q)

φ(q)
F̌N (y) = O(ND−4).Next we evaluate F̌N (y) in terms of F̂ by omparing the former to anintegral:

F (n/N)e(ny/N) = N

∫ n/N

n−1
N

F (x)e(xy)dx +O(1/N).The lemma follows readily. ⋄ ⋄ ⋄Using the approximation given by Lemma 10.5, we infer that(10.22) R♯
y =

∑

q≤D

µ(q)2N3

φ(q)3
F̂ (−y)2F̂ (y) +O(N3(1 + |y|)/D).We shall use this bound for |y| ≤ Y . The almost trivial bound R

♯
y(D) =

O(N3 LogN) (by the large sieve inequality) su�es otherwise. Thisamounts to
R♯ = N3

∫ ∞

−∞
F̂ (y)2F̂ (−y)2dy

∑

q≤D

µ(q)2

φ(q)3
+O

(

N3 Log Y

D
+
N3 LogN

Y

)in whih the hoie Y = D is aeptable. We then simply omplete theseries in q. This ends the proof.10.5. The loal modelVery similar to what we did in 8.4.1, we set(10.23) ϕ∗q(n) =
µ(q)cq(n)

φ(q)
(F ∗ F )(n/N)



10.5 The loal model 91where F ∗ F denotes the usual onvolution. We should expand a bit onthis hoie; �rst, one should note that it is omposed of two di�erentparts, one taking are of the arithmeti modulo q while the other onetakes into aount the size onditions. Seond, the proper de�nition ofthe �rst fator should be µ2(q)cq(n)/φ(q)2 as the reader will disover byomputing the sum over the divisors q of d of this funtion, a de�nitionthat di�ers from our hoie only by a multipliative fator. This isirrelevant as far as the main term for given q is onerned but beomesimportant at the level of (10.26) where we have to add all the termsoming from [ϕ∗q |ϕ∗q′ ] with q′ 6= q. There, it is best to have r(q′) ofonstant mean value whih explains why we divide by φ(q) in (10.23)and not by φ(q)2.As in setion 8.4.2, we get
[ϕ∗q |ϕ∗q′ ] =

µ(q)

φ(q)

µ(q′)
φ(q′)

∑

n

cq(n)cq′(n)(F ∗ F )(n/N)2and we express both Ramanujan sums in terms of divisors of q, q′ and
n getting(10.24)

[ϕ∗q |ϕ∗q′ ] =
µ(q)

φ(q)

µ(q′)
φ(q′)

∑

d|q
d′|q′

dµ(q/d)d′µ(q′/d′)
∑

n
[d,d′]|n

(F ∗ F )(n/N)2.For the innermost sum, we have
∑

n
[d,d′]|n

(F ∗ F )(n/N)2 =

∫ ∞

−∞
F̂ (y)2

∑

n
[d,d′]|n

(F ∗ F )(n/N)e(−ny/N)dyand using a omparison to an integral for the inner sum, we �nd thisintegral to be C0N/[d, d
′] +O(1), so that(10.25) [ϕ∗q |ϕ∗q′ ] =
µ2(q)NC0

φ(q)
1q=q′ +O(r(q)r(q′))with r(q) = σ(q)/φ(q). This yields for �xed q:(10.26) ∑

q′

|[ϕ∗q |ϕ∗q′ ]| =
µ2(q)NC0

φ(q)
+O(r(q)Q).Let c be suh that the O(r(q)Q) is not more in absolute value than

cr(q)Q. We set(10.27) Mq =
µ2(q)NC0

φ(q)
+ cr(q)Q.



92 10 An additive problemWe further �nd that for q ≤ Q = (LogN)A, we have by expressing cq(n)in terms of e(an/q) and F ∗ F (n/N) in terms of its Fourier transform
[r2|ϕ∗q ] =

µ(q)

φ(q)

∑

n1+n2=n

Λ̃(n1)Λ̃(n2)(F ∗ F )(n/N)cq(n)

=
µ(q)

φ(q)

∑

amod∗q

∫ ∞

−∞
F̂ (y)2S

(

a

q
− y

N

)2

dy

=
µ(q)NC0

φ(q)3
+O(NQ−3).(10.28)From whih we infer(10.29) R−

∑

q≤Q

M−1
q [r2|ϕ∗q ]2 = O(N3/Q).10.5.1. Proof of the three primes Theorem. Let N be the oddinteger we want to represent. Set f1 the harateristi funtion of thoseprimes that are in the interval ]Q,N ] (this notation represents the in-terval of real numbers between Q and N but where Q is exluded while

N is inluded) and f(n) = f1(N − n). We de�ne Jf |gK as in (10.3) butwith ωi,j = 0 and with Q = (LogN)100. First note that(10.30) r3(N) =
∑

n1+n2+n3=N

f1(n3)Λ̃(n1)Λ̃(n2) = [f |r2]and use(10.31) |Jf |r2K|2 ≤ Jf |fKJr2|r2K.Equation (10.29) tells us that Jr2|r2K is suitably small. It is easy to seethat Jf |fK is ≪ N so that |Jf |r2K| is small, namely(10.32) |Jf |r2K| ≪ N2/(LogN)50.This means in turn that 〈f |r2〉 approximates r3(N) su�iently well. Thisleads to a quantitative version of the three primes theorem provided weompute 〈f |r2〉. But this is simple enough: [r2|ϕ∗q ] is given in (10.28)



10.6 A slight digression 93while
[f |ϕ∗q ] =

µ(q)

φ(q)

∑

n∈Z(F ∗ F )(n/N)f(n)cq(n)

=
µ(q)

φ(q)

∑

n3∈Z(F ∗ F )((N − n3)/N)f1(n3)cq(N − n3)

=
µ(q)

φ(q)

∑

amod∗q

e

(

Na

q

)

×
∫ ∞

−∞
F̂ 2(y)

∑

n3

Λ(n3)e

(−an3

q
+

y

N

)

e(−y)dywhere we expressed cq(N − n3) in terms of e((N − n3)a/q) and (F ∗
F )((N − n3)/N) in terms of its Fourier transform. By now, the readershould be well aquainted with these tehniques. We pursue the proofby appealing to Lemma 10.5 and �nally get(10.33) [f |ϕ∗q ] =

µ2(q)Ncq(N)C1

φ(q)2
(1 +O(Q−2))where the onstant C1 is(10.34) C1 =

∫ ∞

−∞
|F̂ 2(y)|F̂ (y)e(−y/2)dy = 0.013688 . . .This amounts to

〈f |r2〉 = NC1

∑

q≤Q

µ(q)cq(N)

φ(q)3
+O(N2/Q)and ompleting the summation in q, we end up with(10.35) 〈f |r2〉 = NC1

∏

p≥2

(

1 +
1

(p− 1)3

)

∏

p|N

p2 − 3p + 2

p2 − 3p + 3
+O(N2/Q).Note, and that is reassuring, that the �rst term vanishes if N is even.By (10.32), this expression is valid for [f |r2] whih is nothing but r3(N),onluding the proof of Theorem 10.110.6. A slight digressionWe sketh here a proof of Theorem 10.2. We are to ompute(10.36) V =

∑

n

(

r2(n)−NS2(n)(F ∗ F )(n/N)
)2



94 10 An additive problemwith(10.37) S2(n) = C2

∏

p|n
p 6=2

p− 2

p− 1
= C2

∑

d|n
(d,2)=1

µ2(d)

φ(d)and(10.38) C2 = 2
∏

p≥3

p(p− 2)

(p− 1)2
.To ompute V , we expand the inner square. The �rst term is R whilethe third one is trivial to estimate. As for the ross term, we write

∑

n

S2(n)r2(n)(F ∗ F )(n/N) = C2

∑

d≥1
(d,2)=1

µ2(d)

φ(d)

∑

n≥0
d|n

r2(n)(F ∗ F )(n/N).In the latter expression, we notie that only the ongruene lasses of
n1 and n2 modulo d intervene, with notations from (10.1). For large d,the Brun-Tithmarsh theorem is enough to show that the orrespondingontribution is negligible, while for small d's, the prime number theoremin arithmeti progressions applies. The reader will �nally reah(10.39) V ≪A N3/(LogN)Ameaning that most of the N summands are not more than N2/(LogN)A,and this in turns implies that for those n's, we have(10.40) r2(n) = NS2(n)(F ∗ F )(n/N) +OA(N/(LogN)A/2)whih is what was to be proved.



11 The Selberg sieveIn this hapter, we �rst present the Selberg sieve in a fashion similarto what we did up to now. In passing, we shall extend the Selberg sieveto the ase of non-squarefree sifting sets, as was already done in (Selberg,1976), but our setting will also arry through to sieving sequenes andnot only sets. Furthermore, this setting will enable us to ompare thethree di�erent approahes: via the large sieve inequality, via loal modelsor via the Selberg sieve.11.1. Position of the problemTo properly set the sieve problem, one needs two objets:(1) A �nite host sequene A; for instane, as was the ase upto nowin these letures, A = [M + 1,M +N ].(2) A ompat set K, i.e. a �nite olletion of well-behaved � seesetion 2.1 � subsets Kd of Z/dZ.The question is then to understand(11.1) S = {n ∈ A / ∀d ≤ D, n ∈ Kd}and, in partiular, to evaluate its ardinality. We met this question al-ready at several di�erent plaes, with Kd = (Z/dZ)∗ the set of invertibleelements modulo d to reah the prime numbers, and with Kd being thesets of squares modulo d to reah the (integer) squares.11.2. Bordering system assoiated to a ompat setWe de�ne here another sequene of sets (Ld)d≥1 omplementary to (Kd) :we set L1 = {1} and Lpν = Kpν−1 − Kpν , i.e. the set of elements of
x ∈ Z/pνZ suh that σpν→pν−1(x) ∈ Kpν−1 but that do not belong to
Kpν . We further de�ne Ld by �multipliativity�. It is important to note,and that is di�erent from what happens to K, that we do not have
Lℓ = Ld/ℓZ if ℓ|d. Using 1A to denote the harateristi funtion of A,our de�nitions imply that(11.2) 













1Ld
=
∏

pν‖d

(1Kpν−1 − 1Kpν

)

= (−1)ω(d)
∑

δ|d
µ(d/δ)1Kδ1Kd

=
∏

pν‖d

(1− 1Lp − 1Lp2 − · · · − 1Lpν

)

=
∑

δ|d
(−1)ω(d)1Lδ

.



96 11 The Selberg sieveA remark on why one should introdue L: to start with, let us notethat lassial sieve expositions stress more on the lasses that one ex-ludes modulo p, than on the lasses that are retained, whih in oursetting means that the sets Lp are de�ned �rst, and the sets Kp are usu-ally not spei�ed. This is so beause we usually exlude few lasses, i.e.
Lp is small while Kp is large. This notion of small and large is in fatwhat led to the nomenlature �large sieve�: in the example treated (seesetion 6.5), (Linnik, 1941) had to exlude many lasses.Introduing Kp allows us to get a geometrial setting, i.e. leads to anatural de�nition of Kd � while that of Ld is muh less natural � and,in general, to smoother formulae for the main terms. However, when itomes to omputing error terms, the fat that Ld has small ardinalityin usual problems turns out to be extremely e�etive.At the end of next setion, we explain in terms of information thishange of view point.11.3. An extremal problemIn our presentation of the Selberg sieve, we onsider the following ex-tremal problems(11.3) 









∑

d λ
♯
d = 1 , λ♯

d = 0 if d ≥ DMain term of ∑

M<n≤M+N

(

∑

d/n∈Kd

λ♯
d

)2 minimaland(11.4) 









λ1 = 1 , λd = 0 if d ≥ DMain term of ∑

M<n≤M+N

(

∑

d/n∈Ld

λd

)2 minimal.We swith from one problem to the other using (11.2) :(11.5) 













(−1)ω(d)λd =
∑

d|ℓ
λ♯

ℓ , λ♯
ℓ =

∑

ℓ|d
µ(d/ℓ)(−1)ω(d)λd,

∑

d/n∈Ld

λd =
∑

d/n∈Kd

λ♯
d.Solving the �rst problem is very easy beause K is multipliatively split,and is performed via the diagonalization proess of Selberg. Indeed, we



11.3 An extremal problem 97write
∑

M<n≤M+N

(

∑

d/n∈Kd

λ♯
d

)2

=
∑

d1,d2≤D

λ♯
d1
λ♯

d2

∑

M<n≤M+N
n∈K[d1,d2]

1

=
∑

d1,d2≤D

λ♯
d1
λ♯

d2

|K[d1,d2]|
[d1, d2]

N + error termSet ρ(d) = |Kd|/d and let h be the solution of 1/ρ = 1 ⋆ h as in (2.5).We then have
∑

d1,d2≤D

λ♯
d1
λ♯

d2

|K[d1,d2]|
[d1, d2]

=
∑

d1,d2≤D

λ♯
d1
ρ(d1)λ

♯
d2
ρ(d2)(1 ⋆ h)((d1, d2))

=
∑

q≤D

h(q)

(

∑

q|d≤D

λ♯
dρ(d)

)2

.We omment on the above relations: �rst we note that any two randomlyhosen integers have a small gd, so that we indeed redue the di�ultyby exhanging lm with gd; the next problem is still the fat that d1and d2 are linked and the introdution of h is a key idea to separatethem fully. Pursuing the proof, we de�ne(11.6) yq =
∑

q|d≤D

λ♯
dρ(d)and reover the λ♯

d's from the yq's by1(11.7) ρ(d)λ♯
d =

∑

d|q≤D

µ(q/d)yqwhih enables us to establish that(11.8) 1 =
∑

d

λ♯
d =

∑

q

h(q)yq.Weminimize the quadrati form∑h(q)y2
q subjet to the ondition (11.8).On using Lagrange multipliers, we see optimal2 yq's should all be equalto 1/

∑

d h(d) i.e. 1/G1(D).1Equation (11.6) may be seen as a linear system expressing the yq's in terms ofthe (λ♯
dρ(d))'s. This system being in triangular form, the (λ♯

dρ(d))'s are uniquelydetermined in terms of the yq's. The reader will hek that the RHS of (11.7) veri�esthis system, and hene, is equal to λ♯
dρ(d).2When h(q) vanishes, the orresponding value of yq has no in�uene whatsoever;the orresponding λq will always appear with oe�ient h(q), The solution yq wehoose is the one that yields uniform formulae.



98 11 The Selberg sieveGathering our results we infer (see also (18.2))(11.9)
λ♯

d =
d

|Kd|
∑

q≤Q/d

µ(q)/G1(D) and λd = (−1)ω(d)Gd(D)/G1(D).From the information theory point of view, going from (λ♯
d) to (λd) maybe explained by the following remark : when writing n ∈ Kpν , we forgetwe already know that n ∈ Kpν−1 ; Removing this redundany leads to

(Ld) and to (λd). The reader will perhaps appreiate Lemma 2.2 betternow. The L.H.S. is G1(D)λ♯
d while the R.H.S. is its expression in termsof the λd's. Indeed this was how this lemma was invented.Note that Lemma 2.3 tells us simply that |λd| ≤ 1.As for the ardinality of S (de�ned in (11.1)), we diretly get

|S| ≤
∑

n≤N

(

∑

d/n∈Kd

λ♯
d

)2

=
∑

n≤N

(

∑

d/n∈Ld

λd

)2

≤ N

G1(D)
+

(

∑

d

|Ld||λd|
)2(11.10)Going from (λ♯

d) to (λd) is thus extremely immportant to reduing theerror term, thanks to Lemma 2.3. Now (11.10) improves on Corollary 2.1in that the Johnsen-Gallagher ondition is no more required.In (Selberg, 1976) and (Motohashi, 1983), the reader will �nd anotherexposition and in (Gallagher, 1974) losely related material.Three last remarks are to be made:(1) We do not require K to be squarefree.(2) We do not require K to satisfy the Johnsen-Gallagher ondition,ontrarily to what happened in Corollary 2.1 or Theorem 2.1 .But we had aess to a large sieve extension, while this resultprovides us with no suh extension.(3) All of what we do is valid when sieving an arbitrary sequenes
A, like the sequene of primes. This only alters the de�nitionof ρ as exposed in hapter 13. Again this is not the ase ofTheorem 2.1.11.4. More on ompat setsLet K be a multipliatively split ompat set. We set(11.11) ψd(n) =

d

|Kd|
1Kd

(n)



11.5 Pseudo-haraters 99where the oe�ient d/|Kd| will yield smoother formulae3. We have(11.12) ψd(n) =
∑

q|d
ψ∗q (n)with(11.13) ψ∗q (n) =

∑

δ|q
n∈Kδ

µ(q/δ)δ/|Kδ |.It will be better to replae the ondition n ∈ Kd with n ∈ Ld, whih wedo via (11.2) and get(11.14) ψ∗q(n) =
∑

ℓ|q
n∈Lℓ

(−1)ω(ℓ)H(ℓ, q)with(11.15) H(ℓ, q) =
∑

ℓ|δ|q
µ(q/δ)δ/|Kδ |.Note that H(1, q) is simply the funtion h(q) we de�ned in (2.5) andthat we did in fat already meet this funtion H(ℓ, q): Lemma 2.1 mayalso be written in the form(11.16) Gd(Q) =
∑

q≤Q
d|q

H(d, q).11.5. Pseudo-haraters(Selberg, 1972) introdued the notion of pseudo-haraters, a notion thathas proved to be most e�ient in the ontext of log-free zero densityestimates by (Motohashi, 1978). We show here that they di�er from our
ψ∗q 's only by a multipliative fator.To do so, we follow losely hapter 1 of (Motohashi, 1983) and westart by translating his notations into our ontext:� Funtion θ used therein and de�ned in (1.1.17) is in fat θ(q) = |Kq|/q.� Funtion g de�ned by (1.1.18) and (1.1.21) is given in our notationsby g(q) = H(1, q) = h(q).� Funtion ∆q de�ned by the equation following (1.2.3) is 1Kq .3For the reader who went through hapter 4: if K satis�es the Johnsen-Gallagherondition, we have J q̃

d̃
(ψq) = ψd, where J is assoiated with the host ompat set

(Z/dZ)d. The deomposition given in (11.12) is simply the one oming from (4.12).See setion 9.4 for a more detailled argument. But even without knowing that
J q̃

d̃
(ψq) = ψd, suh an identity holds sine it is proved by purely ombinatorial means.



100 11 The Selberg sieveFrom these remarks, one easily reognizes on using (11.13) from hereand (1.2.3) from Motohashi's work that our two funtions, the one thatMotohashi alls a pseudo-harater and our ψ∗q , are in fat multiples ofeah other. But sine this oe�ient depends only on q, both notionshave the same e�ieny.The reader may onsult (Graham & Vaaler, 1981) for related material.The short paper (Elliott, 1992) shows learly, on the example of primenumbers, how to use these pseudo-haraters to produe a sieving e�et.11.6. Selberg's bound through loal modelsOur aim here is to show that one an derive a bound of the same strengthas (11.10) through yet another method relying on what we termed �loalmodels�. This last method will show lear onnetions between the studyof additive problems as in setion 10 and this sieve method. It is ageneralization, though with a weaker remainder term, of what we didwith the Brun-Tithmarsh inequality in setion 8.1.We restrit our attention to sieving intervals, for simpliity. So ourhost sequene is [M + 1,M + N ] and the salar produt on funtionsover this interval is given by(11.17) [g|h] =
∑

M<n≤M+N

g(n)h(n).Let us look at the bilinear form assoiated to the sequene (ψ∗q )q≤Q(de�ned by (11.13)):(11.18) ∥

∥

∥

∥

∑

q

ξqψ
∗
q

∥

∥

∥

∥

2

=
∑

q,q′

ξqξq′ [ψ
∗
q |ψ∗q′ ].On using (11.14), we infer that(11.19) [ψ∗q |ψ∗q′ ] =

∑

ℓ|q
ℓ′|q′

(−1)ω(ℓ)H(ℓ, q)(−1)ω(ℓ′)H(ℓ′, q′)
∑

n∈Lℓ
n∈Lℓ′

1.The last sum is to be omputed, but the reader should note that theondition does not in general redue to n ∈ L[ℓ,ℓ′] as it would if L werereplaed by K. To express this sum, we introdue a notation from (Sel-berg, 1976):(11.20) ε(ℓ, ℓ′) =

{

1 if [p|(ℓ, ℓ′) =⇒ vp(ℓ) = vp(ℓ
′)]

0 else.



11.6 Selberg's bound through loal models 101A moment re�etion will reveal that
[ψ∗q |ψ∗q′ ] =

∑

ℓ|q
ℓ′|q′

(−1)ω(ℓ)+ω(ℓ′)H(ℓ, q)H(ℓ′, q′)ε(ℓ, ℓ′)
∑

n∈L[ℓ,ℓ′]

1whih beomes
∑

ℓ|q
ℓ′|q′

(−1)ω(ℓ)+ω(ℓ′)H(ℓ, q)H(ℓ′, q′)ε(ℓ, ℓ′)

(

N |L[ℓ,ℓ′]|
[ℓ, ℓ′]

+R([ℓ, ℓ′])

)where R([ℓ, ℓ′]) is O∗(|L[ℓ,ℓ′]|). The main term (i.e. the term ontaining
N in fator) vanishes if q 6= q′ and equals Nh(q) otherwise. So we get(11.21) ∥

∥

∥

∥

∑

q

ξqψ
∗
q

∥

∥

∥

∥

2

= N
∑

q

|ξq|2h(q) +
∑

ℓ,ℓ′

ε(ℓ, ℓ′)R([ℓ, ℓ′])zℓzℓ′with(11.22) zℓ = (−1)ω(ℓ)
∑

ℓ|q
ξqH(ℓ, q).This study being over, we an turn to sieving questions and applyLemma 1.2. Here f is the harateristi funtion of the set S we wishto ount (de�ned in (11.1)). Denote its ardinality by Z. First hek byusing (11.13) that(11.23) [f |ψ∗q ] = h(q)Zso that Lemma 1.2 gives us(11.24) ∑

q≤Q

h(q)2Z2

h(q)N
≤ Z +

∑

ℓ,ℓ′

ε(ℓ, ℓ′)R([ℓ, ℓ′])zℓzℓ′with ξq = Z/N . This value of ξq gives(11.25) zℓ = (−1)ω(ℓ) Z

N

∑

q/ℓ|q
H(ℓ, q) = (−1)ω(ℓ)ZGℓ(Q)/N.We then use |R([ℓ, ℓ′])| ≤ |Lℓ||L′ℓ| and (−1)ω(ℓ)Gℓ(Q)/G1(Q) = λℓ to get(11.26) Z ≤ N

G1(Q)
+
ZG1(Q)

N

(

∑

ℓ

|Lℓ||λℓ|
)2

.This is to be ompared with (11.10): it is slightly weaker sine theoe�ient ZG1(Q)/N may well be ≥ 1, though not by muh. Modifyingthe value of ξd to take are of the remainder term as in Theorem 7.1would improve on this part.



102 11 The Selberg sieve11.7. Sieve weights in terms of loal modelsIf we look arefully at the way Lemma 1.2 is proved, we see that weapproximate the harateristi funtion f of the set we are interested inwith(11.27) ∑

q

ξqψ
∗
q =

Z

N

∑

q

ψ∗q .On the other hand, the Selberg proess as we exposed it introdues theweights(11.28) ∑

d/n∈Kd

λ♯
d =

∑

d

λ♯
d1Kd

(n).We now express 1Kd
via (11.11) and (11.12), getting

∑

d/n∈Kd

λ♯
d =

∑

d

λ♯
d

|Kd|
d

∑

q|d
ψ∗q (n) =

∑

q

ψ∗q (n)
∑

q|d

|Kd|
d
λ♯

d.We readily hek that(11.29) ∑

d/q|d

|Kd|
d
λ♯

d = 1/G1(Q)hene we almost reover (11.27):(11.30) ∑

d/n∈Kd

λ♯
d =

∑

q

ψ∗q/G1(Q).The mirale here is that, even though (Z/N)
∑

q ψ
∗
q has been inventedto approximate f , it turns out that it also majorizes this funtion point-wise, provided we hange the �rst oe�ient from (Z/N) to 1/G1(Q).Note that (11.30) in the ase of primes appears already in (Selberg,1942), and (Selberg, 1943) and is in fat at the origin of what is nowknown as the Selberg sieve! It appears under the de�nition(11.31) ΛQ(n) =

∑

q≤Q

µ(q)

φ(q)
cq(n)where only the orreting fator (N/Z or 1/G1(Q)) is missed. Suh afuntion has also been exploited in (Selberg, 1942), (Motohashi, 1978),(Heath-Brown, 1985), (Goldston, 1992), (Goldston, 1995), (Friedlander& Goldston, 1995), and in (Vaughan, 2003) among other plaes, butit is generally assoiated to what is sometimes known as a Ramanujanexpansion as in (Hildebrand, 1984) and not to the notion of loal modelsas we have introdued them here. In the above mentioned works, thefuntion Λ is approximated by ΛQ and ontribution of the di�erene



11.8 . . . to the dual form of the large sieve inequality 103
Λ−ΛQ is shown to be negligible in a proper average way. One an workdiretly with (10.17) and replae this ΛQ by Λ♯, provided we modifyslightly the bound over d there from d ≤

√
N to the more general d ≤ Q.Indeed, we have(11.32) Λ♯(n) = −

∑

d|n
d≤Q

µ(d) Log d =
∑

q≤Q

w(q,Q)cq(n)where w(q,Q) is de�ned in (10.13) and evaluated in (10.15). We obtainsuh an expression on using (10.12). This funtion Λ♯ may well be abetter approximation than ΛQ in some irumstanes.11.8. From the loal models to the dual large sieveinequalityNow that we have found a link between the λd's given by Selberg sieveand the ψ∗q 's obtained from the point of view of loal models, we shall getthe bound given by Selberg's bound through the large sieve inequalityprovided the Johnsen-Gallagher ondition (2.4) is satis�ed. In passing,this will extend the argument of (Kobayashi, 1973) to the ase of non-squarefree ompat sets. Roughly speaking we proeed by expressing thefuntion ψ∗q in terms of additive haraters modulo q. Realling (11.13),we see that
ψ∗q (n) =

∑

δ|q
µ(q/δ)

δ

|Kδ |
(

∑

b∈Kδ

1

δ

∑

cmod δ

e(nc/δ)e(−cb/δ)
)whih we modify as follows:

ψ∗q (n) =
∑

δ|q
µ(q/δ)

1

|Kδ |
∑

b∈Kδ

∑

ℓ|δ

∑

cmod∗ℓ

e(nc/ℓ)e(−cb/ℓ)

=
∑

ℓ|q

∑

cmod∗ℓ

(

∑

ℓ|δ|q
µ(q/δ)

1

|Kδ |
∑

b∈Kδ

e(−cb/ℓ)
)

e(nc/ℓ).In the innermost sum, only the value of b modulo ℓ is required. Onthe Johnsen-Gallagher ondition (2.4), a value modulo ℓ yields |Kδ |/|Kℓ|values of b in Kδ. Next the summation over δ of µ(q/δ) is 0 if ℓ 6= q, sothat only the value ℓ = q remains. We have reahed(11.33) ψ∗q(n) =
∑

cmod∗q

(

1

|Kq|
∑

b∈Kq

e(−cb/q)
)

e(nc/q).And of ourse, the oe�ient that appears here is simply the Fourieroe�ient of ψ∗q . . . Let us all this oe�ient ψ̂q(c/q). Note, however,



104 11 The Selberg sievethat we have required ondition (2.4) to reover this expression. We thenhave(11.34) ∑

n

(

∑

d/n∈Kd

λ♯
d

)2

=
∑

n

∣

∣

∣

∣

∑

q≤Q

∑

cmod∗q

ψ̂q(c/q)e(nc/q)/G1(Q)

∣

∣

∣

∣

2where the reader will reognize the dual expression to the one studiedin the large sieve inequality, i.e. (1.19). The bound there thus applies,yielding(11.35) ∑

n

(

∑

d/n∈Kd

λ♯
d

)2

≤ (N +Q2)
∑

q≤Q

∑

cmod∗q

∣

∣ψ̂q(c/q)/G1(Q)
∣

∣

2
.Now,

∑

cmod∗q

∣

∣ψ̂q(c/q)
∣

∣

2
=

1

|Kq|2
∑

b,b′∈Kq

cq(b− b′) =
1

|Kq|2
∑

d|q
dµ(q/d)

∑

b,b′∈Kq

b≡b′[d]

1

=
∑

d|q
dµ(q/d)

1

|Kd|
= h(q)by using one again the Johnsen-Gallagher ondition. Sine ∑q h(q) =

G1(Q), we have proved that(11.36) ∑

n

(

∑

d/n∈Kd

λ♯
d

)2

≤ (N +Q2)/G1(Q)namely the Selberg sieve bound for an interval through the large sieveinequality, provided (2.4) holds. This time, the error term is alreadyevaluated and we do not have to worry whether λd is bounded by 1 ornot.We have thus reovered Gallagher's bound via the large sieve inequal-ity. (Motohashi, 1983) gives a more extensive treatment of this kind ofmaterial but avoids the Johnsen-Gallagher ondition. He does not getany large sieve extension, while our method gives one, but he extendsthe result in another diretion. So, the problem of �nding a large sieveextension to the sieve bound in the ase of a ompat set that does notsatis�es (2.4) remains open. The reader may objet that suh ompatsets are not ommon in pratie; it would however enable us to gatherour results in one single inequality.Finally (Huxley, 1972b) draws on the same irle of ideas. In partiu-lar, in the ase of a squarefree sieve, this author gets essentially (11.33),but starting from the weights ∑d/n∈Ld
λd instead of starting from ψ∗q aswe have done here.



12 Fourier expansion of sieve weightsThe previous hapter ontains an expansion of∑d λd1Ld
(n) as a lin-ear ombination of additive haraters, simply by ombining (11.30)and (11.33). The theme of the present hapter is to expand similarlythe sieve weights(12.1) βK(n) =

(

∑

d

λd1Ld
(n)
)2
.This is indeed what is done in the ase of primes in (Ramaré, 1995)and what is rapidly presented in a general ontext in (Ramaré & Ruzsa,2001), equation (4.1.21). Suh a material is used in (Green & Tao, 2006).We assume throughout this hapter that K is multipliatively splitand veri�es the Johnsen-Gallagher ondition.12.1. Dimension of the sieveUp to now we have avoided to provide a general sheme to evaluatethe G-funtions appearing in the Selberg sieve and only drove suh anevaluation in speial ases. This is to enompass usual situations whenthe sieve is said to have a dimension κ ≥ 0, i.e. when we have(12.2) ∑

p≤X

(1− |Kp|/p) Log p = κLogX +O(1)as well as the general ase, for instane the one appearing when sievingsquares as in the proof of Theorem 5.4. If (12.2) is veri�ed and the sieveis squarefree, then Theorem 21.1 yields(12.3) G1(z) = C(K) Logκ z +O(Logκ−1 z)where C(K) is a positive onstant. We refer to (Halberstam & Rihert,1974), (Gallagher, 1974), (Iwanie, 1980) as well as (Rawsthorne, 1982)for more details onerning sieve dimensions. We quote furthermore thepaper (Vaughan, 1973) where the reader will �nd more di�ult evalua-tions of G1(z).We will simply follow the onvention to say that the sieve has dimen-sion κ whenever (12.3) holds.



106 12 Fourier expansion12.2. The Fourier oe�ientsWe now de�ne for a prime to q what will be our Fourier oe�ients,namely
w(a/q) = lim

Y→∞
1

Y

∑

n≤Y

(

∑

n∈Kd

λ♯
d

)2

e(na/q)

=
∑

q|[d1,d2]

λ♯
d1
λ♯

d2

[d1, d2]

∑

b∈K[d1,d2]

e(ab/q).(12.4)We shall also require the following (rather ugly) funtion:(12.5) ρz(q, δ) =
∑

q1q2q3=q/(δ,q)
(q1,q2)=(q1,q3)=(q2,q3)=1

max(q1q3δ,q2q3δ)≤z

(−1)ω(q3).Note that ρz(q, δ) = 1 when qδ ≤ z and vanishes when √qδ > z(sine max(q1q3, q2q3) ≥
√

q/δ). Moreover we hek that |ρz(q, δ)| ≤
3ω(q/(δ,q)). The reader should also notie that, though this funtion isintriate enough in its de�nition, it is universal : it does not depend onthe set K.A third de�nition is required:(12.6) w♯

q =
∑

δ≤z

h(δ)ρz(q, δ)/G1(z)
2where h is de�ned in (2.5) (see also (11.15)).Lemma 12.1. We have

w(a/q) =
∑

b∈Kq

e(ab/q)w♯
q/|Kq|.Proof. From (12.4), we infer

w(a/q) =
∑

q|[d1,d2]

λ♯
d1
λ♯

d2

[d1, d2]
|K[d1,d2]|

∑

b∈Kq
e(ab/q)

|Kq|

= w♯
q

∑

b∈Kq
e(ab/q)

|Kq|
(12.7)



12.2 The Fourier oe�ients 107say. Replaing λ♯ by its value, we get
G1(z)

2w♯
q =

∑

q|[d1,d2]

(d1, d2)

|K(d1,d2)|
∑

d1|ℓ1≤z

∑

d2|ℓ2≤z

µ(ℓ1/d1)µ(ℓ2/d2)

=
∑

ℓ1,ℓ2≤z

∑

d1|ℓ1,d2|ℓ2
q|[d1,d2]

(d1, d2)

|K(d1,d2)|
µ(ℓ1/d1)µ(ℓ2/d2)i.e.

G1(z)
2w♯

q =
∑

δ≤z

h(δ)
∑

ℓ1,ℓ2≤z

∑

δ|d1|ℓ1
δ|d2|ℓ2

q|[d1,d2]

µ(ℓ1/d1)µ(ℓ2/d2) =
∑

δ≤z

h(δ)ρz(q, δ)with
ρz(q, δ) =

∑

ℓ′1,ℓ′2≤z/δ

∑

d1|ℓ′1,d2|ℓ′2
q/(δ,q)|[d1,d2]

µ(ℓ′1/d1)µ(ℓ′2/d2)and we now evaluate the inner sum by multipliativity to reover ourde�nition above. Its value is 0 as soon as there is a prime p whih divides
ℓ′1 or ℓ′2 but not q/(δ, q). Let then p be a prime suh that pa‖ℓ′1, pb‖ℓ′2and pc‖q/(δ, q) with c ≥ 1. We hek suessively that the value of theinner sum is 0 if c ≤ max(a, b) − 1, or if c = max(a, b) > min(a, b) ≥ 1.Its value is 1 if c = max(a, b) > min(a, b) = 0 and −1 if c = a = b.We an thus write ℓ′1 = q1q3, ℓ′2 = q2q3 with q/(δ, q) = q1q2q3 and
(q1, q2) = (q1, q3) = (q2, q3) = 1 and the value of the inner sum is
(−1)ω(q3). This justi�es the de�nition of ρz in (12.5). ⋄ ⋄ ⋄If we have a sieve of dimension κ, then realling (2.7) we reah

G2
1(z)w

♯
q = G1(z) +O

(

3ω(q)(G1(z)−G1(z/q))
)whih we ombine with (12.3) to infer(12.8) G1(z)w

♯
q = 1 +O

(

3ω(q)(Log q)/Log z
)

, (q ≤ z).Uniformy, we have the bound(12.9) |G1(z)w
♯
q| ≪ 3ω(q),this being a diret onsequene of (12.5)�(12.6).To onlude this part, we onsider ∑b∈Kq

e(ab/q). First as an easyappliation of the hinese remainder theorem, we readily disover thebound(12.10) ∣

∣

∣

∣

∑

b∈Kq

e(ab/q)

∣

∣

∣

∣

≤
∏

pν‖q

(

pν − |Kpν |
)

.



108 12 Fourier expansionNext if c/M = a/q with (a, q) = 1, then note that(12.11) 1

|KM |
∑

b∈KM

e(cb/M) =
1

|Kq|
∑

b∈Kq

e(ab/q).12.3. Distribution of βK in arithmeti progressionsWe assume K is of dimension κ. We further assume that(12.12) pν − |Kpν | ≤ cpνξfor some c > 0 and ξ ∈ [0, 1
2 [ whih implies (see (12.7), (12.8) and(12.10))(12.13) |G1(z)w(a/q)| ≪ q−1/2.We then get by using additive haraters

∑

n≤X

(

∑

n∈Kd

λ♯
d

)2

e(na/q) = Xw#
q

∑

b∈Kq
e(ab/q)

|Kq|
+O(z2)

=
X

G1(z)

∑

b∈Kq
e(ab/q)

|Kq|
+O

(

z2 +
X
√
q

|Kq|G1(z) Log z

)the last equality oming from (12.8), (12.10) and (12.12). As an easyonsequene and realling (12.1), we get(12.14) ∑

n≤X
n≡b[q]

βK(n) =
X1b∈Kq

G1(z)|Kq |
+O

(

z2 +
X
√
q

|Kq|G1(z) Log z

)

.12.4. Fourier expansion of βKIn order to have a onfortable setting to evaluate ∑n βK(n)F (n), where
βK is de�ned in (12.1), we seek another expression of βK as in (Ramaré,1995). Note that

βK(n) =

(

∑

d/n∈Kd

λ♯
d

)2

=
∑

d1,d2

λ♯
d1
λ♯

d2
1K[d1,d2]

(n).



12.4 Fourier expansion of βK 109We now express the inner harateristi funtion by using additive har-aters and get
βK(n) =

∑

d1,d2

λ♯
d1
λ♯

d2

[d1, d2]

∑

amod [d1,d2]

e(an/[d1, d2])
∑

b∈K[d1,d2]

e(−ab/[d1, d2])

=
∑

d1,d2

λ♯
d1
λ♯

d2

[d1, d2]

∑

q|[d1,d2]

∑

amod ∗q

e(an/q)
∑

b∈K[d1,d2]

e(−ab/q).Realling (12.4), we see that we have reahed the fundamental identity(12.15) βK(n) =
∑

q≤z2

∑

amod ∗q

w(a/q)e(an/q).





13 The Selberg sieve for sequenesThe setting we developed for the Selberg sieve enables us to sievesequenes even if the ompat set K is not squarefree, though it will stillhave to be multipliatively split. The adaptation is easy enough but wereord the neessary formulae and detail some examples.13.1. A general expressionLet (un)n∈Z be a weighted sequene, the weights un being non-negativeand suh that ∑n un < +∞. Let K be a multipliatively split ompatset. We assume there exists a multipliative funtion σ♯, a parameter Xand a funtion R♯
d suh that(13.1) ∑

n∈Kd

un = σ♯(d)X +R♯
d.We assume further that σ♯ is non-negative and dereases on powers ofprimes (a likely hypothesis if one oneives of σ♯(d) as being a density),whih translates into σ♯(q) ≥ σ♯(d) whenever q|d. Equivalently, we as-sume the existene of σ and Rd suh that(13.2) ∑

n∈Ld

un = σ(d)X +Rdbut the non-inreasing property on hains of multiples is way less obviousto state. Swithing from (13.1) to (13.2) is readily done through (11.2).There omes(13.3) 













(−1)ω(d)σ(d) =
∑

δ|d
µ(d/δ)σ♯(δ),

σ♯(d) =
∑

δ|d
(−1)ω(δ)σ(δ).All the analysis of setion 11.3 applies, exept we are to hange thede�nition of our G-funtions. First, h is the solution of(13.4) 1

σ♯(d)
=
∑

q|d
h(q)(ompare with (2.6)), that is to say(13.5) h(d) =

∏

pν‖δ

(

1

σ♯(pν)
− 1

σ♯(pν−1)

)

≥ 0.



112 13 The Selberg sieve for sequenesProeeding as in setion 11.3, but with ρ = σ♯, we get(13.6) ∑

n∈S
un ≤

X

G1(z)
+
∑

d1,d2

λd1λd2R[d1,d2],with S de�ned by (11.1). Notie that we still have |λd| ≤ 1 as in thesimpler ase of intervals.13.2. The ase of host sequenes supported by a ompatsetThe two main types of sequenes that we want to sieve are the sequeneof prime numbers, and the one of polynomial values :(13.7) A =
{

F (n)/ n ∈ [M + 1,M +N ]
}

.In both ases, the host sequene is supported by some multipliativelysplit ompat set. That is U for the sequene of primes, whih furtherveri�es the Johnsen-Gallagher ondition (2.4); and in fat (Z/dZ)d inthe ase of polynomial values! The polynomial intervenes in that ourompat is of the shape (F−1
(

K′d
))

d
: we want n suh that F (n) belongsto K′d for all d's below some bound.This latter ompat is wilder than it seems and does not in generalverify the Johnsen-Gallagher ondition: with F = X2, and K′ = 1 + U ,the lass 0 modulo p lifts to only one lass modulo p2 while all otherslift to (p − 1)/2 lasses when p 6= 2.We shall treat an example with the sequene of prime numbers. Thissequene is arried by U , so that in our de�nition of Ld, we ould restritour attention to invertible lasses, or replae Ld by Ld∩Ud, as is apparentfrom (13.2).We shall omment on the problem of sieving the sequene of primeswith a non-squarefree sieve that would sieve out many lasses in se-tion 13.4.13.3. On a problem of GallagherLet us explore and generalize a problem of (Gallagher, 1974). This willgive us bakground information for next setion, an example on how totreat the remainder term in Selberg sieve as well as an unusual applia-tion of Theorem 21.1 that we prove in the appendix. Our generalizationdepends on two parameters: an integer k ≥ 1 and a polynomial F withinteger oe�ients. These two parameters being �xed, we onsider the



13.3 On a problem of Gallagher 113set de�ned as follows
K′(p, F ) =

{

F (n) / F (n) = a0 + a1p+ . . . ,with 0 ≤ aν ≤ p− 1, aν 6= 0 if ν < k(13.8) and n ∈ [M + 1,M +N ]
}

.In the aforementioned paper, Gallagher established the upper bound(13.9) ∣∣{n ≤ N / ∀p 6= n, n ∈ K′(p,X)
}∣

∣ ≤ (1 + o(1))2k(k!)2
N

Logk Nby using Corollary 2.1. We examine now the ase F = X2−2 and k = 2.We seek an upper bound for(13.10) ∣

∣

{

n ≤ N / ∀p 6= F (n), F (n) ∈ K′(p, F )
}∣

∣ .Our ompat set K is de�ned by split multipliativity: modulo pν , it is
F−1(K′(p, F )) taken modulo pν . First, we need the ardinality of Kq,for whih we �nd that







|K2| = 1, |K4| = 2,
|Kp| = p− 2, |Kp2| = p2 − 3p + 3 if p ≡ ±1[8],
|Kp| = p, |Kp2 | = p2 − p+ 1 if p ≡ ±3[8].Before proving this point, let us reall that 2 is a square modulo odd pif and only if p ≡ ±1[8].Proof. We only handle ase p ≥ 3. If 2 is a quadrati residue modulo p,then one should avoid its two square roots. If 2 is not a quadrati residue,then no lasses are to be avoided modulo p. Let us turn to what happensmodulo p2 and onsider (a+ bp)2 − 2 = a2 − 2 + 2abp with 0 ≤ a, b < pand where a2 − 2 is prime to p. If a is prime to p, then 2abp takes anyvalue divisible by p by hoosing b properly. If a = 0 then by noting that

−2 = (p− 2) + p(p− 1), we see that any lift of a is allowed. ⋄ ⋄ ⋄For higher values of ν in pν , there are no further onstraints. Weinfer from the above that














|L2| = 1, |L4| = 0,

|Lp| = 2, |Lp2| = p− 3 if p ≡ ±1[8],
|Lp| = 0, |Lp2| = p− 1 if p ≡ ±3[8].The ardinality of |Lpν | vanishes when ν ≥ 3. Let us all D (resp. D′)the set of squarefree integers whose prime fators are all ≡ ±1[8] (resp.

≡ ±3[8]). The error arising from use of (13.6) in our problem is not



114 13 The Selberg sieve for sequenesmore than
(

∑

d≤Q

|Ld|
)2

≤
(

∑

d1d2
2d2

3≤Q
d1,d2∈D,(d1,d2)=1

d3∈D′

d2d32
ω(d2)

)2

≪ (QLog3Q)2.As for the main term, �rst note that


















|h(2)| = 1, |h(4)| = 0,

|h(p)| = 2

p− 2
, |h(p2)| = p2 − 3p

(p − 2)(p2 − 3p+ 3)
if p ≡ ±1[8],

|h(p)| = 0, |h(p2)| = 2p− 2

p2 − p+ 1
if p ≡ ±3[8].We evaluate the G-funtion by appealing to Theorem 21.1. We notesuessively that

∑

p1≤Q
p1≡±1[8]

2Log p1

p1 − 2
= (1 + o(1))21

2 LogQ,that
∑

p2
2≤Q

p2≡±1[8]

(p2 − 3)p2 Log p2

(p2 − 2)(p2
2 − 3p2 + 3)

= (1 + o(1))1
2 Log

√

Q,and �nally that
∑

p2
2≤Q

p2≡±1[8]

(p3 − 1) Log p3

p2
3 − p3 + 1

= (1 + o(1))1
2 Log

√

Q.On olleting these estimates, we �nd that κ = 3/2. Let us de�ne
C =

∏

p≥3Cp where Cp is given by
Cp =



















(

1− 1

p

)3/2 p2

p2 − 3p+ 3
when p ≡ ±1[8],

(

1− 1

p

)3/2 p2

p2 − p+ 1
when p ≡ ±3[8]so that, by taking Q =

√
N/(LogN)4, our ardinal de�ned by (13.9) isno more than

(1 + o(1))
2
√
π N

C (LogN)3/2
.



13.5 On a subset of prime twins 11513.4. On a problem of Gallagher, IIWe ontinue to explore the preeding problem. Let k ≥ 1 be a �xedinteger. We onsider again
K′(p,X) =

{

n/n = a0 + a1p+ . . . ,with 0 ≤ aν ≤ p− 1, aν 6= 0 when ν < k
}

.While evaluating the ardinality of the L.H.S. of (13.9) in the ase F =
X, one may remark that all n belonging to the set we are interested inare prime numbers: we an thus sieve the sequene of primes insteadof the one of integers. But a problem arises while ontrolling the errorterm. We are required to bound(13.11) ∑

q≤Q

∣

∣

∣

∣

∑

p≤N
p∈Lq

Log p− |Lq|N
φ(q)

∣

∣

∣

∣by N/(LogN)k+1 at least, when Q = N
1
2−ε. This does not follow in animmediate way from the Bombieri-Vinogradov (see Lemma 13.1 below)theorem beause |Lq| is large. Roughly speaking, the reader will hekthat if q = q1q

2
2q

3
3 · · · qk

k with the qi's being squarefree, then |Lq| is oforder q12q23 · · · qk−1
k . Splitting the remainder term into a ontributionfrom eah residue lass and applying Hölder's inequality, we redue theproblem to bounding

(

∑

q≤Q

|Lq|B max
ℓ∈Uq

∣

∣

∣

∣

∑

p≤N
p≡ℓ[q]

Log p− N

φ(q)

∣

∣

∣

∣

)1/B(
∑

q≤Q

max
ℓ∈Uq

∣

∣

∣

∣

∑

p≤N
p≡ℓ[q]

Log p− N

φ(q)

∣

∣

∣

∣

)1/Awith A−1 +B−1 = 1. In the summation ontaining B, we use the Brun-Tithmarsh Theorem to dispose of the part depending on the primes. Bytaking A to be large and B very lose to one, the Bombieri-VinogradovTheorem (see Lemma 13.1) would allow us to prove the �rst fator tobe not more than a power of LogQ if only |Lq| were just smaller, or if
B = 1 were allowed.This tantalizing problem is open.13.5. On a subset of prime twinsOur aim here is to give an upper bound for the number of primes p notmore than N that are suh that p+2 is a prime, while p+1 is squarefree.The ompat set K we hoose is de�ned by split multipliativity: forprime p, Kp is Up ∩ (Up + 2) while Kp2 is the set of invertibles that are



116 13 The Selberg sieve for sequenesnot ongruent to −2 modulo p and not ongruent to −1 modulo p2. Forhigher powers of p, Kpν is de�ned by trivially lifting Kp2 , and so will beof no interest. This yields
{

|K2| = 1, |K4| = 1,
|Kp| = p− 2, |Kp2 | = p(p− 2)− 1 = p2 − 2p − 1 if p ≥ 3.But now the host sequene is that of primes p weighted with a Log peah so that(13.12) σ(d) = |Kd|/φ(d)Of ourse Ld ∩ Ud has at most one lass (lass −2 modulo p and lass

−1 modulo p2), implying that the error term(13.13) Rd =
∑

p≤N
p∈Ld∩Ud

Log p− |Ld ∩ Ud|N
φ(d)may be ontrolled byLemma 13.1 (Bombieri-Vinogradov). For any B ≥ 0, there exists an

A ≥ 0 suh that
∑

q≤Q

max
y≤N

max
amod∗q

∣

∣

∣

∣

∑

p≤N
p≡a[q]

Log p− N

φ(q)

∣

∣

∣

∣

≪ N/(LogN)Bfor Q =
√
N/(LogN)A.Note that this "lemma� ontains Lemma 10.4. By taking B = 2, thisyields

∑

d1,d2≤D

|λd1λd2R[d1,d2]| ≪ N/(LogN)2provided D2 =
√
N/(LogN)A. As for the main term, we hek that







h(2) = 0, h(4) = 1,

h(p) =
1

p− 2
, h(p2) =

p− 1

p3 − 4p2 + 3p + 2
if p ≥ 3.Theorem 21.1 applies with κ = 1. We �nally getTheorem 13.1. The number of primes p ≤ N that are suh that p + 1is squarefree and p+ 2 is prime does not exeed

4(1 + o(1))
∏

p≥3

p2 − 2p − 1

(p− 1)2
N

Log2Nas N goes to in�nity.



13.5 On a subset of prime twins 117This bound is 4 times larger than what is onjetured but the mainpoint here is that this bound is indeed smaller than the one one gets forprime twins (see setion 21.3) by a large fator, namely
2
∏

p≥3

p(p− 2)

p2 − 2p− 1
= 3.426 . . .





14 A general overviewIt is time for us to take some height and look at what we have beendoing from farther away. The �rst approah, through the large sieveinequality, relied on an arithmetial rewriting of
∑

q

∑

amod∗q

|S(a/q)|2
(

S(α) =
∑

n

une(nα)
)

.This rewriting did in fat handle the sum W (q) =
∑

amod∗q |S(a/q)|2 asone single term, and we tried to maximize it in the subsequent analysis.More preisely, whenever (un) vanishes outside of a given ompat set,we prove a useful lower bound for this quantity.Viewing W (q) as some kind of norm (the norm of a projetion ontosome subspae) makes it plausible that W (q) is also the salar produtof S by some funtion, namely the orthogonal projetion of S on theproper subspae1. This is preisely what our loal models ϕ∗q are for: toprovide a good approximation to this �projetion�. The ase of primesis most telling: in essene, Corollary 2.1 relies on(14.1) W (q) ≥ µ2(q)

φ(q)
|S(0)|2if (un) is arried by U up to at least q, while with ϕ∗q(n) = µ(q)cq(n)/φ(q)de�ned in (8.11), we get(14.2) [(un)|ϕ∗q ] =

µ2(q)

φ(q)
|S(0)|2.This is how loal models enter the game. Note that the loal models weintrodued for the sums of two primes also take are of the size of theelements, so, using algebrai number theory terminology, they take areof the loal ontribution not only from the �nite plaes, but also fromthe one at in�nity.The third viewpoint is then to try to reonstrut (un) from theseloal models, and that is exatly where the Selberg sieve omes in. Weonsider C∑q ϕ

∗
q with some oe�ient C, and we say it ought to be anapproximation of the harateristi funtion of our set. This sheme isalso the one followed to build the funtion ΛQ (see (11.32)) for the primesand is further impliit in the work of (Huxley, 1972b). But an additionalunalled for event happens here: by hanging slightly the oe�ient C,1The reader who went through hapter 4 would reognize W (q) as being

‖Uq̃→q(∆q(f))‖2
q , the surrounding ompat set being (Z/dZ)d.



120 14 A general overviewwe disover that we an arrange matters so that C∑q ϕ
∗
q is exatly 1 onthe set S we want to detet (use (11.13) and Lemma 2.1 with d = 1).It is expeted to be of small size on the omplement of S, so, followingSelberg, we replae C∑q ϕ

∗
q by its square and get an upper bound forthe harateristi funtion of S. This is the third aspet.



15 Some speial weighted sequenesUpto now, we did not investigate preisely what happens at the plaeat in�nity. We introdued some Fourier transforms in hapter 10, andwe already saw some expressions frequent in this area of mathematis insetion 1.2.1. We expand all these onsiderations in this hapter, and,inter alia, shall provide a proof of Theorem 1.1.The approah we follow here is due to Selberg to prove the large sieveinequality; in partiular he built the funtion f−1/2 given below but itturned out that Beurling had already ahieved suh a onstrution inthe late 1930's without publishing. This explains why this funtion isnow refered to as the Beurling-Selberg funtion.The reader should onsult the paper of (Vaaler, 1985) (see also (Gra-ham & Vaaler, 1981)) and of (Holt & Vaaler, 1996) on whih we will relyheavily. Let us note �nally that the generalisation of Theorem 1.1 whihwe provide in Theorem 15.2 appears to be novel, as well as its orollary,Theorem 15.3.15.1. Some speial entire funtionsLet ν > −1 be a real number. Following (1.16) of (Holt & Vaaler, 1996)we set
kν(z) = kν(0, z) =

2Γ(ν + 2)

z
(2/z)ν Jν+1(z)(15.1)

=
∑

n≥0

(−1)n(z/2)2n(ν + 1)

n!(ν + 1) . . . (ν + n+ 1)
,(15.2)where Jν+1(z) is the Bessel funtion of order ν + 1. Let us quote thefollowing properties of kν from (Holt & Vaaler, 1996):Lemma 15.1. The funtion kν is even (kν(−z) = kν(z)). Its growth isontrolled in vertial strips by the estimate kν(z) = O (exp(|ℑz|)) whileon the real axis we have

kν(x)
2 ≪ν

1

(1 + |x|)2ν+3
, |kν(x)| ≤ (ν+1) exp(x2/(4(ν+1))) (x ∈ R).Finally, we also have

∫ +∞

−∞
kν(x)

2|x|2ν+1dx = Γ(ν + 1)Γ(ν + 2)22ν+2.



122 15 Some weighted sequenesBy a "vertial strip", we mean a set {z ∈ C, a ≤ ℜz ≤ b} for some�nite a and b.Proof. Only the seond bound is non obvious but derives easily fromthe Taylor expansion (15.2). ⋄ ⋄ ⋄We dedue the following Theorem from (Holt & Vaaler, 1996):Theorem 15.1. There exists a real entire funtion ℓν suh that
{

ℓν(z) = Oε (exp{(2 + ε)|ℑz|}) for any ε > 0,
| sgn(x)− ℓν(x)| ≤ kν(x)

2 (x ∈ R).Case ν = −1/2 gives rise to the so-alled Beurling-Selberg fun-tion. The reader will �nd an expliit expression for the funtions impliedin (Vaaler, 1985), together with a full presentation of the interpolationside of the problem.Proof. We quietly read the proof of Theorem 1 of (Holt & Vaaler,1996), with ξ = 0. Equations referenes here refer to equations of thispaper. We onlude that






sν(z, 0, 1/π) = ℓν(0, z) − kν(0, z)
2,

tν(z, 0, 1/π) = ℓν(0, z) + kν(0, z)
2,

uν(0, 1/π) =
∫∞
−∞ kν(0, x)2dx = Γ(ν + 1)Γ(ν + 2)22ν+2,on reading (5.5), (5.6) together with the omments around these equa-tions in (Holt & Vaaler, 1996). Note that sν(z, 0, 1/π) = S(z) and

tν(z, 0, 1/π) = T (z) for the proper spae. The funtions Aν and Bν arede�ned in (1.13) and (1.14) while the funtions kν and ℓν are de�nedjust before the proof of Theorem 1. In partiular
kν(0, z) =

Kν(0, z)

Kν(0, 0)
, πzKν(0, z) = Bν(z)Aν(0)−Aν(z)Bν(0)where the latter omes from (3.5). But Bν(0) = 0 while Aν(0) = 1, and

Kν(0, z) =
Bν(z)

πz
=

Γ(ν + 1)

πz
(2/z)ν Jν+1(z).We �nd that Kν(0, 0) = 1/(2π(ν + 1)), so that

kν(0, z) =
2Γ(ν + 2)

z
(2/z)ν Jν+1(z)as announed. ⋄ ⋄ ⋄Note that

k−1/2(x) =
sinx

x
, and k1/2(x) =

sinx− x cos x

x3/3
,both having value 1 at x = 0.



15.2 Majorants for the harateristi funtion of an interval 12315.2. Majorants for the harateristi funtion of anintervalLet ǫ > 0 be a real number that is �xed upto the end of the next setion.Eventually, we shall let ǫ go to 0.We onsider here(15.3) χ(x) =











1 if M − ǫ < x < M +N + ǫ,

1/2 if x = M − ǫ or x = M +N + ǫ,

0 if x /∈ [M − ǫ,M +N + ǫ]whereM and N are two non-negative real numbers. This is the funtionfor whih we seek a well behaved majorant, where what well behavedexatly means will be lear from the proof below.Let us set(15.4) fν(z) = ℓν(z) + kν(z)2and next de�ne bν(x) by
2bν(x) = fν(2πδ(x − (M − ǫ))) + fν(2πδ(M +N + ǫ− x)),(15.5)

= 2χ(x) + fν(2πδ(x − (M − ǫ)))− sgn(2πδ(x − (M − ǫ)))
+fν(2πδ(M +N + ǫ− x))− sgn(2πδ(M +N + ǫ− x)).By Theorem 15.1, the funtion bν is an upper bound for χ (whih implies,in partiular, that it is non negative) and veri�es for z in C
bν(z) = Oε (exp{πδ(2 + ε)|ℑz|}) for any ε > 0.This bound expresses the fat that bν is of exponential type 2πδ. Itholds also for xhbν(x) (h non negative integer), a funtion that is in

L1(R) ∩ L2(R), both results provided 2ν + 2 > h.Lemma 15.2. Let ν > −1. Let R be a polynomial of degree < 2ν + 2and α ∈ R/Z. We have, if |α| ≥ δ,
∑

n∈ZR(n)bν(n)e(nα) = 0.Furthermore
∑

n∈ZR(n)bν(n) =

∫ +∞

−∞
R(t)bν(t)dt.Proof. We write R =

∑

rhX
h. The Poisson summation formula gives

∑

n∈ZR(n)bν(n)e(nα) =
∑

m∈Z∑h

rhb̂
(h)(m− α)/(2iπ)h.



124 15 Some weighted sequenesEvery term on the R.H.S. vanishes when |α| ≥ δ by the Paley-WienerTheorem and our remark that nhbν(n) is of exponential type 2πδ when
h < 2ν + 2. ⋄ ⋄ ⋄15.3. A generalized large sieve inequality.Let us start with some preliminary material on polynomials. Let Q ∈C[X] of degree ≤ 2ν + 1 and de�ne Q∗(X) = Q((X − M + ǫ)/N).Lemma 15.2 yields
∑

n∈ZQ∗(n)bν(n) = N

∫ +∞

−∞
Q(t)bν(Nt +M + ǫ)dt

= N

∫ 1

0
Q(t)dt +O∗

(

1

2πδ

∫ +∞

−∞
k2

ν(t)
∣

∣

∣
Q
( t

2πNδ

)

+Q
( 1− t

2πNδ

)∣

∣

∣
dt

)

= N

∫ 1

0
Q(t)dt +O∗

(

δ−1ρν(Q, 2πδN))
)say, where ρν(Q, ξ) is an upper bound for

1

2π

∫ +∞

−∞
k2

ν(t)
(

∣

∣Q(t/ξ) +Q((1− t)/ξ)
∣

∣

)

dt.We de�ne further(15.6) Q♭(x) =
∑

h

|qh|x−h when Q(x) =
∑

h

qhx
h.The following lemma provides us with a manageable upper bound for

ρν(Q, ξ).Lemma 15.3. We have ρν(Q, ξ) ≤ ρ♭
νQ

♭(ξ) where
ρ♭

ν = max
0≤h≤2ν+1

1

2π

∫ +∞

−∞
k2

ν(t)|th + (1− t)h|dt.Moreover ρ♭
ν ≤ 3

2(2ν+2)2ν+2 for ν ≥ −1/2 and more preisely ρ♭
−1/2 = 1.Proof. To give an upper bound for ρν , note that |th + (1 − t)h| ≤

(1 + 22ν+1)max(|t|2ν+1, 1) if h ≤ 2ν + 1. Using Lemma 15.1, we get
ρ♭

ν ≤
1 + 22ν+1

2π

{

2(ν + 1)2 exp(1/(2(ν + 1))) + Γ(ν + 1)Γ(ν + 2)22ν+2
}

.It is then easy to numerially verify the upper bound, sine we anontrol what happens for large ν by using
Γ(x) ≤

√
2πx(x/e)x exp(1/(12x)), (x > 0).



15.3 A generalized large sieve inequality. 125see (Abramowitz & Stegun, 1964) equation (6.1.38). As a matter offat, we have the stronger bound ρ♭
ν ≤ 1

6(2ν + 2)2ν+2 for ν ≥ 1/2 and
ρ♭
1/2 ≤ 3.6 ⋄ ⋄ ⋄Let us now set(15.7) SQ(α) =

M+N
∑

n=M

anQ
∗(n)e(nα) =

M+N
∑

n=M

anQ

(

n−M
N

)

e(nα).The following theorem generalizes Theorem 1.1, whih we reover ontaking ν = −1/2 and Q = {1} sine the previous lemma gives ρ♭
−1/2 = 1.1Theorem 15.2. Let Q be a �nite set of polynomials of degree ≤ ν+1/2and orthonormal for the salar produt ∫ 1

0 P1(t)P2(t)dt. Let X be a δ-wellspaed set of points of R/Z. We have
∑

Q∈Q

∑

x∈X
|SQ(x)|2 ≤ ‖S‖22

(

N + δ−1ρ♭
ν

∑

Q∈Q
Q♭(2πδN)2

)

.In this Theorem, ǫ is taken to be 0 and ρ♭
ν is de�ned in Lemma 15.3.Proof. We have

Σ =
∑

Q∈Q

∑

x∈X
|SQ(x)|2 =

M+N
∑

n=M

an

∑

Q∈Q

∑

x∈X
SQ(x)Q∗(n)e(nx)to whih we apply Cauhy's inequality. We get

Σ2 ≤ ‖S‖22
∑

n∈Z bν(n)
∑

Q1,Q2∈Q

∑

x,y∈X
SQ1(x)SQ2(y)Q

∗
1(n)Q∗2(n)e(n(x− y))whih is not more than

‖S‖22







N
∑

Q∈Q

∑

x∈X
|SQ(x)|2 + δ−1ρ♭

ν

∑

x∈X

(

∑

Q∈Q
|SQ(x)|Q♭(2πδN)

)2






.We use Cauhy's inequality on the inner square and get
Σ ≤ ‖S‖22

{

N + δ−1ρ♭
ν

∑

Q∈Q
Q♭(2πδN)2

}as required. Note that Q has ardinality at most ν + 1. We �nally let ǫtend to 0. ⋄ ⋄ ⋄1The reader might wonder why we haveN here instead of N−1 as was announed.This is beause our interval is slightly di�erent, fromM+0 toM+N instead of from
M + 1 to M +N .



126 15 Some weighted sequenes15.4. An appliationOne may wonder whether this result is stronger than the lassial largesieve inequality or not. Well, in fat, it is essentially equivalent, at leastif 2πδN is bounded below away from 0, and for the following reason.First, it ontains this inequality; on the other side, the modi�ationsintrodued by the Q∗ enables us to loalize n essentially in intervals ofsize N/(ν + 3/2). However, one ould �rst split our interval in smallerpiees and we apply on these the lassial large sieve inequality; we getthis way bounds of the same strength as the one above. Nonetheless,this inequality has some interesting onsequenes, as we shall see below.For Q, we an take a modi�ation of the Legendre polynomials:(15.8) Q = {Lm(2X − 1),m ≤ ν + 1/2}, Lm =
1

2mm!

dm

dxm
(1− x2)m.We have(15.9) L0 = 1, L1 = x, L2 = (3x2 − 1)/2, L3 = (5x3 − 3x)/2.Restriting our attention to ν = 1/2, we readily get the following The-orem, whih generalizes Corollary 2.1.Theorem 15.3. Assume K is multipliatively split and veri�es the John-sen-Gallagher ondition (2.4). Let f be the harateristi funtion ofthose integers of the interval [M,M +N ] that belongs to Kq for all q ≤

Q ≤ 2
√
N . We set Z =

∑

n f(n). We have
Z +

∣

∣

∣

∣

∑

n

(2n

N
− 1
)

f(n)

∣

∣

∣

∣

2

/Z ≤ (N + 20Q2)/G1(Q).Proof. The proof is straightforward and only varies from the oneof Corollary 2.1 in that we use Theorem 15.2 with ν = 1/2 insteadof Theorem 1.1 and use the set Q de�ned in (15.8). Our hypothesis
Q ≤ 2

√
N ensures us that 2πδN ≥ 2, so that

∑

Q∈Q
Q♭(2πδN)2 ≤ 1 + (1 + 21

2)2 = 5.The reader will easily draw the required onlusion. ⋄ ⋄ ⋄Compared to Corollary 2.1, we lose the fator 20, a fat that is irrel-evant for most appliations, but gain the term ∣

∣

∑

n

(

2n
N − 1

)

f(n)
∣

∣

2
/Z. Itontributes if the un-sifted elements (the n's with f(n) = 1) aumulatemore on [0, N/2] or on [N/2, N ]. For the Brun-Tithmarsh inequality,it means that we ould beat the onstant 2 if suh a ase were to hap-pen . . .



15.5 Perfet oupling 127Similar type of results have reently been studied by (Coppola &Salerno, 2004).15.5. Perfet ouplingThe proof above has several interesting features, but a main one is toprovide us with a weighted sequene that is perfetly behaved in arith-meti progressions: the sequene (bν(n)) is a majorant for the sequeneof integers in the interval [M,M +N ] and veri�es
∑

n∈Z bν(n)e(na/q) = 0 if (a, q) = 1 and 1 < q ≤ 1/δso that, if we set B =
∑

n∈Z bν(n), we get(15.10) ∀q ≤ δ−1,
∑

n∈Z
n≡c[q]

bν(n) = B/qwhere the main feature is that no error term ours. By taking ν largeenough, we an also be sure that bν(n) dereases rapidly enough. Con-erning its derivative, the Paley Wiener Theorem ensures that the de-rivative of fν de�ned in (15.4) is indeed bounded in terms of ν, so that(15.11) |b′ν(x)| ≪ν δ.Suh an inequality proves that bν does not vary muh over intervals ofsize not more than δ−1.We shall see in the next hapter how suh a weighted sequene may beused to onsiderably simplify the study of the hermitian produt derivedfrom a loal system.





16 On the di�erene between onseutiveprimesIn this hapter, we show how the perfetly well distributed weightedsequene (bν(n))n built in the preeding hapter an be used to simplifythe analysis of the hermitian produt stemming from a loal system.We show furthermore that the key point of Bombieri & Davenport'sproof onerning small di�erenes between primes is in fat ontained inLemma 1.2 and 1.1.16.1. IntrodutionSmall di�erenes between primes are a hoie subjet between additiveand multipliative number theory. To show this di�erene is in�nitelyoften equal to 2 is nothing else than the prime twin onjeture. Weonsider here a muh more modest aim and show that (pn+1−pn)/Log pnis in�nitely often ≤ 0.5 and even a bit better, where (pn) is the sequeneof primes.The prime number Theorem tells us that there are asymptotially
x/Log x prime numbers up to x, so that the mean di�erene is Log x,whih implies that (pn+1−pn)/Log pn is in�nitely often ≤ 1+ε for every
ε > 0.We set(16.1) Λ1 = lim inf

pn+1 − pn

Log pn
.In 1940 Erdös was the �rst one to go beyond Λ1 ≤ 1 in (Erdös, 1940)by showing that Λ1 ≤ 57/59. He of ourse did not use the Bombieri-Vinogradov Theorem (whih was proved only in 1965). This result hasthen been improved upon, in (Rankin, 1947) and then again in (Rankin,1950) by plugging in sieve results. A further improvement was ahievedin (Rii, 1954) where the inequality Λ1 ≤ 15/16 is proved. The seondmajor step is due to (Bombieri & Davenport, 1966) whih establishesthat Λ1 ≤ 0.467, this time using the Bombieri-Vinogradov Theorem.(Huxley, 1973) started another round of improvements by introduingombinatorial arguments. In 1977, he �nally got Λ1 ≤ 0.443.This part of the story ends up with (Maier, 1988) who employed hisnow famous matrix method and improved all previous results by an e−γfator. In partiular Λ1 ≤ 0.249.



130 16 Small gaps between primes(Goldston et al., 2005) is a major breakthrough in this area. Meth-ods used therein are not foreign to what is exposed here but are overalltoo new and shifting to be part of this book. The reader will �nd severalpreprints on the Arxiv server.We prove here that Λ1 ≤ 1/2 by using the setting developed till here.In partiular we do not require any irle method. It would be an easytask to improve on this bound, and we indiate in a last setion howto ahieve this. Note that if we were to avoid the Bombieri-VinogradovTheorem, the base method developed here would yield Λ1 ≤ 1, thatould also be improved into Λ1 < 1. This time only the prime numbertheorem in arithmeti progressions would be used so that we ould gete�etive results and even expliit ones. Furthermore, the simpliity ofthe approah renders it usable for a large variety of sequenes.Throughout this hapter we shall use(16.2) S = 2
∏

p≥3

(1− (p− 1)−2) , S(j) = S
∏

2<p|j

p− 1

p− 2
.16.2. Some preliminary materialLemma 16.1. There exists a positive onstant c0 suh that every intervalof length at least c0/φ(q) ontains at least a point a/q with (a, q) = 1.Proof. Let I be an interval of length q/φ(q) in [1, q]. Fix some u >

0. The number of points divisible by a prime fator ≥ qu is at most
1+ q1−uφ(q)−1 and the number of suh primes it as most 1/u. Thus thenumber of points in I that are oprime to all the prime fators of q lessthan z = qu for a small enough u is, by Brun's sieve (Theorem 2.1 ofChapter 2 of (Halberstam & Rihert, 1974), on taking κ = b = 1 and
λ = 0.1) , at least(16.3) 2

3
|I|φ(q)

q
− (1 + q1−uφ(q)−1)/u ≥ 1

2
|I|φ(q)

qwhen q is large enough, say q ≥ q0, and u small enough. When q issmall, there is at least one suh point in [1, q]. Hene the result with
c0 = max{φ(q), q < q0}. ⋄ ⋄ ⋄Lemma 16.2. We have
∑

amod ∗q

∣

∣

∣

∣

∑

1≤m≤M

g(m)e(ma/q)

∣

∣

∣

∣

2

≫
(

1−O(M2/φ(q)2)
)

φ(q)
∑

m

|g(m)|2



16.3 The ators and their loal approximations 131where the onstants implied in the O- and ≫-symbols do not depend on
g nor on q.Proof. Put S(u) =

∑

1≤m≤M g(m)e(mu) and set δ = c0/φ(q) the valuegiven by Lemma 16.1. We then have
|S(a/q)− S(u)| ≤ 2π|u− a/q|

∑

1≤m≤M

|mg(m)|and thus
|S(a/q)|2 ≥ |S(u)|2 − 4π|u− a/q|

∑

1≤m≤M

|mg(m)|
∑

m

|g(m)|.Integrating this inequality yields
|S(a/q)|2 ≥ δ−1

∫ a/q+δ/2

a/q−δ/2
|S(u)|2 du− 2πδM

(

∑

1≤m≤M

|g(m)|
)2from whih the result follows easily. ⋄ ⋄ ⋄16.3. The ators and their loal approximationsLet 2J + 2 be the minimum of p′ − p when p′ > p ≥ N : we are requiredto bound J from above. Let K be an integer whih we assume prime inthe range 1

10 LogN ≤ K ≤ LogN . The simplest appliation will take
K ≃ J . We also assume N large enough, and in partiular K 6= 2.For eah j ∈ [1,K], we onsider(16.4) f (j)(n) =

{

Log(n+ 2j) if n+ 2j is a prime in ∈ [N, 2N ],
0 else,as well as f =

∑

j f
(j). We shall approximate these funtions modulo qby(16.5) ϕ(j)

q = 1(n+2j,q)=1

√

b(n)where b(n) = b−1/2(n) is desribed in the previous hapter, at the levelof equation (15.6), related to the parameter δ = Q−2. We shall hosethe parameter Q later on: it regulates in (16.8) below the size of thesifting set on moduli. This weighted sequene is introdued so as tohave (16.10). Sine having a proper majorant at the end point of theinterval [N, 2N ] is not important, we take ǫ = 0 and �nd that
∑

n∈Z b(n) = b̂(0) = N +Q2.



132 16 Small gaps between primesTo ϕ(j)
q , we also assoiate (see (8.10))(16.6) ϕ(j)∗

q (n) =
µ(q)cq(n+ 2j)

φ(q)

√

b(n).We further set(16.7) ϕ∗q =
∑

1≤j≤K

ϕ(j)∗
q .We have just been talking about approximating but we still have tospeify for whih norm . . . A gap we �ll in the next two subsetions.The hermitian produt. Our main loal system is given by (ϕ∗q)q∈Qfor(16.8) Q = {q ≤ Q,µ2(q) = 1, q 6= K, 2K}.The parameter Q an be taken as √N/LogAN for a su�iently large

A; this is the level to whih we shall sieve and is fored by our use of theBombieri-Vinogradov Theorem (see Lemma 13.1). If in this theorem,one ould reah moduli till Qθ say, with θ > 1/2, then we would get
Λ1 ≤ 1 − θ by following our proof (or Bombieri & Davenport's originalone). We take simply Q =

√
N exp(−√LogN), to avoid having to seewhih power A we will need hoose. This gives rise to the hermitianprodut(16.9) 〈h|g〉 =
∑

q∈Q
[h|ϕ∗q ][g|ϕ∗q ]/[ϕ∗q |ϕ∗q ]as in (10.2), sine(16.10) [ϕ∗q |ϕ∗q′ ] = 0 (∀q 6= q′ ≤ Q).Suh a relation of ourse simpli�es a great deal of our work. Sine weould dispense with it in this proof, it annot be onsidered as beingessential. The reader should however keep in mind when dealing withsuh a problem of this possibility. Looking bak on the way we initiallyproved Theorem 1.1, we see that the fator √F (n) in (1.8) had exatlythe same role.We need an apriori lower bound for [ϕ∗q |ϕ∗q ].Lemma 16.3. When q ∈ Q, then K3[ϕ∗q |ϕ∗q ]≫ N/φ(q).



16.3 The ators and their loal approximations 133Proof. Let us remark that
[ϕ∗q |ϕ∗q ] =

∑

1≤j,k≤K

µ(q)2

φ2(q)
cq(2(j − k))(N +Q2)(16.11)

=
µ(q)2(N +Q2)

φ2(q)

∑

amod ∗q

∣

∣

∣

∑

1≤j≤K

e(2aj/q)
∣

∣

∣

2
.(16.12)When q ≥ cK for a large enough c, then Lemma 16.2 yields the result.When q ≤ cK, we restrit the sum over a to a = 1. We have

∑

1≤k≤K

e(2k/q) = e(2/q)
1 − e(2K/q)
1− e(2/q)whih is at least 1/q if q ∤ 2K so that K3[ϕ∗q |ϕ∗q ]≫ N/φ(q) in this ase.The ase q = 2 is readily worked out. Note that for q = K or q = 2K(forbidden by our de�nition of Q), the above norm indeed vanishes. ⋄⋄⋄Replaing f (j) by its loal approximation (ϕ

(j)
q )q. The main Theoremon whih the proof really relies is the following one. In its proof, we showthat the Bombieri-Vinogradov Theorem enables us to approximate f (j)by its loal approximation (ϕ

(j)
q )q . The proof then splits into two parts:showing that the hypothesis of this theorem are met (what we all aprioriestimates), and omputing the resulting arithmetial expressions, a partthat is tedious but with no real di�ulties.Theorem 16.1. Let (αq)q∈Q be a sequene of omplex numbers, with

|αq| ≤ 2ω(q). We have
∣

∣

∣

∣

∑

q∈Q
αq[f

(j) − ϕ(j)
q |ϕ∗q ]

∣

∣

∣

∣

≪ N/Log100Nuniformly in j ≤ K.Proof. We �rst hek that
[f (j)|ϕ(k)∗

q ] =
µ(q)

φ(q)

∑

bmod q

cq(b+ 2k)
∑

n≡b[q]
n+2j∈P

Log(n+ 2j)
√

b(n)

=
µ(q)

φ(q)

∑

amod q

cq(a+ 2k − 2j)
∑

m≡a[q]
m∈P

Logm
√

b(m− 2j)by setting m = n + 2j, and b+ 2j = a. If we were to approximate herethe sum over m by N/φ(q) when a is prime to q, then we would requiresuh an approximation for all a modulo q: the Bombieri-Vinogradov



134 16 Small gaps between primesTheorem would not be enough to onlude. We an however redue thisapproximation to essentially a single progression as follows:
[f (j)|ϕ(k)∗

q ] =
µ(q)

φ(q)

∑

d|q
dµ(q/d)

∑

amod q,
a+2(k−j)≡0[d]

∑

m≡a[q]
m∈P

Logm
√

b(m− 2j)

=
µ(q)

φ(q)

∑

d|q
dµ(q/d)

∑

m≡−2(k−j)[d]
m∈P

Logm
√

b(m− 2j).(16.13)So for every d having some prime fator in ommon with 2(k − j) (thatis, for all d 6= 1's when j = k), the ontribution from the sum over
m is very small, in fat O(Log d), while otherwise we may approximatethis sum by N/φ(d). The overall error term thus introdued is boundedvia the Bombieri-Vinogradov Theorem (see Lemma 13.1; removing the
√

b(m− 2j) is no problem beause j being small enough, the deriva-tive of the funtion is properly ontrolled by the fat that Q is small,see (15.11)) by O(N/Log100N). As for the main term, it is
µ(q)N

φ(q)

∑

d|q
(d,2(j−k))=1

dµ(q/d)

φ(d)whih exatly equals [ϕ
(j)
q |ϕ(k)∗

q ]N/(N +Q2), as expeted. ⋄ ⋄ ⋄16.4. Computation of some hermitian produtsWe �rst establish an apriori upper bound for [f (j)|ϕ(k)∗
q ].Lemma 16.4. We have |[f (j)|ϕ(k)∗

q ]| ≪ 2ω(q)N/φ(q).Proof. We use (16.13) and the Brun-Tithmarsh inequality to get
|[f (j)|ϕ(k)∗

q ]| ≪ µ(q)2

φ(q)

∑

d|q
dN/φ(d) ≪ 2ω(q)N/φ(q)as demanded. ⋄ ⋄ ⋄We next ompute the required salar produts 〈f (j)|f〉.Lemma 16.5. Uniformly in 1 ≤ j ≤ K, we have 〈f (j)|f〉 = (2 +

o(1))KN .



16.4 Computation of some hermitian produts 135Proof. We write
〈f (j)|f (k)〉 =

∑

q∈Q
[f (j)|ϕ∗q ][f (k)|ϕ∗q ]/[ϕ∗q |ϕ∗q ]in whih we �rst replae f (j) by ϕ(j)

q by using Theorem 16.1. Hypothesisare met by appealing to Lemma 16.3 and 16.4. As a seond step wereplae f (k) by ϕ(k)
q and reah

〈f (j)|f (k)〉 =
∑

q∈Q
[ϕ(j)

q |ϕ∗q ][ϕ
(k)
q |ϕ∗q ]/[ϕ∗q |ϕ∗q ] +O(N/Log97N).We sum this expression over k and reah

〈f (j)|f〉 =
∑

q∈Q
[ϕ(j)

q |ϕ∗q ] +O(N/Log96N).Now we have as in (16.11)
[ϕ(j)

q |ϕ∗q ] = [ϕ∗(j)q |ϕ∗q ] =
∑

1≤k≤K

µ(q)2

φ2(q)
cq(2(j − k))(N +Q2).Summing over q, we readily reognize

(N +Q2)
(

∑

k 6=j

S(j − k) +O(Q−1 +K−1) +G(Q)
)where the O(K−1) is here to take are of the ondition q 6= K, 2K. Nextwrite(16.14) S(j − k) = S

∑

d|j−k
(d,2)=1

1

φ2(d)with φ2(d) =
∏

p|d(p− 2), getting
∑

k 6=j

S(j − k) = S
∑

d≤K,
(d,2)=1

1

φ2(d)

∑

k≡j[d],k 6=j

1

= S
∑

d≤K,
(d,2)=1

1

φ2(d)

(K

d
+O(1)

)

= (2 + o(1))K.The lemma follows readily. ⋄ ⋄ ⋄



136 16 Small gaps between primes16.5. Final argumentWe take for K the largest prime not more than J , where 2J + 2 is theminimum of p′ − p when p′ > p ≥ N . Due to the smoothing b(n),Lemma 1.2 simply reads(16.15) 〈f |f〉 ≤ [f |f ].We ontinue by expanding [f |f ]: the produts [f (j)|f (k)] vanish by hy-pothesis when k 6= j. On the L.H.S., sine we are able to ompute therelevant produts by Lemma 16.5, we show that they do not vanish, andthus this will fore J to be small enough. More preisely we have(16.16) ∑

1≤j≤K

2KN +
∑

1≤j≤K

1
2N LogN ≤

∑

1≤j≤K

(1 + o(1))N LogNfrom whih we infer that 2K ≤ (1
2 + o(1)) LogN as required.Let us sketh a method for improving on this bound. Take K some-what larger than J but still ≤ 2J . The same inequality gives

2K2N ≤ (1 + o(1))1
2KN LogN +

∑

|j−k|>J

∑

N<p,p′≤2N,
p−p′=2(j−k)

Log pLog p′.We an ontrol the right hand side by using the sieve bound
∑

N<p,p′≤2N,
p−p′=2(j−k)

Log pLog p′ ≤ 4(1 + o(1))NS(2(j − k))whih is 4 times larger than what is expeted to be true. A proof ofthis upper bound is provided in subsetion 21.3, at least in the ase
j − k = 1, but the general ase is not muh more di�ult. We readilyhek by appealing to (16.14) that















∀j ≤ K − J,
∑

k≥j+J

S(2(j − k)) = 2(K − J − j) + o(K),

∀j ≥ J,
∑

k≤J−j

S(2(j − k)) = 2(j − J) + o(K),so that
∑

|j−k|>J

∑

N<p,p′≤2N,
p−p′=2(j−k)

Log pLog p′

≤ 8N

(

∑

j≤K−J

(K − J − j) +
∑

K≥j≥J

(j − J)

)

+ o(N Log2N)



16.5 Final argument 137whih we �nally bound by 8N(K − J)2 + o(N Log2N). Set K/J = θand (LogN)/J = λ. We hoose θ in suh a fashion that �rst
4θ2 > θλ+ 16(θ − 1)2and seond so that λ is maximal. We take θ = 2/

√
3 and reah Λ1 ≤

(2 +
√

3)/8 = 0.466 · · · < 1/2 as announed.





17 Approximating by a loal modelIt is high time we show in a somewhat general setting how to ap-proximate a given weighted sequene by a loal model. Let us start withsuh a sequene (f(n))n together with an additional funtion ψ∞ (whihwill take are of the size onstraints), for whih we assume the followingbound:(17.1) ∑

q≤D

max
amod q

∣

∣

∣

∣

∑

n≡a[q]

f(n)ψ∞(n)− fq(a)X/q

∣

∣

∣

∣

≤ Efor some parameters D, E, X and (fq)q . The Bombieri-VinogradovTheorem falls within this framework with ψ∞ being the harateris-ti funtion of real numbers ≤ N and E = N/(LogN)A, togetherwith D =
√
N/(LogN)B for some B = B(A); then f(n) = Λ(n) and

fq = q1Uq/φ(q), and �nally X = N . Note that the funtion fq thatappears is preisely the one we used as a loal model for the primes.The parameter X is here for homogeneity and ould be dispensed with,simply by inorporating it in fq. However, in usual appliations, X willbe here to treat the dependene on the size, i.e. the ontribution of thein�nite plae, while fq will be independent of it and only aounts forthe e�et of the �nite plaes. We shall need some properties of these
fq's, namely:(17.2) ∀d|q,∀a mod d, J q̃

d̃
fq = fd.This equation may look unpalatable, but here is an equivalent formula-tion:(17.3) ∀d|q, fd(a)/d =

∑

bmod q
b≡a[q]

fq(b)/qwhere it is maybe easier to onsider fq/q as one funtion (the density,as in (13.1) and (13.2)).We often need an individual upper bound for eah of this remainderterm. This is not fundamental, and the end of the proof an be made towork with a large amount of variants, but usual sequenes do verify thisadditional hypothesis: we assume that there exist A ≥ 1 and a onstant
C suh that, for all q ≤ Q, we have(17.4) ∣

∣

∣

∣

∑

n≡a[q]

f(n)ψ∞(n)− fq(a)X/q

∣

∣

∣

∣

≤ CX AΩ(q)/q.



140 17 Approximating by a loal modelLet us turn next toward the base salar produt we use, where againwe seek some generality. Let K′ be a multipliatively split ompat set,
L′ its bordering system and(17.5) βK′(n) =

(

∑

n∈L′
d

λd

)2be the assoiated Selberg's weights (see (12.1)), where λd = 0 whenever
d > z a parameter at our disposal. The salar produt we onsider is

[βK′f |g] =
∑

n≥1

βK′(n)f(n)g(n)over funtions belonging to ℓ2(N)1. This way of denoting the salar prod-ut has the advantage of making the dependane in K′ appear expliitly.We are also to use another multipliatively split ompat set K satis-fying the Johnsen-Gallagher ondition, together with its bordering sys-tem L and de�ne ψ∗q as in (11.13). We further selet the same funtion
ψ∞ as in the beginning, and de�ne(17.6) ψ∗q,∞ = ψ∗qψ∞.Some omments on this additional ψ∞ are alled for. We an expetto be able to prove (17.1) for a whole bunh of funtions ψ∞, like allthe ones of type g(n/N) for some smooth g with ompat support. Weould have phrased our hypothesis in these terms, then taken for ψ∞in (17.6) a funtion verifying proper onditions, and in due ourse, wewould have disovered that it is enough to have both funtions equal oneto another. This is indeed the proess that is followed in appliations,but the exposition is simpler the way we took � albeit the need for thisremark!One way to get a global grasp of the family (fq)q is to onsider a(multipliatively) large modulus M : by whih we mean a modulus di-visible by all the q's that intervene. Then fM is enough to reprodue all
fq's, simply by fq = JM̃

q̃ fM . The reader may have doubts as to the veryexistene of suh an fM , but remembering the Fourier deomposition weprodued, we may simply take
fM =

∑

q≤D

Lq̃

M̃
Uq̃→qfq.Usually, we have at our disposal a smoother expression, like in the ase ofprimes where fM = M1UM

/φ(M) is a good hoie. Suh an expressionis in no way unique sine only its orthonormal projetions "modulo q"for all q ≤ Q are of use.1By whih we design the set of sequenes (f(n)) suh that P

n≥1 |f(n)|2 is �nite.



17 Approximating by a loal model 141If we have at our disposal suh a modulusM that is divisible by everyinteger ≤ z2, then βK′(n) has a well de�ned meaning for n ∈ Z/MZ.Let �nally (αq)q≤Q be a sequene of omplex numbers for whih wedo not assume anything. However, we think of αq as being bounded bya divisor funtion. We are to understand ∑q≤Q αq[f |ψ∗q ], for whih thefollowing theorem is the main key.Theorem 17.1. Let M be an integer divisible by every integer ≤ D =
z2Q. All other parameters are desribed above. We have
∣

∣

∣

∣

∑

q≤Q

αq

(

[βK′f |ψ∗q,∞]−X[βK′fM |Lq̃

M̃
ψ∗q ]M

)

∣

∣

∣

∣

≤
(

XBE
∑

q≤Q

|αq|2/q
)1/2with

B = C
∑

d≤D

(

∑

d=[ℓ,d1,d2]

∣

∣Lℓ

∣

∣

∣

∣L′d1

∣

∣

∣

∣L′d2

∣

∣

(

∑

ℓ|q≤Q

qH(K, ℓ, q)2
)1/2

)2

AΩ(d)/d.We expet B to evaluate to some power of LogD and this is readilydone given some deent hypothesis on K and K′. The funtion H(K, ℓ, q)is indeed the one de�ned by (11.15) but we have added an expliit de-pendene in K to avoid onfusion.Proof. We start from (11.14) and write
[f |ψ∗q,∞] =

∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

n∈Lℓ

βK′(n)f(n)ψ∞(n).Next, we write
βK′(n) =

∑

d1,d2

n∈L′
d1
∩L′

d2

λd1λd2so that
[f |ψ∗q,∞] =

∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

d1,d2≤z

λd1λd2

∑

n∈Lℓ∩L′
d1
∩L′

d2

f(n)ψ∞(n).The most inner sum bears on residue lasses modulo [ℓ, d1, d2] and weexpet the set Lℓ ∩ L′d1
∩ L′d2

to be small enough. We introdue theremainder term
max

amod q

∣

∣

∣

∑

n≡a[q]

f(n)ψ∞(n)−Xfq(a)/q
∣

∣

∣ = r∗qand �rst study the main term arising from this approximation. It equals
X
∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

d1,d2≤z

λd1λd2

∑

a∈Lℓ∩L′
d1
∩L′

d2

f[ℓ,d1,d2](a)/[ℓ, d1, d2].



142 17 Approximating by a loal modelWe go one huge step up and write it as
X
∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

d1,d2≤z

λd1λd2

∑

cmodM

fM (c)

M
1Lℓ

(c)1L′
d1

(c)1L′
d2

(c)whih we fold bak into
X
∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

cmodM

βK′(c)fM (c)1Lℓ
(c)/Mand �nally into

X
∑

cmodM

βK′(c)fM (c)ψ∗q (c)/M.We used a number of usual impreisions during these steps: we shouldhave written Ld̃1

M̃
1L′

d1
(c) instead of 1L′

d1
(c) sine this latter funtion hasarguments in Z/d1Z and not in Z/MZ... A similar remark holds for1L′

d2
(c) and for ψ∗q (c).We handle the remainder term in a most straightforward way, withthe �rm belief that the ardinality of Lℓ ∩ L′d1

∩ L′d2
as a subset ofZ/[ℓ, d1, d2]Z will be small enough: we simply majorize it by |Lℓ||L′d1

||L′d2
|where the �rst (resp. seond, resp. third) one is a ardinality as a subsetof Z/ℓZ (resp. Z/d1Z, resp. Z/d2Z). The remainder is then at most

∑

d≤D

(

∑

d=[ℓ,d1,d2],
d1,d2≤z,

ℓ≤Q

∣

∣Lℓ

∣

∣

∣

∣L′d1

∣

∣

∣

∣L′d2

∣

∣

∑

ℓ|q≤Q

|H(ℓ, q)||αq |
)

r∗d.Sine we prepare this Theorem for the ase when Lℓ is small, we expet
H(ℓ, q) to behave like 1/q up to a divisor funtion. This motivates thenext line:

∑

ℓ|q≤Q

|H(ℓ, q)||αq | ≤
∑

ℓ|q≤Q

qH(ℓ, q)2
∑

q≤Q

|αq|2/q,whih most probably looses a fator 1/ℓ that does not matter muh. Weuse Cauhy's inequality and hypothesis (17.4) to onlude. ⋄ ⋄ ⋄



18 Seleting other sets of moduliConerning the moduli, we used mainly the simple ondition d ≤ z,while everything we do is valid with a ondition d ∈ D for some divisorlosed set1. Usual sets are {d ≤ z}, or the set of integers ≤ z and withprime fators belonging to some sets (like prime to 2 or bounded by some
y), or with a bounded number of prime fators.Let us reord some formulae. We set(18.1) Gd(D) =

∑

δ∈D
[d,δ]∈D

h(δ)and following the method shown hapter 11 and 13, we get (see (11.9))(18.2) λ♯
d =

d

|Kd|

∑

q/dq∈D µ(q)

G1(D)
and λd = (−1)ω(d)Gd(D)

G1(D)
.These expressions may yield some surprises. For instane, on taking for

D the set of those primes that are ≤ z, to whih we add the element 1,we �nd that λp = −h(p)/G1(D). This an be extremely small, and doesnot appear as a modi�ation of µ(p) = −1 anymore! However λ♯
p maybe used as suh.18.1. Sieving by squaresWhile studying squarefree numbers, we should onsider only square mod-uli, and a large sieve inequality related to these moduli omes in handy,as in (Konyagin, 2003). In this diretion, Baier and Zhao, together orindependantly got several bounds as in (Zhao, 2004a), (Zhao, 2004b),(Baier, 2006) and (Baier & Zhao, 2005). Their latest result to date statesthat for N,Q > 0 and any ε > 0, we have(18.3) ∑

q≤Q

∑

amod∗q2

∣

∣

∣

∣

∑

n≤N

une(na/q
2)

∣

∣

∣

∣

2

≪ε (NQ)ε
(

Q3 +N + min(N
√

Q,
√
NQ2)

)

∑

n

|un|2.If we were to use the large sieve inequality for all moduli q2 ≤ Q2, wewould get the upper bound (N + Q4)
∑

n |un|2. We do not give any1A divisor losed set is a set suh that every positive divisor of an element of thisset still belongs to this set. In partiular 1 always belongs to suh a set.



144 18 Other sets of modulifurther details here but refer to (Baier & Zhao, 2005) for bakgroundinformations as well as other bounds. We are to stress that what ouldbe the best possible inequality in (18.3) is not known. In partiular,lower results are missing.(Granville & Ramaré, 1996) used suh a large sieve inequality tostudy the distribution of squarefree binomial oe�ients; we alreadymentionned the reent work (Konyagin, 2003), but the most beautifulappliation appears in (Baier & Zhao, 2006b). The authors �rst derivein (Baier & Zhao, 2006a) a Bombieri-Vinogradov type theorem, by fol-lowing the now lassial lines of (Bombieri et al., 1986) � that we alsofollowed in setion 5.5 �. From there, they prove:Theorem 18.1 (Baier & Zhao). Let ε > 0. There exist in�nitely manyprimes p that an be written in the form p = ℓm2 + 1 with ℓ≪ε p
5/9+ε.An old and muh sought-after onjeture of (Hardy & Littlewood,1922) asserts that ℓ = 1 is admissible.18.2. A warningIn setion 8-9 of (Bombieri, 1987), the sum

∑

n∈A
βK′(n)

(

∑

d|n+2

ad

)is being studied, with no onstraints on the ad's and where A is a hostsequene. In the appliation given there, the host sequene is the one ofprimes, while a1 = 1, ap = −1 when p is a prime ≤ z and ad is otherwise
0. The idea is to show that this sum tends to in�nity: sine ∑d|n+2 adan only be positive if n+ 2 has all its prime fators > z, this will showthat there are in�nitely many primes p suh that p + 2 has no primefators ≤ z. The temptation here is to replae ondition d|n + 2 by
n ∈ Ld with L being the bordering system assoiated with U − 2, and toonsider a set of moduli D restrited to the primes ≤ z and to 1. Thenwe would like to take for ad the assoiated λd: however, we have justseen that these ones are too small! The good andidates are in fat the
λ♯

d, but we are to modify the ompat set, and take for K . . . preiselythe previous bordering system! That is to say Kp = {−2}. The nextstep would be to appeal to (11.30):(18.4) ∑

d/n∈Kd

λ♯
d =

∑

q

ψ∗q/G1(z).



18.2 A warning 145We ould ombine Theorem 17.1 together with the Bombieri-VinogradovTheorem (see Lemma 13.1) and be done. But our hange of ompat sethas another onsequene: the assoiated bordering system is not smallanymore, and the error term given in Theorem 17.1 is unsuitable. Weleave the reader at this level!





19 Sum of two squarefree numbersTo illustrate further how we may handle additive problems with thematerial we have presented, we prove the following Theorem. Note thatwe freely use hapter 4 in the sequel.Theorem 19.1. Every large enough integer may be written as the sumof two squarefree integers. Furthermore the number r(N) of ways ofrepresenting N is this manner veri�es:
r(N) = S(N)N +Oε(N

2/3+ε)for every ε > 0, where
S(N) =

6

π2

∏

p|N

(

1 +
p+ cp2(N)

p2(p2 − 1)

)

.The funtion cp2 is again the Ramanujan sum, see (8.12).This theorem is originally due to (Evelyn & Linfoot, 1931). A sim-pli�ed proof was later given by (Estermann, 1931). (Brüdern & Perelli,1999) gave a quantitatively better version, but we are interested herein the manner. Of partiular interest is the fat that a path initiallydevised to get an upper bound an be used to get a lower bound (as inhapter 10). Several features of the method will also be exhibited. Theproblem is furthermore interesting in that the set of moduli we use isdi�erent from the usual one. We take(19.1) Q = {q1q22 , µ2(q1q2) = 1, q1 ≤ Q1, q2 ≤ Q2}for some parameters Q1 and Q2 that we shall hoose later to be, respe-tively, N1/6 and N1/3. We also set Q = max(Q1, Q2).19.1. Sketh of the proofLet us onsider the funtions f(n) = µ2(n) and g(n) = µ2(N − n)de�ned on integers ≤ N . On using the anonial hermitian produt onthis spae, our number of representations reads(19.2) R(N) =
∑

N=n1+n2

µ2(n1)µ
2(n2) = [f |g].To ompute this salar produt, we shall use again the remark we madein setion 10.1 and approximate it by a 〈f |g〉 whih we still have to



148 19 Sum of two squarefree numbersde�ne. We �rst need to work out loal models for f and g. We shallthen use a loal system (ϕi)i that will take are of the sequene of loalmodels of f and g, and that implies, in partiular, that our argumentsare going to be symmetrial in f and g.19.2. General omputationsTo detet squarefree integers1 we use the lassial formula(19.3) µ2(n) =
∑

d2|n
µ(d)and extend it to negative values of the argument n by setting µ2(−n) =

µ2(n). Let us set(19.4) γq(c) =



















0 if ∃p2|q, c ≡ 0 [p2]

6

π2

∏

p|q

p2

p2 − 1

∏

p‖q
c≡0[p]

(

1− 1

p

) else.Lemma 19.1. For m = 0 or m = N , we have for every ε > 0

∑

n≡c[q]
n≤N

µ2(n−m) = (N/q)γq(c−m) +Oε(q
ε
√

N/q).The reader will notie by omparing with (4.20) that the omputedquantities are nothing else than ∆q(f)/q when m = 0 (sine µ2(−n) =
µ2(n)) and ∆q(g)/q if m = N .Proof. Let us write q = q1q

′ with q1 being squarefree, q′ being suhthat p|q′ =⇒ p2|q′ and, of ourse (q1, q
′) = 1. If m− c is divisible by asquare that also divides q, then ∑n≡c[q] µ

2(n−m) = 0. Else we use therepresentation (19.3) to get
∑

n≡c[q]
n≤N

µ2(n−m) =
∑

d

µ(d)
∑

n≤N
n≡m−c[q]

d2|n

1 =
∑

d1|q1

(d3,q)=1

µ(d1d3)
∑

n≤N
n≡m−c[q]

d2
1d2

3|n

1.

1The harateristi funtion of their set is µ2.



19.2 General omputations 149We use an asymptoti for the inner sum and onlude readily:
∑

n≡c[q]
n≤N

µ2(n−m) = N
∑

d1|q1

(d3,q)=1
0≡m−c[d1]
q1d1q′d2

3≤N

µ(d1d3)

q1d1q′d2
3

+O





∑

d1|q1

√

N

qd1





= (N/q)γq(c−m) +O(qε
√

N/q).

⋄ ⋄ ⋄We de�ne γ∗q by γ∗q (c) =
∑

d|q µ(q/d)γd(c). This implies that γq =
∑

d|q γ
∗
d , so that eah γ∗d is indeed the orthonormal projetion of γq on

M(d) (see the omment following Lemma 4.2 for a de�nition of this set).Let us de�ne(19.5) t(q) =
∏

p|q

−1

p2 − 1
.Now we haveLemma 19.2. If q is ubefree then γ∗q (c) = 6t(q)cq(c)/π

2, while if q hasa ubi fator > 1, then γ∗q (c) = 0.Proof. We write q = q1q
2
2q
′′ where q1, q2 and q′′ are pairwise oprime,

q1 and q2 are squarefree and, if p|q′′, then p3|q′′. We have
γ∗q (c) =

6

qπ2

∏

p|q′′
p2∤(c,q)

(

p2

p2 − 1
− p2

p2 − 1

)

∏

p|q′′
p2|(c,q)

(0)

×
∏

p|q2

p2|(c,q)

( −p2

p2 − 1

(

1− 1

p

))

∏

p|q2

p‖(c,q)

p2

p2 − 1

(

1− 1 +
1

p

)

∏

p|q2

p∤(c,q)

p2

p2 − 1
(1− 1)

×
∏

p|q1

(

p2

p2 − 1
− 1

)

∏

p|(q1,c)

(

(p2 − 1)

(

p2

p2 − 1
(1− 1

p
)− 1

))

.Thus γ∗q (c) = 0 if q′′ 6= 1, and(19.6) γ∗q (c) =
6

qπ2

∏

p|q

1

p2 − 1

∏

p|(q1,c)

(1− p)×











p− p2 if p2|(c, q22),
p if p‖(c, q22),
0 else.Some more work yields the laimed expression. ⋄ ⋄ ⋄



150 19 Sum of two squarefree numbers19.3. The hermitian produtWe must �rst embark onto some general onsiderations. Lemma 19.1shows that c 7→ Nγq(c) is a good approximation for ∆q(f)/q, while
Nθq : c 7→ Nγq(N − c) is a good one for ∆q(g)/q, where ∆q is de�nedin (4.20). However, by a loal model, we mean a funtion over [1, N ]and not modulo q. This distintion is important to de�ne the hermitianprodut, so we need to lift both funtions to this set. We onsider(19.7) ∇q : F (Z/qZ) −→F ([1, N ])

h 7→ ∇q(h) : [1, N ] −→ C
x 7→ h(x mod q)whih veri�es(19.8) [∆q(h1)|h2]q = [h1|∇q(h2)],justifying again our saling in the de�nition of ∆q. Note further that(19.9) ∀d|q, ∇q(L

d̃
q̃(h)) = ∇d(h),both properties stated with obvious notations.This part being settled, we need to attend to a seond problem beforethe proof an unfold quietly. We need an orthogonal system modulo qthat takes both funtions Nγq and Nθq into aount, or more preiselyenompasses their orthogonal projetions Nγ∗q and Nθ∗q . Let us �rstnote that(19.10) ‖γ∗q‖2q = ‖θ∗q‖2q =

(

6t(q)

π2

)2 1

q

∑

amod q

|cq(a)|2 =

(

6t(q)

π2

)2

φ(q).Sine [γ∗q |θ∗q ]q = (6t(q)/π2)2cq(N) is a real number, the vetors de�nedby (6t(q)/π2)η∗q = B(q)(γ∗q + θ∗q)/2 and (6t(q)/π2)κ∗q = B(q)(γ∗q − θ∗q)/2where B(q) is de�ned on Q by(19.11) ∀q = q1q
2
2 ∈ Q, B(q) = B(q1q

2
2) = q−2

1 q−1
2are orthogonal. Of ourse B(q) ould be any positive quantity depend-ing only on q. We have hosen it so as to minimize the error term inLemma 19.6. See also Lemma 19.5. We further set(19.12) ϕ∗q = ∇qη

∗
q , ψ∗q = ∇qκ

∗
q.We readily ompute that(19.13) {‖η∗q‖2q = B(q)2(φ(q) + cq(N))/2,

‖κ∗q‖2q = B(q)2(φ(q)− cq(N))/2.Of ourse, when q|N , κ∗q is the zero vetor and so not of great interest.Otherwise here is a lemma that gives an apriori bound for their norms.



19.3 The hermitian produt 151Lemma 19.3. When q ∤ N , both norms ‖η∗q‖2q and ‖κ∗q‖2q lie between
B(q)2φ(q)/4 and B(q)2φ(q).Proof. Indeed |cq(N)| = φ((N, q)) divides stritly φ(q) and is hene atmost φ(q)/2. The lemma follows readily. ⋄ ⋄ ⋄We now need to de�ne the global salar produt. As an orthogonalsystem, we take the union of (ϕ∗q) and of (ψ∗q ) but in the latter family,we remove the terms for whih q|N .Lemma 19.4. Let q1 and q2 be too moduli, and q3 their lm. If uq1 and
vq2 are respetively one of {η∗q1

, κ∗q1
} and {η∗q2

, κ∗q2
} then

[∇q1uq1|∇q2vq2] = N [Lq̃1

q̃3
uq1|Lq̃2

q̃3
vq2]q3 +O (B(q1)σ(q1)B(q2)σ(q2)) .A lemma where we somehow used deliberately a ompliated expres-sion. As it turns out, if q1 6= q2 or uq1 6= vq1 , the loal salar produtvanishes! To handle the hermitian properties of (ϕ∗q) and (ψ∗q ), we ouldtry something along the following lines:

[ϕ∗q |ϕ∗q ] = [∇qη
∗
q |∇qη

∗
q ] = [∆q∇qη

∗
q |η∗q ]q.However ∆q∇q is not a multiple of the identity! However

∆q∇qh(c) =

(

∑

n≡c[q],
n≤N

1

)

h(c)so that we an ∆q∇q an be thought as a perturbation of the identity.We esaped from this ompliation in (16.5)-(16.10) by using a smoothmajorant of the harateristi funtion of the interval [1, N ].Proof. This expression is important in that it uses the struture of theRamanujan sums. If we were to split the sum that de�nes the initialsalar produt in lasses modulo q3, the remainder term would only be
≪ q3

√

[uq1|uq1 ]q1[vq2 |vq2]q2 ,whih looses a power of q1 and one of q2. The result we laim is obtainedby appealing to cq(n) =
∑

d|(n,q) dµ(q/d), an expression that expressesthe fat that cq is not an intriate funtion. ⋄ ⋄ ⋄We are to majorize, when q is �xed:(19.14) ∑

q′∈Q
|[ϕ∗q |ϕ∗q′ ]|+

∑

q′∈Q
|[ϕ∗q |ψ∗q′ ]|,



152 19 Sum of two squarefree numbersand(19.15) ∑

q′∈Q
|[ψ∗q |ϕ∗q′ ]|+

∑

q′∈Q
|[ψ∗q |ψ∗q′ ]|.Lemma 19.5. When Q1, Q2 ≥ 100, we have

∑

q1≤Q1
q2≤Q2

(q1,q2)=1

µ2(q1)σ(q1)

q21

µ2(q2)q2σ(q2)

q2
≪ Q2

2 LogQ1.We take(19.16) Mq(ϕ
∗) = B(q)2

N(φ(q) + cq(N))

2
+ CB(q)σ(q)Q2

2 LogQand(19.17) Mq(ψ
∗) = B(q)2

N(φ(q) − cq(N))

2
+ CB(q)σ(q)Q2

2 LogQfor a C large enough that Mq(ϕ
∗) is more than (19.14) and that Mq(ψ

∗)is more than (19.15).19.4. Removing the Mq'sWe have hosen a somewhat intriate version of the Mq's to get rid ofthe bilinear form in ωi,j, but ultimately we will have to remove them toget smoother expressions.Lemma 19.6. If |βq| ≤ B(q)2(Nt(q)φ(q) +
√
Nq)2, then we have (forany ε > 0),

∑

q∈Q
Mq(ϕ

∗
q)
−1βq =

∑

q∈Q

2βq

NB(q)2(φ(q) + cq(N))
+Oε(Q2Q

1+ε)as well as
∑

q∈Q
q∤N

Mq(ψ
∗
q )−1βq =

∑

q∈Q
q∤N

2βq

NB(q)2(φ(q) − cq(N))
+Oε(Q2Q

1+ε).Proof. A similar treatment applies to both expressions. For instane,the di�erene between the R.H.S. and the L.H.S. of the �rst one is, byappealing to Lemma 19.3, at most
Q2

2Q
ε
∑

q∈Q

B(q)2(N2t(q)2φ(q)2 +Nq)B(q)σ(q)

(Nφ(q)B(q)2 +B(q)σ(q)Q2
2Q

ε)Nφ(q)B(q)2



19.5 Approximating f and g 153whih is bounded by
Q2

2Q
ε′
∑

q∈Q

Nt(q)2φ(q) + 1

NB(q) +Q2
2

≤ Q2
2Q

ε′
∑

q∈Q

(

Nt(q)2φ(q)

NB(q)
+

1

Q2
2

)for all ε > 0, where ε′ tends to zero with ε. ⋄ ⋄ ⋄19.5. Approximating f and gThe �rst loal approximation of f(n) = µ2(n) is ∆∗q(f)/q. Lemma 19.1ensures us that Nγq is an approximation of ∆q(f)s, whih suggests thatwe take ∇qγq (see (19.7)) as a loal approximation to f , well more pre-isely ϕ∗q = ∇qγ
∗
q sine only the orthogonal projetion of γq over M(q) isof interest. This is the path we follow, and orrespondingly, we approxi-mate g by ψ. Before quantifying in a proper way this approximation, weneed an apriori upper bound. In this part, the roles of f and g are om-pletely similar and it is enough to handle the ase of f . The statementsare however omplete.Lemma 19.7. We have for every ε > 0 :

|[ϕ∗q |f ]|+ |[ψ∗q |f ]| ≪ε B(q)|t(q)|φ(q)N +B(q)
√

Nqqεand similarly by replaing f by g.Proof. We ompare [ϕ∗q |f ] to N [η∗q |γ∗q ]q. First we note that B(q)γ∗q =

(6t(q)/π2)(η∗q + κ∗q), from whih we dedue that(19.18) [η∗q |γ∗q ]q = 3B(q)t(q)(φ(q) + cq(N))/π2.Next, we hek that
[ϕ∗q |f ] = [∇qη

∗
q |f ] = [η∗q |∆qf ]q = [η∗q |Nγ∗q ]q + [η∗q |∆q(f)−Nγq]q.Next Lemma 19.1 gives

[η∗q |∆q(f)−Nγq]q = Oε

(

B(q)
∑

d|q
dµ(q/d)O(dε

√

N/d)
)from whih we infer |[ϕ∗q |f ]| ≪ε B(q)(|t(q)|φ(q)N +

√
Nqqε) as laimed.

⋄ ⋄ ⋄Lemma 19.8. Let (αq) be omplex numbers suh that(19.19) B(q)2Nφ(q)|αq | ≤ NB(q)|t(q)|φ(q) +B(q)
√

Nq.



154 19 Sum of two squarefree numbersWe have that for every ε > 0
∑

q∈Q
αq[ϕ

∗
q |f ] =

∑

q∈Q
αq[ϕ

∗
q |ϕ∗q + ψ∗q ] +Oε

(

Qε(
√
N +Q2Q1)

)and similarly by replaing f by g and ϕ∗ + ψ∗ by ϕ∗ − ψ∗.Proof. There omes
∣

∣

∣

∣

∑

q∈Q
αq[ϕ

∗
q |f − ϕ∗q − ψ∗q ]

∣

∣

∣

∣

≤
∑

q∈Q

∣

∣

∣

∣

t(q)B(q)2φ(q)
∑

d|q
dµ(q/d)O(qε

√

N/d)

∣

∣

∣

∣

≪ Qε(
√
N +Q2Q1)

⋄ ⋄ ⋄Lemma 19.9. Di�erene
[f |f ]−

∑

q∈Q
Mq(ϕ

∗)−1|[ϕ∗q |f ]|2 −
∑

q∈Q
q∤N

Mq(ψ
∗)−1|[ψ∗q |f ]|2is big-O of Qε(NQ−2

1 + NQ−1
2 + Q2Q +

√
N). The same bound holdswhen f is replaed with g.Proof. As �rst step we approximate f by ϕ∗q in the produts [ϕ∗q |f ] and

[ψ∗q |f ]. To do so we set βq = Mq(ϕ
∗)−1[f |ϕ∗q], whose modulus indeedveri�es ondition (19.19) up to a Qε, and write

∑

q∈Q
Mq(ϕ

∗)−1|[ϕ∗q |f ]|2 =
∑

q∈Q
βq[ϕ

∗
q |f ].By the preeding lemma, we an thus replae f by its loal approxima-tion, up to an admissible error term. We reiterate the proess:

∑

q∈Q
Mq(ϕ

∗)−1|[ϕ∗q |f ]|2 +
∑

q∈Q
q∤N

Mq(ψ
∗)−1|[ψ∗q |f ]|2 =

∑

q∈Q
Mq(ϕ

∗)−1|[ϕ∗q |ϕ∗q + ψ∗q ]|2 +
∑

q∈Q
q∤N

Mq(ψ
∗)−1|[ψ∗q |ϕ∗q + ψ∗q ]|2

+Oε

(

Qε(
√
N +Q2Q)

)

.Here we may replae [ϕ∗q |ϕ∗q + ψ∗q ] and [ψ∗q |ϕ∗q + ψ∗q ] respetively by
N [η∗q |γ∗q ]q and N [κ∗q |γ∗q ]q up to a negligible error term. In the seondstep, we need to ompute the R.H.S. First replae Mq(ϕ

∗) by [ϕ∗q |ϕ∗q ]



19.6 Crossed produts 155with error term O(Q2Q
1+ε) by Lemma 19.6, and then do the same with

ψ∗. We hek that
∣

∣[η∗q |γ∗q ]q
∣

∣

2‖η∗q‖−2
q +

∣

∣|[κ∗q |γ∗q ]q
∣

∣

2‖κ∗q‖−2
q = ‖γ∗q‖2q .Now ‖γ∗q‖2q is omputed in (19.10) and equals (6/π2
)2
φ(q)t(q)2. We sim-ply have to sum, omplete the resulting series and estimate the resultingerror term:

∑

q∈Q
φ(q)t(q)2 =

∑

q1≤Q1,q2≤Q2

(q1,q2)=1

µ2(q1q2)q2
φ(q1)σ(q1)2φ(q2)σ(q2)2that is

∑

q∈Q
φ(q)t(q)2 =

π2

6
+O(Q−2

1 +Q−1
2 ).Finally, reall that [f |f ] = (6/π2)N +O(

√
N). The lemma follows read-ily. ⋄ ⋄ ⋄19.6. Crossed produtsLemma 19.10. The sum

∑

q∈Q
Mq(ϕ

∗)−1[f |ϕ∗q ][ϕ∗q |g] +
∑

q∈Q
q∤N

Mq(ψ
∗)−1[f |ψ∗q ][ψ∗q |g]equals, for every ε > 0:

NS(N) +Oε

(

Qε(
√
N +NQ−2

1 +NQ−1
2 +Q2Q)

)

.Proof. We follow losely the proof of Lemma 19.9 and replae thequantity ∑q∈QMq(ϕ
∗)−1[f |ϕ∗q ][ϕ∗q |g] by N

∑

q∈Q[γ∗q |η∗q ]q[η∗q |θ∗q ]q/‖η∗q‖2qat the ost of an error term of size Oε(Q
ε
√
N + Q2Q

1+ε). A similartreatment for the part with ψ leads to N∑q∈Q[γ∗q |κ∗q ]q[η∗q |κ∗q ]q/‖κ∗q‖2q .We note here that
[γ∗q |η∗q ]q[η∗q |θ∗q ]q‖η∗q‖−2

q + [γ∗q |κ∗q ]q[κ∗q |θ∗q ]q‖κ∗q‖−2
q = [γ∗q |θ∗q ]q.Extension to a omplete series osts O(N(Q−2

1 + Q−1
2 )). The onstant

S(N) appears here in the form
S(N) =

∏

p

(

1− 1

p2
+

1 + cp(N) + cp2(N)

p4

)

.

⋄ ⋄ ⋄



156 19 Sum of two squarefree numbers19.7. Main proofLet us set
〈h1|h2〉 =

∑

q∈Q
M−1

q (ϕ∗)[h1|ϕ∗q ][ϕ∗q |h2] +
∑

q∈Q
q∤N

M−1
q (ψ∗)[h1|ψ∗q ][ψ∗q |h2].We use Cauhy's inequality on the semi2 hermitian produt [f |g]−〈f |g〉and get(19.20) ∣

∣[f |g]− 〈f |g〉
∣

∣ ≤
√

(

[f |f ]− 〈f |f〉
)

·
(

[g|g] − 〈g|g〉
)

,whih enables us to approximate [f |g] by 〈f |g〉 whih, in turn, we eval-uate via Lemma 19.10. Total error term is
Oε

(

Qε(NQ−2
1 +NQ−1

2 +Q2Q+
√
N)
)

.Our hoie of Q1 and Q2 yields the Theorem.19.8. AfterthoughtsWe insisted on taking are of both f and g while hoosing our orthogonalsystem. However, we ould have taken are of only one of them, sinethe other part will anyway not be of any use (as a kind of shorthand,we an say that only the orthornormal projetion of g on C · f has anye�et. This is only shorthand beause the involved hermitian produt inthe "orthonormal" above has not been spei�ed). This would howeverhave modi�ed the error term sine, in (19.20), only [f |f ]− 〈f |f〉 wouldhave been small.Let us turn to a di�erent onsideration. In the proof of Lemma 19.9,we simply said "we may replae [ϕ∗q |ϕ∗q ] by N‖η∗q‖2q� but the questionarises to know why we did not do it at the very beginning! This wouldhave required us to de�ne a loal model modulo q as a funtion overZ/qZ, whih would have had drawbaks in other parts of the theory. Adi�erent approah looks promising: still use ϕ∗q = ∇qγ
∗
q as a loal modelmodulo q for f , but use ϕ̃∗q instead of ϕ∗q in the de�nition of the salarprodut, where ∆qϕ̃

∗
q = γ∗q . In fat, most of our argument works beause

∆q and ∇q are almost inverse of eah other, so our hoie is not so verywrong. It is indeed not wrong at all sine we would have to ompute
[ϕ̃∗q |ϕ̃∗q′ ]. With our de�nition, we have very expliit expressions and areable to ompute the orresponding salar produt.2It may be not de�nite



19.9 Adding a prime and a squarefree number 15719.9. Adding a prime and a squarefree numberThe previous method would work with almost no hanges to omputethe number of representations of an integer N as a sum of a squarefreeinteger and a prime, with error term at most Oε(N
5/6+ε). We leave thedetails to the reader.





20 On a large sieve equalityThis last hapter presents diretions to investigate, some limitations,and other slightly o� topi material. We use also this pretext to providea simple introdution to some modern tehniques. Let us �nally pointout that (Ramaré, 2007a) ontains also material on this subjet, butvery di�erent in nature. We omit it here.20.1. Informal presentationIn our studies of additive problems, the main argument onsists in show-ing that
∑

q

Mq(ϕ
∗)−1|[f |ϕ∗q ]|2 −→ ‖f |‖22.The question that naturally arises is to determine whih funtions f willsatisfy suh a property, keeping in mind that we an hoose ϕ∗q in termsof f . We also want ϕ∗q to be a ∇qη

∗
q (see (19.7)) for some funtion η∗qfrom M(q). This is not exatly what we did in hapter 10, where wemultiplied a funtion ∇qη

∗
q by a funtion "with no arithmeti part" toget ϕ∗q , but we ignore this aspet here.In our sheme, we also have essentially [f |ϕ∗q ] ≃ ‖ϕ∗q‖22 as well as

Mq(ϕ
∗) ≃ ‖ϕ∗q‖22 so that what we really require is

∑

q

‖ϕ∗q‖22 −→ ‖f‖22.Sine ∆q(f) de�ned in (4.20) is the best loal model for f modulo q, thehoie ϕ∗q = ∇qUq̃→q∆q(f) is reommended, up to some resaling. Wehave by (4.14)
Uq̃→q∆q(f)(n) =

∑

amod ∗q

Sf (−a/q)e(na/q)with Sf (α) =
∑

n f(n)e(nα). Next, and sine
[∇qUq̃→q∆q(f)|∇qUq̃→q∆q(f)] =

∑

n

∣

∣

∣

∣

∑

amod ∗q

Sf (a/q)e(na/q)

∣

∣

∣

∣

2

= (N +O(q2))
∑

amod ∗q

|Sf (a/q)|2,



160 20 On a large sieve equalitywe see that we should divide Uq̃→q∆q(f) by √N , so that we an guessthe funtions we are looking for are the ones for whih(20.1) ∑

q∈Q

∑

amod ∗q

|Sf (a/q)|2 −→ N‖f‖22.The symbol �−→� is not exatly well de�ned, sine several parametersmay vary together, like the set Q of moduli and N , but somehow, oneshould have equality in the large sieve inequality up to a negligible errorterm. From here onwards, two ourses of ations appear.20.2. A detour towards limit periodiityBy a limit periodi set, we mean a set whose harateristi funtion isa uniform limit of linear ombinations of periodial funtions. Let usstart with some generalities on suh funtions. We refrain from using
‖f‖∞ to denote maxn |f(n)| where n ranges positive integers, beausethe notation ‖ · ‖ is already overloaded in this monograph.20.2.1. Survey of the general theory. As in most theories of almostperiodiity, a entral role is played by a kind of integral operator. Herethe key will ome from(20.2) TN (f, α) =

∑

1≤n≤N

f(n)e(−nα)/Nand we de�ne T∞(f, α) when the sequene (TN (f, α))N onverges as itslimiting value. When f is periodi over N, then T∞(f, α) indeed existsfor all values of α and is 0 whenever α /∈ Q. Furthermore the reader willreadily hek that
T∞(e(·α′), α) =

{

0 if α′ 6= α,
1 if α′ = α.Let us now onsider a limit periodi funtion f , by whih we mean a limit,aording to the uniform norm on the positive integers, of a sequeneof periodial funtions. We laim that T∞(f, α) exists for every α andvanishes if α /∈ Q.Proof. Let α in R and let ε > 0. There is a periodi funtion g suhthat maxn |f(n)− g(n)| ≤ ε. Thus, for every N , we have

∣

∣TN (f, α)− TN (g, α)
∣

∣ ≤ ε.Sine (TM (g, α))M is Cauhy, we �nd a N0(g, ε) suh that, for N,N ′ ≥
N0(g, ε), we have |TN (g, α)−TN ′(g, α)| ≤ ε. Thus under the same ondi-tion, |TN (f, α)−TN ′(f, α)| ≤ 3ε, meaning that the sequene (TN (f, α))N



20.2 A detour towards limit periodiity 161is also Cauhy. As a onsequene, we an assert that this sequene indeedonverges. One this point is established, it is not di�ult to see that
T∞(f, α) vanishes when α /∈ Q, a property inherited from the behaviourof periodial funtions. ⋄ ⋄ ⋄Now we have at our disposal a anonial approximation to limit pe-riodi f by setting(20.3) Ψ(f, q)(n) =

∑

amod q

T∞(f, a/q)e(na/q),whih happens to equal f when this funtion admits q as a period. Suhan expression is onvenient for our purpose and shows how ontributionswith a mod ∗ q add up. But this is not the best one to show that it doesindeed approximate f . To ahieve this goal, note that the frequenies(20.4) F (f ; q, b) = lim
n→∞

q

N

∑

n≤N,
n≡a[q]

f(n)are well-de�ned and that we also have(20.5) Ψ(f, q)(n) =
∑

bmod q

F (f ; q, b)1n≡b[q].Next take ε > 0 and periodi g suh that maxn |g(n)− f(n)| ≤ ε. Let qbe a period of g. We readily �nd that |F (f ; q, b)−F (g; q, b)| ≤ ε so that
max

n

∣

∣Ψ(f, q)(n)−Ψ(g; q)(n)
∣

∣ = max
bmod q

max
n≡b[q]

∣

∣Ψ(f, q)(n)−Ψ(g; q)(n)
∣

∣ ≤ ε.We an take for q the sequene lcmd≤Q d and the above to show that
(Ψ(f, q))q onverges uniformly towards f .20.2.2. L2-setting. If we selet a limit periodi set A and a bound
N ≥ 1, the sequene (1n∈A)n≤N is the limit of ((Ψ(1A, q)(n))n)q. Suha sequene is thus a good andidate for (20.1). It is however unlearif the ontext of limit periodi funtions is the proper one. Having al-most periodi funtions with spetrum in Q (the spetrum is the set of
α suh that TN (f, α) does not vanish) is ertainly helpful in onstrut-ing periodi approximation of f , and as suh the ontext of Wiener orMarinkiewiz spaes (see (Coquet et al., 1977) and (Bertrandias, 1966))appears to be relevant.We hek immediately that

|F (f ; q, b)|2 ≤ lim inf
N→∞

q

N

∑

n≤N,
n≡b[q]

|f(n)|2



162 20 On a large sieve equalityfrom whih we infer(20.6) ∑

amod q

|T∞(f ; a/q)|2 ≤ lim inf
n→∞

1

N

∑

n≤N

|f(n)|2.However, the existene of the R.H.S. limit (as a limit and not as a lim inf)is far from obvious, though it is plausible. When limN
1
N

∑

n≤N |f(n)|2indeed exists and is the limit of∑amod q |T∞(f ; a/q)|2, then f is pseudo-periodi; in the ontext developed by (Bertrandias, 1966) and (Coquetet al., 1977), it amounts to saying that the spetral measure assoiatedto f is purely disrete. This statement is made with a �xed q.A funtion f on integers is said to be B2-almost periodi, i.e. almostperiodi in the sense of Besiovith, if there is a sequene of periodifuntions fq suh that
lim

q→∞
lim sup
N→∞

1

N

∑

n≤N

|f(n)− fq(n)|2 = 0.The reader will �nd in (Shwartz & Spilker, 1994) the theory of suhfuntions.Brüdern went into similar onsiderations and leared the situationfurther in (Brüdern, 2000-2004) by proving thatTheorem 20.1. Let f be suh that all T∞(f ; a/q) exist. Then we haveequivalene between:(1) f is B2-almost periodi,(2) limN
1
N

∑

n≤N |f(n)|2 =
∑

q≥1

∑

amod ∗q |T∞(f ; a/q)|2.As a onsequene, he onsidered the problem of representing an in-teger as a sum of two elements from two sequenes, one of whih ver-i�es inequality (20.6) as an equality, and both suh that the averages
T∞(1A; a/q) exist. The �rst step is the following orollary of the previ-ous Theorem:Corollary 20.1. If f and g are suh that all T∞(g; a/q) and T∞(f ; a/q)exist, and moreover g is B2-almost periodi, then

lim
N

1

N

∑

n≤N

f(n)g(n) =
∑

q≥1

∑

amod ∗q

T∞(f ; a/q)T∞(g; a/q).From whih he dedues for instane that there are in�nitely manysquarefree integers n suh that n + 1 is also squarefree. This materialwas presented at several onferenes but no published form exists as ofnow. He utilizes the irle method; our method learly dispenses with it



20.3 A large sieve equality: a pedestrian approah 163as it does in the ase of squarefree numbers (see hapter 19), where wefurthermore get a quantitative statement.Shlage-Puhta went one step further in (Puhta, 2002), where thefollowing Theorem is proved:Theorem 20.2. Let N be a set of integers and let f be its harateristifuntion. Then f is B2-almost periodi if and only if the following threeonditions are veri�ed:(1) N has positive density.(2) The frequenies F (f ; q, b) de�ned in (20.4) exist.(3) We have
∑

q≥1

∑

amod ∗q

|T∞(f ; a/q)|2 = lim
n→∞

1

N

∑

n≤N

|f(n)|2.In partiular, (Puhta, 2002) and (Brüdern, 2000-2004) prove that aset N with a multipliative harateristi funtion and positive densitysati�es these onditions.20.3. A large sieve equality: a pedestrian approahWe onsider the problem of equality from a di�erent angle and ask for aspeial form for f so as to satisfy (20.1). The form we hoose is the onethat appears in sieve theory, namely the onvolution of a sequene withsmall support with the onstant sequene 1.We start with a simple result whose proof is illuminating.Theorem 20.3. Let q ≥ 2 be an integer and let L and L0 be two non-negative real numbers. For every arbitrary sequene of omplex numbers
(bm)m≤M , we have

∑

amod ∗q

∣

∣

∣

∣

∑

L0<ℓ≤L0+L
m≤M

bme(aℓm/q)

∣

∣

∣

∣

2

− φ(q)L2

∣

∣

∣

∣

∑

q|m
bm

∣

∣

∣

∣

2

≪ LB(‖b‖22Mq)1/2 Log q + ‖b‖22 (Mq + q2) Log2 qwith ‖b‖22 =
∑

m |bm|2 and B =
∑

m |bm|.Proof. We disuss aording to whether q|m or not, and sum over ℓ.Disarding the latter terms gives rise to the main term. To get a rigorous



164 20 On a large sieve equalityerror term, take modulus and sum over a prime to q. We have
∑

L0<ℓ≤L0+L
m≤M

bme(aℓm/q) = L∗
∑

m≤M,
q|m

bm +
∑

m≤M,
q∤m

bmO(1/‖am/q‖)where ‖α‖ stands for the distane to the nearest integer and L∗ is thenumber of integer points in the interval ]L0, L0 + L]. Summing over aranging redued residues lasses, the error term is O of
L∗

∑

m′≤M,
q|m′

|bm′ |
∑

m≤M,
q∤m

|bm|
∑

amod ∗q

1/‖am/q‖

+
∑

m,m′≤M,
q∤m,q∤m′

|bm||bm′ |
∑

amod ∗q

1/
(

‖am/q‖‖am′/q‖
)

.For the �rst one, proeed as follows: set (m, q) = q/d < q. Split sum-mation over a aording to lasses modulo d; there are φ(q)/φ(d) ≤ q/delements per lass where the latter inequality is proven by appealing tomultipliativity. Say a ≡ b[d]. We have
∑

cmod ∗d

1/‖cm/q‖ ≪ d(Log d+ 1)≪ dLog qwhih we multiply by q/d. This amounts to a ontribution not morethan
L
∑

m′≤M,
q|m′

|bm′ |
∑

m≤M,
q∤m

|bm| O(q Log q)≪ LB‖b‖2
√

M/q q Log qwhih is O(LB‖b‖2(Mq)1/2 Log q). It is a striking feature of this simple-minded proof that M/q ours and not M/q+ 1. As for the seond partof the error term, we use 2|bmbm′ | ≤ |bm|2 + |bm′ |2 to get it is not more� up to a multipliative onstant � than
∑

m≤M,
q∤m

|bm|2
∑

amod ∗q

∑

m′≤M,
q∤m′

1/
(

‖am/q‖‖am′/q‖
)

.For the sum over m′ we split the range of summation in interval of length
q and get it is O((1 +M/q)q Log q). We treat the sum over a as aboveand get a total ontribution of

O
(

‖b‖22(M + q)q Log2 q
)as required. The error due to the replaement of L∗ with L is absorbedin the already existing error term. ⋄ ⋄ ⋄



20.3 A large sieve equality: a pedestrian approah 165The statement of the above Theorem an be simpli�ed by using B2 ≤
M‖b‖22, but this may lead to a severe loss when the sequene b has asmall support. If this happens, a similar loss most probably ours inthe seond part of the error term; the reader may try to reover this lossby inspeting the proof above: after using 2|bmbm′ | ≤ |bm|2 + |bm′ |2, weextend the summation over m′ to every integers ≤ M and this an beostly (for instane when bm is supported by the squares).Summing over q, we get an impressive result whih will ompare easilywith the theorem proved in setion 20.5.Corollary 20.2. Let Q be a set of moduli, all ≤ Q. For every sequeneof omplex numbers (bm)m≤M , we have
∑

q∈Q

∑

amod ∗q

∣

∣

∣

∣

∑

L0<ℓ≤L0+L
m≤M

bme(aℓm/q)

∣

∣

∣

∣

2

= L2
∑

m,m′≤M

bmbm′(m,m′)Q

+O
(

LB‖b‖2(MQ3)1/2 LogQ+ ‖b‖22(MLQ3/2 +MQ2 +Q3) Log2Q
)with notations as in Theorem 20.3 and(20.7) ∀m,m′ ∈ N \ {0}, (m,m′)Q =

∑

t∈Q,
t|m,t|m′

φ(t).To understand the strength of this orollary, onsider ase bm = 1 and
Q = {q ≤ Q}. Then the main term is of size (LM LogM)2, while theerror term is of size at most M(MLQ3/2 +MQ2 +Q3) Log2Q whih isindeed an error term when Q ≤ L2/3. This is a onsiderable improvementon the large sieve inequality whenM is relatively small! The latter wouldyield the upper bound (L2M2 +LMQ2) Log2M whih is superseded bythe above when M ≤ min(L,Q1/2) and LM ≥ Q; the most astonishingpart of our result is that under some irumstanes, we may take Qlarger than √LM . For instane, with M = Nα and L = N1−α for some
α ∈ [0, 1/2], we an take Q = N2(1−α)/3, whih is indeed larger than√
N if α ≤ 1/4.We have taken here the onvolution of 1 with (bm), but we ouldeasily replae 1 with any smooth funtion over this interval as we do insetion 20.5. Sine we do not require the Poisson summation formulahere, we do not even need it to be di�erentiable at the endpoints of theinterval of summation.



166 20 On a large sieve equality20.4. An appliationThe previous setion ontains results of a methodologial harater. Assuh they have been presented in what we expet to be the simplestsetting, but appliations all for slightly di�erent statements. Let usstart with the following Lemma.Lemma 20.1. Let q ≥ 2 be an integer and let N be a non-negative realnumbers. For every arbitrary sequene of omplex numbers (bm)m≤M ,we have
∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
m≤M,
ℓm≤N

bme(aℓm/q)

∣

∣

∣

∣

2

− φ(q)

∣

∣

∣

∣

∑

q|m
bm[N/m]

∣

∣

∣

∣

2

≪ NBq1/2 Log q
∑

m≤M,
q|m

|bm|
m

+ ‖b‖22(Mq + q2) Log2 qwith ‖b‖22 =
∑

m |bm|2 and B =
∑

m |bm|.For the use we have in mind, namely the squarefree numbers, repla-ing the integer part [N/m] by N/m up to a O(1) would be too ostlywithout any further assumptions on (bm). We thus keep the main termin this fairly raw format.Proof. The proof is simply an adaptation of the one given for Theo-rem 20.3. We start from
Σ =

∑

ℓ≥1,
m≤M,
ℓm≤N

bme(aℓm/q) =
∑

m≤M,
q|m

bm[N/m] +
∑

m≤M,
q∤m

bmO(1/‖am/q‖)Summing over a ranging redued residues lasses, we �rst get that
Σ = φ(q)

∣

∣

∣

∣

∑

m≤M,
q|m

bm[N/m]

∣

∣

∣

∣

2

+O
(

∑

m≤M,
q|m

|bm|
N

m

∑

amod ∗q

∑

m′≤M,
q∤m′

|bm′ |/‖am′/q‖

+
∑

m,m′≤M,
q∤m,q∤m′

|bm||bm′ |
∑

amod ∗q

1/
(

‖am/q‖‖am′/q‖
)

)



20.4 An appliation 167where we handle the error term as in the proof of Theorem 20.3. ⋄ ⋄ ⋄Summing over q, we infer the following Theorem.Theorem 20.4. Let Q be a set of moduli, all ≤ Q. For every sequeneof omplex numbers (bm)m≤M , we have
∑

q∈Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
m≤M,
ℓm≤N

bme(aℓm/q)

∣

∣

∣

∣

2

=
∑

m,m′≤M

bmbm′

∑

q∈Q,
q|(m,m′)

φ(q)
[N

m

][N

m′

]

+O
(

NB‖b‖2 Log(MQ) + ‖b‖22(MQ2 +Q3) Log2Q
)with ‖b‖22 =

∑

m |bm|2 and B =
∑

m |bm|.Proof. We note that
∑

q≤Q

∑

m≤M,
q|m

|bm|
m

√
q ≤

∑

m≤M

|bm|
m

∑

q|m

√
q

≤ ‖b‖2
(

∑

m≤M

1

m2

(

∑

q|m

√
q
)2
)1/2

.and end the proof by notiing that
∑

m≤M

1

m2

(

∑

q|m

√
q
)2
≪ LogMby appealing for instane to Theorem 21.1. ⋄ ⋄ ⋄When the main term in the above Theorem is of size about N2 and

‖b‖22 is of size aboutM , the formula stated yields an asymptoti provided
Q,M = o(N2/3) and QM = o(N).Lemma 20.2. For every sequene of bounded omplex numbers (cd)d≤D,we have

∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
d>D,

ℓd2≤N

cde(aℓd
2/q)

∣

∣

∣

∣

2

≪ NQ2D−2 +N3D−4 LogN.



168 20 On a large sieve equalityProof. We simply expand the range of the inner summation over a toall of Z/qZ. Calling Σ the sum we want to estimate, this leads to
Σ≪

∑

D<d1,d2≤
√

N

|cd1cd2 |
∑

n1,n2≤N,
d2
1|n1,

d2
2|n2

∑

q≤Q,
q|n1−n2

q.The diagonal terms n1 = n2 give rise to a ontribution at most
NQ2

∑

D<d1,d2≤
√

N

1/[d2
1, d

2
2]≪ NQ2

∑

D<d1,d2≤
√

N

(d2
1, d

2
2)/(d

2
1d

2
2)

≪ NQ2
∑

δ

φ(δ)

(

∑

D<d≤
√

N,
δ|d

1/d2

)2by using yet again Selberg's diagonalization proess. When δ ≤ D,we bound the inner sum by O(1/(Dδ)), while we bound it by O(1/δ2)otherwise. The total ontribution of the diagonal terms is thus seen tobe not more than O(NQ2D−2). Conerning the non-diagonal ones, weuse
∑

q|m
q = m

∏

p|m
(1 + 1/p) ≤ m · exp

(

∑

p≤m

1/p
)

≪ mLogmto get a ontribution of order at most:
∑

D<d1≤d2≤
√

N

∑

n1,n2≤N,
d2
1|n1,

d2
2|n2

N

d2
1

LogN ≪ N3 LogN
∑

D<d1≤d2≤
√

N

d−4
1 d−2

2

≪ N3 LogN
∑

D<d1≤d2≤
√

N

d−5
1 ≪ N3D−4 LogN

⋄ ⋄ ⋄Theorem 20.5. For every Q ≤ N7/12−2ǫ with ǫ being positive and ≤
1/6, we have

∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

n≤N

µ2(n)e(an/q)

∣

∣

∣

∣

2

= (6/π2)N2 +O(N2−ǫ).We have not tried to get the best exponent instead of 7/12, but haverestrained our argument to remain somewhat general. This Theorem isof speial interest: �rst, it o�ers a large sieve equality and seond, wean even allow Q to be stritly larger than N1/2. The reader will �nd



20.4 An appliation 169in (Brüdern & Perelli, 1999) more information on the exponential sumover the squarefree numbers. It seems that the above Theorem is novel.Proof. We denote in this proof the onstant 6/π2 by C to simplifythe typographial work . We start as in setion 19.2 with the formula
µ2(n) =

∑

d2|n µ(d) from whih we infer(20.8) µ2(n) =
∑

d≤D,
d2|n

µ(d) +
∑

d>D,
d2|n

µ(d)for some parameter D ≤ min(N1/3, Q). We then apply Theorem 20.4with m = d2, M = D2 and bm = µ(d) when m = d2 and bm = 0otherwise. The main term reads
H =

∑

q≤Q

φ(q)

(

∑

d≤D,
q|d2

µ(d)[N/d2]

)2

.When q is not ubefree, the inner summation vanishes, so we may write
q = q1q

2
2 with q1 and q2 being squarefree and oprime. We set q′ = q1q2.The ondition q|d2 translates into q′|d. We have
∑

d≤D,
q|d2

∣

∣µ(d)[N/d2]
∣

∣≪ N/q′2 ,
∑

d≤D,
q|d2

∣

∣µ(d)
∣

∣≪ D/q′,so that
H = N2

∑

q1q2
2≤D2

µ2(q1q2)φ(q1)q2φ(q2)

(

∑

d≤D,
q1q2|d

µ(d)/d2

)2

+O(ND LogD)

= C2N2
∑

q1q2
2≤D2

µ2(q1q2)φ(q1)φ(q2)

q41q
3
2

∏

p|q1q2

(

1− 1

p2

)−2
+O(N2D−1)

= CN2 +O(N2D−1)where the last onstant is a bit messy to ompute: we �rst extend thesummation to all q1q2 with negligible error term and then proeed bymultipliativity. We �rst note that
∑

q1,q2≥1

µ2(q1q2)φ(q1)φ(q2)

q41q
3
2

∏

p|q1q2

(

1− 1

p2

)−2

=
∑

q1≥1

µ2(q1)
∏

p|q1

p− 1

(p2 − 1)2

∑

q2≥1,
(q1,q1)=1

µ2(q2)
∏

p|q1

p(p− 1)

(p2 − 1)2
= C ′



170 20 On a large sieve equalitysay, and from then onward, ontinue routinely. We get
C ′ =

∑

q1≥1

µ2(q1)
∏

p|q1

p− 1

(p2 − 1)2 + p(p− 1)

∏

p≥2

(

1 +
p(p− 1)

(p2 − 1)2

)

=
∏

p≥2

(

1 +
p− 1

(p2 − 1)2 + p(p− 1)

)

∏

p≥2

(

1 +
p(p − 1)

(p2 − 1)2

)

=
∏

p≥2

p2

p2 − 1
= 1/Cas laimed. The error term in Theorem 20.4 is O((ND3/2 + D3Q2 +

DQ3) Log2(MQ)
). Let us de�ne
Σ1 =

∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
d≤D,

ℓd2≤N

µ(d)e(aℓd2/q)

∣

∣

∣

∣

2

and Σ2 with the size ondition on d being reversed. We have just shownthat Σ1 = CN2+O(N2D−1+(ND3/2+D3Q2+DQ3) Log2(MQ)) whileLemma 20.2 yields the bound
Σ2 ≪ NQ2D−2 +N3D−4 LogN.Let us selet D = N1/4+ǫ and Q = N7/12−2ǫ. We readily get

Σ2 ≪ N2−2ǫ, Σ1 −CN2 ≪ N11/8+2ǫ +N23/12−ǫ/2 +N2−4ǫ ≪ N2−ǫsine ǫ ≤ 1/6. We use
∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
d≤D,

ℓd2≤N

µ(d)e(aℓd2/q) +
∑

ℓ≥1,
d>D,

ℓd2≤N

µ(d)e(aℓd2/q)

∣

∣

∣

∣

2

≤ Σ1− 2ℜ
∑

q≤Q

∑

amod ∗q

∑

ℓ≥1,
d≤D

ℓd2≤N

µ(d)e(aℓd2/q)
∑

ℓ≥1,
d>D

ℓd2≤N

µ(d)e(−aℓd2/q)+ Σ2and we invoke Cauhy inequality for the middle term to prove it is notmore than √Σ1Σ2 ≪ N2−ǫ; the Theorem is proved. ⋄ ⋄ ⋄



20.5 A large sieve equality: using more advaned tehnology 17120.5. A large sieve equality: using more advanedtehnologyWe get here an equality in the large sieve inequality in a wider range of
M , in fat for M up to L. This time the range for Q will be restritedto be not more than the squareroot of the length of summation.(Friedlander & Iwanie, 1992) already onsidered the ase of f beingthe onvolution of 1 with a shortly supported arithmetial funtion andproved more re�ned estimates than ours. The proof below is essentiallya simpli�ed extrat of theirs. Note however that in the Theorem below,we do not use the speial set of moduli {q ≤ Q}.We take(20.9) f(n) =

∑

ℓm=n
m≤M

bmg(ℓ)where g is smooth. More preisely, we assume that g is C∞ and that(20.10) |g(j)(t)| ≪j (ξL)−jfor all j ≥ 0 for some parameter ξ ∈]1/L, 1] and L ≥ 1. We furtherassume that g(t) = 0 if t ≥ 2L. For simpliity, the reader may onlyonsider the ase ξ = 1 whih will onvey the main ideas and di�ulties.The hypothesis on g is patterned on the following examples: take a C∞ompatly supported funtion G on [1, 2] and set g(t) = G(t/L). Suh afuntion will verify our assumptions with ξ = 1. In this way we an forinstane approximate the harateristi funtion of the interval [L, 2L].The parameter ξ is here to handle the preision of this approximation,and the smaller it is, the better the approximation. There are severalexamples to understand this point: �rst, we may simply take a funtion
G en [1, 2/ξ] and set g(n) = G(n/(ξL)). Of ourse, ξ = 1/L orrespondsto the maximum preision. The example we took in setion 1.2.1 does notonern a C∞ funtion but is very losely related. Funtion bν de�nedin (15.6) has |b(j)ν (t)| ≪j δ

j for j < 2ν + 2 (see (15.11)) and falls againin this ategory but for the assumption that it should vanish for t ≥ 2L.Theorem 20.6. Let f be as above and Q be a set of moduli, all ≤ Q.We have
∑

q∈Q

∑

amod ∗q

∣

∣

∣

∑

n

f(n)e(na/q)
∣

∣

∣

2
=

(∫ ∞

−∞
g(w)dw

)2
∑

m,m′

bmbm′(m,m′)Q

+Oε,j

(

L‖b‖22Q
(

Q+ LM2(M/(ξL))j
)

(LM)ε
)for any j ≥ 2 and any ε > 0. Notation (m,m′)Q is de�ned in (20.7).



172 20 On a large sieve equalityIn appliations, ξL/M is at least a small power of LM , so, by taking jlarge enough, the term LM2(M/(ξL))j beomes not more than (LM)ε.This is usually less than Q.Proof. We only onsider the aseQ = {q ≤ Q} for notational simpliity.We have
Σ(f,Q) =

∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓm=n
m≤M

bmg(ℓ)e(ℓma/q)

∣

∣

∣

∣

2

=
∑

m,m′≤M

∑

ℓ,ℓ′

g(ℓ)g(ℓ′)bmbm′

∑

q≤Q

cq(ℓm− ℓ′m′)

=
∑

d≤Q

dM(Q/d)
∑

m,m′,ℓ,ℓ′

mℓ≡m′ℓ′[d]

bmbm′g(ℓ)g(ℓ′)

=
∑

d≤Q

dM(Q/d)
∑

|r|≤N/d

∑

m,m′,ℓ,ℓ′

mℓ−m′ℓ′=dr

bmbm′g(ℓ)g(ℓ′)where M(X) =
∑

q≤X µ(q) is the summatory funtion of the Moebiusfuntion.Next, we have mℓ−m′ℓ′ = dr and thus ℓm ≡ dr[m′]. Let (m,m′) = δ,a divisor of dr. We set m = δn, m′ = δn′ and k = dr/δ. We de�ne(20.11) Sdr =
∑

δ|dr

∑

(m,m′)=δ

bmbm′

∑

ℓ≡nk[n′]

g(ℓ)g
(nℓ− k

n′

)and get
Sdr =

∑

δ|dr

∑

(m,m′)=δ

bmbm′

n′
∑

h∈Z e(−nkhn′ )∫ ∞−∞ g(u)g(nu− kn′

)

e
(uh

n′

)

du

=
∑

δ|dr

∑

(m,m′)=δ

bmbm′

nn′
∑

h∈Z e(−nkhn′ )∫ ∞−∞ g(un)g(u− kn′

)

e
( uh

nn′

)

duby Poisson summation formula. In this expression, we shall separate
h into three ranges: h = 0 gives the main term, 0 < |h| < H ould betreated in a non trivial way, something we do not wish to dwelve on here,while the ontribution with |h| ≥ H will be disarded simply beauseFourier oe�ients tend to zero when the argument tends to in�nity.



20.5 A large sieve equality: using more advaned tehnology 17320.5.1. h = 0. The orresponding part of Σ(f,Q) reads
Σ0(f,Q) =

∑

d≤Q

dM
(Q

d

)

∑

|r|≤N/d,
δ|dr

∑

(m,m′)=δ

bmbm′

nn′

∫ ∞

−∞
g
(u

n

)

g
(u− k

n′

)

duHere, δ being �xed, we want to sum over r. We need to have δ/(δ, d)|rso that with r = sδ/(δ, d)

∑

|s|≤N
(d,δ)

dδ

g
(u− ds/(δ, d)

n′

)

=

∫ ∞

−∞
g
(u− vd/(δ, d)

n′

)

dv +O(1)

=
(δ, d)n′

d

∫ ∞

−∞
g(w)dw +O(1),from whih we infer(20.12) ∑

|r|≤N/d
δ|dr

1

nn′

∫ ∞

−∞
g
(u

n

)

g
(u− k

n′

)

du

=
(δ, d)

d

(∫ ∞

−∞
g(w)dw

)2

+O(L/n′).The hange of variable u− k = v enables us to exhange roles of n and
n′, resulting in an error term of O(L/(n + n′)).Treatment of the main term when h = 0. Plugging suh an estimatebak into Σ0(f,Q), we get, for the main term

(∫ ∞

−∞
g(w)dw

)2
∑

m,m′

bmbm′

∑

d≤Q

((m,m′), d)M(Q/d).Separate (m,m′) and d by appealing to ℓ =
∑

t|ℓ φ(t) and get that theabove is
(
∫ ∞

−∞
g(w)dw

)2
∑

m,m′

bmbm′

∑

t|(m,m′)

φ(t)
∑

d≤Q
t|d

M(Q/d).We hek that∑t|d≤QM(Q/d) = 1 if t ≤ Q, and 0 otherwise. The mainterm now reads
(
∫ ∞

−∞
g(w)dw

)2
∑

m,m′

bmbm′(m,m′).



174 20 On a large sieve equalityTreatment of the error term when h = 0. Plugging (20.12) into thede�nition of Σ0(f,Q), we get the error term
QL

∑

d≤Q

∑

(m,m′)=δ

bmbm′

n+ n′
≪ Q2L

∑

m,m′

(m,m′)
|bmbm′ |
m+m′We separate m and m′ in two steps by using ℓ =
∑

t|ℓ φ(t) and thennoting 2|bmbm′ | ≤ |bm|2 + |bm′ |2. We get the above to be not more than
Q2L

∑

t

φ(t)
∑

t|m
|bm|2

∑

t|m′

1

m+m′
≪ε Q

2LMε‖b‖22.20.5.2. |h| ≥ H. We simply use a bound for the Fourier oe�ient thatis obtained by integrating j ≥ 2 times.
∣

∣

∣

∣

∫ ∞

−∞
g(v/n)g

(v − k
n′

)

e
( vh

nn′

)

dv

∣

∣

∣

∣

≪
(nn′

h

)j( 1

n
+

1

n′

)j
(ξL)−jL

≪
(n+ n′

hξL

)j
L≪

( M

hξLδ

)j
Lso the ontribution to Σ(f,Q) is at most

∑

d≤Q

d(Q/d)
∑

|r|≤N/d

∑

|h|≥H

∑

(m,m′)=δ|dr

|bmbm′ |
( M

hξLδ

)j
L

≪ Q
M2L

ξ
‖b‖22

( M

ξLH

)j−1
Log(LM)beause the summation over h onverges by the assumption j ≥ 2 andsine N ≪ LM . As it turns out, our statement orresponds to H = 1.20.5.3. 0 < |h| < H. This subpart has no reasons to be, sine we take

H = 1. It would have beome neessary to handle this ase if we wereto take ξL < M .
⋄ ⋄ ⋄20.6. Equality in the large sieve inequality, IIWe should ompare the main term in Theorems 20.3 and 20.6 to N‖f‖22where N is supposedly the length, a notion that is not learly de�nedhere. In the large sieve inequality, N is an upper bound for the length.What is lear is that N should be of order LM . We onsider only the



20.6 Equality in the large sieve inequality, II 175simpler ase of Theorem 20.3. Let us express ‖f‖22 in another manner:
‖f‖22 =

∑

m,m′≤M

bmbm′

∑

ℓ,ℓ′≤L,
ℓm=ℓ′m′

1In the inner sum, we write δ = (m,m′) and m = δn as well as m′ = δn′.We should have ℓ = nh and ℓ′ = n′h and we get
‖f‖22 = L

∑

m,m′≤M

bmbm′

max(m,m′)
(m,m′) +O(M‖b‖22).This is to be ompared with the main term we got on taking Q = {q ≤

Q} and Q ≥M , namely:
(L/M)

∑

m,m′≤M

bmbm′(m,m′).Both expressions are lose but not lose enough and it is likely thatthe latter should be a fration of the former. The ase bm = 1 when
m ∈]M/2,M ], and 0 otherwise is enlightening. We see diretly that

∑

M/2<m,m′≤M

(m,m′)
max(m,m′)

=
∑

d≤M

φ(d) 2
∑

M/2<m≤m′≤M,
d|m,d|m′

1

m′
+O(M)whih we readily evaluate. It is

2
∑

d≤M

φ(d)

d

∑

M/2<m≤M,
d|m

(

Log
M

m
+O

( d

m

)

)

+O(M)

= (1− Log 2)M
∑

d≤M

φ(d)

d2
+O(M)

= (1− Log 2)M · C LogM +O(M)for a positive onstant C while one readily heks that
(1/M)

∑

M/2<m,m′≤M

(m,m′) =
M

4
· C LogM +O(M).This example shows that a loss of a multipliative onstant is to beexpeted. We are really interested in what happens when one takessieve weights, in whih ase bm varies in sign while ℓ is not onstrainedas in Theorem 20.1, but I expet a similar phenomenom to happen. Itis however out of the sope of this monograph.



176 20 On a large sieve equality20.7. The large sieve inequality reversed(Duke & Iwanie, 1992) proved a very interesting reversed large sieveinequality that we only state here. We are somehow o� topi.Theorem 20.7. Let (bn)n≥1 be a sequene of omplex numbers. For
M ≥ 2N ≥ 4, there exist Q ≤ √N and a smooth funtion f supportedon a subinterval of [M − N,M + 2N ] of length Y = Q

√
N and whosederivatives verify |f (j)| ≪j (Log Y )/Y j for any j ≥ 0, suh that

∑

M<n≤M+N

|bn|2 ≤
∑

q≤Q

(qQ)−1
∑

amod q

∣

∣

∣

∣

∑

n

bnf(n)e(na/q)

∣

∣

∣

∣

2

.The reader should be wary of the apparently small hanges in thequantities onsidered: �rst, the summation runs over all a's modulo qand not only over the invertible residue lasses ans seondly, we divideby 1/q and not by 1/Q. This last hange has momentous onsequeneswhih are better desribed by looking at the ase bn = 1. The right-handside of the above equation is then of order NQLogQ while the left-handside is only of size N ! We gather by inspeting this example that theabove inequality should be used only when ∑n bne(na/q) is expeted tobe negligible for all small q's.



21 An appendix21.1. A general mean value estimateHere is a theorem inspired by (Halberstam & Rihert, 1971) but wherewe take are of the values of our multipliative funtion on powers ofprimes as well. The reader will �nd in (Martin, 2002) an appendix witha similar result. Moreover, we present a ompletely expliit estimate,whih ompliates the proof somewhat. In (Cazaran & Moree, 1999),the reader will �nd, inter alia, a presentation of many results in thearea, a somewhat di�erent exposition as well as a modi�ed proof: theauthors ahieve there a better treatment of the error term by appealingto a preliminary sieving.Theorem 21.1. Let g be a non-negative multipliative funtion. Let κ,
L and A be three non-negative real parameters suh that























∑

p≥2,ν≥1
w<pν≤Q

g
(

pν
)

Log
(

pν
)

= κLog
Q

w
+O∗(L) (Q > w ≥ 1),

∑

p≥2

∑

ν,k≥1

g
(

pk
)

g
(

pν
)

Log
(

pν
)

≤ A.Then, when D ≥ exp(2(L+A)), we have
∑

d≤D

g(d) = C (LogD)κ (1 +O∗(B/LogD))with










C =
1

Γ(κ+ 1)

∏

p≥2

{(

1− 1

p

)κ
∑

ν≥0

g
(

pν
)

}

,

B = 2(L+A)
(

1 + 2(κ+ 1)eκ+1
)

.If in many appliations the dependene in L is important, the one in
A is most often irrelevant. In the ontext of the sieve, κ is alled thedimension of the sieve: it is the parameter that determines the size ofthe average we are to ompute and is, of ourse, of foremost importane.Let us mention in this diretion that (Rawsthorne, 1982) obtains a one-sided result from one-sided hypothesis, following a path already threadin (Iwanie, 1980).



178 21 An appendixProof. Let us start with the idea of (Levin & Fainleib, 1967):
G(D) LogD =

∑

d≤D

g(d) Log
D

d
+
∑

d≤D

g(d) Log d

=
∑

d≤D

g(d) Log
D

d
+

∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

g(ℓ).Next we set(21.1) 





















Gp(X) =
∑

ℓ≤X
(ℓ,p)=1

g(ℓ)

T (D) =
∑

d≤D

g(d) Log
D

d
=

∫ D

1
G(t)

dt

t
,so that we an rewrite the above as

G(D) Log(D) = T (D) +
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

Gp(D/p
ν).Moreover

Gp(X) = G(X) −
∑

k≥1

g
(

pk
)

Gp(X/p
k)whih, when ombined with our hypothesis, yields

G(D) Log(D) = T (D) +
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

G(D/pν) +O∗(AG(D))

= T (D) +
∑

d≤D

g(d)
∑

p≥2,ν≥1
pν≤D/d

g
(

pν
)

Log
(

pν
)

+O∗(AG(D))

= T (D)(κ+ 1) +O∗((L+A)G(D))whih we rewrite as
(κ+ 1)T (D) = G(D) LogD (1 + r(D))with r(D) = O∗

(

L+A

LogD

)

.We see the previous equation as a di�erential equation. We set
expE(D) =

(κ+ 1)T (D)

(LogD)κ+1
=

G(D)

(LogD)κ
(1 + r(D))



21.1 A general mean value estimate 179getting for D ≥ D0 = exp(2(L+A))

E′(D) =
T ′(D)

T (D)
− (κ+ 1)

D LogD
=

−r(D)(κ+ 1)

(1 + r(D))D LogD

= O∗
(

2(L+A)(κ+ 1)

D(LogD)2

)sine |r(D)| ≤ 1/2 whenD ≥ D0 and on omputing T ′(D) through (21.1).Now, still for D ≥ D0, we have
E(∞)− E(D) =

∫ ∞

D
E′(t)dt = O∗

(

2(L+A)(κ + 1)

LogD

)

.Gathering our results, and using exp(x) ≤ 1 + x exp(x) valid for x ≥ 0,we infer that
G(D)

(LogD)κ
=

expE(D)

1 + r(D)
=

eE(∞)

1 + r(D)

(

1 +O∗
(

2(L+A)

LogD
(κ+ 1)eκ+1

))

.We next use 1/(1+x) ≤ 1+2x valid when 0 ≤ x ≤ 1
2 and (1+x)(1+y) ≤

(1 + 2x+ y) valid for x, y ≥ 0 and y ≤ 1 to infer
G(D)

(LogD)κ
= eE(∞)

(

1 +O∗
(

2(L+A)

LogD

(

1 + 2(κ+ 1)eκ+1
)

))

.This ends the main part of the proof. We are to identify eE(∞) = C.Note that the above proof is apriori wrong sine T ′(D) 6= G(D)/D at thedisontinuity points of G, but we simply have to restrit our attentionto non integer D's and then proeed by ontinuity.An expression for C. We de�ne, for s a positive real number,
D(g, s) =

∑

d≥1

g(d)

ds
= s

∫ ∞

1
G(D)

dD

Ds+1

= sC

∫ ∞

1
(LogD)κ

dD

Ds+1
+O

(

sC

∫ ∞

1
(LogD)κ−1 dD

Ds+1

)

= C
(

s−κΓ(κ+ 1) +O(s1−κΓ(κ))
)and onsequently

C = lim
s→0+

D(g, s)sκΓ(κ+ 1)−1

= lim
s→0+

D(g, s)ζ(s+ 1)−κΓ(κ+ 1)−1.It is then fairly easy to hek that the Eulerian produt
∏

p≥2

{(

1− 1

p

)κ
∑

ν≥0

g
(

pν
)

}is onvergent with value CΓ(κ+ 1) as required. ⋄ ⋄ ⋄



180 21 An appendix21.2. A �rst onsequeneIt is not di�ult by following (Wirsing, 1961) to derive a stronger meanvalue result from Theorem 21.1. Sine it will be required in one of theappliations below, and sine all the neessary material has been alreadyexposed, we inlude one suh result.Theorem 21.2. Let f be a non-negative multipliative funtion and κbe non-negative real parameter suh that


























∑

p≥2,ν≥1
pν≤Q

f
(

pν
)

Log
(

pν
)

= κQ+O(Q/Log(2Q)) (Q ≥ 1),

∑

p≥2

∑

ν,k≥1,
pν+k≤Q

f
(

pk
)

f
(

pν
)

Log
(

pν
)

≪
√

Q,then we have
∑

d≤D

f(d) = κC ·D (LogD)κ−1 (1 + o(1))where C is as in Theorem 21.1.Proof. We proeed as in Theorem 21.1. Write
S(D) =

∑

d≤D

f(d).By using Theorem 9.2 followed by an appliation of Theorem 21.1, wereadily obtain the following apriori bound(21.2) S(D)≪ D(Log(2D))κ−1.Consider now S∗(D) =
∑

d≤D f(d) Log d. Proeeding as in the proof ofTheorem 21.1, we get
S∗(D) =

∑

p≥2,ν≥1
pν≤D

f
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

f(ℓ)

=
∑

ℓ≤D

f(ℓ)
∑

p≥2,ν≥1
pν≤D/ℓ,
(p,ℓ)=1

f
(
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)

Log
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)so that S∗(D) equals

∑
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)

Log
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(p,ℓ)=1
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(
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)
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(
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Log
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21.3 Some lassial sieve bounds 181We use our hypothesis on this expression and onlude that
S∗(D) = κD

∑

ℓ≤D

f(ℓ)/ℓ+O
(

Q
∑

ℓ≤D

f(ℓ)

ℓLog(2Q/ℓ)

)

+O
(

√

Q
∑

ℓ≤D

f(ℓ)√
ℓ

)

.Both error terms are shown to beO(QLog(2Q)κ−1) by appealing to (21.2)while the main term is evaluated via Theorem 21.1. We �nally use anintegration by parts:
S(D) = 1 +

∫ D

2
S∗(t)

dt

tLog2 t
+
S∗(D)

LogDto get the laimed asymptoti. ⋄ ⋄ ⋄21.3. Some lassial sieve boundsUsing Corollary 2.1 with Theorem 21.1 yields some lassial sieve bounds.Sums of two squares. Let us reall that a positive integer is a sumof two oprime squares if and only if its prime fator deompositionontains only powers of 2 or of primes ongruent to 1 modulo 4. Let usall B the set of suh numbers.We onsider the ompat set K built as follows: if p is = 2 or a prime
≡ 1[4], Kp is Z/pZ, and if p ≡ 3[4], Kp = Up. We then build Kd forsquarefree d by split multipliativity and, in general, Kd by lifting Kℓ ina trivial way through σd→ℓ (see (2.1)), where ℓ is the squarefree kernelof d. The resulting ompat set is multipliatively split and squarefree.We readily hek that

{

h(2ν) = h(pν) = 0 when p ≡ 1[4] and ν ≥ 1,
h(p) = 1/(p − 1) and h(pν) = 0 when p ≡ 3[4] and ν ≥ 2.Let b(q) be the harateristi funtion of the integers whose prime fatorsare all ≡ 3[4]. We �nd that(21.3) G1(Q) =

∑

q≤Q

µ2(q)b(q)

φ(q)to whih we apply Theorem 21.1 with κ = 1/2. We get(21.4) G1(Q) ∼ B
√

LogQwith B the produt over all primes of √1− p−1 when p ≡ 1[4] and
1/
√

1− p−1 when p ≡ 3[4], whih produt we multiply by √2/π (theontribution of the fator 2 and of the Γ-fator, sine Γ(1/2) =
√
π). On



182 21 An appendixtaking Q =
√
N/LogN , we �nd that the number of elements in B in aninterval of length N is not more than(21.5) (1 + o(1))

√
2

B N/
√

LogN.This is to be ompared to the number of elements of this sequene in theinitial interval [1, N ]. Using Theorem 21.2, we �nd that this ardinalityis(21.6) ∣

∣

{

b ∈ B, b ≤ N
}∣

∣ = (1 + o(1))

√
2

π
×
√

2

B
N/
√

LogN.so that our upper bound is about π/√2 = 2.22 . . . times o� the exatanswer in this ase. The ombinatorial sieve is able to get the asymptotihere, or even in the ase of an interval [M + 1,M +N ], when N is nottoo large with respet to M .On the number of prime twins. We will give an upper bound for thenumber of prime twins up to N , as N goes to in�nity, by applyingSelberg sieve. We already gave suh a bound in hapter 9 by using ourloal models. The ompat set we take is simply K = U ∩ (U − 2) as wasthe ase then. It is multipliatively split as well as squarefree. For theassoiated funtion h, we readily �nd that
{

h(2) = 1 and h(2ν) = 0 if ν ≥ 2,
h(p) = 2/(p − 2) and h(pν) = 0 if p ≥ 3 and ν ≥ 2.This gives us(21.7) G1(Q) =

∑

q≤Q

µ2(q)
∏

p|q
p 6=2

2

p− 2to whih we apply Theorem 21.1 with κ = 2 to get(21.8) G1(Q) ∼ 1

4

∏

p≥3

(p − 1)2

p(p− 2)
(LogQ)2.We again hoose Q =

√
N/LogN to �nd that

∣

∣

{

p ≤ N /p+ 2 is prime}∣∣ ≤ 16(1 + o(1))
∏

p≥3

p(p− 2)

(p − 1)2
N/(LogN)2a bound that is 8 times larger than its onjetured value. (Siebert, 1976)establishes the above inequality for all N > 1 with no o(1) term. If wewere to use the Bombieri-Vinogradov Theorem as in setion 13.5, wewould get a bound only 4 times o� the expeted one. Note that (Wu,2004) redues this onstant to 3.3996; that suh an improvement holdsonly when we look at prime twins loated on the initial segment [1, N ],



21.4 Produts of four speial primes in a progression 183ontrarily to the above bound whih remains valid for any interval oflength N .21.4. Produts of four speial primes in arithmetiprogressionsLet us start by roughly realling the notion of su�iently sifted sequeneas has been developed by (Ramaré & Ruzsa, 2001). Essentially, suh asequene A is in�nite and of fairly large density: the number of itselements ≥ X is ≫ X/(LogX)κ for X large enough and a given κ; andfor eah large parameter X, we an �nd a YX ≤ X, so that the �nitesubsequene A∩[YX,X] an be sifted by a multipliatively split ompatset K satisfying the Johnsen-Gallagher ondition, up to a level Q, insuh a way that the assoiated G1-funtion satis�es G1(Q)≫ (LogX)κ.Alternatively, we may say that the harateristi funtion of A∩ [YX ,X]is arried by K up to level Q. Suh onditions ensure that the numberof elements ≤ X in A is of order X/(LogX)κ but also that we haveat our disposal a surrounding ompat. This latter ondition providesus with good arithmetial properties: in (Ramaré & Ruzsa, 2001), weinvestigated its impliations on additive properties; it is also a mainingredient in (Green & Tao, 2004) and (Green & Tao, 2006) onerningarithmeti progressions within suh sets. We rapidly present here a thirdkind of use, namely to prove the existene of produts of elements ofthis sequene in some arithmeti progressions to large moduli. This is,of ourse, a generalization of setion 5.1.But let us �rst omment some more on the de�nition of a su�ientlysifted sequene and provide the reader with some examples. The se-quene of primes is a good andidate, with κ = 1. We see in this examplethat the introdution of YX is neessary: we annot say that the primesup to X are the integers oprime with every integers ≤ Q =
√
X . . . ifwe want to keep some elements in our sequene! Note that Q also hasto depend on X, all of them onditions that gives a tehnial �avour toour de�nition but are required if we want it to be �exible enough forappliations. A trivial example is also given by the sequene of positiveintegers, with κ = 0, or by the sequene of squarefree integers, also withdimension κ = 0. More exoti is the sequene of integers n that are sumsof two oprime squares and suh that n + 1 also shares this property.Its dimension is κ = 1, as shown in (Indlekofer, 1974/75). The sequeneof those prime numbers p that an be written as p = 1 +m2 + n2 with

(m,n) = 1 yields another unommon example, with dimension κ = 3
2thanks to (Iwanie, 1972).



184 21 An appendixInstead of going for a general result whih would be very intriate, weuse this latter sequene as an example: let A be the sequene of thoseprime numbers p that an be written as p = 1+m2+n2 with (m,n) = 1.Theorem 21.3. There exists X0 ≥ 1 and h ≥ 2 with the followingproperty. Let X ≥ X0 be an integer and q1,. . . , qh be pairwise oprimemoduli, all not more than X1/3 and all prime to 3. Then modulo oneof the qi's, all invertible residue lasses ontain a produt of four primesfrom A, the four of them being not more than X.The bound X1/3 may be replaed by X 1
2−ε for any ε > 0 but then hmay depend on ε. As a seond remark, note that we detet a produt oftwo primes, but in fat we an equally guarantee that eah lass modulothe same qi ontains also a produt of �ve (or any number as well) primesfrom A. Finally, we should mention that the modulus 3 is a speial asesine elements of A are ongruent to 2 modulo 3 and in partiular noprodut of a �xed number of them an over all of U3.The reader may try to get a similar result by taking forA the sequeneof integers n and n+1 that are sums of two oprime squares. Note �nallythat (Pomerane et al., 1988) somewhat draws on similar lines.Proof. We split this proof in several steps.General setting: We all AX the sequene of elements of A that be-long to [

√
X,X], a sequene we an sieve up to level Q =

√
X. Theardinality of AX is denoted by AX .The ompat set K an be de�ned by multipliativity: when p ≡ 1[4],then Kp is simply the set of invertibles Up, while when p ≡ 3[4], then Kpis the set of invertibles modulo p from whih we remove the lass 1. Asfor p = 2, we simply take K2 = {1}, without further ado. We then lift

Kp trivially to de�ne Kpν for ν > 1.Applying Theorem 21.1, we �nd that κ = 3/2, from whih we infer
G1(Q)≫ (LogQ)3/2 while an appeal to Lemma 2.3 yields(21.9) Gq(Q) ≥ G1(Q/q)≫ (Log(Q/q))3/2,the implied onstant being of ourse independent of q ≤ Q.First step: By using (5.5), we get an analog of (5.2), namely that

G1(Q)A2
X +

∑

1≤i≤h

Gqi(Q)3/2|Kqi |
∑

b∈Kqi

∣

∣

∣

∣

∑

a∈AX
a≡b[qi]

1−AX/|Kqi |
∣

∣

∣

∣

2



21.4 Produts of four speial primes in a progression 185is bounded from above by AX(X+Q2). We then appeal to (21.9), reallthat Q =
√
X and get

∑

1≤i≤h

(

1− 2Log qi
LogQ

)3/2

|Kqi |
∑

b∈Kqi

∣

∣

∣

∣

1

AX

∑

a∈AX
a≡b[qi]

1− 1/|Kqi |
∣

∣

∣

∣

2

≤ cfor some onstant c > 0 and all X ≥ X0. The introdution of this X0 isneessary sine we do not have AX ≫ X/(LogX)3/2 whenX is too small.We use the same optimization proess as in the proof of Theorem 5.1.First de�ne
AX(qi) = {a ∈ Z/qiZ/ ∃p ∈ AX , p ≡ a[qi]}.Then there holds for X ≥ X0:
∑

1≤i≤h

(

1− 2Log qi
LogX

)3/2( |Kqi |
|AX(qi)|

− 1

)

≤ c.From this inequality, we get, for one qi we all q:
h · (1/3)3/2

( |Kq|
|AX(q)| − 1

)

≤ ci.e. |AX(q)|/|Kq | ≥ 1/(1 + 3c
√

3/h) whih an be arbitrarily lose to 1when h is large enough.Seond step: We have just shown that the ardinality of |AX(q)| ouldbe almost |Kq| but this latter an be very small with respet to φ(q) when
q has lots of prime fators ≡ 3[4]. However, we show here that the set
B(q) of produts of two elements is large with respet to φ(q). Theproess we use to ahieve this is rather lassial. Let r(n) (resp. r̃(n))be the number of ways the integer n an be written as a produt (resp.quotient) of two elements of AX(q) modulo q. Using Cauhy's inequalityyields

|AX(q)|4 =

(

∑

nmod∗q

r(n)

)2

≤ |B(q)|
∑

nmod∗q

r(n)2.We are to �nd an upper bound for ∑n r(n)2, but �rst we note that
∑

nmod∗q

r(n)2 =
∑

a,b,c,d∈AX(q)
ab=cd[q]

1 =
∑

a,b,c,d∈AX(q)
a/c=d/b[q]

1 =
∑

nmod∗q

r̃(n)2.Next, we ompute an upper bound for r̃(n) simply by extending in n =
a/b the range of a and b to all of Kq. This way, the new r̃(n), say r̃0(q, n),is multipliative. Furthermore, r̃0(pν , n) = (|Kpν |/|Kp|)r̃0(p, n) for any
ν ≥ 1. If p ≡ 1[4], then r0(p, n) = |Kp| = p − 1. Of ourse r̃0(2, n) = 1.To over the ase p ≡ 3[4], we note that in a = nb, all values of b are



186 21 An appendixaepted when n ≡ 1[p] and only p − 3 of them otherwise. From theseremarks, and denoting by q♯ the squarefree kernel of q, we get
∑

nmod∗q

r̃0(q, n)2 =
|Kq|2
|Kq♯ |2

∏

p|q,
p≡1[4]

(

(p− 1)|Kp|2
)

×
∏

p|q,
p≡3[4]

(

(p − 2)(p − 3)2 + (p− 2)2
)

=
|Kq|4
φ(q)

∏

p|q,p≡3[4]

(p− 3)2(p− 1) + (p− 2)(p − 1)

(p− 2)3

=
|Kq|4
φ(q)

∏

p|q,p≡3[4]

(

1 +
1

(p− 2)3

)

≤ 1.01|Kq |4/φ(q)this latter inequality being true sine the primes p intervening in theEuler produt are ≥ 7. Gathering our estimates, we reah
(|AX(q)|/|Kq |)4 ≤ 1.01|B(q)|/φ(q)and thus for h large enough, we have |B(q)|/φ(q) ≥ 2/3.Third step. : We onlude as in the proof of Corollary 5.1: sine

B(q) ontains more than φ(q)/2 elements of Uq, eah lass of Uq an bereahed by a produt of two elements from B(q). ⋄ ⋄ ⋄



NotationsNotations used throughout these notes are standard ... in one way orthe other! Here is a guideline:� The use of the letter p for a variable always implies this variableis a prime number.� e(y) = exp(2iπy).� Γ(z) is the usual Euler Γ-funtion. In partiular, Γ(1/2) =
√
π.� ‖a‖2 stands for the norm, aording to the ambient hermitianstruture, or the L2-norm when no suh struture has been spe-i�ed. This is to be distinguished from ‖u‖ whih stands for thedistane to the nearest integer. In hapters 4 and 19, the normswill be denoted with another subsript, usually d or q, and itwill still be hermitian norms and will not be linked in any wayto Lq-spaes.� [d, d′] stands for the lm and (d, d′) for the gd of d and d′. Wedenote as usual the losed interval with endpoints M and N as

[M,N ]. Hermitian produts will be denoted by [f |g] with orwithout any subsript. And in hapter 20, we will denote by
[N/m] the integer part of N/m.� |A| stands for the ardinality of the set A while 1A stands forits harateristi funtion.� 1 denotes a harateristi funtion in one way or another. Forinstane, 1Kd

is 1 if n ∈ Kd and 0 otherwise, but we ouldalso write it as 1n∈Kd
, loser to what is often alled the Dira

δ-symbol. We shall also use 1(n,d)=1 and 1q=q′ .� q‖d means that q divides d in suh a way that q and d/q areoprime. In words we shall say that q divides d exatly.� The squarefree kernel of the integer d =
∏

i p
αi
i is ∏i pi, theprodut of all prime fators of d.� ω(d) is the number of prime fators of d, ounted without mul-tipliity.� φ(d) is the Euler totient, i.e. the ardinality of the multipliativegroup of Z/dZ.� σ(d) is the number of positive divisors of d, exept in setion 13.1where it will denote a density.� µ(d) is the Moebius funtion, that is 0 when d is divisible bya square > 1 and otherwise (−1)r otherwise, where r is thenumber of prime fators of d.



188 21 Notations� cq(n) is the Ramanujan sum. It is the sum of e(an/q) over all amodulo q that are prime to q. See also (8.12).� Λ(n) is van Mangoldt funtion: whih is Log p is n is a powerof the prime p and 0 otherwise.� The notation f = OA(g) means that there exists a onstant
B suh that |f | ≤ Bg but that this onstant may depend on
A. When we put in several parameters as subsripts, it simplymeans the implied onstant depends on all of them.� The notation f = O∗(g) means that |f | ≤ g, that is a O-likenotation, but with an implied onstant equal to 1.� The notation f ⋆ g denotes the arithmeti onvolution of f and
g, that is to say the funtion h on positive integers suh that
h(d) =

∑

q|d f(q)g(d/q).� The notation F ∗G denotes the real funtions onvolution, thatis to say the funtion H on the real line de�ned by H(x) =
∫∞
−∞ F (x − y)G(y)dy provided the latter expression exists forevery real number x.� U is the ompat set (Ud)d where, for eah d, Ud is the set ofinvertible elements modulo d.� π is ... the usual real number about 3.141 5 . . . ! But also identi-�es the ounting funtion of the primes: π(6) = 3 for instane.We tried to avoid this notation when not too awkward, justas we did not use the Chebyshev ϑ and ψ funtions exept inhapter 6.
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Abstrat. This book is an elaboration of a series of letures givenat the Harish-Chandra Researh Institute in February 2005. Thereader will be taken through a journey on the arithmetial sidesof the large sieve inequality when applied to the Farey dissetion.This will reveal onnetions between this inequality, the Selbergsieve and other less used notions like pseudo-haraters and the ΛQ-funtion, as well as extend these theories. One of the leading themeof these notes is the notion of so-alled loal models that throws aunifying light on the subjet. As examples and appliations, wepresent, among other things, an extension of the Brun-TihmarshTheorem, a new proof of Linnik's Theorem on quadrati residuesand an equally novel one of the Vinogradov three primes Theorem;we also onsider the problem of small prime gaps, of sums of twosquarefree numbers and several other ones, some of them being new,like a sharp upper bound for the number of twin primes p that aresuh that p+1 is squarefree. We end our journey by onsidering theproblem of equality in the large sieve inequality and prove severalresults in this area.


