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Preface

These lectures were given in February 2005 while T was a guest of
the Harish-Chandra Research Institute, and the bulk of these notes was
written while I was staying there.

Though this course was intended for people having some background
in analytic number theory, efforts have been made to restrict the pre-
requisites to a minimum. As an effect, most of these notes can be read
with no prior knowledge in the area, except for some applications which
require the prime number Theorem for arithmetic progressions and, in
some places, the Bombieri-Vinogradov Theorem.

I wish to thank the Harish-Chandra Research Institute for giving
me the opportunity to give this series of lectures and for providing ex-
tremely agreeable surroundings, the CEFIPRA programme "Analytic
and Combinatorial Number Theory", project 2801-1 directed by Profes-
sors Bhowmik and Balasubramanian, for funding most of my journey,
and finally my host, Professor Adhikari, without whom none of this
would have been possible. I am also indebted to S. Baier who attended
these lectures and pointed out useful references, as well as to the other
persons in the audience for questions that helped me clarify these notes.

Professor D. Surya Ramana has been of great help during the writing
of this monograph: he has read many a new version, checked formu-
lae, corrected references as well as provided a most welcomed linguistic
support. Chapter 3 is his, so is the last part of section 1.2.1 as well as
several parts of the proofs presented. Both of us would like to thank the
Indo-French Institute for Mathematics for supporting this collaboration.
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Introduction

The idea of the large sieve appeared for the first time in the foun-
dational paper of (Linnik, 1941). Later (Rényi, 1950), (Barban, 1964),
(Roth, 1965), (Bombieri, 1965), (Davenport & Halberstam, 1966b) de-
veloped it and in particular, two distinct parts emerged from these works:

(1) An analytic inequality for the values over a well-spaced set of
points of a trigonometric polynomial S(a) =3, <y une(na),
which, in arithmetical situations, most often reduces to

(0.1) SN St/ <A funl?

q<Q amod*q

for some A depending on the length N of the trigonometric
polynomial and on ). The best value in a general context is
A = N — 1+ @Q? obtained independently in (Selberg, 1972) and
in (Montgomery & Vaughan, 1973).

(2) An arithmetical interpretation for )

amod*q S(a/q)|2, where this
time, information on the distribution of (u,) modulo ¢ is intro-
duced. The most popular approach goes through a lower bound
and is due to Montgomery, leading to what is sometimes referred
to as Montgomery’s sieve, by reference to (Montgomery, 1968).

Today the terminology large sieve refers to a combination of the two
aforementioned steps. We refer the reader to the excellent lecture notes
(Montgomery, 1971) and the survey paper (Montgomery, 1978) for the
early part of the development, but cite here the papers of (Bombieri &
Davenport, 1968) and (Bombieri, 1971).

Almost simultaneously, (Selberg, 1949) introduced another way of
sieving, which we now describe rapidly in the following simple form for
the primes: to find an upper bound for the number of primes in the
interval ]v/N, N, consider the following inequality

(0.2) o1y (Z )\d>2

VN<p<N n<N “dln

valid for any Ag’s subject to Ay = 1 and Ay = 0 if d > z for some
parameter z < V/N. This leads to the determination of the minimum of
the quadratic form on the R.H.S. of (0.2), a method for which Selberg
designed an appropriate elementary method.
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The similarity between the large sieve procedure and Selberg’s is far
from obvious, but one readily notes that both of these are based on an L2-
kind of argument, and that both rely on an arithmetical inequality which
is controlled only extremely loosely. Moreover it turns out that both,
despite their simplicity, lead to best results in sieve theory (provided the
sieve dimension is > 1).

That both of these procedures were related became apparent at least
in the early seventies as can be seen from the papers of (Huxley, 1972b),
(Kobayashi, 1973) and (Motohashi, 1977), so word went around that
both sieves are dual to each other, at least in a vague sense, though the
papers quoted above of course give a precise meaning to this suggested
duality. Things get somewhat more intricate if one notices that the large
sieve inequality may be proved via its dual form as in (Elliott, 1971). Let
us mention here that this very flexible process usually leads to bounds
of good quality.

Our aim in these lectures is to develop a unique setting for the large
sieve and Selberg sieve, based on hermitian inequalities. This can be
seen as an elaboration of ideas due to Selberg, as exposed in (Bombieri,
1987). Along the way, we shall meet, recognize and show links between
notions used at different places.

In the first stage, we extend the classical arithmetic form of the large
sieve, in a fashion very much inspired by (Bombieri & Davenport, 1968).
This generalization will have consequences, and we shall in particular
improve on the large sieve inequality when applied to sifted sequences.
Our closer scrutiny will provide a large sieve extension of the sieve bound
but only under a specific condition, thus showing some discrepancy be-
tween both sieving processes, besides the fact that the large sieve applies
only when sieving intervals while Selberg sieve encompasses the case of
general sequences. By a large sieve extension, we mean that we are
able to bound not only the number of points satisfying some congru-
ence conditions, but also are able to give an upper bound for quantities
measuring distribution in arithmetic progressions, as in the theorems of
(Barban, 1963), (Barban, 1964), (Barban, 1966), (Davenport & Halber-
stam, 1966a) and (Davenport & Halberstam, 1968).

In the second stage, we develop a theory of what we call local models,
essentially through examples. Roughly speaking, we build an approxi-
mation of the function we are interested in modulo ¢ by multiplying a
model for its reduction modulo ¢ and a model for its behavior from the
point of view of size condition (our place at infinity, to use the language
of number theory). As an application we shall prove a large sieve type
inequality but with an error term similar to the one appearing in Selberg
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sieve and improve on the asymptotic Brun-Titchmarsh inequality. This
third approach will show how the two previous ones, via the large sieve
and via Selberg sieve, are connected. But it will also lead to further de-
velopments and, in particular, to some results on some binary additive
problems, via a method not unlike an abstract circle method. We note
here that (Heath-Brown, 1985) has already pointed in this direction.

In the third stage, drawing on what we introduced earlier, we present
the Selberg sieve in an elementary fashion so as to encompass the case of
non-squarefree sifting conditions. This approach will apply to sequences
as well, while earlier expositions in (Selberg, 1976) or (Motohashi, 1983)
did not. Moreover we shall also understand Selberg’s pseudo-characters
(see for instance (Motohashi, 1983) for a definition) and extend the result
of (Kobayashi, 1973) to our more general situation. This part will also
show links between this sieving process and approximation of the van
Mangoldt function A as it appears, for instance, in (Motohashi, 1978),
(Heath-Brown, 1985), (Goldston, 1992) or (Iwaniec, 1994). As a matter
of fact, this line of thought arose from ideas at the very origin of Selberg
sieve, see (Selberg, 1942).

In the fourth and final stage, we develop our material in several di-
rections. We first show the classical theorem of (Bombieri & Davenport,
1966) on prime gaps by our method, and in particular without any use
of the circle method. We also handle in a similar fashion the case of the
representation of an integer by a sum of two squarefree numbers. It is at
this that we shall prove a general approximation theorem for a function
by local models: we delayed such a statement this much because it re-
quires a clarification of the notion of local model, notably concerning the
way to handle the infinite place. We end our journey by discussing which
binary problems are accessible through this pass, meeting here with some
material due to (Briidern, 2000-2004) and some due to (Friedlander &
Iwaniec, 1992).In between, we shall expand on the particularly elegant
smoothing functions due to (Holt & Vaaler, 1996) that will allow us to
prove a novel generalization of the large sieve inequality, while simplify-
ing estimations in the context of our local models.

We have attempted to present all this material in a manner as ele-
mentary as possible, and this sometimes prevents us from gaining some
height. Already as such, we require several unusual definitions. For
this reason we have supplemented our exposition with the chapter 4
and 14, which describe with greater care the surroundings and prepare
the ground for a more axiomatic approach. In particular, we insist on
getting what we call a geometrical interpretation to connect our combina-
torial constructions with properties of sets such as Z/dZ. The situation
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is more difficult than that, and indeed, eventually, we will contend with
properties on the space of functions on such sets.

We finally mention that Motohashi has developed the arithmetical
setting of the large sieve in a very different direction, see for instance (Mo-
tohashi, 1983). Moreover, many arithmetical applications of the large
sieve inequality stem from its multiplicative form, a subject which we
shall not touch upon: the reader is referred to the excellent broach
of (Bombieri, 1987). Among general references on the subject, we men-
tion the books of (Halberstam & Richert, 1974) and of (Huxley, 1972a).
Furthermore, Elsholtz has developped combinatorial uses of the large
sieve inequality, a subject we shall not touch at all; We simply refer
to (Elsholtz, 2001), (Elsholtz, 2002), (Elsholtz, 2004) and (Croot III &
Elsholtz, 2004). Finally, the reader will find in (Huxley, 1968), (Huxley,
1970) and (Huxley, 1971) material pertaining to a large sieve inequality
for algebraic number fields as well as several applications of it.

Individual chapters in these notes are meant to present a circle of
ideas, with references given therein to other parts where a different point
of view is taken, or where one has an easier access to certain lemmas or
notions. Such a choice is rendered necessary by the subject itself: we
intend showing different developments in a unified context, but these
developments are in fact quite entangled one with another. We study
several examples, some of them leading to new results, but limited some
of the proofs to illuminating special cases.

A final word on averages of non-negative multiplicative functions.
Evaluating such averages is a most commonly met question, and we
have decided to present the convolution method as well as a number of
results originating from (Levin & Fainleib, 1967). We have isolated the
main result of this celebrated paper in an appendix, in a slightly more
general form required in our context and took the opportunity to detail
there two classical examples. However, since these results are scattered
throughout the monograph, here is an index:

(1) Lemma 2.3 is a generalization of a lemma due to (van Lint &
Richert, 1965).

(2) Proof of Theorem 2.2, page 23: an ad-hoc lower bound.

(3) Section 5.3, page 42 starts with a sketch of the convolution
method.

(4) Proof of Theorem 5.4 contains page 45 another example on the
convolution method.

(5) Proof of Lemma 6.2, page 57 relies on the idea of (Levin &
Fainleib, 1967).
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(6) Theorem 9.2, page 77 is yet another use of this idea.

(7) Section 13.3, page 112 contains an application of our version of
the Levin-Fainleib Theorem, namely Theorem 21.1, while sec-
tion 13.5 contains another one.

(8) The appendix presents statement and proof of this Theorem 21.1,
together with yet another instance of its use.

The reader should however be aware that the theory is in no way re-
stricted to these two lines of approach and will consult with benefit
(Wirsing, 1961), (Halasz, 1971/72), (Montgomery & Vaughan, 2001)
and (Granville & Soundararajan, 2003).

Multiplicativity and its numerous variations are freely used through-
out this book, as is the arithmetical convolution. We have tried to stick
to common notations and to summarise most of them page 187. We
hope that this summary, together with the reference index, will help the
reader navigate at his or her own will within this monograph!






1 The large sieve inequality

We begin with an abstract hermitian setting which we will use to
prove the large sieve inequality. We develop more material than is re-
quired for such a task. This is simply to prepare the ground for future
uses, and we shall even expand on this setting in chapter 7; the final
stroke will only appear in section 10.1.

1.1. Hilbertian inequalities

Let us start with a complex vector space H endowed with a hermitian
form [f|g], left linear and right sesquilinear. To be consistent with later
notations, the norm of ¢ is denoted by ||¢||2.

The easiest exposition goes through a formal definition:

Definition 1.1. By an almost orthogonal system in H, we mean a
collection of three sets of data

(1) a finite family (¢})ier of elements' of H,

(2) a finite family (M;)icr positive real numbers,

(3) a finite family (w; ;)i jer of compler numbers with w;; = @; ;,
all of them given so that

1) vEred, |Y &

2 _
, S g M;|&)? + E &ijwi g
i 1,7

We comment on this definition. If the family (¢} );cr were orthogonal,
we could ask for equality with M; = ||¢f||3. As it turns out, in the
applications we have in mind, this family is not orthogonal, but almost
so. It is this almost orthogonality that the above condition is meant to
measure.

Our first lemma reads as follows

Lemma 1.1. For any finite family (¢})icr of points of H, the system
built with M; = 3. |[¢}|¢}]] and w;; = 0 is almost orthogonal.

So that if [} [¢]] is small for i # j then M; is indeed close to (2l

IThe reader may wonder why I chose to denote the members of this family with
a star ... It is to be consistent and to avoid confusion with notation that will appear
later on.
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Proof. We write

H;&@f

and simply apply 2|&;&;| < [&]? + |¢;|2. The lemma readily follows. oo o

2 _
L= Z&éj 07 |3]
,]

Here is an enlightening reading of this lemma: the hermitian form
that appears has a matrix whose diagonal terms are the ||p}|3’s. A
theorem of Gershgorin says that all the eigenvalues of this matrix lie in
the union of the so called Gershgorin’s discs centered at the points ||¢}]|3,
with radius >, [[¢}|¢}]|. This approach is due to (Elliott, 1971). It
has a drawback: we do not know that each Gershgorin disc does indeed
contain an eigenvalue, a flaw that is somehow repaired in the above
lemma.

In general, and only assuming (1.1), we get the following kind of
Parseval inequality:

Lemma 1.2. For any almost orthogonal system, and any f € H, let us
set & = [fler]/M;. We have

DM < IFIE+ D &

,J

Once again, the orthogonal case is enlightening: if the (¢}) are or-
thogonal, then we may take M; = [|¢f||3 and w;; = 0. The L.H.S.
becomes the square of the norm of the orthonormal projection of f on
the subspace generated by the ¢}’s.

Without the w; ; and appealing to Lemma 1.1, this is due to Selberg,
as mentioned in section 2 of (Bombieri, 1987) and in (Bombieri, 1971).

Proof. For the proof, we simply write
Hf =) &gt
i

and expand the square. We take care of ||, & 7|3 by using (1.1),
getting

2
>0
2

113 = 2R D &lfIef] + ) Mil&il* + ) &&jwiy > 0.
i i ij
We now choose the &;’s optimally, neglecting the bilinear form containing
the w; j. We take & = [f|¢]/M;, the lemma readily follows. 000

Combining Lemma 1.2 together with Lemma 1.1 yields what is usu-
ally known as “Selberg’s lemma” in this context. The introduction of
the w; ; is due to the author to enable a refined treatment of the error
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term as well as provide a hybrid between the weighted large sieve results
and Selberg sieve results. In these lectures however, we shall only have a
glimpse of this aspect. Nevertheless we show in chapter 9 a simpleminded
use of this bilinear part.

The actual value of &; in the statement is usually of no importance,
only its order of magnitude being relevant.

Let us end this section with a historical remark: though the material
presented here is recent, the reader will find in the seventh part of (Rényi,
1958) a similar approach, relying on the notion, borrowed from (Boas,
1941), of quasi-orthogonal sequence of random variables. Furthermore,
(Rényi, 1949) already introduces a notion of quasi-orthogonality in the
context of the large sieve inequality. We close this parenthesis and refer
the reader to (Montgomery, 1971) for more historical material.

1.2. The large sieve inequality

The large sieve inequality reads as follows.

Theorem 1.1. Let X be a finite set of points of R/Z. Set
§ =min {||z — 2'||,z #2" € X} .

For any sequence of complex numbers (un)1<n<n, we have

Z‘Zune(mﬁ)r <) PN = 14671,

zeEX n

The L.H.S. can be thought as a Riemann sum over the points in X’;
at least when the set X is dense enough. The spacing between two con-
secutive points being at least 4, this L.H.S. multiplied by ¢ can thought
as approximating

1 2
/0 ‘Zune(na)‘ da:Z|un|2.

This is essentially so if §~! is much greater than N, but it turns out that
the case of interest in number theory is the opposite one. In this case,
we can look at ), une(nz) as being a linear form in (uy),. The spacing
condition implies that & has less than §~! elements, so that the number
of linear forms implied is indeed less than the dimension of the ambient
space (which is N). In that case these linear forms are independent
as shown by computing a van der Monde determinant, and otherwise,
there is some redundancy. So what is really at stake here is more almost
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orthogonality than approximation, which is why I chose this method of
proof.

The theorem in this version is due to Selberg. The same year and by
a different method, a marginally weaker version (without the —1 on the
right) was proved by (Montgomery & Vaughan, 1973). We shall prove a
slightly weaker result, namely with N4+142§"! instead of N—1+6"!in
this chapter and delay a full proof until chapter 15, where we shall also
provide a generalization. First we recall what is the Fourier transform
of the de la Vallée-Poussin kernel.

1.2.1. A Fourier transform. Let N’ and L be two given positive in-
tegers. Consider the function F'(n) whose graph is:

F

~ |

N N N +L
We are to compute its Fourier transform which can be cumbersome.
We present two proofs, the first one being more geometrical but only
adapted to the present situation while the second one is less visual but
often trivialises computations of this kind.

First proof. To simplify calculations, we write F' = (G — H)/L where
G and H are drawn below. We write

LY F(n)e(ny) = 3. Gn)e(ny) — 3 H(n)e(ny)

nez nez ne”z
= Y (N'+L—|nDelny) = > (N'—I[n])e(ny)
0<|n|<N'+L 0<|n|<N'
and obtain
2 2
LY Fme(ny)=| >  emy)| —| > elmy)
nez 0<m<N'+L 0<m<N’
This finally amounts to
1|sinm(N’ + L)y|* 1|sinaN'y|?
1.2 F — | I =4
(1.2) ;Z (n)e(ny) L sin Ty L| sinmy
n

the value at y = 0 being given by >~ _, F(n) = 2N’ + L.
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g

N N N +1L

Second proof. Let us define

(1.3) fly) =Y F(n)e(ny)

nez
and introduce the operator on compactly supported sequences:
(1.4) A(F) = A((F(n)nez) = ((F(n) = F(n — 1)nez).

We readily see that

which is our main equation. Iterating once, we get

(1.5) F)ely) = 1)* =Y A*(F)(n) e(ny).

nez

The reader will check that A%2(F)(n) = F(n) —2F(n—1)+ F(n—2) and
from there derive

(1.6) LA*(F) =1y nr_ps1 — Lne—nvs1 — Dpenrgt 4 Lne v o4
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This finally yields
Lty = SO+ Lyy) - e((e—(;\)f’g)l;e(f\f’y) +e((N'+ L)y))
cos(2m(N’ + L)y) — cos(2rN'y)
—2sin(7y)?
sin?(7m(N’ + L)y) — sin®(7N'y)
sin(7y)?2

as required.

1.2.2. Proof of (a weak form of) Theorem 1.1. We use Lemma 1.2
together with Lemma 1.1. First notice that we may assume N to
be an integer. Next set N’ = |N/2| the integer part of N/2 and
f(n) =unry14n (With uyy; = 0if N is even) so that f is supported on
[-N’,N']. The Hilbert space we take is £2(Z) with its standard scalar
product so that f belongs to it when extended by setting f(n) = 0 for
any integer n not in the interval above. Notice also that

(1.7) IF13 = funl?.

n

We need to define our almost orthogonal system. We take
(1.8) Vee X, ¢i(n)=-e(nz)\/F(n),
where F is as defined in section 1.2.1. Since f vanishes outside [-N’, N'],
we find that
(1.9) [flez] = e(=(N"+ 1)) Y une(nz).
1<n<N

The computations of the preceding section show that

(110)  llesl3=2N"+L, |l¢;l¢s] if @ # 2

< -
= AL||z — 2'||?

by using the classical inequality |sinz| < 2||z|/7. When z is fixed, we

find that
1
*| %
< E —_—
Z H(P:v‘(pa:”— 4L”.%'—.%',”2
r’'eX z'eXx
' #£x x'#x
1 72
<2 <
= kzx AL(k0)? = 12107

since the definition of § implies that the worst case that could happen
for the sequence (||z — 2'||),» would be if all 2’s were located at = + €6
with ¢ an integer taking the values +1,+2,43,.... Next we choose L
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an integer so as to nearly minimize 2N’ + L + w2 /(12L5?), i.e., with [z]
denoting the least integer larger than z,

77
1.11 L=|——
L )
which yields 2N’ + L + 72/(12L6%) < N +1 + %6‘1. We conclude by
noting that 71/\/5 <1.82 <2.

Let us end this section by a methodological remark : (Montgomery,
1971) proves in an appendix the inequality (sin7z)™2 < (n|jz||)~2 + 1
valid for 0 < 2 < 1/2. On using it we obtain a better bound for [} |¢7]
above and consequently, improve our N + 1 + 751/ V3 to N+ 3+

2671 //3.

1.3. Introducing Farey points

In most arithmetical applications, the set X is simply a truncation of
the Farey series, that is

(1.12) X ={a/q, ¢ <Q,a mod* ¢}

where @ is a parameter to be chosen and @ mod* ¢ means a ranging over
all the invertible residue classes modulo ¢q. Next when a/q and a'/¢’ are
two distinct points of X', we have

a d

q q

r
_lag' —d'q _ T

-2
/ - / 2 Q
qq qq

(1.13)

since aq’ — a’q is an integer that is distinct from 0.2 We set classically
(1.14) S(z) = Z upe(na/q)
1<n<N
and get
(1.15) S 1S/l <D unP(N + Q%)
¢<Q amod*q n

which is essentially what is referred to as the large sieve inequality. In
chapter 20, we shall provide some cases where we are able to compute
an asymptotic for the L.H.S.. Moreover, but only for a restricted family
of sequences, we shall even be able to do so with @) being larger than
VN — while the main term will still be of order of N'>° |u,|? —, thus
dramatically improving on this inequality.

2By discussing whether ¢ = ¢’ or not, one can enlarge this bound to 1/(Q(Q—1)).
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1.4. A digression: dual form and double large sieve

The large sieve inequality bounds Y, |S(z)|?. If we open one S(z),
we see that this quantity is also

(1.16) Z u, S(z)e(nz)

which can now be considered a bilinear form in the two sets of vari-
ables (uy), and (S(x))s, simply by forgetting how S(z) is defined in
terms of the u,’s. Such an expression has been considered in (Bombieri
& Twaniec, 1986) where they obtain a bound for it now known as the
double large sieve inequality (see also (Selberg, 1991)). This bound is of
similar strength as the one given by Theorem 1.1, up to a multiplicative
constant, when applied to our situation. This line of ideas leads us —
though historically, it is the reverse process that occured — to consider
the so-called dual form of the large sieve inequality, which concerns the
expression obtained simply by exchanging the variables n and x:

(1.17) Z Z S(x)e(nx)

n 'zeX

2

where this time (S(z)), is any sequence of complex numbers. Proceeding
as before but with the variable x, the above expression is also

(1.18) Z%W(n)e(—nm) with  W(n) = Z S(y)e(ny)
n,r yekX

to which we apply the Cauchy-Schwarz inequality in the z-variable to
get

2

) Y S

Applying the usual large sieve inequality to the latter sum, we end up
with the dual form of the large sieve inequality:

(1.19) > D S(@)e(na)

n 'zeX

>

n

Z S(z)e(nx)

zeX

Z W(n)e(—nx)

2
< S IS@P(N 1457,

1.5. Maximal variant

We record here a maximal version of Theorem 1.1 whose proof is not
yet completely satisfactory. This theorem is due to (Montgomery, 1981),
improving on an earlier result of (Uchiyama, 1972).
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Theorem 1.2. There ezist a constant C' > 0 with the following property.
Let X be a finite set of points of R/Z. Set

§ =min {||z — 2'||,z #2" € X} .

For any sequence of complex numbers (un)1<n<n, we have

}(ng;\([ Z unenw‘ <CZ\un\ (N +467h).
zeX T 1<n<K

The problem remains to evaluate the constant C, at least asymp-
totically in N. (Elliott, 1985) gives a — next to trivial — proof of the
inequality

Zug}}z%v Z Upe nx‘ <Z|un| (H + 25! Log(e/d))
ze€X y_y<H usnsv

which is better in that the interval which the variable n ranges is arbi-
trarily located and further restrained in size. Furthermore, no implied
constant appear, but the dependance in 4 is worse. Montgomery’s proof
relies on Hunt’s quantitative form of Carleson’s theorem on almost sure
convergence of L? Fourier series. As an effect, the constant C' above is
effective but no explicit version of it have been given — as of today, at
least!






2 An extension of the classical arithmetical
theory of the large sieve

Part of the material given here has already appeared in (Ramaré &
Ruzsa, 2001). Theorem 2.1 is the main landmark of this chapter. From
there onwards, what we do should become clearer to the reader. In
particular, we shall detail an application of Theorem 2.1 to the Brun-
Titchmarsh Theorem.

2.1. Sequences supported on compact sets

We introduce in this section some vocabulary that allows us handle mod-
ular arithmetic. All of it is trivial enough but will make life easier later
on.

oo By a compact set K, we mean a sequence K = (Kg)q>1 satisfying

(1) KgC Z/dZ for all d > 1.

(2) For any divisor d of ¢, we have o,,4(ICq) = g where 0,4 is
the canonical surjection (also called the restriction map) from
Z/qZ to Z/dZ:

Z/ql — Z/dZ

Og—d
(2.1) z mod g — z mod d.

When K is not empty, we have Ky = Z/Z. As examples, we can take
Kq=7Z/dZ for all d or K4 = Uy, where Uy is the set of invertible classes
modulo d. The intersection and union of compact sets is again a compact
set.

We can also consider K a subset of Z = lim7Z/dZ, in which case it is
indeed a compact set. Furthermore we shall sometimes consider Iy as a
subset of Z: the set of relative integers whose reduction modulo d falls
inside Kg.

oo We say that the compact set K is multiplicatively split if for any dy
and ds coprime positive integers, the Chinese remainder map
sends Ky, 4, onto Kg, X Kg,. In this case, the sets K, for prime p and

v > 1 determine K completely. Notice that when K is multiplicatively
split:

(2.3) \Kia,allKia,an| = IKallKa|
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for any d and d’, where [d,d’] is the lem and (d,d’) the ged of d and d'.
Here |A| stands for the cardinality of a set A.
oo A compact set is said to be squarefree if
Kq = U;id(lcd)

whenever d divides ¢ and has the same prime factors. For instance, U is
squarefree since being prime to ¢ or to its squarefree kernel is the same.

oo A particularly successful hypothesis on K was introduced by (John-
sen, 1971) in the context of polynomials over a finite field and used in
the case of the integers by (Gallagher, 1974) (see also (Selberg, 1976)).
It reads

Vd|q, Ya € Kq
(2.4) the quantity Z 1 is independent of a.
n=ald]
neky

Another way to present this quantity would be to say it is the cardinality
of az;l_)p,,,l ({a}). Since the introduction of this condition in our context
is due to (Gallagher, 1974), we shall refer to it as the Johnsen-Gall-
agher condition. Note that this condition does not require X to be
multiplicatively split, although all our examples will also satisfy this
additional hypothesis.

Any squarefree compact set automatically satisfies the Johnsen-Gall-
agher hypothesis. Since the sieve kept to such sets for a very long time,
and the combinatorial sieve still does, this condition does not show up
in classical expositions. We present in Theorem 13.1 a result that is
unreachable if we were to confine ourselves to squarefree sieves.

2.2. A family of arithmetical functions

Let us start with a multiplicatively split compact set . We consider
the non-negative multiplicative function h defined by

v v—1
(2.5) h(d):H(,lgV‘—‘,é)“Ozo, h(1) =1
plld NP P

where ¢||d means that ¢ divides d in such a way that ¢ and d/q are
coprime. We shall say that q divides d exactly. Note that

d
(2.6) T > " h(é).

s|d
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We further define
(2.7) Ga(Q) = Y h(s)

0<Q,

[d,6]<Q
which we also denote by G4(K, Q) when mentioning the compact set K
is of any help. Let us note that in the extremal case Ky = Z/dZ, we
have h(d) = 0 except when d = 1 in which case we have h(1) = 1. This
implies that G4(Q) = 1 for all d’s. These fairly unusual functions appear
in the following form:

Lemma 2.1. We have

Gal@Q) = Z( 3 M(q/f)f/!’Cf!>-

q<Q “f/d|flq
dlq

This is easily proved using (2.6). We present in chapter 3 a more ab-
stracted approach to this set of functions.

Often, the set K is squarefree, in which case the above expression
simplifies and we recognize, up to a factor, the usual functions from the
Selberg sieve (see (2.8) below). In particular, we know how to evaluate
them. We shall give two examples of such an evaluation in sections 2.4
and 5.4 and a general theorem in the Appendix. The reader should con-
sult (Levin & Fainleib, 1967), (Halberstam & Richert, 1971) and (Hal-
berstam & Richert, 1974) for the general theory. Meanwhile, we move
to another lemma.

Lemma 2.2. We have

Kal Y ula/d)Ge(Q) = d Y ult/d).

q9<Q <Q
dlq dje

We refer to section 11.3 for an interpretation of the above lemma and
background information on how it came to be.

Proof. We appeal to Lemma 2.1 and write:

S (a/d)Cy(@) = Y ula/d) (Z uw/f)f/vcf\)

9<Q q<Q <Q “q|f]e
dlgq dlq qlt
/
=> 3 wE/ D > ulq/d)
(<Qdjfle )
dj¢ dlqlf

in which only the term d = f remains, thus proving our assertion. ¢ ¢ ¢
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We conclude by a lemma that is in fact a generalization of a lemma
of (van Lint & Richert, 1965) but which is trivial in our setting.

Lemma 2.3. We have G¢(Q¢/d) < G4(Q) < G¢(Q) for ¢|d.

When the compact set is squarefree, the reader will check from (2.5)
that h(d) = 0 as soon as d is not squarefee. In that case, the summand
appearing in Lemma 2.1 vanishes whenever q/d and d are coprime. We
can thus write ¢ = d¢ with (¢,d) =1 in this Lemma, which leads to (see
also (5.9))

(2.8) Ga(Q) = % > h(o).

W i<q/d

(4, d)=1

Since in classical literature K is always squarefree, authors tend to call
G4(Q) what is in fact |Ky4|G4(Q)/d in our notation. We had the option
of introducing another name, but we prefered to retain the same name
in these lectures, for the reason that the most important value G1(Q) is
unchanged. Note that it is usual to simply denote this latter value by
G(Q), a usage that we avoid.

2.3. An identity

We say that the sequence (uy)n>1 of complex numbers is carried by K
up to level ) when the support of (uy),>1 belongs to I, for all ¢ < @,
or formally:

(2.9) u, #0 = Vg < Q,n ek,

As examples, note that every sequence is carried by (Z/qZ)4>1 up to any
level, and that the sequence of primes > @ is carried by U up to level Q.

Here is a generalization of known identities, see (Rényi, 1958), (Rényi,
1959), (Bombieri & Davenport, 1968), (Montgomery, 1971) as well as
(Bombieri, 1987):

Theorem 2.1. When K is multiplicatively split and verifies the John-
sen-Gallagher condition (2.4) and (uy,) is a sequence carried by K up to
level @ we have

Y GaQ)IK] Y

9<Q beKq

WIOID SERES Y 2

lq m=b[{] q<Q a mod*q

Zune(?)

n
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The same identity holds true but with the set {¢ < Q} replaced by
any set @ of moduli closed under division, by which we mean that if
g € Q and d|q then d is also in Q. It is easy to see, simply by following
the proof below, that condition (2.4) is indeed required. Note that in
order to handle the non-square-free ¢, a proper definition of G is needed.

Proof. Let A(Q) be the R.H.S. of the above equality. We have
=2 2, d 3 i
dim—n ¢<Q/d
On using Lemma 2.2 to modify the inner sum we obtain
2@ = ¥ 6@ T uta/dlcal 3w .
q dlq m=n/d)
Let us set

(2.10) Oq) = IKq| Y

bek,

2

Zu(q/ﬁ)‘v,g—d >

tq al m=bl(]

On expanding the square we get

= Sw Y /el L Y

Zl|q752|q be’Cm
mEb[él},
nEb[ﬁg}
We introduce d = (¢1,¢2). Our conditions imply that m = n[d]. Once
this is guaranted, b is determined modulo [¢1, £2] by m and n; the John-
sen-Gallagher condition (2.4) then implies that there are [KCg|/[KCjg, 4]
choices for b. Recalling (2.3), we reach

=" " wnwmlKal D pulg/)la/t).

dlg m=n[d] l1]q,L2]q
(£1,02)=d

We are left with computing the most inner sum which is readily done:

> wla/ta/tz) = wl(g/d)/r)ul(a/d)/r2) Y u(6)

l1]q,L2]q r1lq/d d|r
(€1,62)=d r2q/d Slra
= u(g/d)

as required. 000
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To understand the L.H.S. of this theorem, consider the case Kg; =
Z/dZ due to (Montgomery, 1968) but reduce it to the case when ¢ = p
a prime numberas in (Rényi, 1958). We get
(2.11)

Gl D

beK,

2

IC 2
%M(p/f)% > um‘ =p >

m=b[{] bmod p

Z Um — Zmum

m=b[p] p

so this quantity measures the distortion from equidistribution in arith-
metic progressions. This is also true of the quantity with general ¢, as
the reader will realize after some thought. However, if we know the se-
quence can only reach some congruence classes, namely the ones in some
ICp, then the proper approximation is Y uy/|ICp| and not >y, /p.
This is what is put in place in the above result. In chapter 4 we provide
a more geometrical interpretation.

We recover in this manner a theorem of (Gallagher, 1974). This is an
analogue of a similar theorem proved in (Johnsen, 1971) in the context
of polynomials over finite fields.

Corollary 2.1 (Gallagher). Assume K is multiplicatively split and veri-
fies the Johnsen-Gallagher condition (2.4). Let Z denotes the number of
integers in the interval [M + 1, M + N] that belongs to K4 for all d < Q.
We have

Z < (N +Q%/G1(Q).

It was (Bombieri & Davenport, 1968) who first used the large sieve
to get this kind of result, namely for primes, and (Montgomery, 1968)
worked out a general theorem along lines closer to that of (Rényi, 1958).
We derive some classical bounds from this inequality in the Appendix.
It will also give the reader the opportunity to manipulate the concept of
a compact set in connection with sieve problems.

Proof. We take for (u,),>1 the characteristic function of the set whose
cardinality is to be evaluated and apply Theorem 2.1 together with the
large sieve inequality. We finally discard all terms on the L.H.S. except
the one corresponding to ¢ = 1. 000

Note that (Selberg, 1976) proves a similar theorem but without the
Johnsen-Gallagher condition. We shall do so in chapter 13, this time
enabling also the sieving of a general sequence instead of an interval,
but note that our present way of doing offers what is sometimes known
as a large sieve extension of this bound, in the spirit of the theorem
of (Bombieri & Davenport, 1968) we recall in section 2.5. See also The-
orem 15.3 for a generalization in another direction.
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2.4. The Brun-Titchmarsh Theorem

This theorem reads as follows:

Theorem 2.2. Let M > 0 and N > q > 1 be given and let a be an
invertible residue class modulo q. The number Z of primes in the interval
[M + 1, M + N] lying in the residue class a modulo q verifies

2N
7= 5 Los(V/g)

This neat and effective version is due to (Montgomery & Vaughan,
1973). Earlier versions essentially had 2 + o(1) instead of simply 2. The
name “Brun-Titchmarsh” Theorem stems from (Linnik, 1961). Indeed,
Titchmarsh proved such a theorem for ¢ = 1 with a Log Log(N/q) term
instead of the 2 to establish the asymptotic for the number of divisors
of the p + 1, p ranging through the primes, and he used the method
of Brun. The constant 2 (with a o(1)) appeared for the first time in
(Selberg, 1949).

To clarify the argument we restrict our attention to the case ¢ = 1
and get 2+ o(1) instead of 2. Start with Corollary 2.1 applied to K = U.
To make this possible we restrict our attention to primes > (). We then
find that

(2.12) Cal = 6(d), and h(d) = p2(d)/9(d).

So we are left with finding a lower bound for G1(Q). Write
pA(d) _ p*(d) 1 p2(d) 1 1
oD - d Hl_l == H<1+5+F+”'>

pld p pld
1
= 1*(d) Z z

k>1,d)k
[p|k = p|d]

which we sum to get

1 1
_ 2
(2.13) Gi(Q) = pd) T = > 7 = Log@.
d<Q k>1,dJk k<Q
[plk = pld]
It can be fairly easily shown that in fact G1(Q) = Log Q + O(1), either
by reading section 5.3 or by applying Theorem 21.1 from the appendix.
We now choose Q = v/N/Log N, getting

(2.14) 5 N0+ O(Log 2 N))

~ Log N —2LogLog N +Q




24 2 An extension of the classical theory

which is indeed not more than 2(1 + o(1))N/Log N. To prove the theo-
rem for primes in a residue class, sieve the arithmetic progression a+mg,
where m varies in an interval, up to a level @ = /N/q/Log(N/q).

2.5. The Bombieri-Davenport Theorem

This section is somewhat astray from our main line but deserves a place
since it is this result that led the author to believe that something like
Theorem 2.1 ought to exist.

Theorem 2.3 (Bombieri & Davenport). When (uy)n<n is such that uy,
vanishes as soon as n has a prime factor less than @), we have

> Log(Q/a) D> | unx(n)

q<Q x mod*q' m

<3 Jun PV + Q)

where x mod* q denotes a summation over all primitive characters mod-
ulo q.

With £ = U and our terminology above, the hypothesis says that
(up,) is carried by K upto the level Q. We now deduce this result from
Theorem 2.1.

Proof.  We first show that what we termed ©(g) in (2.10) is in fact
the summand of the L.H.S. above. When Y is a character, we denote its
conductor by fy. On detecting the congruence condition m = b[¢] using
multiplicative characters (this is possible because b and w,, are prime to
), we get for any fixed multiple q of £:

> wn=g X S0

E

m=b[{ Xmodf m
1
LY s
xmodg m
Fxle

From which we easily deduce

> a5 S Z” DI B

£/tlq m=b[{ xmodgq m
Ixle

- 2, X
d m
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Squaring this quantity, summing it over all reduced residue classes mod-
ulo ¢ and multiplying the result by ¢(q) indeed gives

0= Y D x(mu

x mod*q' m

This last step amounts to applying Plancherel formula on (Z/dZ)*. To
find a lower bound for the factor G4(Q) we use Lemma 2.3 and get
G4(Q) > G1(Q/q), which using (2.13) this is indeed > Log(Q/q). The
theorem now follows. 000

The proof that Bombieri & Davenport gave uses the value of the
Gauss sums, and my first motivation was to remove this part, since
it seemed clear, it was only a matter of orthonormal systems. Then
the multiplicativity of these characters is not used either and back in
1992, I started developing a general theory of “characters” to prove a
similar result. This was however not very convenient because I had to
explain what these were; after having understood the Selberg sieve in a
similar setting, something we shall do in chapter 11, I finally found the
identity of Theorem 2.1 with a proof from which my abstract characters
disappeared.

Note further that it is not enough to substitute Theorem 1.2 to The-
orem 1.1 to get a mazimal variant of this theorem (i.e. a result in which
the | >, un,x(n)| would be replaced by maxx<n | 1<, < UnX(n)|). See
(Elliott, 1991). o

The strength of this theorem seems to have been underestimated, and
we conclude on this aspect, somewhat anticipating the proof of Theo-
rem 5.2. (Elliott, 1983) improving on (Elliott, 1977) proves that

o la-1) >

q<Q, amod *q' p<N,
g prime p=al)

2

ZpgN Up
R

qg—1

< (L N Q54/11+€) Z Juy|2.

p<N

As it turns out, the summand is simply meod*q P<N upx(p)|2, the
only non primitive character being the principal one, since ¢ is prime.
We can thus use the Bombieri-Davenport Theorem up to level v/ N and
restrict then summation to ¢ < @ (as in the proof of Theorem 5.2 below),
getting the upper bound

2
Log \/—/Q IKZN| p|
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instead of the above, which allows Q up to N1/27¢. Note further that in
this approach, we may replace the set p < N, by any set of primes in an
interval of length N.

Theorem 2 and Corollary 4 of (Puchta, 2003)! follow similarly from
this same remark, since this author directly discusses primitive character
sums. However, the methods used therein apply also to shorter sets of
characters modulo a single modulus, and are now beyond the present
approach. They still belong to the realm of almost orthogonality, and
Lemma 1.1 is still being used, but with fine character sum bounds.

2.6. A detour towards lower bounds

The L.H.S. of Theorem 2.1 will be very small when our sequence is very
well distributed in arithmetic progressions. On an other hand, the R.H.S.
may be expected to approximate Y |u,|?@Q?, if one follows for instance
the proof in terms of Riemann sums given by (Gallagher, 1967). Indeed
(Roth, 1964) proved that dense sequences that are not too dense could
not be evenly distributed in arithmetic progressions. (Huxley, 1972b)
strengthened this work to the case of neither too thin nor too dense sifted
sequences, by which we mean a sequence whose characteristic function
is “carried” — see (2.9)- by some squarefree compact set. The proof goes
by finding a lower bound for a certain variance expression. It seems
plausible that with ideas from the proof of Theorem 2.1, one can extend
this result to the case of non-squarefree compact sets verifying the John-
sen-Gallagher condition, and that one could also introduce a more precise
kind of “variance” expression. See also section 20.7 for a reversed large
sieve inequality.

1 had very interesting discussions with J.-C. Puchta in spring 2006 on this very
subject, which is how I got to notice what I call here an “underestimation”.



3 Some general remarks on arithmetical
functions

We present here some general material pertaining to the family of
functions we consider in our sieve setting (see chapter 2, in particular
section 2.2).

When d > 1 is an integer, let us write §4 to denote the arithmetical
function which takes the value 1 at d and the value 0 at all other integers
> 1. Let 14 denote the arithmetical function 1%d4. It is easily verified
that 14 is the characteristic function of the set of multiples of d and
that (puxd4)(m) = pu(m/d)Lgn(m), for all m > 1.

We recall that a subset X of the integers > 1 is said to closed under
division if every divisor of each element of X is also in X. We write
2/ (X) to denote the set of complex valued functions on X. It is easily
seen that &/(X) is a commutative ring with respect to addition and
(dirichlet) convolution.

Lemma 3.1. Let X be a subset of the integers > 1 that is closed under
division. Let ¢ be in o/ (X) and let 1v = px ¢. For all f and g finitely
supported functions in o/ (X) we have the identities

(B1) Y fR)g(k) =D w(m) D fk)= D D b(k/m)f(k)

keX meX keX, meX keX,
and
(32) YD SRk 0)) = Y w(m) Y f(k) D gb).
keX teX meX kyifé Zyenj%

Equation (3.2) is the heart of the Selberg diagonalization process, as
it is used for instance in section 11.3.

Proof. Since f and g are finitely supported and since all terms in (3.1)
are linear in f and both sides in (3.2) are bilinear in f and g, it suffices to
verify these relations when f = ¢, and g = §;, for any integers a,b € X.
When this is the case, and since X is divisor closed, these relations
reduce respectively to the obvious relations

¢(a) =) ¢(m) =) la/m) and ¢((a,b) = D w(m).

m

mla mla )
m|a,ml|b

OO0
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Corollary 3.1. Let a be an integer > 1 and d a divisor of a. We then
have that

(3.3) Sa(a) = pla/d) =Y p(k/d).
]Zz‘f/? Z‘ﬁé

Proof. We apply (3.1) with f = §, and ¢ = J; and X the set of divisors
of a. 000

Corollary 3.2. Let X be a subset of the integers > 1 that is closed under
division and d be an integer in X. For any finitely supported function f

in o/ (X) we have
34)  fld)=D_ > ula/k)fl@)= > ulk/d) > f(q).

ke X, qeX, ke X, qeX,
dlk  klq dlk klq

Proof. Tt suffices to verify (3.4) when f is of the form §,, for any integer
a € X. When this is the case, and because X is closed under division
and 0,(d) = 04(a), (3.4) reduces to (3.3). 000

Corollary 3.3. Let g be an integer > 1 and d be a divisor of q. We then
have the relation

(3.5) > ulg/k)u(g/0) = ulq/d).
(i

Proof. We apply (3.2) with X taken to be the set of divisors of ¢, f
and g both taken to be the function k — p(g/k) on X and ¢ = 4. Then
Y(m) = p(m/d)lgn(m) and, using (3.3), the right hand side of (3.5)
reduces to pu(m/d)Lg.n(m)dm(q) = p(q/d). 000

Let f be an arithmetical function and @ be a real number > 1. for
each integer d in the interval [1, Q] we define

(3.6) Ga(f.Q) = > fla)
q/[d,q]<Q

This set of functions will be required to define the A4’s of section 13.1.

Corollary 3.4. Let f be an arithmetical function and let g = 1 % f.
When @ is a real number > 1, and for each integer d in [1,Q)], we have

(3.7) Ga(f,Q) =Y g(k) Y ula/k).
FT e
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Proof. We reduce to the case when f = d,, where a is an integer > 1.
Then g = 1,.n. On writing xg to denote the characteristic function of
the integers in the interval [1, Q] and using (3.4) with X taken to be the
set of all integers > 1 we then have

3" 6ale) = xq[a,d))
lq,d]<Q
- Z Z:“(q/k)XQ(Q) Z Tan(k) Z wu(q/k).

k>1, 4 k>1, 4<Q,
[a,d]|k Kla dlk klq

SO0

Corollary 3.5. Let f be an arithmetical function and let g = 1 % f.
When @ is a real number > 1, and d is an integer in [1,Q], we have

> ula/d)Gy(f,Q) = g(d) Y plq/d).

q>1, q<Q,
dlq dlq

Proof. Since the arithmetical function

ki g(k) Y ulg/k)

q<Q,
klq

vanishes when k& > @, it is of finite support. Thus the corollary follows
from (3.7) and (3.4) applied with X taken to be the set of all integers
> 1. SO0






4 Geometric interpretation

The expression appearing in Theorem 2.1 may look unpalatable, but
is in fact simply the norm of a suitable orthonormal projection, as we
show here. The reader may skip this chapter. While it does different
insights on what we are doing, it will not be invoked before chapter 19,
with two short detours at sections 9.4 and 11.4.

Throughout this chapter, we fix a multiplicatively split compact
set IC verifying the Johnsen-Gallagher condition (2.4). For fixed ¢ let
F(Kq) be the vector space of complex valued functions over IC;. Such
functions may also be seen as functions over Z/qZ that vanish outside
Kq. We endow this vector space with a hermitian product by setting

(4.1) [Fldla |,C DN
nmod q

We should emphasize that the split multiplicativity is an essential part
of the present study. In terms of sieving as the problem is exposed in
chapter 11 the compact set K corresponds to the host sequence and
thus will often be taken to be Z also denoted by (Z/dZ)q depending
on the definition you prefer. But we have seen in Bombieri & Daven-
port’s approach how the host sequence could become the sifted one (see
sections 2.3 and 2.5)!

4.1. Local couplings

Our first task is to link together the arithmetic modulo distinct moduli.
To do so, we consider the usual lift when d|q:

LL: F(Kg) — F(Ky)

4.2
(4.2) fr foog.qg:Kg—C

x +— f(xz mod d)
This function is a natural one. The reader may wonder why we chose ¢
instead of ¢; it will avoid troubles latter on. In order to further compare
the hermitian structures, we consider the operator Jg from 7 (K,) to

F (K4) which associates to f € .#(K,) the function

|/C|Zf

nekly,
n=z[d)

(4.3) JI(f): Ka — C,
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This operator verifies the fundamental:

(4.4) L3()lgly = [F1T%(9)]a-
Proof. We simply check directly that

L gh = ) S )

xe’Cd nelctp
n=z[d|
|Kdl
Z fla ( > g(n)
|’Cd| | q| neky,
n= J:[d]
as required. 000

Thus the maps Lg and Jg are adjoint one to another, even if the reader
may be unfamiliar with the concept when applied to linear functions that
are not homomorphisms! Let us define

(4.5) U,_g=L3JL.

G—d

The next section is devoted to understanding these operators. Note that
they depend on K even if our notation does not make this apparent.

4.2. The Fourier structure

We start with the following fundamental property.

Lemma 4.1. The operator Uqﬂd' 1s hermitian. Furthermore, Uqﬂ(il and

Uq_)dé commute with each other and we have
(4.6) UimdVimds = U@y

Proof. The hermitian character is readily proved:
Uy _a(Dlglg = [LLTEF)lgly = TUHITL9)]q
= [THDITIA)y = [LETH9) g = FILETEG),

where, in fact, we have not used any property of K. The commuting
property requires more hypothesis. By using the definition of U Gdyr We
find that

cal
Uid U(’jﬂd; (f) | d Z q~>d2 )

G—di
neky,
n=x[d1]



4.2 The Fourier structure 33

into which we plug the definition of U,_.g, to reach

[Ka, | |’Cd
Ui Uy (N @) = T Z y > fm
1 neky, meky,
n=z[d1] m=n|dz]
|’Cd1||lcd2|
meky

say, where we have written W (m;z) to denote

(4.7) W(m;z) = Z 1.

neklq,
n=zx[di],n=m[d2]

The reader will check that W (m;x) = 0 when m and z are not congruent
modulo (dy,dz) and that W (m;x) = |Kg, |[Ka, /K4, )| when they are.
This proves (4.6), and hence the fact that the operators U;_.4 commute
with each other. Note that this argument depends crucially on the split
multiplicativity of K. OO

A consequence of the above lemma is that Uq_) j 18 a hermitian pro-
jection. Let us further define

(4.8) Uza = Y, 1(d/OU,_;.
/d

The main structure Theorem is the following:

Theorem 4.1. The operators (Uq_,d)d|q are two by two orthogonal her-
mitian projections. For each divisor v of q, we further have

q—>7" E : Uqﬂd

Note that Uj_.g is the identity.
Proof. On applying the preceding lemma, we get

Upas Uty = pldr/ta)p (d2/2)U,_ s
L1|dq,2|d2

-3 (T )

t|(d1,d2) “l1|dy1,l2|d2
(51 ,fg)zt

The inner coefficient is multiplicative and is readily seen to vanish when
di # dy and to equal p(dy/t) otherwise, thus establishing that Uz_q is
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indeed a projection and that U4, and Uj_.4, are orthonormal when

dy # ds. The remaining statements follow. RS
Theorem 4.1 is the main basis of what now follows. Let us set

(4.9) MG — d) = UpaF (K,)

which we endow with the scalar product of .7 (K;). This set depends
on ¢: it is made of functions over K, but this dependence is immaterial
since

Lemma 4.2.
(4.10) Ja
M(g — d) — M(d — d)
d
L3
are isometries, inverses of each other.
This lemma legitimates a special name for 9M(d — d), which we
simply call M(d).
Proof. We ﬁr~st note that LEIEUCZ_)ng(F) = U;_ ,(F), which in passing
proves that Lgi)ﬁ(d — d) = 9M(q — d). Next, given any two elements
Uz ,(f) and U;_ ,(g) of M(d — d), we have

L2 (LU y(9)a = LU T3 (F) | LEU; 1 T3(G)]a
if we write f = Jg(F) and g = Jg(G). We continue simply:
LU THF)LIU; 1 THG)a = Ugma(F)Ug—a( Gl
= [Ug—a(F)|Gla = [L§U;_ (JUF)|Gla = [Ug_ . TUF)THG)]a
= [Ud_wg(fﬂg]d = [Ujﬁd(f”UJ_)d(g)]d

indeed proving that the restriction of Lg to M(¢ — d) is an isometry.
To show that both operators are inverses of each other, we note that

L3 (L)) = UgaUga(F) = UalF) = L (Ug_ (1)
and since L is an injection, this indeed implies that
JILIU; () = Uz_4(f)-
The reverse equation
LT a(f') = Ug—a(f")

is readily proved. OO
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Thus in the relation

(4.11) F(Kq) = & MG — 1)

Tlq

1
we may regroup @ (G — r) for some divisor d of ¢ and identify it with
r|d

F(Kq) via L or J, and this identification respects each summand. We
may then identify .7 (ICq) with the set of functions of .# (I;) that depend
only on the class of the variable modulo d, and (g — r) as being the
functions that depend only on the class of the variable modulo r, where
r is minimal subject to this condition. Naturally, r is some kind of a
conductor.

We may split f according to (4.11), which we term decomposing f in
Fourier components, and this is done via

(4.12) F=> Uspr(f)
Tlq
Note finally that

1 2
(413) Uz (D2 = T | >
ey

|/Cd|
Z DR mZnM f(m)

where the reader will recognize the expression appearing in Theorem 2.1.

4.3. Special cases

It is customary when working with the large sieve to split sums contain-
ing e(nb/q) according to the reduced form a/q = b/d with (b,d) = 1;
when such sums contain Dirichlet characters then according to the con-
ductor of this character. We show below that such decompositions are
special cases of the one exhibited in (4.11).

No restriction. When the compact set K is (Z/qZ),, we have at our
disposal the usual Fourier decomposition

(4.14) f)=Y_ > fla.a/d)e(na/d)

d|lg amod*d

where

(4.15) flg,a/d) = Z f(n)e(—na/d).

nmodq
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This decomposition is in fact exactly the one given by (4.12), for we
readily check that

(4.16) Ugma(H)(n) = D flg,a/d)e(na/d).

amod*d

Proof. Using (4.8), we infer

Uz—a(F)(n) = p( d/r > f(m Z flm) > rp(d/r)

r|d m n[r] mmodq r|d,
rlm—n
where we recognize the Ramanujan sum cq(n —m), getting
Us—a(f Z flm)eg(n —m)
mmodq

Z Z f(m)e(—ma/d)e(na/d)

amodd m mod q
which is exactly (4.16). 000

Restricting to the invertible elements. When the compact set K is U,
we can also write

(4.17) F=> > flaxx

dlg xmodgq
x mod*d

where the expression "y mod ¢ and x mod* d" represents all Dirichlet
characters modulo ¢ of conductor d and where

(4.18) fla.x) = Z fn

nmod*

The reader will check that here too that

(4.19) UgsalH) = Y Fflax

x mod g
x mod*d

holds.

4.4. Reduction to local properties

Given a sequence (uy)p>1 carried by K up to level D (see section 2.3),
we consider

(4.20) Ag(u)(n) = [Kal D um

m=n|d]
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which is a function of .#(K;) provided d < D, which we assume. We
have chosen this normalisation because it yields

(4.21) Jd‘lAq = Ay,
allowing us to use either notion. In particular, it implies

(4.22) |Us—a(Bg@)|[2 = Uz a(Aa(w))]

whenever d|q. With these notations, the L.H.S. of Theorem 2.1 reads

(4.23) 3 Gu@Q)||Us y(Aa()]

d<D

which was the aim of this whole chapter. We have interpreted each
summand from the L.H.S. of Theorem 2.1 as a (square of a) norm of
a suitable orthonormal projection of our initial function (uy)p>1. The
HU N dAdH are independent of each other and we even have a geometric
interpretation for these norms. Note that our space is in fact

1L
(4.24) S IM(r)
d<D

where one should point out a peculiarity: we do not really have a space
of functions over a given set, which is why we have to go through func-
tions in the first place. What we have is either a sequence of points in
[L<pMt(r) or, if we want to keep some geometric flavour, a sequence
(fa)a with the property that Jg(fq) = fq, as we checked in (4.21).

In chapter 19, we shall define a very natural adjoint for A, (see (19.7)).

A different proof of Theorem 2.1. Let Uéﬂd be the sequence of oper-
ators U associated with K = (Z/dZ)4 and we note || - [|;, the associated
norm (recall that this norm depends on the ambient compact set). We
also use A’. We reserve Uj;_,q for the operators associated with I, and
exceptionally here || - [|i, for the relevant norm. Note that if f is in
F(Ka), then || f[|2 = ]ICq]|]fH2,Cq/q and A/, = dAy/|Ky4|- The large sieve
inequality gives a bound for

(4.25) > U aally,

d<D

since in this case G4(Q) = 1 for every d. When we know our sequence is
carried by a smaller compact set K, we may introduce this information
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via the following transformation (see (4.8)):

[U-a(B )7 = S e/ |57 = 3 nla/d e | Aatw) 7,
dlq dlq

d 2
= Z N(Q/d)m TZ{;HUF_’TAT(UH j o

dlq

Plugging this last expression into (4.25) and rearranging some terms we
reach (4.23).



5 Further arithmetical applications

5.1. On a large sieve extension of the Brun-Titchmarsh
Theorem

In this section, we use the large sieve extension of the Brun-Titchmarsh
inequality provided by Theorem 2.1 to detect products of two primes
is arithmetic progressions. Let us consider the case of primes in [2, N],
of which the prime number theorem tells us there are about N/ Log N.
Next select a modulus ¢g. The Brun-Titchmarsh Theorem 2.2 implies
that at least

(5.1) " <1 - f;;;)

congruence classes modulo ¢ contains a prime < N, so roughly speaking
slightly less than ¢(q)/2 when ¢ is N¢. If this cardinality is > ¢(q)/3, one
could try to use Kneser’s Theorem and derive that all invertible residue
classes modulo ¢ contain a product of three primes, but the proof gets
stuck: all the primes we detect — to show the cardinality is more than
#(q)/3 — could belong to a quadratic subgroup of index 2 ... However
the following theorem shows that if this is indeed the case for a given
modulus ¢ then the number of classes covered modulo some ¢’ prime to
q is much larger:

Theorem 5.1. Let N > 2. Set P to be the set of primes in |v/N, N], of
cardinality P, and let (q;)icr be a finite set of pairwise coprime moduli,
not all more than \/N/ Log N. Define

Alg:) ={a € Z/q;Z/ Ip € P,p = algi]}.
As N goes to infinity, we have

> (- ) (pay ) <o

iel

A similar Theorem is an essential ingredient of (Ramaré, 2007b).
Let us note for historical reference that (Erdés, 1937) already showed
a result of similar flavour, though weaker in several respects. See also
chapter 6 for a different hindsight on the problem and Theorem 21.3 of
the appendix for a similar reasoning in a more general context.
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Proof. We first present a proof when ¢;’s are prime numbers. Applying
Theorem 2.1 to the characteristic function (u,) of the primes in P and
the compact set L = U and then reducing the summation to summands
from (g¢;), we get

(5.2)
2
Gi@QP*+) Go(@s(a) Y | >, 1-P/d(a)] <P(N+Q.
el bmod*q;' peEP
p=b[g;]

Now applying Lemma 2.3 to get a lower bound for G, (Q) in terms of
G1, which we bound in turn by (2.13), we infer that

2

P’ LogQ+) Log(Q/a)¢(a:) Y | Y 1-P/d(a)| <P(N+Q?).
1€l bmod*q; p;%@l]

With i fixed, set

(5.3) = > 1

peEP
p=blgi]
We know that ), z;, = P and that x; is zero when b is not in A(g;) and
we seek the minimum of >, (z, — P/¢(q))?. This is most immediately
done on setting the non-zero z; to be all equal to P/|A(g;)|. A modest
calculation then reveals that

Log ¢; ; N +Q?

e Log @/ \|A(a)] PLogQ
Setting @ = v/N/Log N yields the inequality we claimed. To extend
the proof to non prime moduli, we have to check that (5.2) still holds in

this case, provided the ¢;’s are pairwise coprime. The required identity
follows on combining (5.6) below together with

2
65) Sl Y Zuu/w% S | =1, S

dlq beky' ¢|d m=b[(] beky

2

ZUm

m=blq]

whenever wu,, vanishes if m is not in Xy, and where K is a multiplicatively
split compact set verifying the Johnsen-Gallagher condition. The case
K = U would of course be enough for us here, but we can as easily get
to the general case. To prove this latter identity, rewrite the L.H.S. as
>_djq ©(d) where ©(d) is being defined in (2.10). We showed there that

o) = 3 /MK, S i

r|d m=n][r]
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so that
>0 =Kl D umiy.
d|q m=n/|q|
Our claim follows readily on noting that
2

(5.6)
> um ';um = |Kql >

K S
be, ' m=b|q] bey

An alternative proof in the case of primes can be worked out by using

the expression of ©(q) obtained in the proof of the Bombieri-Davenport

Theorem, here Theorem 2.3. A third and much more conceptual proof

is available to the reader who has gone through chapter 4: it proceeds

by noticing that (5.5) may simply be rewritten as

> Us—alAg ()| Ag(w)]g]* = 1 Ag(w)[I?
dlq

on joining (4.1) and (4.13) with (4.20), a relation which holds by (4.12).
000

2

_Zmumr
2 um = T

m=b|q|

Corollary 5.1. Let us consider the set of primes < N. Let q1 and ¢o
be two coprime moduli both not more than NY/>. Then modulo ¢1 or ¢o,
when N is large enough, all invertible residue classes contain a product
of two primes.

1
The limit of this corollary is ¢; < N4~ °. Taking three or more moduli
would of course reduce this limitation.

Proof. We apply the preceding theorem to obtain that for ¢; or ¢o, say

for q, we have
2Logq [ #(q)
> (1= Tod) (g ) = e

from which we infer that |A(q)|/¢(q) > 1/2. It is then classical ad-
ditive number theory (applied to the multiplicative group of Z/qZ) to
prove the result: for each invertible residue class b modulo ¢, the set
{ba=',a € A(q)} has more than ¢(q)/2 elements and this implies that
its intersection with A(g) is non-empty. On considering an element in
this intersection, one gets an expression of b as ajas as required. ©o©

We shall use this approach in a different example in section 21.4. It
may appear surprising at first sight that we should be able to find a
product of two primes (exactly two primes, and not "having at most two
prime factors”) in an arithmetic progression to a better level than what
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one gets for a single prime. This is due to the additionnal structure this
set has and which we put to use.

5.2. Improving on the large sieve inequality for sifted
sequences

We next use Theorem 2.1 to refine the large sieve inequality.

Theorem 5.2. Assume K is multiplicatively split and verifies the John-
sen-Gallagher condition (2.4). Let (uy,) be a sequence carried by KC up to
level Q. Then for Qo < Q, we have

2
Z Z Zune na/q) G1(Qo)

< ZI 2N + Q%)
q<Qo amod*q' m G Q/Q

Proof. Call £(Qo) the L.H.S. of the above inequality. By Theorem 2.1
and using the notation @(q) that appears in its proof, we get

=) G,(Q Q))e(q)<qn<%0< ) > Gl@

a<Qo q<Qo
Qo)
< max Gy( ax( G 2(Q)
qSQo( ) % q<Qo Gq(Q)
from which we conclude via Lemma 2.3. OO0

This inequality refines the large sieve inequality when (g is small
while Q is large (but < /N in what we have in mind). Using directly
the large sieve inequality for Q9 would lose the fact that we can indeed
sieve up to (), information that we preserve in the above theorem.

Without going into any further details, let us mention that this in-
equality is optimal, at least in full generality and that even its special-
ization to the case of primes below is optimal, up to the constant implied
in the <-symbol.

This refined inequality has been used in (Ramaré & Ruzsa, 2001).

5.3. An improved large sieve inequality for primes

We proved in section 2.4 that the Gi-function associated with K = U
verifies G1(Q) > Log@. This is in fact the true order of magnitude,
but the proof is somewhat more difficult and relies on the convolution
method. Here is rough sketch.
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Proof. We start With

1 1
Z<b +1)H<1+(p—1)p5+1_p25“>'

q=>1 p=>2

The latter series, say H(s) which appears on the R.H.S. is convergent
for f&s > —1/2. We expand it in Dirichlet series in this half plane:

We have

Z ~h(d
dlq
which in turn yields

= Yo and) Y ¢ = 3 h(d) (Log=/d) ++ O(d=).

d<z q<z d<z
dlq

We check that |h(d)| < d='* (this 1.4 is any number < 1.5 and the
constant in the <-symbol depends on this choice), from which we infer

G1(z) = Log z + v + H'(0) + O(Log z/2°*).
000
In Lemma 3.5 of (Ramareé, 1995), it is proved that
(5.7) Gi1(z) <Logz+14709 (Vz>1).

Theorem 5.3. If (un)n<n is such that u, vanishes as soon as n has a
prime factor less than v N, then

2
Z Z Zune(na/q)‘ <7 NLI(;C;g]\?OZ| n|2

q<Qo amod*q' M

for any Qo < VN and provided N > 100.

Proof.  Once again, we translate our hypothesis by saying that (uy,) is
carried by K = U upto level Q = v/N. If Qo > N3/10, the proof follows
directly from the large sieve inequality. FElse, Theorem 5.2 gives us a
bound that our estimates on the G-functions translate into the required
statement, the contant being majorized by

a+ 1.4709/ Log(100)

1
5—(1

X 2
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where Qg = N® and by using (5.7) together with (2.13). A numerical
application concludes. SRR

An inequality of similar strength is stated in Lemma 6.3 of (Elliott,
1985). The reader may have difficulties in noticing the connection with
our result, since, in Elliott’s Lemma, the sum is restricted to prime
moduli and concerns primes in progressions instead of exponential sums
as here, but it is really the same mechanism that makes both proofs
work.

5.4. A consequence for quadratic sequences

Here, to alleviate typographical work, we use Log; to denote the k-th
iterated logarithm.

Theorem 5.4. For every real numbers Qg > 10 and N, and any se-
quence of complex numbers (uy,), we have

Do D |2 wen®a/a)| < e(Q)Qo- (N +Qog(Qo)) - Y funl

q<Qo amod*q |n<N n<N

with g(x) = exp(20 Logsy (3z) Logs(9z)) and c(Qo) = 4000 Log3(3Qo).

A similar result with n? being replaced with a fixed quadratic poly-
nomial is easily accessible by the method given here. In between, (Gyan
Prakash & Ramana, 2008) generalized greatly this result by a different
method and in particular, they are able to handle the case of arbitrary
polynomials (instead of only quadratic ones), provided the coefficients
are integers. They are even able to handle the case of arbitrary intervals.
The above is still slightly better where it applies.

Proof.  We first slightly modify the proof of Theorem 5.2 : we are to
majorize

%%%{Gd(QO)/Gd(Q) }

Next, we should define our set K and the functions G. The level of
sieving is Q = max(N, Qog(Qo))-

When d is squarefree we take for Iy the set of squares and when d
is not squarefree we trivially lift ICy to Z/dZ, where ¢ is the squarefree
kernel of d. This set K satisfies the Gallagher-Johnsen condition (2.4)
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and is multiplicatively split. Furthermore

_ p+1

Kplp™” =52=

(5.8) e 2p
K27V =1 if v>1

if p#£2 and v>1,

The associated function h vanishes on non-squarefree integers and oth-
erwise verifies

In this situation, we have

Ga(@ = > he)= > h(r)h(g

5/ (d0<Q (d) 1 rd,
q<Q/d
i.e.
(5.9) Gd(Q):M 2.
d
q<Q/d
(g,d)=1

(by writing § = ¢r) as soon as d < Q. When f is an odd integer we infer
that

2p 2 p—1
5100 ew@-T2% ¥ sell().
o P <din pg \P T

(g:2)=1

Note that we should pay attention to the dependence in uw and f while
evaluating these averages. Define the multiplicative functions a and b by

2
b(p) = —— when p{2f,
B (p) P pi2f
a(p) = % when p 1 2f, b(p) = —1 otherwise,
p
—1
a(p’) =0 otherwise, b(p?) = —2 "= when pt2 )
(") (%) DT pf2f
b(p”) =0 otherwise,

so that a = 1 x b and we have

Gos@=[-27 3 o)

plf q<Q/(2*f)
We continue by appealing to Rankin’s method. We use

Y 1=X+0"(X") (a>0,X>0)
n<X
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to get
> ol = Y bd){ g + 00/}
q<D d>1
* a % i
:l%fﬂ)+6)<D B ££<1+pa>>

where B(f) =), b(d)/d verifies

=T B0 5) ()

p>2 pl2f
3p—1 \! 1 1\ !
>035H<1——)< - > <1+—>H<1+—>
1
Py p?(p+1) P/ s p
1 —1
> 0.35 1+-) .
=0 ]] (1))
pl2f

We choose o« = max(3/4,1 — 1/ Log,(3f)). Note that, for a > 3/4,

2 p—1
B* = 1+ + < 2.3,
H( (p+1)p¥*  (p+ 1)1)3/2) -

p=>3

hence, by getting rid of the Euler factor at 2, we get

> alg) = B(f)D <1 + O*<6.7D°‘_1 H<1 + %)2»
plf

q<D

0Odd integers f < e /3 have not more than 18 prime factors, since the
product of the 18 first odd primes is greater than e /3. This implies
that Hp|f(1 —|—p*3/4) not more than 55 for those f’s. We proceed to

majorize this product when f > e /3. Setting L = Log 3f, we readily

check that
1\2 2Log(f)
1+ =1 < — =71 <1.2
H( +pa> _exp<LaL0gL> N

plf
p>L

since there are at most Log(f)/Log L prime divisors of f that are > L.
On the other hand, and on using the elementary Log(1+2)—Log(1+
y) <x—y when 0 <y <z, we get

;;1;1L<1+2%><1+%>_ <eXpZ(___) Corp Y ST

p<L p<L

6(1 a)Logp _ 1
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We now utilize e* — 1 < ex when 0 <z < 1, getting

1)? 1\ Logp 2.4
H(l—i——a) <1+—> gexp<2.4(1—a)z—)§e' <12
p<L p p p<L p

since ), .1 (Logp)/p < Log L by (3.24) of (Rosser & Schoenfeld, 1962).
This leads to

11 <1+%>2 <12 H<1+%>2 < 126Xp<z %)

plfip<L p<L p<L
< 12exp(2Log Log L + 2) < 89Log,(3f)*

since (3,5 1/p < LogLog L +1 when L > 3 by (3.20) of (Rosser &
Schoenfeld, 1962). Gathering our estimates, we infer

1 — 716 Logy(3f)? exp(— Log D/ Log,(3f))

1

< BB ;a@ < 716 Logy(3f)*

when 3f > e, The reader will easily get a better bound when f is
smaller. We will use this lower estimate with D = Qp/(2"f) and the
upper one with D = Q/(2%f). Since

(5.11) Log(D) = Log(Q/Qo) = 20 Log,(3Q0) Logs(9Q0)
we get
1 — 716 Logy(3/)? exp(— Log D/ Logy(3/)) > 1 — — o> 15,
- Logy(9Q0)'® ~
Finally
max{ Ga(Q0)/Ga(Q) } < 4000(Logy(3Q0))*Qo/Q
ending the proof. OO

5.5. A Bombieri-Vinogradov type Theorem

We can establish Bombieri-Vinogradov type of results from Theorem 5.4
by adapting the scheme developed in (Bombieri et al., 1986). We use
the notation p ~ P tosay P < p < 2P.
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Theorem 5.5. For every A > 1, there exists B such that for all D <
P(Log P)™B and D < N/g(N), we have

7(P PN'2||a
Z max Z a(n)—% Z a(n)‘<<A(LTPH)AH

amod*d
d<D n~N,p~P o(d) (n?41,d)=1
(n?+1)p=ald]

for any sequence of complexr numbers (a(n)), and where 7(P) is the
number of primes p ~ P.

The function g appearing in this statement is of course the one ap-
pearing in Theorem 5.4.

For instance, this implies that the level of distribution of the sequence
of (p? + 1)ps with p; and py prime numbers such that N < py,py < 2N
is larger than N. Using the general theory of the weighted sieve (see for
instance (Greaves, 2001)), we infer that the sequence 1+ (p? 4 1)py with
% < p1/p2 < 2 contains infinitely many elements having at most four
prime factors. This special result has already been proved by (Greaves,
1974); Greaves’s result is more general than ours in some aspects while
ours prevails in some other. For the sequence 2 + p?ps, it is possible
to simplify the following proof by appealing to the Barban-Davenport-
Halberstam Theorem.

Proof. Let us put D = P/(Log P)*4*1. We study

(P
Z a(n) — % Z a(n)|.

Y= Z max
amod*d

d<D n~N,p~P (n241,d)=1
(n®+1)p=ald]
We have
1 _
D=) mex | oo > SCIT(Ox(a)
ngamO x modd
XF#X0
1
<Y g > S0IITR)
d<D x modd
XFX0
with

(5.12) S)=>_ am)x(®+1) and T(x)=)_ x(p)

n~N p~P
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As usual, we infer that

Y < LogD ¢() Y. ISCNT (X

1<q<D x mod *q
< (Log D) ( o> s ) max |T(x)|
1<¢<Dg x mod *q i<<q<D0
+(Log D)¥.

Let us recall the classical inequality of (Gallagher, 1967)

(5.13) Y 1S(P < 0 Z 13" a(m)e((n? + 1)a/q)|*.

x mod *q amod *q n~N
Using the Siegel-Walfish Theorem (which we recall later in Lemma 10.4
in section 10.4) for T'(x) and Theorem 5.4 for S(x) through the above
inequality, we get
£ <, (Log P)~ PDy(Log Do)(N + Dog(Do))"/*[lalz + (Log D)5

for Dy = (Log P)?4%6 and C; = 2A 4 6. As for ¥/, we split the sum-
mation over g according to the size of this parameter. We are then left
with the problem of finding an upper bound for

E”( LogQ Z Z T

Q<¢<2@Q x mod*q

which we treat using the Cauchy-Schwarz and the large sieve inequality :

2(Q) < LogQ(P+P1/2Q ( Z Z )1/2

Q<g<2Q x mod *q
Invoking Theorem 5.4, we get for N > Dg(D)

Log Q

Q) « —==(P + PY2Q)Q"*| a2 N*/2

< ||l P1/2N1/2(Q — +Q1/2) Log2Q

Hence

3 parl/2 —Cy 1/2 1 DV/?
S < lala(log DPPNY? (Log Py o1y 4~ D
0

and the theorem follows readily. OO






6 The Siegel zero effect

When dealing with the Brun-Titchmarsh Theorem (Theorem 2.2 of
this monograph), and in general, with sieve methods, the question of the
connections between the parity principle, the constant 2 in this theorem
and the so-called Siegel zeros cannot be avoided. (Selberg, 1949) shows
that the constant 2+ o(1) in the Brun-Titchmarsh Theorem is optimal,
if we stick to a sieve method in a fairly general context. He expanded
this theory into what is known as the "parity principle" in (Selberg,
1972). See also (Bombieri, 1976). However, this objection is methological
and belongs much more to the realm of the combinatorial sieve. In the
restricted framework of the Brun-Tichmarsh Theorem, or in the even
more restricted framework of this Theorem for the initial interval only,
the constant 2 and "the parity principle" are indeed two different issues.
This chapter is first devoted to links and parallels between Siegel zeros
and the constant 2 in the aforementioned Theorem.

We complete this chapter with large sieve estimates on the number
of quadratic characters x for which the least prime p with x(p) = —1

(resp. x(p) = 1) is large.
6.1. Zeros free regions and Siegel zeros

Let us start with a Theorem initially due to de la Vallée-Poussin in 1896,
which we present in the refined form given in (Kadiri, 2002):

Theorem 6.1. The Dirichlet L-functions associated to the modulus ¢
do not vanish in the region

Rs >1 1
=7 Rlog(gmax(1,[33))

with the exception of at most one of them. This exception correponds to
a real character and has at most one real zero in the given region.

with R = 6.4355,

This zero is called the "Siegel zero”, or sometimes the "exceptional
zero”. The reader should note that such a definition depends on the
shape of the region, and particularly on the value of R. Some authors
call "Siegel zero” a sequence of such zeros when R goes to 0. We know
since Dirichlet in 1839-40 that such a zero cannot be in s = 1, but it can
be very close to it. First there is a link between this zero and the size of
L(1,x), where x is the associated real Dirichlet character. This link is
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not as tight as one could expect, but is strong enough for our purpose.
The first part is a theorem due to Hecke around 1915 which can be found
in (Landau, 1918). The precise form we state comes from (Pintz, 1976).

Theorem 6.2. When an L-function belonging to the real non-principal
character x modulo ¢ > 200 has no zero in the interval [1 — «, 1], where
0 < a< (20Logq)~t, we have L(1,%) > 0.23 .

Which implies that if L(1,x) = o(1/Logq), then there is an excep-
tional zero. A converse statement arises from the following lemma:

Lemma 6.1. When an L-function belonging to the real non-principal
character x modulo q, where ¢ > 200, has a real zero 3 > 1— (Logq)™?,
then L(1,x) < 2(1 — 8) Log?q.

Proof. The mean value Theorem tells us that there exists a u in [3, 1]
such that L(1,x) — 0 = (1 — B)L'(u, x). We bound the latter quantity
trivially:

x(n)Logn o uLogt —1
Du) = 3 MER L [T 57 o
q

ny
n<q q<n<t

and hence
Log?q Log?3 Log3 Log2 Logq
r < -
O T e et R S B
(Logzq
e
2

qu

IN

+ Logq + 0.11) < 2Log?q.
SO0

See also (Goldfeld & Schinzel, 1975), as well as the mentioned paper
of Pintz for more precise links between L(1,x) and 1 — 3.

(Landau, 1918) proved that the modulus associated to any two such
zeros cannot be close one to the other. Here is the latest result due to
(Kadiri, 2007) in this direction:

Theorem 6.3. Let x1 modulo q1 and x2 modulo qo be two real primitive
characters, and let 1 > 0 (resp. B2 > 0) be a real zero of L(s, x1) (resp.
L(s,x2)). Assume that g1 and qo are coprime. Then

1
. <1- '
min (5, F2) < 2.31 Log(q1q2/47)

The reader may wonder why such zeros are called Siegel zeros, and
indeed the name Landau-Siegel zeros may well be better suited, since
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(Landau, 1935) is the very first success at proving a result like Theo-
rem 6.4 below with an ¢ < 1/2 (Landau still required £ > 3/8). Here is
a version from (Tatuzawa, 1951) of the Theorem of (Siegel, 1935) that
warranted this nomenclature.

Theorem 6.4. For anye > 0, and any primitive real character x modulo
q, we have L(1,x) > ¢/(10¢°) with the exception of at most one value

of q.

The reader may consult (Hoffstein, 1980) as well as (Ji & Lu, 2004).
for improved versions of this result. Theorem 6.4 has the following con-
sequence: for any € > 0, there exists a constant ¢(¢) > 0 such that
L(1,x) > c(e)g~=. However, this proof does not allow us to effectively
compute the constant c(¢), even if we take ¢ = 1/3 for instance. As a
matter of fact, we know an effective solution only in the case ¢ = 1/2.

On this subject, the reader may read the groundbreaking paper of
(Goldfeld, 1985) as well as (Gross & Zagier, 1983) and (Oesterlé, 1985).

6.2. Gallagher’s prime number Theorem

The existence of a possible exceptional zero has a deep impact on the dis-
tribution of primes in arithmetic progressions. The theorem we present
here is one of the finest achievements in this direction and clarifies greatly
the situation. Some of the results we seek can be shown without having
to appeal to such a heavyweight, but using it is enlightening.

The prime number theorem of (Gallagher, 1970) has a long ancestry,
steming originally from (Linnik, 1944a) and (Linnik, 1944b). Another
modern form of these celebrated papers can be found in (Bombieri, 1987),
Theorem 16. See also (Motohashi, 1978).

One of the key to such results is the Deuring-Heilbronn phenomenon:
when there is an exceptional zero, all other L-functions have no zero
in a region wider than usual, and this region becomes wider as this
exceptional zero closes to 1.

Let us now state Gallagher’s Theorem. Assume L(f3,x) = 0 for a (8
such that 1 — 5 = 0(1/Log q). We set 6 =1 — (. In this case

X—5

60 900 = (1= 00 7)

Lo XoLosT (5“—53@? L alogX T5-5>
o(q) Log X VT Nz
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if X > T >T > g where c1,co > 0 are two effective constants. The
constant implied in the O-symbol is equally effective. If no exceptional
zero exists modulo ¢ (that is, also for no divisor of ¢), the preceding
formula holds with minor modifications: we use 8 = % in the main term
and 0 LogT =1 in the remainder term.

6.3. Siegel zero and Brun-Titchmarsh Theorem

We prove here the following Theorem whose idea comes from (Motohashi,
1979), where a similar result is proved by a very different method.

Theorem 6.5. There exist two effective constants cs and ¢4, such that
for g > ¢4, the following two conditions are equivalent.

(1) For any real character modulo q, we have L(1,x) > 1/Logq.
(2) There exist a constant & > 0 such that for any ¢ prime to q, we
have, with X = ¢°3:

2-¢
(6.2) > 1§W d>oL

X <p<2X, X<p<2X
p=¢[q]

Such a statement is always somewhat tricky. For instance, we indeed
use characters and not only primitive characters. We can take c3 =
max(36,3cz2), where co appears in (6.1).

Proof. We shall use Gallagher’s Theorem (6.1) with T = ¢® and X >
qmax(36:3¢2) 5o that the error term there is @ of X/(¢(q)Logq). First,
assume L(1,x) = o(1/Loggq) for one character y. Then, by Hecke’s
theorem, there is indeed an exceptional zero, say [, associated to a
character y. We have X~° = 1 + o(1). In particular, if we take an
invertible residue class ¢ such that x(¢) = —1, we have (X;q,¢) ~
2X/¢(q), and this readily implies that £ cannot exist.

For the reverse implication, we follow (Ramachandra et al., 1996). By
summing our upper bound over all £ such that x(¢) = —1, we discover
that the number of primes in | X, 2X] with x(p) =1 is at least

&y 12
X<p<2X

Consider next G(s) = ((s)L(s;x) = >_,>1 9(n)n"" where g(n) = 1 *
x(n). Note that g(n) is non-negative. Note, furthermore, that g(p) = 2
when x(p) = 1, from which we infer

Yo ogm) = > glp) > ¢X/Log X.

X<n<2X X<p<2X
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This readily yields

1 c+100 . 5
5 | G(s+ 1)I(s)((2X)* — X*)ds
9 ex) | —n/x g(n)
—Z—n (e e ) > Z 5 > ¢/ Log X.
n>1 X<n<2X

Next, shifting the path of integration in the above integral to fts = —1/4,
we see that it is

c+100

L(1,x)Log 2 + O <X1/4/c G(s + 1)F(s)|ds> .

—100

The exponential decay of I'(s) in vertical strips (a consequence of the
Stirling formula) as well as the bound |G(3/4+it)| < ¢'/*(1+]t|) ensures
us that this last error term is at most O((¢/X)'/*), which in turn is
O(q~1) since e3 > 5. So that we find that L(1,x) > 1/Log X > 1/ Logq
as required. 000

Thus, improving on the constant 2 in the Brun-Titchmarsh Theorem
when X is a power of ¢ would remove any Siegel zero. Note that we use
only the Brun-Titchmarsh Theorem for the initial range. Drawing on
similar ideas, (Basquin, 2006) established a theorem linking an effective
lower bound for L(1,x) of the shape 1/¢° for some ¢ €]0,1/2] with the
improvement on the constant 2 in the Brun-Titchmarsh Theorem, but
in a different range for X:

Theorem 6.6. Let ¢ > 0 be a parameter. The following three problems
are equivalent:

(1) For every e > 0, and every real character x, prove in an effective
way that L(1,x) > q " ¢.

(2) For every e > 0, prove (6.2) for every q < (Log X)1/¢)—¢,

(8) For every € > 0, prove in an effective way that (X;q,0) ~
X/¢(q) for every q < (Log X)1/9)~<.

This statement also tells us that, if we are able to beat the factor 2
in the upper bound, then a much stronger conclusion follows, namely an
equivalent for ¢ (X;q,¢). This situation is similar to what happens with
the elementary proof of the prime number theorem, a proof this time
heavily linked to the parity principle. See (Selberg, 1949b), (Selberg,
1949a) and (Erdos, 1949).
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6.4. The Siegel zero effect

We have seen that the distribution of primes in arithmetic progressions
modulo ¢ stumbles on the possible existence of the so called Siegel zero.
The existence of such a zero would have the effect that only about half
the residue classes would contain primes. However, the reader should
notice that this philosophical statement is sustained by theorems only
when ¢ is a small power of X.

When approaching the problem of this distribution through zeros
of L-functions, this effect is well controlled and is avoided by a simple
fact: two moduli ¢; and gy coprime and not too far apart in size cannot
simultaneously have a Siegel zero by Theorem 6.3. For instance, this
remedy is used in (McCurley, 1984) and (Cook, 1984). The condition
of coprimality is not minor in any sense: if ¢ has a Siegel zero, then
the distribution of primes modulo 3¢ for instance is still going to be
unbalanced.

From the sieve point of view, zeros do not appear as such, but a
similar role is played by the fact that we can only prove that the number
of primes in a given arithmetic progression is about twice what it should
be. Indeed, this implies that, then, primes cannot accumulate on a
subset of (Z/qZ)* that contains less than (1 —¢)¢(g)/2 elements. Again,
this is true only when ¢ is small when compared to X, but, when ¢ is
larger, we can still prove that a subset of positive density (with respect
to (Z/qZ)*) is attained.

We also have a similar effect to Landau’s, even if we are not ac-
tually able to produce a corresponding zero. And, indeed, by using a
large sieve extension of the Brun-Titchmarsh inequality, we saw in The-
orem 5.1 that primes cannot accumulate in some small sets modulo two
coprime moduli of similar size. Further the density of the set attained
can even be shown to be rather close to 1 if we are ready to chose one
modulus among say T candidates. Exactly how large depends on the
size of the modulus, say ¢ and of T', but we can roughly show that more
than (1 + 2Log X/(T Log(X/qQ)))_1 ¢(q) classes are reached and this
indeed will be larger than a half provided T is large enough depending
on Log(X/q?).

This is what we loosely call the Siegel zero effect, though no zeros are
involved. And since it finds its justification in sieves, it can be used on
other sequences as well; we provide such an example in Theorem 21.3 of
chapter 21.
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6.5. A detour: the precursory theorem of Linnik

Proving that L(s, x) has no zero close to 1 has to do with proving that
L(1, x) cannot be small, which means, when x is quadratic, proving that
xoften takes the value 1. Curiously enough, we do not know how to prove
either that x(p) often takes the value —1 !, or that it takes often the
value 1 2, where here it is necessary to specify that we seek the value
at prime argument for the problem to be non trivial. One of the first
arithmetical use of the large sieve technique occurred in (Linnik, 1942),
where the author proves

Theorem 6.7. For every € > 0, there exists c(e) such that, for every N,
the number of prime numbers < N that have no non-quadratic residue
< N°¢ is at most c(¢).

We refer the reader to (Montgomery, 1971) for a more thorough treat-
ment of the history of the subject. We now present a proof of this result.
As usual we shall have to compute a density, for which we rely on the
following lemma.

Lemma 6.2.
The number of integers < N whose prime factors are all < N°€ is
>, N.

There exist better proofs than the one we give now, and it is known
in particular that this set has a cardinality equivalent to a constant
(depending on ¢) times N. However, the one we present relies once more
on the idea of (Levin & Fainleib, 1967). Moreover, it appears to be novel.

Proof.  Set € = 1/k, where k > 1 is an integer. Let S be the set of
integers that have no prime factors < N€ and let Z be the number of
them that are < . Let us first write

ZLog N = Z Log N > Z ZLong Z Logp Z 1

nes, neS, pln p<N€ nes,
n<N n<N np<N
> Y Y Logp=CeN Y 1/n—ChZ
neS, p<N/n nes,
Nl=¢<n<N Nl=¢<n<N

L1 the conductor, say f, of x is prime, then p is a non quadratic residue, i.e. is
not a square in Z/§Z.
2This time, when the conductor of x is prime, p would be a quadratic residue.
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for some constants Cg, C7 > 0. We shall get a lower bound for the sum
of 1/n when n ranges S and in above interval by following a similar
path. We will achieve this by a recursion whose main ingredient is the
following fact: There exist two constants ¢; = ¢;(€) et Ny = Ny(e) such
that for every ¢ € {0,...,k — 1} and N > Ny, we have

(6.3) > 1/n>¢ > 1/n.

nes, nes,
QZNI—(€+1)/k<n§N1—€/k: 2Z+1N1—(Z+2)/k<n§N1—(Z+1)/k

Let us first establish this inequality. We write

Log N Z 1/n > Z (Logn)/n

nes, nes,
QZNI—(Z+1)/k<n§N1—€/k: QZNI—(€+1)/k<n§N1—€/k:

> > (> _Logp)/n

nes, pln
2t N1—(£+1)/k <n§lel/k

> Z Logp Z 1/m

p<N€ p meS,
2ZN17(Z+1)/k<mpSN17l/k

and an interchange of summations yields the lower bound

S m) 3 L°§p.

777,687 pSNev
2Z+1N17(Z+2)/k<mSN17Z/k Nl*(l+1)/k<mpSN17Z/k

If m < N1=WHD/E then the only upper bound for p is p < N€. The
lower bound reads N'=(HD/k < mp and

L
Z —ogp > Oy Log(mN 2Ry _ ¢,
PN, b
NI=ED/k ey

for some constants C1,Co > 0. When m > N~/ the only lower
bound for p is 2, but its upper bound this time depends on m. We get

L
> B> CyLogV' T /m) - €y
pSlel/k/m

for some constants C3,Cy > 0. On the other hand, when m verifies
2HINI=(H2)/k <y < NI=EHD/E then for all p € [LN€, N€], we have
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NI-ED/E ) — mp < N1k Since there exists Cs > 0 (indepen-
dent of 2 > 2 1) such that 3, -, 1/p > Cs, we reach

Cy Log(mN~"HE2/8) 0y 3" 119 <03 Log(N**/k /m/) — 04)

SNe<p<ne

> O Log(mN 12k _ 0y 4+ 5 (Cg Log(N'~0/k /) — C’4>

> min(Cy, C5Cs) Log(NY*) — Cy — C5C4 > Log N

if N > Ny(e). We simply collect our estimates together to establish (6.3).
A repeated use of it yields

Z 1/n > i1 Z 1/n.

nes, nes,
N1-1kopn<N 2k—lop< N1/k

which is > Log N€ since the condition n € § is there superfluous. Hence
(C¢Log N 4+ C7)Z >, N Log N

which is what we wished to prove. SRR

Proof of Theorem 6.7. Let P be the set of prime numbers < Q = N1/4
that have no quadratic non-residue < N¢, and let S be the set of integers
whose prime factors are < IN¢. The compact set we use is defined in the
following way: K, is the set of quadratic residues if p € P, of cardinality
(p+1)/2. If p ¢ P, we take simply K, = Z/pZ. We extend this
definition to Kp» by taking the inverse image of K, under the canonical
surjection when v > 2. We get a squarefree compact set. In order to
apply Gallagher’s theorem we first check that

p—1
G(Q) Zp%;w C>#{p<QpePY3

P<@Q
and thus
Z < (N +Q%/GQ)

which yields G(Q) < (N + @Q?)/Z. Next, we notice that in the points
counted in Z, we find all the integers n whose prime factors are less
than N¢: indeed each of its prime factor belongs to K, which implies
that n belongs to it also. Here we use the fact that we are looking
for a quadratic residue; a similar proof would not work in the case of
quadratic non-residues. As a consequence, Z > c¢(¢)N for a constant
c¢(e) > 0, which in turns implies that the number of elements of P that
are not more than Q = N4 is finite. But what if we go upto N ? We
simply use this result with N* instead of N and /4 instead of . ¢ oo
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And what if we were to consider non-quadratic residues modulo non
prime ¢ 7 If ¢ = ¢q1q2 where ¢; and ¢o are coprime, and every integer
< N¥¢ is a square modulo ¢, then the same property holds also for ¢;
and ¢o. Let us restrict the problem to squarefree moduli ¢. Start from a
set S of S moduli ¢ such that every integer < N°¢ is a quadratic residue.
The set P of prime divisors of every elements of S contains at least
(Log S)/Log 2 elements and is bounded by the theorem above. This
implies that S is also bounded.

6.6. And what about quadratic residues ?

The situation concerning prime quadratic residues is much less satisfac-
tory and we are not able to prove that there exist such a prime less
than the conductor, even if we are to admit a finite number of excep-
tions! (Elliott, 1983) and (Puchta, 2003) prove results in this direc-
tion. In this precise case, they are all a consequence of the Bombieri-
Davenport Theorem 2.3. Let € > 0 be given. Consider the set Q of
moduli ¢ < Q = N/2=¢ and such that there exists a primitive real
character y, satisfying

Vp <N, xq(p)=-1.

We take for (u,) the characteristic function of those primes in [v/N, N]
and use Theorem 2.3. We get

2 2
Log\/ﬁ‘ Z 1‘ —i—Z Log(\/ﬁ/q)‘ Z Xq(p)‘ < 2N Z 1.
VN<p<N 9€Q VN<p<N VN<p<N

After some shuffling, we conclude that |Q| < 1/e. Hence, apart from
a finite number of exceptions, for every primitive real character modulo
g < Q, there is a prime p < Q?*¢ such that Xq(p) = 1.

Note here that a smaller bound (namely Q'*¢ instead of Q*¢) follows
from the beautiful result of (Heath-Brown, 1995), though with a larger
set of exceptions. We state this result for completeness.

Theorem 6.8. Let X(Q) be the set of primitive quadratic characters of
conductor < Q. Then for every € > 0, we have

> S x| < (V@ 4 @)Y fual?
XEX(Q) n n

where Zb denotes a summation restricted to squarefee integers.
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We continue to develop the theory in the general context of chapter 1
with a view to an application in the chapter that follows.

Sometimes, a partial treatment of the bilinear form is readily available
in the form of

(7.1) V(&) € €, HZWZ‘

2
’ < ZMZ|£’L|2 + (Z |£z|nz>

for some positive M;, and n; (here again, M; is generally an approx-
imation to ||}||?). This leads, naturally, to the definition of a mized
almost orthogonal system. With such an inequality at hand, the proof of
Lemma 1.2 leads to the inequality

2
12 P -G+ Ml + (i) >0,

When using it, we shall take for ¢} a "local approximation" to f in a
sense to be made precise later on, but it already implies we can assume
[fl¢f] to be a non-negative real number. It is also readily seen that
the &’s minimizing the R.H.S. are non-negative. Finally, we are led to
choosing these ;s so as to minimize

2
1912 =2 6] + 3 + (S oms)

We handle this optimization using calculus by setting & = (2. Easy
manipulations then allow us to conclude that there exists a subset I’ of
I such that & =0if i € I\ I’ and

[fle;] — Xn; _ > jer nilflesl/m;

(7.3) Viel, &= Pl AN
M; 1+Zjel,n?/mj

provided that

(7.4) viel, [flei]/ni > X.

With these choices and hypotheses, we infer the bound

@5 P X1 g ) > M
Jer el

However, determining optimal I’ is difficult: the condition (7.4) is com-
plicated by the appearance of the contribution from the index ¢ on both
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sides. It is easier to set
[fle;] = Y,

(7.6) i = 7

for a Y to be chosen but which guarantees & > 0. The optimal Y is of
course Y = X. Next we note that we could add a general innocuous term
> &i&wi j to (7.1) and still follow the above reasoning. Continuing in
this direction, we see that it is enough to start from (1.1), but to choose
the weight &; given by (7.6), where this time the n;’s are to be chosen!
Of course the above discussion tells the user when to use such weights,
how to choose the n;’s as well as which set of moduli to select (namely
take the indices 7 such that & > 0).
Here is the theorem we have reached:

Theorem 7.1. Suppose that we are given an almost orthogonal system
in the notations of definition 1.1. Let f be an element of H and Y be
a real number > 0. Let (n;); be a collection of complex numbers. Set
& = ([flef] — Yn;)/M; for each i. Then we have that

D OMGP +2YRY ni& — Y &&wiy < |If1P
i 5 07

With n; = 0, this is lemma 1.2.
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We now turn towards another way of using the large sieve inequality
in an arithmetical way, here on prime numbers. This application comes
from (Ramaré & Schlage-Puchta, 2008). A exposition in the French
addressing a large audience can be found in (Ramaré, 2005).

8.1. Improving on the Brun-Titchmarsh Theorem

We prove the following result:

Theorem 8.1. There exists an Ng such that for all N > Ny and all
M > 1 we have

2N
(M + N)—7n(M) < TogN 13

As we remarked earlier, (Selberg, 1949) shows that the constant 2 +
o(1) in the above numerator is optimal, if we are to stick to a sieve
method in a fairly general context.

It is thus of interest to try to quantify the o(1) in 2+ o(1). The first
upper bound of the shape 2N/(Log N + ¢) with an unspecified but very
negative ¢ is due to (van Lint & Richert, 1965) though (Selberg, 1949)
mentions such a result around equation (6) of this paper, albeit without
giving a proof. (Bombieri, 1971) gave the value ¢ = —3 and (Montgomery
& Vaughan, 1973) the valuec = 5/6. In section 22 of “lectures on sieves”,
(Selberg, 1991) gives a proof for ¢ = 2.81, a proof from which we have
taken several elements. The treatment we present here leads to a value
of ¢ that is slightly larger than 3; it is further developed in (Ramaré &
Schlage-Puchta, 2008) where the value ¢ = 3.53 is obtained.

In our problem, we select an integer f that will be taken to be 210
at the end of the proof and consider the characteristic function w of the
points in [M 4 1, M + N| that are coprime with f. This being chosen,
our scalar product on sequences over [M + 1, M + N] is defined by

(8.1) lglh] = > wn)g(n)h(n).
M+1<n<M+N

We need very refined estimates concerning this scalar product, and this
is the subject of next section.
We write p = ¢(f)/f to simplify the typography.
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8.2. Integers coprime to a fixed modulus in an interval

We study here the quantities

9; (u) = ryrjgﬂr?l Orgnz1£1u< Z 1-— px),
z€R  y<nsytw,
(n,f)=1

0F (u) = 1- .
=g (3 1-pm)
zeR y<ny+tz,
(n,f)=1

In order to compute these functions, we need to restrict both x and
y to integer values. This is the role of next lemma.

Lemma 8.1. We have

HF(U):%ﬁl(l{u‘%ﬁ( Z 1—pk>, Z 1—pu>,
0<k<u LH1<n<lt+k—1, C+1<n<l+[u],
- (n,f)=1 (n,f)=1

07 (u) = max < > 1—plk- 1))
k<utl C<n<lk—1,

(n,f)=1

The function 9? 18 a non decreasing step function which is left contin-

uous with jumps at integer points. The function 6’; 18 MON-INCTEasing
continuous : it alternates from linear pieces with slope —p to constant
pieces. The changes occur at integer points. Both are constant if u > f§.

Proof. We start with 0:. First fix y. The function 3, ., ., w(n)—pz
is linear non-increasing in = from 0 to 1—{y}, then from 1—{y} to 2—{y}
and so on. Its maximum value is reached at x = 0 or z = k — {y} for
some integer k, thus

+ _ pa—
) =max mas (X w0+ pht ).
k<ut{y} Y<nSlIHE

The condition is increasing in {y} and so is the term that is to be max-
imized. We may take y to be just below an integer ¢, reaching the
expression we announced.

Let us now consider Hf_ . We start similarly by fixing y. The minimum
is reached at z = k — {y} — 0 or at x = u, where k is an integer and the
—0 means we are to take x just below this value. We get H)T(u) equals
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to
rynel[g( min < > wn)+p{y} - k)>, > wn) - pU>-
k<ut{u} y<n<[yl+k-1 y<n<[y]+u
As for the last sum, the worst case is when y is an integer ¢ > 0, getting
(8.2) rggﬂl( Z w(n) — pu).
+1<n<l+u

For the first minimum, we distinguish between k& < [u] and k = [u] + 1
(which can happen only if u is not an integer). If k£ < [u], we may take
y to be integral. If k = [u] + 1, then {y} > 1 — {u} which is indeed the
worst case: we take y = £+ 1 — {u}. This last contribution turns out to
be exactly the same as the one in (8.2). 000

Next we consider the function
(8.3) 0 (v) = max(@?(l/v), —0; (1/v))

which this time is right continuous with jump points at 1/m, where m
ranges integers from 1 to f. Of course, 67 (1) = 0.
Case of f = 210. Here is our function:

1 fo<u<l1

: 16/7 if 10 < u < 13
54/35 if 1 <u<3 _
. 82/35 if 13 <u <17
. 57/35 if3<u<T _
0510(1/u) = 94/35 if 17 < u < 41/2

76/35 T <u<9
79/35 if 9 <u<79/8
8u/35 if79/8 <u <10

8u/35—2 if41/2 <u <22
106/35  if 22 < u < 210

Polynomial approximation to 9;(1)). Starting from a polynomial ap-
proximation to 6} (v) of the form

07(v) = D b <e
0<r<R
for 0 < v <V we infer the upper bound
(8.4) ;) < D b
0<r<R

We build our approximation from Bernstein polynomials, since they
are usually good candidates for approximating a continuous function in
the L*> sense. We let

(8:5) B (x) = (Z) (1 — )k
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Figure 8.1. Graph of 65,

and we consider

(8.6) By = Y Bux(v/V)05(Vk/n).
0<k<n

in order to approximate 63,, on [0, V], where we shall choose V' later on.
But because of the discontinuities, this approximation cannot be closer
than half the maximal jump, that is to say 4(76/35—57/35) = 19/70 =
0.27.... We can recover a part of this loss since we are only concerned
with an upper bound of a nonincreasing function.

8.3. Some auxiliary estimates on multiplicative functions

We shall require some cumbersome estimates for certain multiplicative
functions, and we prefer clearing these questions before entering into the
main part of the proof. To alleviate somewhat the typographical work,
we define

s wm =TT pw =]

-1
plk b plk

L+ prtaw™
(p—1)?
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Lemma 8.2. Let f* be a positive integer. We set p* = ¢(§*)/f* and use
t(q) =1—0(q)/S*. For any real number S* going to infinity, we have

T ’22) — p(Log 5" + k(")) + o(1)
q/@,(g‘)isi*’

with

’Y+Z< Logp Log(1+p1)>+ZLog(p+1)_%

p>2 P T
(k(210) = 1.11537... ) and

*

> wio) = s T (1 i ) 5700+ o)

q/o(q)<S*, pif*
(g,7)=1

Proof.  The first estimate comes from (Selberg, 1991), who follows a
method already used by (Bateman, 1972). We follow closely Selberg’s
proof and get

Nr t 1 * *
Z 0tta) pH( - r+1p+1)>5 +o(57).

doozs, ¢ Pl
(a,7)=1
We conclude by using an integration by parts. 000

Note that the quantities we end up computing are the same as the
ones that appear in (Selberg, 1991), though we have one less to handle.
We define

_(A)? 12 (81)1r (5203)
(8.8) Cr(A) = 51§A 7(01) 225 (35) 1o (33)T 1

as well as

(89) @) =@-1*@+D)* 2 ((p+1) -1 +2p""" +2)
+ 1+ -2)((p+ 1) -1 +p " +1)

The next lemma gives a multiplicative expression for C,.

Lemma 8.3.

¢ (p)
&= ﬂ (p—1)p*(p+1)>+3
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Proof. We start with d3:

777"(53) . 1 +pr+1
Z 0-(53)7"+1 - H <1 + (p + 1)7"+1(p _ 1)>

63|A/(6162) p|A/(0162)

P+ p-1)+pH+1
(p+ 1)+ p—1)

—

p|A/(0162)
Our sum reduces to

I (p+ D) p-D+p 1 +1)(p—-1)
P

plA
leél (1 +prHip — 2))77r(52) (p+ 1) (p—1)
X Z $(61)20(81)27 20 (85)7 1 H G+ p-D+pitl

We continue with ds:
1+pt! P+ (p-1)
5 %g — D+ p+ ) -1 +pt +1
2 1

LA (p+ 1)”1( D +ptiel
1

H (p_|_ 1)r+1(p 1)+2pr+1+2
(p+1)r+1(p 1)_|_p7“+1 +1

5152|A p|5152

plA/6y
Hence C,(A) reduces to

I (p+ D) p-1D+2p"1 +2)(p—1)
p2(p+ 1)1

plA

15 1+p7"+1 )2> (p+ )™ (p— 1D +p +1

2r+2 r+1l(p — 1 o2pr+l 49
o (p+ 1 (p—1)+ 271 +

which reads

I (p+ 1) p—1)+2p 1 +2)(p—1)
p2(p_|_ 1)7‘+1

plA
% cr(p)
R RS
- }1 p _|_ 1)3r+3

OO0
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8.4. Local models for the sequence of primes

8.4.1. Choice of the local system. First, some remarks on what
“sieving” means. Sieving is about gaining information on a sequence
from what we know of it modulo d for several d’s. If one looks at the
sequence of primes modulo d and if we neglect the prime divisors of d,
it simply is the set of reduced residue classes modulo d, which we have
called Uy. Thus, on the one hand we have the characteristic function of
primes in the interval [M + 1, M + N], say f, and on the other hand
the characteristic function @y of the integers in this interval that are
coprime to d for all d < V/N. Notice here that it is enough to restrict
our attention to squarefree d’s.

Recalling what we did in section 1.1, we could simply try to get an
approximation to f in terms of the ¢;’s. However, the study there is pat-
terned for almost orthogonal ¢,’s, which is not the case of the sequence
(¢q)a: if g|d, knowing that a given integer is coprime with d implies it
is coprime with ¢, so there is redundancy of information. It implies in
turn that these functions are far from being linearly independent. We
unscrew the situation in the following way. When d is squarefree, we set

d *
(8.10) P qu: o
where
(8.11) ©y(n) = p(g)cq(n)/d(q)

and ¢4(n) is Ramanujan sum given by
(8.12) cg(n) = Y elna/q) =" tu(q/l).
amod*q Lgq

Verifying (8.10) is easy:

B 1 if p|n
ZM(Q)Cq(n)/¢(Q) = H (1 N {_1/(p -1) otherwise> '

qld pld

To understand better the functions ¢} defined by (8.10), the reader may
consult section 11.8 and in particular equation (11.33).
Here is our set of moduli ¢:

(8.13) {q/0clq) <8 1*(q) =1,(q,f) =1},

where o(q) = > djq @- The reason for this choice will become clear later
on.
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8.4.2. Study of the local models. Note that

fry e pd)
(8.14) olpn] = —/= w(n)cg(n)ey (n).
[q‘q] ¢(q>¢(q/); ()q()q()
We note that when ¢ and ¢’ have a prime factor in common, say d, then
cs(n)? = ¢((n,d))? would factor out: this contribution is non-negative
and we use this fact here. Let A be a squarefree integer coprime with f§.
Write (¢,¢', A) = 6, so that [} |¢h] equals

(8 15)
/ q 2 pN
¢(Q)¢ leq/:zﬁ 5#( ) (?)wﬂﬁ )(h) (W + Ryje,en(M, N, f))
vlq' /s
h|s
where
N
(8.16) RyMN.Hy= Y wn)-
M+1§(;1‘§M+N

The reader will check that the main term (corresponding to pN/[¢, ¢'])
vanishes if ¢ # ¢’ and is pN/¢(q) otherwise. We carry over this change

to the bilinear form qu chpZ‘ 2, which equals to the diagonal term
PN, €412/ 9(q) to which we add

5253 p(€)Es, 6,0 (£ )55153”
= 2 P(61)?¢(92)$(03) Z o(€) o(l)

516203] A (0,5A)=
(f’,fA)
x 37 dd p(08 /Al l'Ss /) (1% 67) () Ruga) (M, N, ).
d|¢s,
d'|0'5s
hl5;

The simplicity of the method is somewhat obscured by the precise han-
dling of R, but this is the price we pay for an improved bound. However
the reader might want to start with A = 1 and bound R4(M, N, ) by
O(1). We may even use what follows in this special case: simply take
R =1and by =2 in (8.17). In the general case, we treat the error term
by invoking say (8.4):

(8.17)  |Rpga(M,N,§)| < 07 (h[d, d]/N) < > by(h[d,d]/N)".
0<r<R
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We infer
- 1 51650 1€51650 |
R < Z b,N~" Z 5 Z 102 103
0<r<R 516253|A $(61)2¢(02)9(3) (LA o(l) o)
(K/,fA):l
x Y dd (px ¢*) ()" (d, d]".

d| sy

d'|0'ss

e

Recalling (8.7), it is straightforward to simplify the coefficient of b, N~"
into

> m(0)ne(5203) D> |€siaaelme(0)[Es 5501 (€)
516203|A (£,5A)=1
(¢j2)-1

1_[ 14+ 2pr+1 +pr+2

1+ r4+1)2
ey TP
The factor that depends on (¢,¢) is somewhat troublesome. We handle
it in the following way: for r = 0, it is equal to 1. Otherwise, let P be
the smallest prime number that does not divide fA. This prime factor
is going to go to infinity, and we approximate the factor depending on
(¢,¢") essentially by 1+ O(P~!). More precisely, we write

-1

H 1+2pr+1 +pr+2

Z €5, 500170 (€)|€5, 550 I (£) +p )2

(00’ §A)=1

pl(e.)

<5 Z Z ’55152pm’777"(pm)‘§5153pm"nr(pml)
p>P (m,pfA)=1,
(m/ ,pfA)=1

<y Zp% Z ’55152pm‘777’(m)‘§5153pm"HT(m/)
p=>P m,m’

The idea here is that the factor s, s,pm forces m to be rather small.
Indeed, anticipating the values of £ in (8.18) and using Lemma 8.2, we
get the above to be not more than

i 2 Z p2r (S/p)2T+2 < i 2 S2T’+2P71
pN "\pN '
p>P
This will give rise to the error term
<£)2 3 (61 (5283) 5 S
r+1 r+1 r
pN 616263|A 0(6152) 0(6153) 1<r<R N P
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which up to a multiplicative constant is not more than
7\ 2 S2r+2‘ b ‘
= 1 —1)2 Z
() Mowrr 3 S
p|A 1<r<R

The factor P! will indeed be enough to control this quantity. Hence,
again anticipating (8.18), we reach

H%:WZ(!? = PNqu AL

by '
+ ) NG Dm0 Y [&ssuelne(26)|sya5e Inr (5)

0<r<R 610203|A €,fA)=1,
(¢ 5A)=1
Z\? S +2|p, |
o (£ 14p 12 27 Pl
o) To? 32 S
p|A 1<r<R

8.5. Using the hermitian inequality

Optimizing in £ is too difficult. We stick to the simplest choice: M; =
pN/¢(q), [fle;l/Mi = Z/(pN), ni = o(q)/d(q) and Y = Z/S.

Z a(q)
8.18 = —t t(q)=1— —=

(8.18) &g N (q), t(q) 5

for a parameter S we shall choose later on.

We invoke Lemma 8.2 to compute »_ 1a)_1 [£5,6,¢|nr(€) with S* =
S/o(0102) and f* = fA. There appear constants in the form of an Euler
product, say &, (f*), which we again approximate by 1+ O(P~1!). In a
first step we reach

2
zZ > (,%N) p?N (Log S + s(f)) +

22* a(q)t(q)
pNS g;l #(q)

Z2b,
-y o ST omo) D H1620)m,(£65)E(6155¢ ), (¢'55)
OST‘SR p 515253‘A (Z,fA)Zl
(€,f8)=1

VA 2 19 S2r+2’br‘

plA 1<r<R
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After some rearrangement, we obtain:

br(sa/N)r-l—l

N/Z > Log S + k(f) +1 — OS%R 1) Cr(A)26, (FA)?
+O(TTa+p™2P™ > Ibnl(s?/N)*!) +o(1)
p|A 1<r<R

And since G, (fA) = 1+ O(P1), we finally reach
br(S2/N)T+1

N/Z—LLogN > %Log(SQ/N)—i—ﬁ(f)—i—l—OgS:R TCEmE C(00/1)?
+O([Ta+p2P™ Y2 1bl(?/N)™*1) +o0(1).

plA 1<r<R

At this level, we send A (and P) to infinity and we are left with finding an
optimal value for S?/N. Tt would be satisfactory to have an expression
for the final constant, but we are not able to reach such precision. In
particular, the b,.’s should not appear in such an expression. We are,
however, able to get numerical results.

Some numerical results:

n|V] S?/N
101.2{0.883 867|2.958 900
40]1.2/0.903 740|2.990 585
60/1.2{0.922 038|3.004 986

100(1.2{0.923 831|3.009 657

100{1.1{0.926 587|3.010 536

8.6. Generalization to a weighted sieve bound

We anticipate somehow the forthcoming chapters. To get similar re-
sults in the general case, we would start from (11.21) with 17 defined
in (11.13). When sieving an interval, |R([/,¢'])| can be bounded by
|L¢||Le|, and some work later, we end up in the situation of a mixed al-
most orthogonal system as in section 1.1. Following the theory therein,
we end up with a weighted sieve bound as in the example above. We
should add that (Montgomery & Vaughan, 1973) (see also (Preissmann,
1984)) already gave weighted bounds, and for instance, (Siebert, 1976)
employed them to prove a neat upper bound for the number of twin
primes, see section 21.3. Note that these weights do not depend on the
used compact set. The path presented here is incomplete in more than
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one aspect, and the main deficiency being that fairly intricate averages
are required, similar to the ones studied in Lemma 8.2, nevertheless, it
does lead to a weighted bound depending on K.



9 Twin primes and local models

We saw in the previous section, and in an extremely simple example,
how local models enter into the game of sieving. Further, we took the
opportunity of exploring somewhat more intricate weights. While doing
this, we missed one crucial fact: the good almost orthogonality bounds
for our local models in the previous chapter come from the simple struc-
ture of the set we are sieving, as will be more evident in Lemma, 19.4.
Technically speaking, the expression for ¢, in terms of additive charac-
ters has ¢(q) summands, while the one in terms of divisors (8.12) has
only 2¢(9) summands. We now give further details in the case of prime
twins, where this feature will clearly show up. A general treatment is
given in section 11.6.

We prove here the following classical result:

Theorem 9.1. The number of primes p in the interval [M, M + N] that
are such that p + 2 is also a prime number is not more than

1 N
(16 + o(1)) H <1 . 1)2> LoZ N

p=>3

where the o(1) denotes a quantity that goes to 0 when N goes to infinity.

This bound is believed to be 8 times too large. The case M = 0 has
seen a number of refinements: using the Bombieri-Vinogradov Theorem
directly reduces this bound by 2 (case M = 0) and further works led to
reduce the 16+o0(1), among which we select the reduction to 7.835+o0(1)
due to (Chen, 1978), to 6.836 due to (Wu, 1990), recently to 6.812+0(1)
by (Cai & Lu, 2003) and even more recently to 6.7992 + o(1) by (Wu,
2004).

9.1. The local model for twin primes
Let us first define our set of moduli:

(9.1) Q ={¢ < Q, g odd and squarefree}.

To each couple (q,d) where ¢ in Q and d is a divisor of ¢, we associate
uq,q the unique integer between 1 and d such that (¢/d)uqq = 1[d]. Our
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local model is then

oy = MDD o
(9.2) @g(n) = ¢2(‘1)qu: o(n + 2ug qq/d)

with ¢9(q) = Hp‘q(p — 2). We take the simplest hermitian product,
namely

flal= D fln)gn).
M<n<M+N,
(n,2)=1

The next step is to evaluate pairwise the scalar products of our local
models:

* *_N(Q)M(ql) c(n U crln wr v /d
il = LADU S S cyn-+ 2wt d)eg i+ 2ug,a )

dlg, n
d'lq’
Qu(d
_ pa)uld) D0 oula/d)d wd /8 > 1.
92(0)02(¢) dlg, d|q, n=—2ug,4q/d[d],
d’\q’ 5/|q/ n/{nE—Quq/’d/q//d/ [5/}

The last two congruences are not always compatible: if p divides ¢ and ¢,
and if it divides ¢/d and ¢’/d’, both congruences reduce to n = 0[p]. If p
divides neither g/d nor ¢'/d’, then the congruences reduce to n = —2[p].
Which means we need p to divide (q/d,q'/d’) or (d,d'). As a result, we
infer that [¢ 7] equals

NM(Q)M((J’)Z T op(q/0)d' u(q'/d")
P2(q)d2(q") 4 s [6,0"]
q, lq,8'|q
&'lq (5,5)|(d,d')(a/dq’ /')

i Qw(Q)U(q) QW(Q/)O-(q’)
+O< oa) o) )

We evaluate the arithmetic part of the main term by plugging the sum-
mations over d and d’ inside: the part of d that divides ¢/(9,d") is freely
chosen, giving 2¢(9)~«((3:0") choices, and similarly for d’ with ¢’. Next a
prime divisor of § and ¢’ either divides both of d and d’' or divides none
of them. Thus there is a divisor, say h, of (4,d’) that divides exactly d
and d’. We have 29(59) such divisors. Collecting these observations,
we readily discover our inner sum to be equal to 2w (@)+w(@)-w((6.8)) go

that we get

o RN L 5u(0)0 () *<2w<q>a<q> 2W<q’>a<q'>)
il = G aa@) 2= .52 05N 50 oald)

dlq,0'|lq’
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When there is a prime that divides ¢ but not ¢/, the main term vanishes.
We are thus left with the case g = ¢/, getting

(9 3) [ *‘ * ] _ 2w(q)N]1q=q’ *<2W(q)U(Q) 2w(q')0,(ql))
' Palbe $2(q) 62(q)  62(d)
Concerning the almost orthogonality hypothesis, we take the easiest way

out: we set M, = 2“9 N/¢y(q) and send the error term into the bilinear
form, i.e. we write

(9.4) 3" &}

with

2 _
< Z Myléq|” + Z §q€q'Ma.q
q 7,9’

240 (q) 29@o(q)
P2(q)  #2(¢)

(9.5) ‘mq,q” <

9.2. Estimation of the remainder term

To handle the error term, we are to compute or at least give an upper
bound for the average

> 1 (9)2°Wa(q)/d2(q).

qeQ
This is standard theory: one possibility would be to first evaluate the av-
erage of the summand above divided by ¢ via the convolution method as
in section 5.3 and then recover the one we are interested in by a summa-
tion by parts. The Levin-Fainleib like theorem presented in chapter 21
as Theorem 21.1 would also suffice: however the summation by parts
would lead to a cancellation of the "main terms", leaving us only with a
O-result of the good order of magnitude, while Theorem 21.2 or the con-
volution method would give rise to an asymptotic expression. We present
an alternative path that also leads only to an upper bound. First, we
prove the following theorem that relies on a theme initially developed
in (Hall, 1974). The best result in this direction is in (Halberstam &
Richert, 1979). Of course, we also extend it to encompass values at pow-

ers of primes. The starting idea is still taken from the celebrated (Levin
& Fainleib, 1967).

Theorem 9.2. Let D > 2 be a real parameter. Assume g is a multi-
plicative non-negative function such that

> g(p)Log (p¥) <KQ+K'  (VQe€[1,D))
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for some constants K, K' > 0. Then for D > exp(K' — 1), we have

d;,g(d) = Log;tlf)(i : d;)g(d) /d.

Proof. Let us set G(D) = >_a<p 9(d)/d. Using Log % < % — 1, we get

D
D)LogD =Y g(d)Log —+ > g(d)Logd
d<D d<D

<DGD)-GMD)+ >  g@)Log(p’) > g0
plz)gévgl €(<D/p”

where we get the second summand by writing Logd = Zp”” dLog(p” )
Finally

> g(@)Log(p) Y. 9@ =>_g) > g(p”)Log(p")

p>2,0>1 ¢<D/p" <D p22u>1
p’<D (tp)=1 p’<D/t
KD
<> ol0(F + )
(<D
from which the theorem follows readily. 000

Once we apply this result, we are again left with getting an upper
bound for the average of u?(q )2“’(‘1 o(q)/(gp2(q)), where we apply The-
orem 21.1. As a result, we get the bound

(9.6) VA (9)/¢2(q) < QLog(3Q).

qeQ

9.3. Main proof

Let f be the characteristic function of the twin primes in our interval.
Note that

(9.7) [fle] = 1*(@)2°@ Z/$2(q)

with Z =", f(n). We apply Lemma 1.2. We have &, = 1%(¢)Z/N, so
we get

CHQZIN < 2+ (Z/NP (X 2°D0(q)/2(a))

<Z+0((ZN'QLogQ)?
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with
(98) G1(Q) =D 2°?/¢a(q)

qeQ

which is evaluated by standard means. We give such an evaluation in
chapter 21. We even consider this very special case in section 21.3 where
we show how the standard sieve bound (that is Corollary 2.1, page 22)
works on this special case. The evaluation of the remainder term comes
from (9.6), and we reach

(G1(Q) - O(N"'Q*Log? Q) Z < N

Nl (P—1)2 og?
9 4171;131)(19—2)L 8 e

We can thus take Q = o(m), improving on the usual proof via Selberg’s
sieve which a priori only allows for @ = o(v/N/Log N). When carefully
studied, a similar improvement is accessible there, as shown in the notes
of the corresponding chapter of (Halberstam & Richert, 1974).

with

9.4. Guessing the local model

We simply exhibited ¢, taken straight from our hat... But now the
proof has been shown to function, some more explanations are surely
called for! As a matter of fact, most of the mystery gets cleared once we
rewrite ¢q(n + 2ug,q4q/d) in a multiplicative form (remember that since ¢
is squarefree, d and ¢/d have distinct prime factors):

cg(n+2ugaq/d)= [ -1 [T 1) [T -1 [ (-1

pld pld plg/d plg/d
pln+2 pin+2 pln ptn
=ulq) [Ta-p JJ(1-p)
pld plg/d
pln+2 pln
so that
N 1
#y(n) = == [T (1= Pl +1 = plyp) H (2= pic,(n)
$2(q) ol

plg
and this in turn implies (recall that |K,| = ¢2(r))

09 > e =11 (1 = _f fﬁg(n)> = |,§r|nlcr<n>

qlr plr




80 9 Twin primes

unveiling at once most of the hidden mechanism! The correcting coeffi-
cient 7/|/C,-| has however still to be explained: imagine we were starting
from 1y, (n) and considered "the solution” (¢} )q, of (9.9). Then we
would discover that each ¢p in fact depend on r. A way to explain the
correcting coefficient is simply to say that, with it, this dependance dis-
appears. But, why does it indeed disappear? One way of explaining
this fact is to say that this function is invariant under the operators J;Z

introduced in chapter 4 (with K = Z), so that (9.9) is simply the Fourier
decomposition. We can however go one step further and precisely point
out where this invariance comes from: we are to have

[e(a) 1| LEflg = [e(d)Lal fla

for d|q, some coefficients (c(d))g, and every time for every function f
that depends only on its argument modulo d. This equation reads

%qq) Z f(a mod d) = 2‘7) Z f(b).

aclly bely

On taking for f the characteristic function of a single point modulo d,
we see that ¢(q)/q = 1/|ICq] is the only choice. As a by-product of this
construction, we see that we can only extend the method to compacta
that verify the Johnsen-Gallagher condition.

9.5. Prime k-tuples

We were looking at pairs (n,n + 2) for which each component is prime.
Extending the problem to k-tuples means looking for infinitely many
integers n for which all the components of (n+hy,...,n+ hy) are simul-
taneously prime. Determining which tuples (hy, ..., hx) should have this
property is a non trivial problem; Notice first that (0,1) is clearly not a
good choice! Here the obstruction comes from what happens modulo 2.
In general the conjecture known as the prime k-tuples conjecture, first
stated by (Hardy & Littlewood, 1922) is that obtructions can only be
local. This warrants a definition:

Definition 9.1. A k-tuple (hy,...,hy) of increasing integers is said to
be a k-tuple of admissible shifts if the set {h1,...,hi} does not cover all
of Z/pZ for any prime p.

The length of such tuple of a admissible shifts being hy — hy + 1, it
is enough to restrict p to be not more than this length in the statement.
For example (0,2,6,9,12) is admissible of length 13.
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An interesting problem is to find as dense as possible such tuples,
where the density is best quantified in terms of the length N = hy —
h1 + 1 compared to the number of primes less than NV, which we denote
exceptionally here by 7(N). (Hensley & Richards, 1974) proved that
there exist k-tuples of admissible shifts of size

N
k> m(N)+ (Log2 6)Log2N

for every £ > 0 and provided N is large enough in terms of €. Note that
the Brun-Titchmarsh Theorem says that k is bounded by 2N/Log N.
If one is ready to believe the prime k-tuple conjecture, such extreme
examples of admissible shifts thus provides us with a lower bound for
the best possible upper bound in the Brun-Titchmarsh Theorem. In
order to avoid to appeal to the prime k-tuple conjecture, it would be
necessary to indeed exhibit specific examples of such tuples, but this is
still beyond the power of nowadays algorithms and computers. As of
today, the best

(Dusart, 1998) has built a 1415-uple of admissible shifts of length
11763, while 7w(11 763) = 1409, but no one has been yet able to produce
a corresponding prime 1415-uple. The reader will find on the site of
(Forbes, n.d.) a list of long prime tuples, for instance:

1906 230 835 046 648 293 290 043 + 0,4, 6, 10, 16, 18, 24, 28,
30, 34, 40, 46, 48, 54, 58, 60, 66, 70
due to J. Waldvogel & P. Leikauf in 2001. It contains 18 primes for a
length of 70, while 7(70) = 19.
Let us mention finally (Elsholtz, 2004) where the reader will find

another application of sieve technique to k-tuple problems, but this time
with a k of size Log N for primes of size N.






10 Handling an additive problem with the
large sieve: a new proof of the three primes
theorem

We prove here the celebrated theorem of (Vinogradov, 1937):

Theorem 10.1.
Every large enough odd integer is a sum of three prime numbers.

The proof we present uses our large sieve setting intensively, both the
large sieve inequality and the notion of local models. The novelty here
is in dispensing with the circle method. Proofs exhibiting such a feature
have already been given by both (Heath-Brown, 1985) and (Iwaniec,
1994) via, if not exactly, the dispersion method, or at least using ideas
derived from it. The first author establishes as a preliminary step an
estimate for the L?-mean of the number of representations as a sum of
two primes, as we do here, while the second one goes directly to the
number of representations of an integer as a sum of three primes. We
use yet another path, though part of the techniques developed here are
inspired by chapter XX of (Iwaniec & Kowalski, 2004).

The proof will unfold in two steps: we first prove the required asymp-
totic for

(10.1) R=> ra(m)* where ro(m)= > A(ni)A(ny)

ni+ne=m

and A(n) = A(n)Fx(n), Fy being a smoothing function described in
next section. The forthcoming proof will show a use of the large sieve
inequality close to that of the Parseval identity. It has already been
partially used in (Ramaré, 1995). The asymptotic for R also implies the
following result.

Theorem 10.2 (Tchudakov, van der Corput, Estermann).
Almost every even integer is a sum of two prime numbers.

We sketch the proof in section 10.6. In the second step we shall prove
the three primes theorem. We shall use a local model for the (suitably
modified) number of representations of an integer as a sum of two primes
and not for the primes. It turns out that both are proportional here, up
to the infinite factor.
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10.1. An approximate Bessel inequality

Let us keep the notations of Lemma 1.2 and consider the following her-
mitian products:

(10.2) (flg) = ZM{l[f\soﬂm
and
(10.3) [f19] = [flg] — {flg) + Z@(f)%cui,j-

Lemma 1.2 tells us that this last one is non-negative, so that we may ap-
ply the Cauchy-Schwarz inequality. When the contribution of the w; ;’s
is indeed an error term, and when (f|f) approaches | f||3 “sufficiently
well”, then [f|f] is small and (f|g) is an approximation to [f|g] for rea-
sonable ¢g’s. This is the key to our approach to some binary additive

problems.

10.2. Some Fourier analysis to handle the size condition

The function F' we use is essentially Fejer kernel and its graph is the one
below.

2x : 1—2x

172 1

Its Fourier transform is given by

104) )= [ F@elas = y/2) (L)

- Ty
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Fourier inversion yields
(10.5) F(z) = / F(y)e(—zy)dy.

We also set Fy(x) = F(x/N). Finally

T 8
® /sin Ty 151
10.6 2 dy = ————
(10.6) /_Oo< 7Ty> Y= 10320

a constant we shall meet at several different places, and which we call
Co.

Of course, this function is nothing special and we could have chosen
any function that vanishes at 0 and 1 whose Fourier transform decreases
fast enough. This smoothing function is introduced to handle the size
condition 0 < m; < N on all our variables. By approximating the
characteristic function of the interval [0, 1] by such functions in the L!-
sense, we could of course dispense with them and produce the asymptotic

for Zp1+p2+p3:N L.

10.3. A general problem

In order not to do twice the same work, let us look at the somewhat
more general problem of estimating

(10.7) R = Z A(nl)ﬁ(ng)uhkaN(k})
ni+no=h+k

where A(n) = A(n)Fy(n) and

(10.8) v = — Zu(ﬂ) Log ¢
0|k
<L

for some L < N and general (up,). We define
(10.9) S(a) => A(n)e(an), U(a) =Y upFx(h)e(ah),
n h

and get the following lemma, reminiscent of the treatment designed
in (Ramaré, 1995):
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Lemma 10.1. For D > 1/2 and not more than (Log L)? for some B,

we have
SHn Y [Ts(e- —>2U (%+%)

q<D amod*q
+ Op(N(ND™! + L) max |U()|(Log N)?).

This lemma is also reminiscent of the circle method, but the reader
should notice that, F (y) having a sharp peak in 0 and decreasing rapidly
as |y| increases, the perturbation y/N in the exponential is a lot easier
to treat than the one arising in the context of the circle method.

Proof. With the aid of (10.8), we reach

R==> u)Logt Y A(ma)A(ng)upFy(ny +ng — h).
<L ni,n2,h
Z|n1+n2—h
We separate variables in Fy(nj 4+ng—h) by using the Fourier transform,
getting

(10.10) R = / F(y)R,dy
where
(10.11)
B - < y(h —ny —no)
R, =— Z w(€) Log ¢ Z A(nl)A(ng)uh6<T>.
<L ni,n2,h
Z|n1+n27h

We now detect condition ¢|n; 4+ ng — h through additive characters:

(10.12) Ligny = 7 Z (na/l) = EZ Z e(na/q).

amod ¥ ql¢ amod*q
Set
L E
(10.13) =y B (f) Log
<L
qlt
We get

o mepen 25w o)
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We propose to restrict this summation to ¢ < D. To do so, we first
notice that |w(q, L)| < (Log L)?/q and then proceed as follows.

> lwle Dl Y S<5_%>HU<E+%>'

D<qg<L amod*q

< (LOgL)2m3x|U(a)| > % >

D<g<L ~ amod*q

2

a Y
S
(q N )
and we bound the last sum by partial summation and the large sieve
inequality applied to sets of points of the form

X={g—%/q§62,amod*q}-

Once this reduction is done, we simplify the remaining w(q, L)’s, for
which the prime number theorem yields

1(q) w(q) Hy—4
10.15 w(q, L) = =—= + O02°'Y D
(10.15) (¢, L) o) ( )
and such an estimate is enough. 000

10.4. Asymptotic for R

Let us set

(10.16) G2 =[] (1 + G _1 1)3> .

p>2

We state formally what we establish here:

Theorem 10.3. For any A > 1 and as N goes to infinity
R = CxGa2N? + Oa(N3(Log N)~4).

From now on, we select A > 1.
First we note that

A(n)==> ud)Logd=— > u(d)Logd— Y  p(d)Logd
dln din din
d<v'N d>vVN

(10.17) = A¥(n) + A°(n)

say. Since u(d) is supposed to vary considerably in signs, we expect the
last sum to contribute only to the error term. Here we follow notations
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of Twaniec. We decompose A(ny) = Af(ng) + A’(ny) in
(10.18) R = Z A(nl)ﬁ(ng)ﬁ(ng)]&(m)
ni1+nz—n3=n4
to split % into R = R + R°.
Discarding R°. We write
(10.19) A(ng) = =) pu(d)Logd
dns

so that Lemma 10.1 applies with h = n4, k = n3, vx = A(n3) and
up, = A’(ng). We choose D = 1/2. To handle the contribution from U,
we use the following lemma from (Davenport, 1937a; Davenport, 1937b)

Lemma 10.2 (Davenport). Uniformly in « and for every positive B,
we have

Z p(h)e(ha)| <p H/(Log H)B.
h<H

This proof contains the innovation due to Vinogradov concerning the
estimation of exponential sums with prime argument through a combi-
nation of sieve method and bilinear forms techniques. We do not prove
this lemma here, as it is way out of our ground. But we note it also re-
quires the use of the prime number theorem in arithmetic progressions,
which we recall below.

Using this lemma, we get

Lemma 10.3. |U(a)| <5 N/(Log N)B.

Proof. We write k = fn and
V) == [ F) Y Y uO(Logela—u/N)en)dy
- n<vN VN<nl<N

while, by partial summation, we have

Z w(€)(Log £)e(Bl)| < %/LogB(N/n) < %/LogB N.
nd<N

The lemma follows readily. 000
This finally yields with B = A+ 3
(10.20) R’ (y) = O4(N3(Log N)~4).
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Treating R*. First, we take the opportunity of this section to state a
result that is so often used in this monograph.

Lemma 10.4 (The prime number theorem for arithmetic progressions).
For every constants B and C and as N goes to infinity, we have

3 Aw) = %(1 + Op.o(1/Log? N)
n<N
n=alq]

for every q < Logc N and any a coprime to q.

We now resume the course of the Qroof and use Lemma 10.1 with
h = n3, k = ny, v, = Af(ny) and uy, = A(n3). We get

——
wt — N M) @e_Y @a_Y 3 -A
RO DS <q N) 5t <q ) 4 0N (Log N) )
q<D amod®q

where D is (Log N)A*3. At this level we can complete S* by S° to
recover S up to an affordable error term, where the reader has already
understood that S* (resp. S”) stands for the trigonometric polynomial
associated to Af (resp. A?).

Lemma 10.5. We have for all ¢ < D

a

a  y\ _ pl@N . 4
5 (%4 %) = MOV k) + 0D 1+ )

Proof. First set Fiy(y) =3, Fn(n)e(ny/N) and write

5(5+ %) 5w = X (Aeetnore) ~ 5L mximetou
The key to this classical evaluation is to use summation by parts with
respect to n. This may be surprising at start because we are trying to
derive a result in (a/q) + (y/N) from one in a/q. But remember this
deviation has been introduced precisely to handle the size condition.
This also means that we use the prime number theorem not only at size
N but also for nearby values. We thus note that

Fn(n)e(ny/N) = / A(t
with A(t) = (F'(t) + 2iryF(t))e yt)/N which enables us to write

(v L) - & Z e(na/q) — DY A@a.
q ¢(q) ¢(q)

n<t
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Here, we simply split the inner summation into the congruence classes
of n modulo ¢q. The n’s that are not coprime with ¢ contribute to

ZLong 1 <w(q)Logt < Log? N

p|q T‘>1
pr<t

while Lemma 10.4 yields
t
Z Z A(n)e(na/q) = gb— Z (ba/q) + O(gN/Log? N)

bmod*q n<t mod*q
n=b|q]

_ tple)
=500 +O(ND™

on selecting B such that (Log N)? > D®. Gathering our estimates, we
reach

(10.21) S <% + %) - %FN@) — O(ND™).

Next we evaluate F. ~(y) in terms of F by comparing the former to an
integral:

F(n/N)e(ny/N) = N/ Je(zxy)dx + O(1/N).

The lemma follows readily. OO
Using the approximation given by Lemma 10.5, we infer that
M 2N 3 27 3
(10.22) Z (—y)*F(y) + O(N*(1 + [y|)/ D).
q<D

We shall use this bound for |y| < Y. The almost trivial bound ‘ﬁg(D) =
O(N3Log N) (by the large sieve inequality) suffices otherwise. This
amounts to

RS - 2 N3LogY N3LogN
mﬁ:N?)/ Py E(—y)dy S 19 +O< + )
N (y)*F(-y) y;)¢(q)3 5 %

in which the choice Y = D is acceptable. We then simply complete the
series in ¢. This ends the proof.

10.5. The local model

Very similar to what we did in 8.4.1, we set

R 1 ()1 ()
(10.23) #an) ==y~ (= F)(n/N)



10.5 The local model 91

where F' % F' denotes the usual convolution. We should expand a bit on
this choice; first, one should note that it is composed of two different
parts, one taking care of the arithmetic modulo ¢ while the other one
takes into account the size conditions. Second, the proper definition of
the first factor should be p2(g)cy(n)/¢(q)? as the reader will discover by
computing the sum over the divisors ¢ of d of this function, a definition
that differs from our choice only by a multiplicative factor. This is
irrelevant as far as the main term for given ¢ is concerned but becomes
important at the level of (10.26) where we have to add all the terms
coming from [pg|py] with ¢’ # g. There, it is best to have 7(¢’) of
constant mean value which explains why we divide by ¢(q) in (10.23)
and not by ¢(q)?.
As in section 8.4.2, we get

wLleon] = %gggﬁ; S cyln)eg (n)(F * F)(n/N)?

and we express both Ramanujan sums in terms of divisors of ¢, ¢' and
n getting

(10.24)
%] % (q)ﬂ(ql) / 1 2
ilen] = DU LLINT quig/d)d uid /d) Y (F x F)(n/N)2.
?(q) o(¢') dC'lIZ' s

For the innermost sum, we have
> (PP 0/NE = [ PP Y (P F)n/N)e(-ny/N)dy
[d,d)|n [d,d|n

and using a comparison to an integral for the inner sum, we find this
integral to be CoN/[d,d'] + O(1), so that

2
% 1y +O(r(g)r(q))

with r(q) = 0(q)/¢(q). This yields for fixed ¢:
p*(@)NCy
¢(q)

Let ¢ be such that the O(r(q)Q@) is not more in absolute value than
cr(q)@. We set

(10.25) [Pgleg] =

(10.26) > lgslemll = +0(r(9)Q).

_ w2 (q)NC,
(10.27) M, = =

0
P +cr(q)Q.
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We further find that for ¢ < Q = (Log N)4, we have by expressing c,(n)
in terms of e(an/q) and F « F'(n/N) in terms of its Fourier transform

ni+ngs=n
11(g < aofa y\
b S [ () @

_ g
(10.28) ==

rali) = d)gq; S ) A(na) (F * F)(n/N)eq(n)
@

From which we infer

(10.29) R— > M, [ra|g;]” = O(N?/Q).

q<Q

10.5.1. Proof of the three primes Theorem. Let N be the odd
integer we want to represent. Set f; the characteristic function of those
primes that are in the interval |@Q, N] (this notation represents the in-
terval of real numbers between Q and IV but where ) is excluded while
N is included) and f(n) = fi(N —n). We define [f|g] as in (10.3) but
with w; j = 0 and with Q = (Log N)1%. First note that

(10.30) rs(N)= > filng)A(m)A(n2) = [f]r]
ni+nz+nz=N

and use

(10.31) [f1ral? < [£1£1[ralra]-

Equation (10.29) tells us that [re|ra] is suitably small. It is easy to see
that [f|f] is < N so that |[f|r2]| is small, namely

(10.32) I[f|r2]] < N?/(Log N)™°

This means in turn that (f|r2) approximates r3(N) sufficiently well. This
leads to a quantitative version of the three primes theorem provided we
compute (f|rg). But this is simple enough: [r2|¢;] is given in (10.28)
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while

Flel = gggz (F  F)(n/N) (n)ey(n)

nez

’“‘? S (F — 1) /N) f1 (n5)cq (N — ng)

n3y€e”Z

¢<Z> 2 < )

amod*q
></OOF2 ZA ng)e < s —i-]%) e(—y)dy

where we expressed ¢,(N — ng) in terms of e((N — n3)a/q) and (F *
F)((N —ng)/N) in terms of its Fourier transform. By now, the reader
should be well acquainted with these techniques. We pursue the proof
by appealing to Lemma 10.5 and finally get

M2(Q)Ncq(N)Cl
b(q)?

(10.33) [£lg] = (1+0(Q™%)

where the constant C is

(10.34) C) = / |F2(y) | F (y)e(—y/2)dy = 0.013688. ..
This amounts to
(flrs) = NCy Y LTt ” +O(N*/Q)
q<Q

and completing the summation in ¢, we end up with

2 _
(1035) (flr) = NC1 ] (1 + ﬁ) 11 ;# +O(N/Q).

p>2 pn P T3
Note, and that is reassuring, that the first term vanishes if N is even.

By (10.32), this expression is valid for [f|rs] which is nothing but r3(N),
concluding the proof of Theorem 10.1

10.6. A slight digression

We sketch here a proof of Theorem 10.2. We are to compute

(10.36) V=3 (ra(n) - N&;(n)(F + F)(n/N)>2
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with
-2 w’(d

(10.37) Ga(n) =Co [ — =0 > ¢((d))

pln p din

p#2 (d,2)=1
and

p(p—2)

(10.38) Cy=2]]>—=.

? pl;[3 (p—1)2

To compute V, we expand the inner square. The first term is 2R while
the third one is trivial to estimate. As for the cross term, we write

§j62 n)(F  F)(n/N) = Cy }: ” E:rg(n)(F*F)(n/N).
d>1 n>0
(d,2)= dn

In the latter expression, we notice that only the congruence classes of
ny and ng modulo d intervene, with notations from (10.1). For large d,
the Brun-Titchmarsh theorem is enough to show that the corresponding
contribution is negligible, while for small d’s, the prime number theorem
in arithmetic progressions applies. The reader will finally reach

(10.39) V <4 N3/(Log N)4

meaning that most of the NV summands are not more than N2 /(Log N)4,
and this in turns implies that for those n’s, we have

(10.40) ro(n) = NSa(n)(F x F)(n/N) + Oa(N/(Log N)A/z)

which is what was to be proved.



11 The Selberg sieve

In this chapter, we first present the Selberg sieve in a fashion similar
to what we did up to now. In passing, we shall extend the Selberg sieve
to the case of non-squarefree sifting sets, as was already done in (Selberg,
1976), but our setting will also carry through to sieving sequences and
not only sets. Furthermore, this setting will enable us to compare the
three different approaches: via the large sieve inequality, via local models
or via the Selberg sieve.

11.1. Position of the problem

To properly set the sieve problem, one needs two objects:
(1) A finite host sequence A; for instance, as was the case upto now
in these lectures, A =[M + 1, M + N].
(2) A compact set I, i.e. a finite collection of well-behaved — see
section 2.1 — subsets Ky of Z/dZ.

The question is then to understand
(11.1) S={ne A |/ Vd<D, neky}

and, in particular, to evaluate its cardinality. We met this question al-
ready at several different places, with ICg = (Z/dZ)* the set of invertible
elements modulo d to reach the prime numbers, and with K4 being the
sets of squares modulo d to reach the (integer) squares.

11.2. Bordering system associated to a compact set

We define here another sequence of sets (L£4)4>1 complementary to (Kg) :
we set L1 = {1} and Ly = K1 — Kpv, ie. the set of elements of
r € 7/p’Z such that o,v_,v-1(x) € K1 but that do not belong to
Kpv. We further define L4 by “multiplicativity”. It is important to note,
and that is different from what happens to IC, that we do not have
Ly = Ly/07 if £|d. Using 14 to denote the characteristic function of A,
our definitions imply that

1, =[] (Lx,,1 —Lk,) = (=1)*D Y " u(d/d)1x,

p¥|ld sd

e, = [[(M=1g, —Tg, = —1g,) = > (1D,

p¥|ld 8ld

(11.2)
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A remark on why one should introduce L: to start with, let us note
that classical sieve expositions stress more on the classes that one ez-
cludes modulo p, than on the classes that are retained, which in our
setting means that the sets £, are defined first, and the sets K}, are usu-
ally not specified. This is so because we usually exclude few classes, i.e.
L, is small while C,, is large. This notion of small and large is in fact
what led to the nomenclature “large sieve”: in the example treated (see
section 6.5), (Linnik, 1941) had to exclude many classes.

Introducing K, allows us to get a geometrical setting, i.e. leads to a
natural definition of 'y — while that of L4 is much less natural — and,
in general, to smoother formulae for the main terms. However, when it
comes to computing error terms, the fact that £; has small cardinality
in usual problems turns out to be extremely effective.

At the end of next section, we explain in terms of information this
change of view point.

11.3. An extremal problem

In our presentation of the Selberg sieve, we consider the following ex-
tremal problems

S =1 A=0 ifd>D
(11.3) . 4 2
Main term of Z Z Ay minimal
M<n<M+N “d/nekq
and
A =1 , A=0 ifd>D
2
(11.4) Main term of Z ( Z )\d> minimal.
M<n<M+N Nd/neLy

We switch from one problem to the other using (11.2) :

w(d))\ Z )\ﬁ ’ Z m d/ﬁ w(d) M

(11.5) dje ¢d
Yo o= Z AL
d/neLy d/neky

Solving the first problem is very easy because K is multiplicatively split,
and is performed via the diagonalization process of Selberg. Indeed, we
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write

2
£y _— Byt
ST N) - X AN X o
M<n<M+N “d/neKq4 d1,d2<D ME%SM—I—N
nEMdy,da]

E )‘El )\(ﬁi X [d1,d2) |N + error term
di,do<D 1% dis dy]
1,02

Set p(d) = |K4|/d and let h be the solution of 1/p = 1 % h as in (2.5).
We then have

dy,d
S0 AN T S ), ) () (01 )

d17d2<D d17d2<D
2
_ Zh@( T A2p<d>) .
<D gld<D

We comment on the above relations: first we note that any two randomly
chosen integers have a small ged, so that we indeed reduce the difficulty
by exchanging lem with gcd; the next problem is still the fact that d;
and do are linked and the introduction of A is a key idea to separate
them fully. Pursuing the proof, we define

(11.6) yg= Y Nop(d)

qld<D

and recover the )\Z’S from the y,’s by

(11.7) PNy =Y nlg/d)y,

d|g<D
which enables us to establish that

(11.8) 1=>" M= o)y,
d q

We minimize the quadratic form Y h(q)yZ subject to the condition (11.8).
On using Lagrange multipliers, we see optimal? 1q's should all be equal

to 1/, h(d) ie. 1/G1(D).

1Equaduion (11.6) may be seen as a linear system expressing the y,’s in terms of
the (\%p(d))’s. This system being in triangular form, the (A\%p(d))’s are uniquely
determined in terms of the y,’s. The reader will check that the RHS of (11.7) verifies
this system, and hence, is equal to )\gp(d).

2When h(q) vanishes, the corresponding value of y, has no influence whatsoever;
the corresponding Ay will always appear with coefficient h(g), The solution y,; we
choose is the one that yields uniform formulae.
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Gathering our results we infer (see also (18.2))
(11. 9)

T Z q)/G1(D) and Mg = (—1)*DG4(D)/G1(D).

q<Q/d

From the information theory point of view, going from ()\g) to (A\g) may
be explained by the following remark : when writing n € Kp», we forget
we already know that n € K,,—1 ; Removing this redundancy leads to
(Ly) and to (Ag). The reader will perhaps appreciate Lemma 2.2 better
now. The L.H.S. is Gl(D))\g while the R.H.S. is its expression in terms
of the A\y’s. Indeed this was how this lemma was invented.

Note that Lemma 2.3 tells us simply that |Ag| < 1.

As for the cardinality of S (defined in (11.1)), we directly get

\S!éZ( > A2>2:Z< 3 Ad>2

n<N d/nEICd n<N d/nelld
2
+ (S 1edinal)
d

Going from ()\(ﬁi) to (Ag) is thus extremely immportant to reducing the
error term, thanks to Lemma 2.3. Now (11.10) improves on Corollary 2.1
in that the Johnsen-Gallagher condition is no more required.

In (Selberg, 1976) and (Motohashi, 1983), the reader will find another
exposition and in (Gallagher, 1974) closely related material.

Three last remarks are to be made:

(11.10)

(1) We do not require K to be squarefree.

(2) We do not require K to satisfy the Johnsen-Gallagher condition,
contrarily to what happened in Corollary 2.1 or Theorem 2.1 .
But we had access to a large sieve extension, while this result
provides us with no such extension.

(3) All of what we do is valid when sieving an arbitrary sequences
A, like the sequence of primes. This only alters the definition
of p as exposed in chapter 13. Again this is not the case of
Theorem 2.1.

11.4. More on compact sets

Let IC be a multiplicatively split compact set. We set

d
(11.11) Ya(n) = mﬂfcd(n)
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where the coefficient d/|KCg| will yield smoother formulae®. We have

(11.12) Ya(n) =Y 4i(n)

qld
with
(11.13) dp(n) =Y p(q/8)5/|Ks|.
dlq
nekls

It will be better to replace the condition n € K4 with n € L4, which we
do via (11.2) and get

(11.14) Uan) =Y (=1)*WH((,q)
net,
with
(11.15) H(t,q) =Y 1(g/8)8/Ks].
|dlq

Note that H(1,q) is simply the function h(q) we defined in (2.5) and
that we did in fact already meet this function H(¢,q): Lemma 2.1 may
also be written in the form

(11.16) Ga(Q) = H(d,q).

q<Q
dlq

11.5. Pseudo-characters

(Selberg, 1972) introduced the notion of pseudo-characters, a notion that
has proved to be most efficient in the context of log-free zero density
estimates by (Motohashi, 1978). We show here that they differ from our
, s only by a multiplicative factor.
To do so, we follow closely chapter 1 of (Motohashi, 1983) and we
start by translating his notations into our context:

— Function 0 used therein and defined in (1.1.17) is in fact 6(q) = |KCq|/q.
— Function ¢ defined by (1.1.18) and (1.1.21) is given in our notations

by g(q) = H(1,q) = h(q).
— Function A, defined by the equation following (1.2.3) is 1x,,.

3For the reader who went through chapter 4: if IC satisfies the Johnsen-Gallagher
condition, we have Jg(wq) = 14, where J is associated with the host compact set
(Z/dZ)4. The decomposition given in (11.12) is simply the one coming from (4.12).
See section 9.4 for a more detailled argument. But even without knowing that
Jg(wq) = )4, such an identity holds since it is proved by purely combinatorial means.
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From these remarks, one easily recognizes on using (11.13) from here
and (1.2.3) from Motohashi’s work that our two functions, the one that
Motohashi calls a pseudo-character and our 17, are in fact multiples of
each other. But since this coefficient depends only on ¢, both notions
have the same efficiency.

The reader may consult (Graham & Vaaler, 1981) for related material.
The short paper (Elliott, 1992) shows clearly, on the example of prime
numbers, how to use these pseudo-characters to produce a sieving effect.

11.6. Selberg’s bound through local models

Our aim here is to show that one can derive a bound of the same strength
as (11.10) through yet another method relying on what we termed “local
models”. This last method will show clear connections between the study
of additive problems as in section 10 and this sieve method. It is a
generalization, though with a weaker remainder term, of what we did
with the Brun-Titchmarsh inequality in section 8.1.

We restrict our attention to sieving intervals, for simplicity. So our
host sequence is [M + 1, M + N] and the scalar product on functions
over this interval is given by

(11.17) gl = > gmh(n).

M<n<M+N
Let us look at the bilinear form associated to the sequence (v]),<q
(defined by (11.13)):
2

(11.18) ‘ = S el
q,9'

> &t
q
On using (11.14), we infer that

(1119)  gheg] = Y (D) OH(L (- HC ) Y 1.

Z|q neLy

K/Iq/ nel:el
The last sum is to be computed, but the reader should note that the
condition does not in general reduce to n € L 4 as it would if £ were
replaced by K. To express this sum, we introduce a notation from (Sel-
berg, 1976):

1 if ! = !

(11.20) e(0,0') :{ I E) = wp(0) =)

0 else.
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A moment reflection will reveal that

[Wylvyg] = ()OO H (e q)H (e l) Y1
;}Z, n€Le)

which becomes

%qj(—nw“w“/)ﬂw, DH (., )=(0,0) (% + R
g

where R([(,£']) is O*(|Lys,¢]). The main term (i.e. the term containing
N in factor) vanishes if ¢ # ¢’ and equals Nh(q) otherwise. So we get

(11.21) v —NZ|5q|h )+ > e, O)R([6,0) 2z
2,0

with

(11.22) 2= (1O gH(L,q).

g

This study being over, we can turn to sieving questions and apply
Lemma 1.2. Here f is the characteristic function of the set S we wish
to count (defined in (11.1)). Denote its cardinality by Z. First check by
using (11.13) that

(11.23) [flg] = WMa)Z

so that Lemma 1.2 gives us
2z2
(11.24) Z gy < 2T 2 s OR( L)z
0.0
with &, = Z/N. This value of &, gives

(11.25) 2= (—1)“(@% > H(t,q) = (-1)*DZGy(Q)/N.

a/tlq
We then use |R([¢, £'])] < |Le||£5] and (—1)*“VGy(Q)/G1(Q) = A¢ to get
(11.26) 7 < Gﬁ[@) ZGl (Z \Ee!W!)

This is to be compared with (11.10): it is slightly weaker since the
coefficient ZG1(Q)/N may well be > 1, though not by much. Modifying
the value of &; to take care of the remainder term as in Theorem 7.1
would improve on this part.
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11.7. Sieve weights in terms of local models

If we look carefully at the way Lemma 1.2 is proved, we see that we
approximate the characteristic function f of the set we are interested in
with

(11.27) S = 2w
q q

On the other hand, the Selberg process as we exposed it introduces the
weights

(11.28) SN = Zkﬁﬂfcd

d/nelcd

We now express 1y, via (11.11) and (11.12), getting

S %= S i = Yeim S

d/neky qld q qld
We readily check that

(11.29) 3 “fld‘Afl =1/G1(Q)
d/qld

hence we almost recover (11.27):

(11.30) ST N=Y"r/G1Q)

d/nelCd

The miracle here is that, even though (Z/N)3_, 17 has been invented
to approximate f, it turns out that it also majorizes this function point-
wise, provided we change the first coefficient from (Z/N) to 1/G1(Q).
Note that (11.30) in the case of primes appears already in (Selberg,
1942), and (Selberg, 1943) and is in fact at the origin of what is now
known as the Selberg sieve! It appears under the definition

(11.31) Z #la)

q<Q
where only the correcting factor (N/Z or 1/G1(Q)) is missed. Such a
function has also been exploited in (Selberg, 1942), (Motohashi, 1978),
(Heath-Brown, 1985), (Goldston, 1992), (Goldston, 1995), (Friedlander
& Goldston, 1995), and in (Vaughan, 2003) among other places, but
it is generally associated to what is sometimes known as a Ramanujan
expansion as in (Hildebrand, 1984) and not to the notion of local models
as we have introduced them here. In the above mentioned works, the
function A is approximated by Ag and contribution of the difference
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A — Ag is shown to be negligible in a proper average way. One can work
directly with (10.17) and replace this Ag by Af, provided we modify
slightly the bound over d there from d < v/N to the more general d < Q.
Indeed, we have

(11.32) AHn) == p(d)Logd = Y w(g, Q)cy(n)

din q9<Q

d<Q
where w(q, Q) is defined in (10.13) and evaluated in (10.15). We obtain
such an expression on using (10.12). This function A¥ may well be a
better approximation than Ag in some circumstances.

11.8. From the local models to the dual large sieve
inequality

Now that we have found a link between the A;’s given by Selberg sieve
and the 1;’s obtained from the point of view of local models, we shall get
the bound given by Selberg’s bound through the large sieve inequality
provided the Johnsen-Gallagher condition (2.4) is satisfied. In passing,
this will extend the argument of (Kobayashi, 1973) to the case of non-
squarefree compact sets. Roughly speaking we proceed by expressing the
function ¢y in terms of additive characters modulo ¢. Recalling (11.13),

we see that
Zuq/ ,,C,(Z > elne/d)e(—cb/s))

cmod §

which we modify as fOHOWS'

Z,u q/5 Z Z Z (nc/l)e(—cb/P)

beIC E\é cmod™*¢
:Z Z <Zu (q/9) Gl Z e(—cb/ﬁ))e(nc/ﬁ).
llg cmod*¢

05lq beks

In the innermost sum, only the value of b modulo ¢ is required. On
the Johnsen-Gallagher condition (2.4), a value modulo ¢ yields |KCs|/|/C¢]
values of b in K5. Next the summation over ¢ of u(q/d) is 0 if £ # g, so
that only the value £ = ¢ remains. We have reached

(11.33) gy = Y (y/c—l\ 3 e(—cb/q)>e(m/q).
cmod*q q bek,

And of course, the coefficient that appears here is simply the Fourier
coefficient of ¢ ... Let us call this coefficient 1,(c/q). Note, however,
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that we have required condition (2.4) to recover this expression. We then
have

(11.34) Z( > AZ)QZZ

n d/neky n

2

ST ST dule/a)elne/a) /Gi(Q)

q<Q cmod*q

where the reader will recognize the dual expression to the one studied
in the large sieve inequality, i.e. (1.19). The bound there thus applies,
yielding

ma S X N4) s+ X Gl

n d/neky q<Q cmod*q
Now,
R 1
cmod*q 7 prek 9 dlq bb €Ky

by using once again the Johnsen-Gallagher condition. Since ) h(q) =
G1(Q), we have proved that

2
(11.36) (X %) v ra@
n d/neky
namely the Selberg sieve bound for an interval through the large sieve
inequality, provided (2.4) holds. This time, the error term is already
evaluated and we do not have to worry whether A; is bounded by 1 or
not.

We have thus recovered Gallagher’s bound via the large sieve inequal-
ity. (Motohashi, 1983) gives a more extensive treatment of this kind of
material but avoids the Johnsen-Gallagher condition. He does not get
any large sieve extension, while our method gives one, but he extends
the result in another direction. So, the problem of finding a large sieve
extension to the sieve bound in the case of a compact set that does not
satisfies (2.4) remains open. The reader may object that such compact
sets are not common in practice; it would however enable us to gather
our results in one single inequality.

Finally (Huxley, 1972b) draws on the same circle of ideas. In particu-
lar, in the case of a squarefree sieve, this author gets essentially (11.33),
but starting from the weights ), IneLy Aq instead of starting from ¢y as
we have done here.
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The previous chapter contains an expansion of ), A\glz,(n) as a lin-
ear combination of additive characters, simply by combining (11.30)
and (11.33). The theme of the present chapter is to expand similarly
the sieve weights

(12.1) Bic(n) = (Z Adnﬁd(n)>2.
d

This is indeed what is done in the case of primes in (Ramaré, 1995)
and what is rapidly presented in a general context in (Ramaré & Ruzsa,
2001), equation (4.1.21). Such a material is used in (Green & Tao, 2006).

We assume throughout this chapter that K is multiplicatively split
and verifies the Johnsen-Gallagher condition.

12.1. Dimension of the sieve

Up to now we have avoided to provide a general scheme to evaluate
the G-functions appearing in the Selberg sieve and only drove such an
evaluation in special cases. This is to encompass usual situations when
the sieve is said to have a dimension k > 0, i.e. when we have

(12.2) > (1= |Kyl/p) Logp = kLog X + O(1)
p<X

as well as the general case, for instance the one appearing when sieving
squares as in the proof of Theorem 5.4. If (12.2) is verified and the sieve
is squarefree, then Theorem 21.1 yields

(12.3) G1(z) = C(K) Log" z + O(Log" ! 2)

where C'(K) is a positive constant. We refer to (Halberstam & Richert,
1974), (Gallagher, 1974), (Iwaniec, 1980) as well as (Rawsthorne, 1982)
for more details concerning sieve dimensions. We quote furthermore the
paper (Vaughan, 1973) where the reader will find more difficult evalua-
tions of G1(z).

We will simply follow the convention to say that the sieve has dimen-
sion k whenever (12.3) holds.
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12.2. The Fourier coefficients

We now define for a¢ prime to ¢ what will be our Fourier coefficients,
namely

2
wlafa) = Jin 3 3 (5 %) etna/a

n<Y “neky
NN
12.4 = = b/q).
(12.4 > Gy Y e
ql[d1,d2] bellay,dy]

We shall also require the following (rather ugly) function:

(12.5) p=(q,0) = > (1)),
q19293=9/(6,9)
(a1,42)=(q1,93)=(q2,q3)=1
max(q1930,q2q39) <z
Note that p,(¢,6) = 1 when ¢§ < z and vanishes when /qgd > 2
(since max(q1qs3,q2q3) > \/q/0). Moreover we check that [p.(q,d)| <
3@(4/(5:9)) . The reader should also notice that, though this function is
intricate enough in its definition, it is universal: it does not depend on
the set IC.
A third definition is required:

(12.6) wh =" h(8)p:(q,6)/G1(2)?
where h is defined in (2.5) (see also (11.15)).

Lemma 12.1. We have

w(a/q) =Y e(ab/q)wh/|K,|.

beK,
Proof. From (12.4), we infer
Ny A Yhex, elab/g)
§ : 17%d2 beky
frg ,C _—
w(a/Q) [dl, dQ] ‘ [dl,dg]‘ |qu|

ql[d1,d2]

 Sher, elab/a)

12.7 =w
(12.7) K,
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say. Replacing M by its value, we get

G1(2)*wh = Z |d1’d2 Z Z p(ly/dy)p(tz/da)

ql[d1,ds] Kiar o)l dh|01<z do|la<z
dy.d
> X %u(fl/dnu(@/da
01 0a<z dy |0y dally | (d1502)
q|[d1,d2]
i.e.
=Y h@) Y, Y ul/d)u(la/dy) = h(8)p:(a,0
<z l1,02<z §|d1|t1 0<z
8o
q|[d1,d2]
with

S Y wl /Aty /ds)

0G06<2/6 di|t},d2|0)
a/(8,9)|[d1,dz]
and we now evaluate the inner sum by multiplicativity to recover our
definition above. Its value is 0 as soon as there is a prime p which divides
¢} or ¢4 but not q/(d,q). Let then p be a prime such that p@||¢}, p®||,
and p°||q/(d,q) with ¢ > 1. We check successively that the value of the
inner sum is 0 if ¢ < max(a,b) — 1, or if ¢ = max(a,b) > min(a,b) > 1
Its value is 1 if ¢ = max(a,b) > min(a,b) = 0 and —1 if ¢ = a = b.
We can thus write ¢ = qiq3, ¢4 = qo2q3 with ¢/(0,q) = qi1q2gs and
(q1,92) = (q1,93) = (g2,93) = 1 and the value of the inner sum is
(—1)¥(®) . This justifies the definition of p, in (12.5). S0

If we have a sieve of dimension k, then recalling (2.7) we reach
Gl = Gi(2) + O (3D (G1(2) - G1(2/9))

which we combine with (12.3) to infer

(12.8) Gi(z ) =1+ (’)(3“’(‘1) (Logq)/Logz), (q<2).
Uniformy, we have the bound
(12.9) |G (2)wh] < 349,

this being a direct consequence of (12.5)—(12.6).
To conclude this part, we consider ), e(ab/q). First as an easy
application of the chinese remainder theorem, we readily discover the

bound
3 e(ab/q>1 < LW - 1K),

beky r’llq

(12.10)
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Next if ¢/M = a/q with (a,q) = 1, then note that

(12.11) ’Z e(ch/M) = Z (ab/q).

bek v bGK

12.3. Distribution of (¢ in arithmetic progressions

We assume K is of dimension x. We further assume that
(12.12) P — K| < cp”5

for some ¢ > 0 and £ € [0,4[ which implies (see (12.7), (12.8) and
(12.10))

(12.13) |G1(2)w(a/q)] < g7/

We then get by using additive characters

e(ab
> ( 2 Aﬁ) (na/q) = —Zbé’jjcq(‘ D, o

n<X “neky
e(ab X
_ X Zbelcq ( /Q)+O<z2+ V4 )
NP [K,1Gr (=) Log -

the last equality coming from (12.8), (12.10) and (12.12). As an easy
consequence and recalling (12.1), we get

_ Xher, (2 AV )
(12.14) n;{ Br(n) = 1)K, +O<z K G (=) Logz )’

n=b|q]

12.4. Fourier expansion of (i

In order to have a confortable setting to evaluate > Bx(n)F(n), where
O is defined in (12.1), we seek another expression of Gk as in (Ramaré,
1995). Note that

:( > Ai) thh% Ky (70)-

d/nek, d1,d2
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We now express the inner characteristic function by using additive char-
acters and get

)\ﬁ )\ﬁ
)= 30 %8S fan/linda) Y el-abfan, da)
dy,do 1, %2 amod [dy,d2] beK dy ,dy)
)\ﬁ )\ﬁ
_Z dy dz Z > elan/q) ) e(—ab/q).
’ q|[d1,d2] amod *¢ bEK 4y ,do)

Recalling (12.4) we see that we have reached the fundamental identity

(12.15) Z Z w(a/q)e(an/q).

g<z2 amod *q






13 The Selberg sieve for sequences

The setting we developed for the Selberg sieve enables us to sieve
sequences even if the compact set K is not squarefree, though it will still
have to be multiplicatively split. The adaptation is easy enough but we
record the necessary formulae and detail some examples.

13.1. A general expression

Let (un)nez be a weighted sequence, the weights w,, being non-negative
and such that ) u, < 4o00. Let K be a multiplicatively split compact
set. We assume there exists a multiplicative function ¢f, a parameter X
and a function RE& such that

(13.1) > uy = o*(d)X + R
neky

We assume further that of is non-negative and decreases on powers of
primes (a likely hypothesis if one conceives of o(d) as being a density),
which translates into o(¢q) > o%(d) whenever g|d. Equivalently, we as-
sume the existence of o and R, such that

(13.2) > up=0o(d)X + Ry
nely

but the non-increasing property on chains of multiples is way less obvious
to state. Switching from (13.1) to (13.2) is readily done through (11.2).

There comes
(-1)“Dg(d Z wu(d/d)o
sld

ot(d) = Z(—nw@a(a).

sld

(13.3)

All the analysis of section 11.3 applies, except we are to change the
definition of our G-functions. First h is the solution of

=> h(q)

qld

(13.4)

(compare with (2.6)), that is to say

1 1
(13.5) 1) =TT (7~ 7 2°

p”||é
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Proceeding as in section 11.3, but with p = of, we get

X
(13.6) Zun < eNE) + Z Ady Ady Rjay do)s
nes dy,d2

with S defined by (11.1). Notice that we still have |[\4| < 1 as in the
simpler case of intervals.

13.2. The case of host sequences supported by a compact
set

The two main types of sequences that we want to sieve are the sequence
of prime numbers, and the one of polynomial values :

(13.7) A={F(n)/ne[M+1,M+ N|}.

In both cases, the host sequence is supported by some multiplicatively
split compact set. That is U for the sequence of primes, which further
verifies the Johnsen-Gallagher condition (2.4); and in fact (Z/dZ), in
the case of polynomial values! The polynomial intervenes in that our
compact is of the shape (F‘l(K&))d: we want n such that F'(n) belongs
to K}, for all d’s below some bound.

This latter compact is wilder than it seems and does not in general
verify the Johnsen-Gallagher condition: with F' = X2, and K’ = 1 + U,
the class 0 modulo p lifts to only one class modulo p? while all others
lift to (p — 1)/2 classes when p # 2.

We shall treat an example with the sequence of prime numbers. This
sequence is carried by U, so that in our definition of L4, we could restrict
our attention to invertible classes, or replace L4 by L3Ny, as is apparent
from (13.2).

We shall comment on the problem of sieving the sequence of primes
with a non-squarefree sieve that would sieve out many classes in sec-
tion 13.4.

13.3. On a problem of Gallagher

Let us explore and generalize a problem of (Gallagher, 1974). This will
give us background information for next section, an example on how to
treat the remainder term in Selberg sieve as well as an unusual applica-
tion of Theorem 21.1 that we prove in the appendix. Our generalization
depends on two parameters: an integer £ > 1 and a polynomial F' with
integer coefficients. These two parameters being fixed, we consider the
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set defined as follows

K'(p,F) ={F(n)/ F(n) =ay+ap+...,
(13.8) with0<a,<p-—1, a,#0ifv <k
and n € [M +1,M + N|}.

In the aforementioned paper, Gallagher established the upper bound

(13.9) [{n<N /Vp#n, neK'(p,X)} <1+ 0(1))2% (k!)? -

Log® N
by using Corollary 2.1. We examine now the case F = X? -2 and k = 2.
We seek an upper bound for

(13.10) {n < N /¥p# F(n), F(n) € K'(p,F)}|.

Our compact set K is defined by split multiplicativity: modulo p”, it is
F~Y(K'(p, F)) taken modulo p”. First, we need the cardinality of K,
for which we find that

|’C2| = 15 |IC4| — 2,
Kol = — 2, |Kp2| = p* —3p+3if p= +1[8),
1Kol = p, |Kp2|:p2—p+1 if p = +3]8].

Before proving this point, let us recall that 2 is a square modulo odd p
if and only if p = £1[8].

Proof. We only handle case p > 3. If 2 is a quadratic residue modulo p,
then one should avoid its two square roots. If 2 is not a quadratic residue,
then no classes are to be avoided modulo p. Let us turn to what happens
modulo p? and consider (a + bp)? — 2 = a? — 2 + 2abp with 0 < a,b < p
and where a® — 2 is prime to p. If a is prime to p, then 2abp takes any
value divisible by p by choosing b properly. If a = 0 then by noting that
—2=(p—2)+p(p—1), we see that any lift of a is allowed. 000

For higher values of v in p”, there are no further constraints. We
infer from the above that

[La| =1, [L4] =0,
1Lpl =2, |Lp2| =p—3if p=+1[8],
|Lp| =0, |Lp2| =p—1if p=£3[8].

The cardinality of |£,~| vanishes when v > 3. Let us call D (resp. D’)
the set of squarefree integers whose prime factors are all = £1[8] (resp.
= +£3[8]). The error arising from use of (13.6) in our problem is not
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more than
2 2
(Z w) S< > d2d32W<d2>> < (QLog’ Q).
d<Q A BE<Q
d1,d2€D,(d1,d2)=1
d3eD’

As for the main term, first note that
A =1, [h(8)] =0, 2

2 p°—3p :
h(p)| = ——, |h(p?)| = if p = £1[8],
o) = 0. |h(p?)| = P~ =2 if p = +3[8].
|h(p)| = 0, |h(p7)] PR if p 8]

We evaluate the G-function by appealing to Theorem 21.1. We note
successively that

2Logp1
p1<Q
plgil[g]

that

(p2 — 3)p2 Log pa ]
= (1+o0(1))5 Log ,
P s AR A

pQEi 1 [8}
and finally that

S = DLosps (o)) /G

2

—p3+1
22<Q b3 — D3
ng:I:l[S]

On collecting these estimates, we find that k = 3/2. Let us define
C = [1,>3 Cp where Cj, is given by

13/2 p2

1-—- ————  when p = £1[8],

C, = ( p> p*—3p+3 8
1 p?

1-—- ———  when p=+£3[8

( p> p?—p+1 8

so that, by taking Q@ = v/N/(Log N)*, our cardinal defined by (13.9) is

no more than
2/ N

(140
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13.4. On a problem of Gallagher, II

We continue to explore the preceding problem. Let k£ > 1 be a fixed
integer. We consider again

K(p.X) = {n/n=ao+aip+ ...
with 0 <a, <p-—1, al,;réOWhenu<k:}.

While evaluating the cardinality of the L.H.S. of (13.9) in the case F' =
X, one may remark that all n belonging to the set we are interested in
are prime numbers: we can thus sieve the sequence of primes instead
of the one of integers. But a problem arises while controlling the error
term. We are required to bound

1£q|N
(13.11) S Logp - ) '

q<Q'p<N
PELy

by N/(Log N)k*! at least, when Q = N%_a. This does not follow in an
immediate way from the Bombieri-Vinogradov (see Lemma 13.1 below)
theorem because |£,| is large. Roughly speaking, the reader will check
that if ¢ = q1¢3q3 - --q’,j with the ¢;’s being squarefree, then |L,| is of
order q%qg . --qlljfl. Splitting the remainder term into a contribution

from each residue class and applying Hélder’s inequality, we reduce the

problem to bounding
N \/B N\ VA
<Z 1£,|P max Z Logp——— ) (Z max Z Logp——— )
q<Q Uy p<N o(a) q<Q Uy p<N o(a)
p={[q] p={[q]

with A=! 4+ B~! = 1. In the summation containing B, we use the Brun-
Titchmarsh Theorem to dispose of the part depending on the primes. By
taking A to be large and B very close to one, the Bombieri-Vinogradov
Theorem (see Lemma 13.1) would allow us to prove the first factor to
be not more than a power of Log Q if only |L,| were just smaller, or if

B =1 were allowed.
This tantalizing problem is open.

13.5. On a subset of prime twins

Our aim here is to give an upper bound for the number of primes p not
more than NV that are such that p+2 is a prime, while p+1 is squarefree.
The compact set K we choose is defined by split multiplicativity: for
prime p, K, is Uy, N (U + 2) while IC,2 is the set of invertibles that are
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not congruent to —2 modulo p and not congruent to —1 modulo p?. For
higher powers of p, KCpv is defined by trivially lifting KC)2, and so will be
of no interest. This yields
{|’C2| =1, |[K4| =1,
Kol =p—2, [Kpe| =p(p—2) —1=p* —2p—1if p>3.
But now the host sequence is that of primes p weighted with a Logp
each so that

(13.12) o(d) = |Kal/6(d)

Of course L4 N Uy has at most one class (class —2 modulo p and class
—1 modulo p?), implying that the error term

’ﬁd N Ud‘N
(1313) Ry = Logp — ———+—
2 5
pEL MUy

may be controlled by

Lemma 13.1 (Bombieri-Vinogradov). For any B > 0, there exists an
A >0 such that

max Imax

y<N amod*q
q<Q

0 N 0 B
5 Loy ¢(q)'<<N/<LgN>

p=alq]

for @ = VN/(Log N)4.

Note that this "lemma” contains Lemma 10.4. By taking B = 2, this
yields

Z [ Ad; My Rpay )| < N/(Log N)?
dy,d2<D

provided D? = /N /(Log N)#. As for the main term, we check that
h(2) =0, h(d) =1,

1 p—1
h(p) = ——. h(p?) = i

Theorem 21.1 applies with x = 1. We finally get

fp>3.

Theorem 13.1. The number of primes p < N that are such that p+ 1
s squarefree and p + 2 is prime does not exceed

2
p—2p—1 N
4(1 4 o(1)) | | 5 5
05 (p—1)2 Log*N

as N goes to infinity.
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This bound is 4 times larger than what is conjectured but the main
point here is that this bound is indeed smaller than the one one gets for
prime twins (see section 21.3) by a large factor, namely

—2
21‘[%:3.4%...
et






14 A general overview

It is time for us to take some height and look at what we have been
doing from farther away. The first approach, through the large sieve
inequality, relied on an arithmetical rewriting of

Yo > IS/l (S(@) =) ue(na)).

q amod*q

This rewriting did in fact handle the sum W(q) = Y_, noa+q [5(a/q)[* as
one single term, and we tried to maximize it in the subsequent analysis.
More precisely, whenever (u,) vanishes outside of a given compact set,
we prove a useful lower bound for this quantity.

Viewing W(q) as some kind of norm (the norm of a projection onto
some subspace) makes it plausible that W(q) is also the scalar product
of S by some function, namely the orthogonal projection of S on the
proper subspace!. This is precisely what our local models g are for: to
provide a good approximation to this “projection”. The case of primes
is most telling: in essence, Corollary 2.1 relies on

(14.1) Wig) > 9D 50)2

if (uy) is carried by U up to at least ¢, while with ¢} (n) = u(q)cy(n)/¢(q)
defined in (8.11), we get

* /’L2(Q) 2
(14.2) [(un)leg] 20 1S(0)]".
This is how local models enter the game. Note that the local models we
introduced for the sums of two primes also take care of the size of the
elements, so, using algebraic number theory terminology, they take care
of the local contribution not only from the finite places, but also from
the one at infinity.

The third viewpoint is then to try to reconstruct (u,) from these
local models, and that is exactly where the Selberg sieve comes in. We
consider C' ) ¢ Pq With some coefficient C', and we say it ought to be an
approximation of the characteristic function of our set. This scheme is
also the one followed to build the function A¢ (see (11.32)) for the primes
and is further implicit in the work of (Huxley, 1972b). But an additional
uncalled for event happens here: by changing slightly the coefficient C,

IThe reader who went through chapter 4 would recognize W (q) as being
[Ug—q(2q(£))||Z, the surrounding compact set being (Z/dZ)4.
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we discover that we can arrange matters so that C' Zq (g is exactly 1 on
the set S we want to detect (use (11.13) and Lemma 2.1 with d = 1).
It is expected to be of small size on the complement of S, so, following
Selberg, we replace C' " ¢ Pq by its square and get an upper bound for
the characteristic function of §. This is the third aspect.



15 Some special weighted sequences

Upto now, we did not investigate precisely what happens at the place
at infinity. We introduced some Fourier transforms in chapter 10, and
we already saw some expressions frequent in this area of mathematics in
section 1.2.1. We expand all these considerations in this chapter, and,
inter alia, shall provide a proof of Theorem 1.1.

The approach we follow here is due to Selberg to prove the large sieve
inequality; in particular he built the function f_; /5 given below but it
turned out that Beurling had already achieved such a construction in
the late 1930’s without publishing. This explains why this function is
now refered to as the Beurling-Selberg function.

The reader should consult the paper of (Vaaler, 1985) (see also (Gra-
ham & Vaaler, 1981)) and of (Holt & Vaaler, 1996) on which we will rely
heavily. Let us note finally that the generalisation of Theorem 1.1 which
we provide in Theorem 15.2 appears to be novel, as well as its corollary,
Theorem 15.3.

15.1. Some special entire functions

Let v > —1 be a real number. Following (1.16) of (Holt & Vaaler, 1996)
we set

2I'(v + 2)

(15.1) ku(2) = (0, 2) = (2/2)" Ju41(2)

_ (=D)™(2/2)*"(v + 1)
(15.2) —Zn!(y+1)...(u+n+1)’

n>0

where J,41(2) is the Bessel function of order v + 1. Let us quote the
following properties of k, from (Holt & Vaaler, 1996):

Lemma 15.1. The function k, is even (k,(—z) = k,(2)). Its growth is
controlled in vertical strips by the estimate k,(z) = O (exp(|Sz|)) while
on the real axis we have

k,(2)? <, |k, ()] < (v+1)exp(z?/(4(v+1))) (z € R).

(1 + |z[)> 43’

Finally, we also have

+oo
/ ky(x)?|z|* T lde = T(v + 1D)I(v 4 2)22+2.

—00
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By a "vertical strip", we mean a set {z € C,a < Rz < b} for some
finite a and b.

Proof. Only the second bound is non obvious but derives easily from
the Taylor expansion (15.2). 000

We deduce the following Theorem from (Holt & Vaaler, 1996):

Theorem 15.1. There exists a real entire function ¢, such that

{ﬂy(z) = O. (exp{(2+¢)|Sz|}) for any € >0,
|sgn(z) — by(z)] < ku(2)?  (z€R).

Case v = —1/2 gives rise to the so-called Beurling-Selberg func-
tion. The reader will find an explicit expression for the functions implied
in (Vaaler, 1985), together with a full presentation of the interpolation
side of the problem.

Proof. ~ We quietly read the proof of Theorem 1 of (Holt & Vaaler,
1996), with £ = 0. Equations references here refer to equations of this
paper. We conclude that

51/('2’ 0, 1/77) = E,,(O, Z) - ku(oa Z)Z’

t,/(Z, 0, 1/77) = E,,(O, Z) + ku(oa Z)z,

uy (0,1/7) = [%_ky(0,2)?de =T (v + 1)['(v 4 2)222,
on reading (5.5), (5.6) together with the comments around these equa-
tions in (Holt & Vaaler, 1996). Note that s,(z,0,1/7) = S(z) and
ty(2,0,1/m) = T(z) for the proper space. The functions A, and B, are
defined in (1.13) and (1.14) while the functions k, and ¢, are defined
just before the proof of Theorem 1. In particular

K,(0,z)
v\Y, = 7= 0 K, (0, = B,(2)A, - A, (2)B,
ki (0, 2) K00 "0 2) (2)A4,(0) — Ay(2) B, (0)
where the latter comes from (3.5). But B,(0) = 0 while 4,(0) =1, and

B,(z) Tw+1)

K,(0,2) = - 22 J,u1(2).
0.5 = 22 =T 01y 5,00 0)
We find that K,(0,0) = 1/(27(v + 1)), so that
20(v + 2 v
00,9 = 22 (00 g (2)
as announced. RN

Note that
sinx sinxz — xcoszx

koja(e) = ——, and kijp(2) = B3
both having value 1 at z = 0.
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15.2. Majorants for the characteristic function of an
interval

Let € > 0 be a real number that is fixed upto the end of the next section.
Eventually, we shall let € go to 0.
We consider here

1 ifM—-—e<ax<M+N +e,
(15.3) xX(x)=<1/2 ife=M—eorz=M+ N +e¢,

0 ifx ¢ [M—e M+ N +¢€
where M and N are two non-negative real numbers. This is the function
for which we seek a well behaved majorant, where what well behaved

exactly means will be clear from the proof below.
Let us set

(15'4) fu(z) = gu(z) + ku(z)z
and next define b, (z) by
(152, (z) = f,(2mé(x — (M —€))) + fL(2nd(M + N + € — z)),
= 2x(2) + [ (2m6(x — (M — €))) — sgn(2mé(z — (M —¢)))
+f,2m0(M + N +¢e¢—x)) —sgn(2nd(M + N + ¢ — x)).

By Theorem 15.1, the function b, is an upper bound for y (which implies,
in particular, that it is non negative) and verifies for z in C

by(2) = O (exp{md(2 + ¢)|3z|}) for any e > 0.

This bound expresses the fact that b, is of exponential type 2mwd. It
holds also for z"b,(z) (h non negative integer), a function that is in
L1(R) N L2(R), both results provided 2v + 2 > h.

Lemma 15.2. Let v > —1. Let R be a polynomial of degree < 2v + 2
and o € R/Z. We have, if |a| > 6,

> " R(n)b,(n)e(na) =0,
nez

Furthermore
—+o0

> R(n)b,(n) = / R(t)b,(t)dt.

nez o

Proof. We write R =Y 7, X". The Poisson summation formula gives

Z R(n)b,(n)e(na) = Z Z rpb™ (m — )/ (2im)".

nez meZ h
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Every term on the R.H.S. vanishes when |a| > § by the Paley-Wiener
Theorem and our remark that n"b,(n) is of exponential type 2w when
h <2v+2. 000

15.3. A generalized large sieve inequality.

Let us start with some preliminary material on polynomials. Let Q) €
C[X] of degree < 2v 4+ 1 and define Q*(X) = Q((X — M + €)/N).
Lemma 15.2 yields

—+00

> Q@ (n) Q() y(Nt + M + €)dt
ne”z
= [ e dfw*(z /. ool + @G |)

- N/ Q(t)dt + O0* (67 'p,(Q,275N)))
0

say, where p,(Q, ) is an upper bound for

400
| Rw(ewo +a-nsg) )
We define further
(15.6) Q' (x) = lgnlz™" when Q(= thx
h

The following lemma provides us with a manageable upper bound for

Pu(Q,8).

Lemma 15.3. We have p,(Q, &) < p,Q°(€) where
1 +o0

b 12 h h
— )" + (1 —¢)"*|dt.
Pv = 0<h<21/+1 o iy () ( V'l

Moreover p’, < 3 (2v+2)2v+2 fory > —1/2 and more precisely p{1/2 =1.

Proof.  To give an upper bound for p,, note that [t" + (1 — t)?| <
(14 22+ max(|t|?*+1,1) if h < 2v + 1. Using Lemma 15.1, we get

P < %’:VH{Q(V +1)%exp(1/(2(v + 1)) + (v + DI'(v + 2)22u+2}.

It is then easy to numerically verify the upper bound, since we can
control what happens for large v by using

D(z) < V2rz(z/e)® exp(1/(122)), (z > 0).
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see (Abramowitz & Stegun, 1964) equation (6.1.38). As a matter of
fact, we have the stronger bound p’, < $(2v +2)>*2 for v > 1/2 and
Pli s2 < 3.6 000

Let us now set

M+N M+N
(15.7)  Sg(a) = Z an@*(n)e(na) = Z an@ <n ;VM> e(na).
n=M

n=M

The following theorem generalizes Theorem 1.1, which we recover on
taking v = —1/2 and Q = {1} since the previous lemma gives p[1/2 =1.
1

Theorem 15.2. Let Q be a finite set of polynomials of degree < v+1/2

and orthonormal for the scalar product fol Py (t)Po(t)dt. Let X be a §-well
spaced set of points of R/Z. We have

Z Z [Sq(@)* < ||S||2(N+5 ! Z QI’(27T5N)2).

QeQreX QeQ

In this Theorem, € is taken to be 0 and p,"/ is defined in Lemma 15.3.
Proof. We have

M+N
2= 3 Y lse@P = Y an Y0 3 Sal@@ (m)ena)
QeQreX n=M  QeQuzeX

to which we apply Cauchy’s inequality. We get

SESIEY Jbu(n) D D S0i(#)Sa,(1)Qi()Q5(n)e(n(x — y))
nez Q1,Q2€Q z,ycX

which is not more than

1SN S S ISg@) + 6 pr(ZrSQ Q' wv))

QeQzeX reX QEQ

We use Cauchy’s inequality on the inner square and get

5 < ISIB{N +07 3 @ enony?)
QeQ
as required. Note that Q has cardinality at most v 4+ 1. We finally let €
tend to 0. OO

IThe reader might wonder why we have N here instead of N—1 as was announced.
This is because our interval is slightly different, from M +0 to M + N instead of from
M+1to M+ N.
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15.4. An application

One may wonder whether this result is stronger than the classical large
sieve inequality or not. Well, in fact, it is essentially equivalent, at least
if 276N is bounded below away from 0, and for the following reason.
First, it contains this inequality; on the other side, the modifications
introduced by the @Q* enables us to localize n essentially in intervals of
size N/(v + 3/2). However, one could first split our interval in smaller
pieces and we apply on these the classical large sieve inequality; we get
this way bounds of the same strength as the one above. Nonetheless,
this inequality has some interesting consequences, as we shall see below.
For Q, we can take a modification of the Legendre polynomials:

1 dam Im
We have
(15.9) Lo=1, L1 =, Ly= (32> —1)/2, L3 = (52> — 3z)/2.

Restricting our attention to v = 1/2, we readily get the following The-
orem, which generalizes Corollary 2.1.

Theorem 15.3. Assume K is multiplicatively split and verifies the John-
sen-Gallagher condition (2.4). Let f be the characteristic function of
those integers of the interval [M, M + N| that belongs to K, for all ¢ <

Q<2VN. Weset Z=Y_, f(n). We have
Z+ ‘Z(zﬁn - 1)f(n)

Proof. The proof is straightforward and only varies from the one
of Corollary 2.1 in that we use Theorem 15.2 with v = 1/2 instead
of Theorem 1.1 and use the set Q defined in (15.8). Our hypothesis
Q< 2v/N ensures us that 276N > 2, so that

> Q@@rON)? <1+ (1+23)° =5
QeQ
The reader will easily draw the required conclusion. 000

2
/Z < (N +20Q%)/G1(Q).

Compared to Corollary 2.1, we lose the factor 20, a fact that is irrel-
evant for most applications, but gain the term ‘Zn(%” — )f(n)‘2/Z It
contributes if the un-sifted elements (the n’s with f(n) = 1) accumulate
more on [0, N/2] or on [N/2,N]|. For the Brun-Titchmarsh inequality,
it means that we could beat the constant 2 if such a case were to hap-
pen ...
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Similar type of results have recently been studied by (Coppola &
Salerno, 2004).

15.5. Perfect coupling

The proof above has several interesting features, but a main one is to
provide us with a weighted sequence that is perfectly behaved in arith-
metic progressions: the sequence (b,(n)) is a majorant for the sequence
of integers in the interval [M, M + N] and verifies

Zb Je(na/q) =0 if (a,q) =1land 1 <qg<1/6

ne”z
so that, if we set B =) _,b,(n), we get
(15.10) Vg<ds ', D by(n)=B/qg
ne”z
n=c[q]

where the main feature is that no error term occurs. By taking v large
enough, we can also be sure that b,(n) decreases rapidly enough. Con-
cerning its derivative, the Paley Wiener Theorem ensures that the de-
rivative of f,, defined in (15.4) is indeed bounded in terms of v, so that

(15.11) b, ()] <, &

Such an inequality proves that b, does not vary much over intervals of
size not more than §1.

We shall see in the next chapter how such a weighted sequence may be
used to considerably simplify the study of the hermitian product derived
from a local system.






16 On the difference between consecutive
primes

In this chapter, we show how the perfectly well distributed weighted
sequence (b, (n)), built in the preceding chapter can be used to simplify
the analysis of the hermitian product stemming from a local system.
We show furthermore that the key point of Bombieri & Davenport’s
proof concerning small differences between primes is in fact contained in
Lemma 1.2 and 1.1.

16.1. Introduction

Small differences between primes are a choice subject between additive
and multiplicative number theory. To show this difference is infinitely
often equal to 2 is nothing else than the prime twin conjecture. We
consider here a much more modest aim and show that (p,+1—pn)/ Log pn
is infinitely often < 0.5 and even a bit better, where (p,,) is the sequence
of primes.

The prime number Theorem tells us that there are asymptotically
x/ Logx prime numbers up to z, so that the mean difference is Logz,
which implies that (p,+1—pn)/ Log py, is infinitely often < 1+¢ for every
e > 0.

We set

. . oDnt+1 — Dn
(16.1) A; = liminf Loz,

In 1940 Erdos was the first one to go beyond A; <1 in (Erdds, 1940)
by showing that A; < 57/59. He of course did not use the Bombieri-
Vinogradov Theorem (which was proved only in 1965). This result has
then been improved upon, in (Rankin, 1947) and then again in (Rankin,
1950) by plugging in sieve results. A further improvement was achieved
in (Ricci, 1954) where the inequality A; < 15/16 is proved. The second
major step is due to (Bombieri & Davenport, 1966) which establishes
that A; < 0.467, this time using the Bombieri-Vinogradov Theorem.

(Huxley, 1973) started another round of improvements by introducing
combinatorial arguments. In 1977, he finally got Ay < 0.443.

This part of the story ends up with (Maier, 1988) who employed his
now famous matrix method and improved all previous results by an e™”
factor. In particular A; < 0.249.
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(Goldston et al., 2005) is a major breakthrough in this area. Meth-
ods used therein are not foreign to what is exposed here but are overall
too new and shifting to be part of this book. The reader will find several
preprints on the Arxiv server.

We prove here that A; < 1/2 by using the setting developed till here.
In particular we do not require any circle method. It would be an easy
task to improve on this bound, and we indicate in a last section how
to achieve this. Note that if we were to avoid the Bombieri-Vinogradov
Theorem, the base method developed here would yield A; < 1, that
could also be improved into Ay < 1. This time only the prime number
theorem in arithmetic progressions would be used so that we could get
effective results and even explicit ones. Furthermore, the simplicity of
the approach renders it usable for a large variety of sequences.

Throughout this chapter we shall use

(16.2) s=2][a-(-1)7? |, Hp >

p>3 2<p\J

16.2. Some preliminary material

Lemma 16.1. There exists a positive constant cy such that every interval
of length at least co/d(q) contains at least a point a/q with (a,q) = 1.

Proof. Let I be an interval of length ¢/¢(q) in [1,¢]. Fix some u >
0. The number of points divisible by a prime factor > ¢" is at most
14 ¢'"%¢(q)~! and the number of such primes it as most 1/u. Thus the
number of points in I that are coprime to all the prime factors of ¢ less
than z = ¢“ for a small enough w is, by Brun’s sieve (Theorem 2.1 of
Chapter 2 of (Halberstam & Richert, 1974), on taking x = b = 1 and
A=0.1), at least

2, #(q) 1- 1 1 ¢(q)
16.3 —|[|—= —(1 “ > —|I|—=
(16.3) 311 . A +a"¢(a)™)/u= S| .
when ¢ is large enough, say ¢ > qg, and u small enough. When gq is
small, there is at least one such point in [1,¢]. Hence the result with

co = max{¢(q),q < qo}- 000

Lemma 16.2. We have

Sl > glm)e(ma/q)

amod*q' 1<m<M

2

> (1-O0(M?/¢(q) Z lg(m
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where the constants implied in the O- and >>-symbols do not depend on
g nor on q.

Proof. Put S(u) =) .,,<a 9(m)e(mu) and set 6 = co/¢p(q) the value
given by Lemma 16.1. We then have

[S(a/q) = S(u)| < 2rlu—afql Y |mg(m)|

1<m<M
and thus
1S(a/g)” > |S(W)* = 4rlu—a/ql > |mg(m)]_ |g(m)].
1<m<M m

Integrating this inequality yields

5 o a/q+6/2 5 2
S/l =67 [ il du - 2msni (Y lgtm))
a/q—6/2 1<m<M
from which the result follows easily. 000

16.3. The actors and their local approximations

Let 2J + 2 be the minimum of p’ — p when p’ > p > N: we are required
to bound J from above. Let K be an integer which we assume prime in
the range % Log N < K < Log N. The simplest application will take
K ~ J. We also assume N large enough, and in particular K # 2.

For each j € [1, K|, we consider

Log(n + 2j) if n+ 2j is a prime in € [N,2N],
0 else,

(16.4)  f9(n) = {

as well as f =) i f (9). We shall approximate these functions modulo ¢
by

(16.5) 09 = 1195, 9=1V/b(n)

where b(n) = b_y5(n) is described in the previous chapter, at the level
of equation (15.6), related to the parameter 6 = Q2. We shall chose
the parameter @ later on: it regulates in (16.8) below the size of the
sifting set on moduli. This weighted sequence is introduced so as to

have (16.10). Since having a proper majorant at the end point of the
interval [N, 2N] is not important, we take e = 0 and find that

> b(n) =b(0) = N + Q.

ne”z
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To gpgj), we also associate (see (8.10))

. 2')
16.6 () = HDE(n+2) o
(16.6) wg " (n) o) (n)
We further set
(16.7) g = Z <p((1j)*.
1<j<K

We have just been talking about approzrimating but we still have to
specify for which norm ... A gap we fill in the next two subsections.

The hermitian product. Our main local system is given by (¢})4ec0
for

(16.8) Q={q<Q,p*(q)=1,q# K,2K}.

The parameter @ can be taken as VN / Log? N for a sufficiently large
A; this is the level to which we shall sieve and is forced by our use of the
Bombieri-Vinogradov Theorem (see Lemma 13.1). If in this theorem,
one could reach moduli till QY say, with 6 > 1/2, then we would get
Ay <1 — 6 by following our proof (or Bombieri & Davenport’s original
one). We take simply Q@ = v/N exp(—+y/Log N), to avoid having to see
which power A we will need choose. This gives rise to the hermitian
product

(16.9) (hlg) =Y _[rle;llale;]/[es] 23]
qeQ

as in (10.2), since

(16.10) ilenl =0 (Ya#d <Q).

Such a relation of course simplifies a great deal of our work. Since we
could dispense with it in this proof, it cannot be considered as being
essential. The reader should however keep in mind when dealing with
such a problem of this possibility. Looking back on the way we initially
proved Theorem 1.1, we see that the factor \/F(n) in (1.8) had exactly
the same role.

We need an apriori lower bound for [ |o7].

Lemma 16.3. When q € Q, then K3[p}|ok] > N/¢(q).



16.3 The actors and their local approximations 133
Proof. Let us remark that

2
a6 il = 3 gi‘i))

(16.12) :ﬂ 3 ‘ 3oe 2a]/q‘ .

amod *q 1<j<K

cg(2(7 = k))(N + Q%)

When ¢ > ¢K for a large enough ¢, then Lemma 16.2 yields the result.
When g < cK, we restrict the sum over a to a = 1. We have

S cl2k/a) = e(2/g) L CRD

Stk e(2/q)

which is at least 1/q if ¢ f 2K so that K?[@¥|pr] > N/¢(q) in this case.
The case ¢ = 2 is readily worked out. Note that for ¢ = K or ¢ = 2K
(forbidden by our definition of Q), the above norm indeed vanishes. ¢coo

Replacing f9) by its local approzimation (cpg])) . The main Theorem

on which the proof really relies is the following one. In its proof, we show
that the Bombieri-Vinogradov Theorem enables us to approximate f()
by its local approximation (go((l] ))q. The proof then splits into two parts:
showing that the hypothesis of this theorem are met (what we call apriori
estimates), and computing the resulting arithmetical expressions, a part
that is tedious but with no real difficulties.

Theorem 16.1. Let (ay)qco be a sequence of complex numbers, with
log| <290, We have

Z Oéq - (pq ‘(pq]

qeQ

< N/Log'® N

uniformly in j < K.
Proof. We first check that
O = LD S ok) ST Log(n + 2))v/6(n)

¢(q) bmod g n=blq|
n+2j€P

_ M9 > cgla+2k—25) > Logm/b(m — 2j)

amod q m=alq|
meP

by setting m = n + 27, and b + 2§ = a. If we were to approximate here
the sum over m by N/¢(q) when a is prime to ¢, then we would require
such an approximation for all @ modulo ¢: the Bombieri-Vinogradov



134 16 Small gaps between primes

Theorem would not be enough to conclude. We can however reduce this
approximation to essentially a single progression as follows:

[F9)e Zd Z Z Logm /b(m — 2j)

amod gq, m=alq]
a+2(k—j)=0[d] meP

(16.13) = %Zdu(q/d) Z Logm ~/b(m — 2j).
Vg m=—2(k—j)[d]
meP

So for every d having some prime factor in common with 2(k — j) (that
is, for all d # 1’s when j = k), the contribution from the sum over
m is very small, in fact O(Logd), while otherwise we may approximate
this sum by N/¢(d). The overall error term thus introduced is bounded
via the Bombieri-Vinogradov Theorem (see Lemma 13.1; removing the

b(m — 2j) is no problem because j being small enough, the deriva-
tive of the function is properly controlled by the fact that @ is small,
see (15.11)) by O(N/Log!" N). As for the main term, it is

w(q)N T du(q/d)

ol o ¢(d)
(d,2(j—k))=1
which exactly equals [gpgj)|gpgk)*]N/(N + Q?), as expected. 000

16.4. Computation of some hermitian products
We first establish an apriori upper bound for [f( )|g0((1k)*].
Lemma 16.4. We have ][f(j)]cpgk)*]\ < 2O N/p(q).

Proof. We use (16.13) and the Brun-Titchmarsh inequality to get

Dl |<< ZdN/¢ ) < 2@ N/¢(q)

as demanded. OO0

We next compute the required scalar products (f@)|f).

Lemma 16.5. Uniformly in 1 < j < K, we have (fO|f) = (2 +
o(1))KN.
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Proof. We write
(FOLF®E) =S FD eI f P z] /0505
qeQ
in which we first replace fU) by gpgj ) by using Theorem 16.1. Hypothesis

are met by appealing to Lemma 16.3 and 16.4. As a second step we

replace f*) by go((lk) and reach

(FOUE) = S [P lelleh” 1031/ e l5] + O(N/ Log® N).
qeQ
We sum this expression over k£ and reach
(PO =D [0 105] + O(N/ Log” N).
qeQ

Now we have as in (16.11)

Summing over g, we readily recognize

(V+Q) (Y8 -k +0@Q " + K1)+ G(@Q)
k#j

where the O(K 1) is here to take care of the condition ¢ # K,2K. Next
write

) — 1
(16.14) S(j—-k =6 dzk @
(d,2)=1

. 1
2.80-h=8 ) 7 2

k#j d<K, k=jld],k#j
(d,2)=1
1 K
_ - 1)) = (2 1))K.
S 3 @ q TOm) = o)
(d2)=1

The lemma follows readily. OO
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16.5. Final argument

We take for K the largest prime not more than J, where 2J + 2 is the
minimum of p’ — p when p’ > p > N. Due to the smoothing b(n),
Lemma 1.2 simply reads

(16.15) (fLE) < [f1S]-

We continue by expanding [f|f]: the products [f@)|f®*)] vanish by hy-
pothesis when k& # j. On the L.H.S., since we are able to compute the
relevant products by Lemma 16.5, we show that they do not vanish, and
thus this will force J to be small enough. More precisely we have

(16.16) > 2KN+ Y $NLogN< Y (1+0(1))NLogN
1<j<K 1<j<K 1<j<K

from which we infer that 2K < (3 + o(1)) Log N as required.
Let us sketch a method for improving on this bound. Take K some-
what larger than J but still < 2J. The same inequality gives

2K?N < (1+0(1))KNLogN + > LogpLogyp'.
lj—k|>J N<p,p’'<2N,
p—p'=2(j—k)

We can control the right hand side by using the sieve bound
> LogpLogp < 4(1+0(1))NS(2(j — k)

N<p,p’<2N,
p—p'=2(j—k)

which is 4 times larger than what is expected to be true. A proof of
this upper bound is provided in subsection 21.3, at least in the case

j — k =1, but the general case is not much more difficult. We readily
check by appealing to (16.14) that

Vi< K-, Z6<2<j—k)>=2<K—J—j)+o(K),
k>j+J

VixJ, Y 623 —k) =20 - J) + o(K),
k<J—j

so that

Z Z Log pLogp’

lj— k\>JN<pp’<2N
p—p'=2(j—k)

§8N< YN K-T-i+ > (j—J)>+o(NLog2N)

G<K—J K>j>J
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which we finally bound by 8N (K — J)? + o(N Log? N). Set K/J = 6
and (Log N)/J = A. We choose 6 in such a fashion that first
46% > 0N +16(0 — 1)?

and second so that A is maximal. We take 6 = 2/\/§ and reach A; <
(24 +/3)/8 = 0.466--- < 1/2 as announced.
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It is high time we show in a somewhat general setting how to ap-
proximate a given weighted sequence by a local model. Let us start with
such a sequence (f(n)), together with an additional function ¢, (which
will take care of the size constraints), for which we assume the following
bound:

(17.1) > m

am
q<D

3 F)beo(n) — fy(a)X/q| < E

ax
odgq
n=alq]

for some parameters D, E, X and (f;),. The Bombieri-Vinogradov
Theorem falls within this framework with ., being the characteris-
tic function of real numbers < N and E = N/(LogN)4, together
with D = v/N/(Log N)? for some B = B(A); then f(n) = A(n) and
fq = qly,/o(q), and finally X = N. Note that the function f, that
appears is precisely the one we used as a local model for the primes.
The parameter X is here for homogeneity and could be dispensed with,
simply by incorporating it in f,. However, in usual applications, X will
be here to treat the dependence on the size, i.e. the contribution of the
infinite place, while f, will be independent of it and only accounts for
the effect of the finite places. We shall need some properties of these
fq’s, namely:

(17.2) Vd|q,Va mod d, Jgfq = fa.

This equation may look unpalatable, but here is an equivalent formula-
tion:

(17.3) vdlg, faa)/d= > fy(b)/q

bmod ¢

b=algq]
where it is maybe easier to consider f;/q as one function (the density,
as in (13.1) and (13.2)).

We often need an individual upper bound for each of this remainder
term. This is not fundamental, and the end of the proof can be made to
work with a large amount of variants, but usual sequences do verify this
additional hypothesis: we assume that there exist A > 1 and a constant
C such that, for all ¢ < @, we have

S Fn)ie(n) - fola)X/q| < CX A% Jq.
n=alq]

(17.4)
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Let us turn next toward the base scalar product we use, where again
we seek some generality. Let KX’ be a multiplicatively split compact set,
L’ its bordering system and

(17.5) B () = (Z Ad>2

neLll,

be the associated Selberg’s weights (see (12.1)), where A\; = 0 whenever
d > z a parameter at our disposal. The scalar product we consider is

[Bicr flgl = B (n) f(n)g(n)

n>1

over functions belonging to £2(N)!. This way of denoting the scalar prod-
uct has the advantage of making the dependance in K’ appear explicitly.

We are also to use another multiplicatively split compact set K satis-
fying the Johnsen-Gallagher condition, together with its bordering sys-
tem £ and define 1] as in (11.13). We further select the same function
oo as in the beginning, and define

(17.6) Vgoo = Vg

Some comments on this additional 1., are called for. We can expect
to be able to prove (17.1) for a whole bunch of functions 1, like all
the ones of type g(n/N) for some smooth g with compact support. We
could have phrased our hypothesis in these terms, then taken for
in (17.6) a function verifying proper conditions, and in due course, we
would have discovered that it is enough to have both functions equal one
to another. This is indeed the process that is followed in applications,
but the exposition is simpler the way we took — albeit the need for this
remark!

One way to get a global grasp of the family (f;), is to consider a
(multiplicatively) large modulus M: by which we mean a modulus di-
visible by all the ¢’s that intervene. Then fj is enough to reproduce all
fq’s, simply by f, = J é\/f far. The reader may have doubts as to the very
existence of such an fjs, but remembering the Fourier decomposition we
produced, we may simply take

fu =Y LLUs qfy
q<D

Usually, we have at our disposal a smoother expression, like in the case of
primes where fy = M1y, /¢(M) is a good choice. Such an expression
is in no way unique since only its orthonormal projections "modulo ¢"
for all ¢ < @ are of use.

IBy which we design the set of sequences (f(n)) such that D1 |f(n)]? is finite.
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If we have at our disposal such a modulus M that is divisible by every
integer < 22, then Bx/(n) has a well defined meaning for n € Z/MZ.

Let finally (aq)q<q be a sequence of complex numbers for which we
do not assume anything. However, we think of o, as being bounded by
a divisor function. We are to understand > aq[f[17], for which the
following theorem is the main key.

Theorem 17.1. Let M be an integer divisible by every integer < D =
22Q). All other parameters are described above. We have

3 ([ 10 ) — X[l )| < (XBE'S logl2/a)

q9<Q <0
with
1/2\ 2
B= CZ< Z WH% L3, | (Z qH(K, 2, q) ) > AN /g,
d<D “d=[{,d,d2] 0q<Q

We expect B to evaluate to some power of Log D and this is readily
done given some decent hypothesis on I and K. The function H(K,Z, q)
is indeed the one defined by (11.15) but we have added an explicit de-
pendence in K to avoid confusion.

Proof. We start from (11.14) and write
(Flgecl = D (=D OH(E.q) Y B (n)f (n)oc (n).
lg nely

Next, we write

Ben)= > Aaurg,

dy,dy
nEl::ilﬂl::i2
so that
e =D (DOHC ) > Aday D, F(n)so(n).
tla d1,da<z neLNLy ML,

The most inner sum bears on residue classes modulo [¢,d;,ds] and we
expect the set £, N L) N L) to be small enough. We introduce the
remainder term

amod q

max [ 37 f(n)uc(n) = X fyla)/a| =7
alq]

and first study the main term arising from this approximation. It equals

XY (~0OH(q) Y Aada Y. fudna)(@)/[6di,da).

lg dy,d2<z aellgﬂllfil ﬂllfb
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We go one huge step up and write it as

XDV OH ) Y Aada D fﬂﬁC)ﬂﬁz(C)ﬂcgl(C)ﬂz:QQ(C)

Lgq dy,d2<z cmod M

which we fold back into

XY (-0)OH(t,q) > Brle)fale)ie,(c)/M

lg cmod M

and finally into
X Y Brefule)(e)/M.
cmod M
We used a number of usual imprecisions during these steps: we should
have written L‘]?[]l £y (c) instead of 1 £y (c) since this latter function has
arguments in Z/dyZ and not in Z/MZ... A similar remark holds for
Ley, () and for 97 (c).

We handle the remainder term in a most straightforward way, with
the firm belief that the cardinality of £, N Ly N L), as a subset of
Z/[¢,dy, d2]Z will be small enough: we simply majorize it by [ L[ L] |[L}, |
where the first (resp. second, resp. third) one is a cardinality as a subset
of Z/0Z (vesp. Z/dZ, resp. Z/dsZ). The remainder is then at most

S lelieyllen] S el )
d<D d:[£7d17d2]7 Z"]SQ
dy,d2<z,
1<Q
Since we prepare this Theorem for the case when L, is small, we expect
H(¢,q) to behave like 1/q up to a divisor function. This motivates the

next line:
STIHEG ) gl < > qHE,9)* Y  lag* /g,

£q<Q £q<Q <@

which most probably looses a factor 1/¢ that does not matter much. We
use Cauchy’s inequality and hypothesis (17.4) to conclude. 000
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Concerning the moduli, we used mainly the simple condition d < z,
while everything we do is valid with a condition d € D for some divisor
closed set!. Usual sets are {d < z}, or the set of integers < z and with
prime factors belonging to some sets (like prime to 2 or bounded by some
y), or with a bounded number of prime factors.

Let us record some formulae. We set

(18.1) Ga(D)= Y h(d)

6eD
[d,6]eD

and following the method shown chapter 11 and 13, we get (see (11.9))

ﬁ o d Zq/dqu :U’(Q) o w(d) Gd(D)
(18.2) Ay = T G\ (D) and Ag = (-1) Gi(D)’
These expressions may yield some surprises. For instance, on taking for
D the set of those primes that are < z, to which we add the element 1,
we find that A\, = —h(p)/G1(D). This can be extremely small, and does
not appear as a modification of u(p) = —1 anymore! However )\f, may
be used as such.

18.1. Sieving by squares

While studying squarefree numbers, we should consider only square mod-
uli, and a large sieve inequality related to these moduli comes in handy,
as in (Konyagin, 2003). In this direction, Baier and Zhao, together or
independantly got several bounds as in (Zhao, 2004a), (Zhao, 2004b),
(Baier, 2006) and (Baier & Zhao, 2005). Their latest result to date states
that for N,Q > 0 and any ¢ > 0, we have

(183) Y. >

¢<Q amod*q?

< (NQF(Q*+ N+ min(N/Q,VNQ?)) Y [un[*.

Z une(na/q?)

n<N

If we were to use the large sieve inequality for all moduli ¢> < Q?, we
would get the upper bound (N + Q%) 3", |un|?>. We do not give any

LA divisor closed set is a set such that every positive divisor of an element of this
set still belongs to this set. In particular 1 always belongs to such a set.



144 18 Other sets of moduli

further details here but refer to (Baier & Zhao, 2005) for background
informations as well as other bounds. We are to stress that what could
be the best possible inequality in (18.3) is not known. In particular,
lower results are missing.

(Granville & Ramaré, 1996) used such a large sieve inequality to
study the distribution of squarefree binomial coefficients; we already
mentionned the recent work (Konyagin, 2003), but the most beautiful
application appears in (Baier & Zhao, 2006b). The authors first derive
in (Baier & Zhao, 2006a) a Bombieri-Vinogradov type theorem, by fol-
lowing the now classical lines of (Bombieri et al., 1986) — that we also
followed in section 5.5 —. From there, they prove:

Theorem 18.1 (Baier & Zhao). Let € > 0. There exist infinitely many
primes p that can be written in the form p = m? + 1 with £ <. p®/9+¢.

An old and much sought-after conjecture of (Hardy & Littlewood,
1922) asserts that ¢ = 1 is admissible.

18.2. A warning

In section 8-9 of (Bombieri, 1987), the sum

> ﬁ/c'(n)( > ad)

neA dln+2

is being studied, with no constraints on the a4’s and where A is a host
sequence. In the application given there, the host sequence is the one of
primes, while a1 = 1, a;, = —1 when p is a prime < z and aq is otherwise
0. The idea is to show that this sum tends to infinity: since ) djnt2 4d
can only be positive if n + 2 has all its prime factors > z, this will show
that there are infinitely many primes p such that p + 2 has no prime
factors < z. The temptation here is to replace condition d|n + 2 by
n € L4 with £ being the bordering system associated with &/ — 2, and to
consider a set of moduli D restricted to the primes < z and to 1. Then
we would like to take for ay the associated A\;: however, we have just
seen that these ones are too smalll The good candidates are in fact the
)\(ﬁi, but we are to modify the compact set, and take for K ... precisely
the previous bordering system! That is to say K, = {—2}. The next
step would be to appeal to (11.30):

(18.4) D A= /().

d/nelcd
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We could combine Theorem 17.1 together with the Bombieri-Vinogradov
Theorem (see Lemma 13.1) and be done. But our change of compact set
has another consequence: the associated bordering system is not small
anymore, and the error term given in Theorem 17.1 is unsuitable. We
leave the reader at this level!






19 Sum of two squarefree numbers

To illustrate further how we may handle additive problems with the
material we have presented, we prove the following Theorem. Note that
we freely use chapter 4 in the sequel.

Theorem 19.1. Every large enough integer may be written as the sum
of two squarefree integers. Furthermore the number r(N) of ways of
representing N 1is this manner verifies:

r(N) = 6(N)N + O, (N?/3+¢)

for every € > 0, where

6 p+cp2(N)
Sy = WQHV <1+ P*(p® — 1) >

The function ¢, is again the Ramanujan sum, see (8.12).

This theorem is originally due to (Evelyn & Linfoot, 1931). A sim-
plified proof was later given by (Estermann, 1931). (Briidern & Perelli,
1999) gave a quantitatively better version, but we are interested here
in the manner. Of particular interest is the fact that a path initially
devised to get an upper bound can be used to get a lower bound (as in
chapter 10). Several features of the method will also be exhibited. The
problem is furthermore interesting in that the set of moduli we use is

different from the usual one. We take

(19.1) Q=1{0a, ¥(ae) =1, g1 <Q1,¢ < Q2}

for some parameters Q1 and (2 that we shall choose later to be, respec-
tively, N'/6 and N'/3. We also set Q = max(Q1, Q).

19.1. Sketch of the proof

Let us consider the functions f(n) = p%(n) and g(n) = p?(N — n)
defined on integers < N. On using the canonical hermitian product on
this space, our number of representations reads

(19.2) R(N)= > p2(n1)u*(n2) = [flg].
N=ni+n2

To compute this scalar product, we shall use again the remark we made
in section 10.1 and approximate it by a (f|g) which we still have to
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define. We first need to work out local models for f and g. We shall
then use a local system (;); that will take care of the sequence of local
models of f and g, and that implies, in particular, that our arguments
are going to be symmetrical in f and g.

19.2. General computations

To detect squarefree integers' we use the classical formula

(19.3) w2(n) =3 u(d)

d?|n

and extend it to negative values of the argument n by setting u?(—n) =
u%(n). Let us set

0 if Ip?|q,c =0 [p?]
(19.4)  v(c)=1 6 p? 1
anz_ln <1—1—7> else.
plg pllg
c=0[p]

Lemma 19.1. For m =0 or m = N, we have for every ¢ > 0

S 120 —m) = (N/q)yg(c — m) + O-(¢"/N/q).

n=clg]
n<N

The reader will notice by comparing with (4.20) that the computed
quantities are nothing else than A,(f)/q when m = 0 (since p?(—n) =
p?(n)) and Ay(g)/q if m = N.

Proof.  Let us write ¢ = q1¢' with ¢; being squarefree, ¢’ being such
that p|l¢’ = p?|¢’ and, of course (q1,¢') = 1. If m — c is divisible by a
square that also divides ¢, then 3, _ p?(n —m) = 0. Else we use the
representation (19.3) to get

down—m)=> pud) Y, 1= > puldds) Y L
d

n=clq| n<N di|q1 n<N
n<N n=m—c|q| (d3,9)=1 n=m—c[q|
d?n d?d2|n

IThe characteristic function of their set is u’.
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We use an asymptotic for the inner sum and conclude readily:

ZMQ(n—m):N Z M—{—O Z %

dyq'd?
n=clq] dilq1 hrqas dilq
0=m—c[d1]
qdiq'd3<N

= (N/q)vq(c —m) + O(¢°/N/q).

We define v by v7(c) = >4, 1(¢/d)va(c). This implies that v, =
~%, so that each ~% is indeed the orthonormal projection of +, on
dlg Vd d q

M(d) (see the comment following Lemma 4.2 for a definition of this set).
Let us define

(19.5) tg) =] p;_l -
plg

Now we have

Lemma 19.2. If q is cubefree then 7, (c) = 6t(q)cy(c)/m?, while if q has
a cubic factor > 1, then v;(c) = 0.

Proof. We write ¢ = q1q5¢" where g1, go and ¢” are pairwise coprime,
q1 and g¢o are squarefree and, if p|q”, then p3|¢”. We have

a6 p° P’
() = 11 <p2—1_p2—1> pH ©

plq//

P*(c.a) P?[(c.q)
< I1 (1 I1 (! I1 v’ 1-1)
p?—1 p p?—1 p p*—1
plg2 plg2 plg2
p?|(c,q) pll(e.q) pi(e,q)
<I1 ro IT (*-1 L(1—1)—1
p? -1 P pP-1" p '
pla pl(q1,c)
Thus 7;(c) = 0 if ¢" # 1, and
; . p—p* if p*l(c,g3),
(196) i) = Sl IT @=pxqp  ifplcd),
plg pl(q1,c) 0 else.

Some more work yields the claimed expression. OO



150 19 Sum of two squarefree numbers
19.3. The hermitian product

We must first embark onto some general considerations. Lemma 19.1
shows that ¢ — N~,(c) is a good approximation for A,(f)/q, while
N8, : ¢ — Ny (N —c) is a good one for Ay(g)/q, where A, is defined
in (4.20). However, by a local model, we mean a function over [1, N]
and not modulo ¢. This distinction is important to define the hermitian
product, so we need to lift both functions to this set. We consider

(19.7) Vy: F(Z)qZ) — F([1,N])
h — Vg4h): [1,N]—C
x +— h(z mod q)

which verifies

(19.8) [Aq(h1)lh2lg = [hi[Vq(h2)],
justifying again our scaling in the definition of A,. Note further that
(19.9) vdlg, Vg(Li(h)) = Va(h),

both properties stated with obvious notations.

This part being settled, we need to attend to a second problem before
the proof can unfold quietly. We need an orthogonal system modulo ¢
that takes both functions N+, and N6, into account, or more precisely
encompasses their orthogonal projections N~ and N@j. Let us first
note that

9 2
1910) Il =151 = (%) § 3 ler = (%) ot

q s

amod q

Since [y}]0%], = (6t(q)/7*)*cq(N) is a real number, the vectors defined
by (6¢(a)/n)n; = Bla)(yf +02)/2 and (6t(q) /)i = Bla)(; — 03)/2
where B(q) is defined on Q by

(19.11) Yo=aq1g5 € Q, Blg)=B(ag}) =4 e

are orthogonal. Of course B(q) could be any positive quantity depend-
ing only on ¢q. We have chosen it so as to minimize the error term in
Lemma 19.6. See also Lemma 19.5. We further set

(19.12) 0y = Vang, Yy = Vg

We readily compute that

{ 115117 = B(0)*(6(q) + c(N))/2,
55117 = B(a)*(é(q) — cq(N)) /2.

Of course, when ¢|N, Ky is the zero vector and so not of great interest.
Otherwise here is a lemma that gives an apriori bound for their norms.

(19.13)
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Lemma 19.3. When q { N, both norms ||n;||2 and ||k%]|2 lie between
B(q)*¢(q)/4 and B(q)*¢(q).

Proof. Indeed |cy(N)| = ¢((NN,q)) divides strictly ¢(¢) and is hence at
most ¢(q)/2. The lemma follows readily. 000

We now need to define the global scalar product. As an orthogonal
system, we take the union of (¢;) and of (1;) but in the latter family,
we remove the terms for which ¢|N.

Lemma 19.4. Let q1 and g2 be too moduli, and g3 their lem. If ug, and
vy, are respectively one of {n; ,xy } and {n;,, ry,} then

(Va1 tg: [ Vgsvg] = N[Lg”;um‘[/gé”@]qa + O (B(q1)o(q1)B(g2)o(q2)) -

A lemma where we somehow used deliberately a complicated expres-
sion. As it turns out, if g1 # g2 or ug # vg,, the local scalar product

vanishes! To handle the hermitian properties of (¢y) and (;), we could
try something along the following lines:

[SDZWZ] = [VqUZ|vq77;] = [Aqvqnzmé]q-

However A,V is not a multiple of the identity! However

AV h(c) = < > 1) h(c)
n=c[g],
n<N
so that we can A;V, can be thought as a perturbation of the identity.
We escaped from this complication in (16.5)-(16.10) by using a smooth
majorant of the characteristic function of the interval [1, N].

Proof. This expression is important in that it uses the structure of the
Ramanujan sums. If we were to split the sum that defines the initial
scalar product in classes modulo g3, the remainder term would only be

< g3 \/[uch |u(I1](I1 [UCI2 |UCI2](12’

which looses a power of ¢; and one of ¢go. The result we claim is obtained
by appealing to cq(n) = > ;(n.q) di(q/d), an expression that expresses
the fact that ¢, is not an intricate function. SRR

We are to majorize, when ¢ is fixed:

(19.14) > leglegll+ > lleglvil,

q'€Q q€Q
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and

(19.15) o Wslegll+ > vyl

qeQ qeQ
Lemma 19.5. When Q1, Q2 > 100, we have

> uQ(qlq);(qﬂ P00 () 200,

q1<Q1 42
32<Q2
(q1,92)=1

We take

(1916) M, (") = B(q2 Y@+ (V)

2

+ CB(q)o(q)Q3 Log Q

and
(1917)  My(w) = Blap DA apg)0g)@3Log@

for a C' large enough that M;(¢*) is more than (19.14) and that M, (")
is more than (19.15).

19.4. Removing the M,’s

We have chosen a somewhat intricate version of the M,’s to get rid of
the bilinear form in w; ;, but ultimately we will have to remove them to
get smoother expressions.

Lemma 19.6. If |3, < B(q)*(Nt(q)¢(q) + VNq)?, then we have (for
any € > 0),

_ 20
M * 1 — q Og—: 1+€
2 M) = D Na) T o) T @)
as well as
_ 23
M, (v, = a 0. +ey,
2 M) = 2 R — ) @)
qfN qtN

Proof. A similar treatment applies to both expressions. For instance,
the difference between the R.H.S. and the L.H.S. of the first one is, by
appealing to Lemma 19.3, at most

By B(q)%(N?t(q)*¢(q)* + Nq)B(q)a(q)
2 (Né(q)B(9)? + B(q)o(q)Q3Q°)Né(q)B(q)?

qeQ
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which is bounded by

2e' N\ VU@ +1 _ p o Nt(q)*¢(q) | 1
Y N rar <4 S (e @)

for all € > 0, where ¢ tends to zero with e. 000

19.5. Approximating f and g

The first local approximation of f(n) = p?(n) is A7(f)/q. Lemma 19.1
ensures us that Ny, is an approximation of A,(f)s, which suggests that
we take Vv, (see (19.7)) as a local approximation to f, well more pre-
cisely o5 = V47, since only the orthogonal projection of v, over M(q) is
of interest. This is the path we follow, and correspondingly, we approxi-
mate g by ¥. Before quantifying in a proper way this approximation, we
need an apriori upper bound. In this part, the roles of f and g are com-
pletely similar and it is enough to handle the case of f. The statements
are however complete.

Lemma 19.7. We have for every e >0 :

|pq | f11 + [[vg | f]] < B(@)[t(a)l¢(e)N + B(q)v/ Nqq°
and similarly by replacing f by g.

Proof. We compare [¢g|f] to N[n;|y;]q. First we note that B(q)y, =
(6t(q)/7*)(n; + k%), from which we deduce that

(19.18) 3 173)a = 3B(0)t(q)(6(q) + cg(N))/7°.
Next, we check that
[pgl 1= [Vanglf] = [nglAqfle = [ngINvglg + [1g18¢(f) — Nglg-

Next Lemma 19.1 gives

151241 = N3l = O (B(@) Y dula/d)0 (& /N d))

dlq

from which we infer |[¢}|f]| < B(q)(|t(q)|¢(¢)N ++/Nqq®) as claimed.
000

Lemma 19.8. Let (o) be complex numbers such that

(19.19) B(q)*N¢(g)|aql < NB(q)|t(a)lé(q) + B(a)v/Ng.
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We have that for every e > 0
> agleilfl = Y ageyle; + ¢+ 0:(Q°(VN + Q2Q1))
qeQ qeQ
and similarly by replacing f by g and ™ + ¢* by ©* — Y*.
Proof. There comes
> agleglf — oy — )

<) |t (@)Y du(q/d)O(¢°/N/d)

qeQ qeQ d|q
< Q (VN + Q2Q1)
000
Lemma 19.9. Difference
1A =D Mo(@) Mgl AP =D M)~ [l £
qeQ qeQ

N

is big-O of Q°*(NQ* + NQy ' + Q2Q + V'N). The same bound holds
when f is replaced with g.

Proof. As first step we approximate f by @7 in the products [¢;[f] and
[¥7]f]- To do so we set 3; = Mq(gp*)_l[ﬂgpj;], whose modulus indeed
verifies condition (19.19) up to a %, and write

> M) il £ =D Byl £1.
qeQ qeQ

By the preceding lemma, we can thus replace f by its local approxima-
tion, up to an admissible error term. We reiterate the process:

> M) TG AP+ D My (™) [l £ =

qeQ qeQ
N
> M) Hlklen +will? + Y My gl + 31
qeQ qeQ

N
0. (VN +2:Q).

Here we may replace [p;|p; + 7] and [¢g]p; + 9] respectively by
Nnglvslg and N[xjlyslg up to a negligible error term. In the second
step, we need to compute the R.H.S. First replace M,(¢*) by [¢;]p;]
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with error term O(Q2Q'*¢) by Lemma 19.6, and then do the same with
1*. We check that

] P 1 1 P (T

Now |72 is computed in (19.10) and equals (6/772)2 #(q)t(q)%. We sim-
ply have to sum, complete the resulting series and estimate the resulting
error term:

2 MZ(Q1Q2)C]2
Z P(q)t(q)” = Z #(q1)o(q1)?P(q2)0(q2)?

q€Q q1<Q1,92<Q2
(q1,92)=1
that is
) _ T -2 -1
Z P(q)t(q)” = 6 +0(Q"+Qy ).
qeQ
Finally, recall that [f|f] = (6/7%)N +O(v/N). The lemma follows read-
ily. OO

19.6. Crossed products

Lemma 19.10. The sum
> M) leslleilgl + > M) T f ] [ g)

qeQ qeQ
N

equals, for every e > 0:

NS(N) + 0. (@ (VN + NQ;% + NQ;' + Q) -

Proof.  We follow closely the proof of Lemma 19.9 and replace the
quantity Yo My(0*) " [fleglleslal by N Y eolvalmilalngl0:1e/IIng1l2
at the cost of an error term of size O.(Q°vVN + Q2Q'*¢). A similar
treatment for the part with v leads to Nqug[m’;m;]q[n;|/¢Z]q/\|/{2\|g.
We note here that

[z Inglalng1051alIng 1172 + Dy lkglalkg 03)a w5l = g 165]e.

Extension to a complete series costs O(N(Q7? + Q5 ')). The constant
GS(N) appears here in the form

sV =] (1_ 1 1+cp<N>+cp2<N>>.

p? pt

p
OO0
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19.7. Main proof

Let us set
(hi|h2) = ZM haleglleglhal +ZM V) [haly ][y [ha).
qeQ qeQ
adN

We use Cauchy’s inequality on the semi? hermitian product [f|g] — (f|g)
and get

(19.20) 119l = (Fl9)] < \/(LF191 = (£10)) - (lalg) — (1)

which enables us to approximate [f|g] by (f|g) which, in turn, we eval-
uate via Lemma 19.10. Total error term is

O-(Q*(NQ* + NQ; ' + Q2Q + VN)).
Our choice of @)1 and Q)2 yields the Theorem.

19.8. Afterthoughts

We insisted on taking care of both f and g while choosing our orthogonal
system. However, we could have taken care of only one of them, since
the other part will anyway not be of any use (as a kind of shorthand,
we can say that only the orthornormal projection of g on C- f has any
effect. This is only shorthand because the involved hermitian product in
the "orthonormal" above has not been specified). This would however
have modified the error term since, in (19.20), only [f|f] — (f|f) would
have been small.

Let us turn to a different consideration. In the proof of Lemma 19.9,
we simply said "we may replace [p|¢;] by NHn;Hg” but the question
arises to know why we did not do it at the very beginning! This would
have required us to define a local model modulo ¢ as a function over
Z/qZ, which would have had drawbacks in other parts of the theory. A
different approach looks promising: still use ¢y = Vv, as a local model
modulo g for f, but use ¢ instead of ¢j in the definition of the scalar
product, where A;py = 75 In fact, most of our argument works because
A, and V, are almost inverse of each other, so our choice is not so very
wrong. It is indeed not wrong at all since we would have to compute
[g5f1|g5;,]. With our definition, we have very explicit expressions and are
able to compute the corresponding scalar product.

21t may be not definite
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19.9. Adding a prime and a squarefree number

The previous method would work with almost no changes to compute
the number of representations of an integer N as a sum of a squarefree
integer and a prime, with error term at most O, (N°/6+¢). We leave the
details to the reader.






20 On a large sieve equality

This last chapter presents directions to investigate, some limitations,
and other slightly off topic material. We use also this pretext to provide
a simple introduction to some modern techniques. Let us finally point
out that (Ramaré, 2007a) contains also material on this subject, but
very different in nature. We omit it here.

20.1. Informal presentation

In our studies of additive problems, the main argument consists in show-
ing that

Xt ] — 11

The question that naturally arises is to determine which functions f will
satisty such a property, keeping in mind that we can choose ¢ in terms
of f. We also want ¢} to be a Vyns (see (19.7)) for some function n;
from M(q). This is not exactly what we did in chapter 10, where we
multiplied a function V,n; by a function "with no arithmetic part" to
get @y, but we ignore this aspect here.

In our scheme, we also have essentially [f|@}] ~ |l@k||3 as well as
Mgy(¢*) ~ ||k 13 so that what we really require is

> leglls — 1113
q

Since A4(f) defined in (4.20) is the best local model for f modulo g, the
choice ¢ = V Uz .qA(f) is recommended, up to some rescaling. We
have by (4.14)

U—qQq()(n) = > Sp(~a/q)e(na/q)

amod *q

with S¢(a) =", f(n)e(na). Next, and since

[qué—nzA (f )‘V Uq—>qA ( Z

n

> Seafq)e na/q)

amod *q

=(N+0(%)) > |Sa/g),

amod *q
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we see that we should divide Uz_.qAq(f) by VN, so that we can guess
the functions we are looking for are the ones for which

(20.1) > > 1Si(a/a)? — NIfIE.

geQ amod *q

The symbol “—" is not exactly well defined, since several parameters
may vary together, like the set Q of moduli and N, but somehow, one
should have equality in the large sieve inequality up to a negligible error
term. From here onwards, two courses of actions appear.

20.2. A detour towards limit periodicity

By a limit periodic set, we mean a set whose characteristic function is
a uniform limit of linear combinations of periodical functions. Let us
start with some generalities on such functions. We refrain from using
|| fllco to denote max, |f(n)| where n ranges positive integers, because
the notation || - || is already overloaded in this monograph.

20.2.1. Survey of the general theory. Asin most theories of almost
periodicity, a central role is played by a kind of integral operator. Here
the key will come from

(20.2) Tv(f,o)= 3 f(n)e(—na)/N

1<n<N
and we define Too(f, ) when the sequence (T (f,«))n converges as its
limiting value. When f is periodic over N, then T (f,a) indeed exists
for all values of & and is 0 whenever « ¢ Q. Furthermore the reader will

readily check that
0 if o #a,
1 ifd =a.

Too(e(-a'),a) = {

Let us now consider a limit periodic function f, by which we mean a limit,
according to the uniform norm on the positive integers, of a sequence
of periodical functions. We claim that T (f, «) exists for every « and
vanishes if o ¢ Q.

Proof. Let a in R and let € > 0. There is a periodic function g such
that max,, | f(n) — g(n)| < e. Thus, for every N, we have
{TN(faa) - TN(gaa)‘ <e.

Since (Tar(g, ) is Cauchy, we find a Ny(g,¢e) such that, for N, N' >
No(g,€), we have |Tn(g,) —Tn+(g, )| < e. Thus under the same condi-
tion, |Tn(f, o) —Tn'(f, )| < 3e, meaning that the sequence (T (f,a))n
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is also Cauchy. As a consequence, we can assert that this sequence indeed
converges. Once this point is established, it is not difficult to see that
Too(f, ) vanishes when « ¢ Q, a property inherited from the behaviour
of periodical functions. OO0

Now we have at our disposal a canonical approximation to limit pe-
riodic f by setting

(20.3) U(f,q)(n) = > Tw(f.a/q)e(na/q),

amod q

which happens to equal f when this function admits ¢ as a period. Such
an expression is convenient for our purpose and shows how contributions
with @ mod * ¢ add up. But this is not the best one to show that it does
indeed approximate f. To achieve this goal, note that the frequencies

(20.4) F(fig.b) = lim — ;V f(n)
n=alg]

are well-defined and that we also have
(20.5) U(f,q)(n) = Y F(fiq,b) L=y
bmod g

Next take ¢ > 0 and periodic g such that max,, [g(n) — f(n)| <e. Let ¢
be a period of g. We readily find that |F(f;q,b) — F(g;4,b)| < e so that

V(f,q)(n) = ¥(g;q)(n)| <e.

max|¥(f,q)(n) — ¥(g;q)(n)| = max max

n bmod g n=b[q]
We can take for ¢ the sequence lemgy<gd and the above to show that
(¥(f,q))q converges uniformly towards f.

20.2.2. L%-setting. If we select a limit periodic set A and a bound
N > 1, the sequence (L,c4)n<n is the limit of ((¥(14,q)(n))n)q. Such
a sequence is thus a good candidate for (20.1). It is however unclear
if the context of limit periodic functions is the proper one. Having al-
most periodic functions with spectrum in Q (the spectrum is the set of
a such that Ty (f,«) does not vanish) is certainly helpful in construct-
ing periodic approximation of f, and as such the context of Wiener or
Marcinkiewicz spaces (see (Coquet et al., 1977) and (Bertrandias, 1966))
appears to be relevant.
We check immediately that

) 2 - imine 4 2
[F(f;4:0)F" < liminf > 1f(n)]
n<N,
n=b|q]
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from which we infer

(20.6) > [Tl fia/a) < liminf < 3 ()P
amod g n<N

However, the existence of the R.H.S. limit (as a limit and not as a lim inf)
is far from obvious, though it is plausible. When limy & >, -y [f(n)|?
indeed exists and is the limit of >, .4, [Too (f3 a/q)|?, then f is pseudo-
periodic; in the context developed by (Bertrandias, 1966) and (Coquet
et al., 1977), it amounts to saying that the spectral measure associated
to f is purely discrete. This statement is made with a fixed gq.

A function f on integers is said to be B2-almost periodic, i.e. almost
periodic in the sense of Besicovitch, if there is a sequence of periodic
functions f, such that

lim limsup — 2=0.

Jim s 32 1/0) = £
The reader will find in (Schwartz & Spilker, 1994) the theory of such
functions.

Briidern went into similar considerations and cleared the situation
further in (Briidern, 2000-2004) by proving that

Theorem 20.1. Let f be such that all Too(f;a/q) exist. Then we have
equivalence between:
(1) f is B2-almost periodic

(2) thNZn<N|f( n)[? Zq>1 Zamod* To(f;a/q).

As a consequence, he considered the problem of representing an in-
teger as a sum of two elements from two sequences, one of which ver-
ifies inequality (20.6) as an equality, and both such that the averages
Too(L4;a/q) exist. The first step is the following corollary of the previ-
ous Theorem:

Corollary 20.1. If f and g are such that all Too(g;a/q) and Too(f;a/q)
exist, and moreover g is B>-almost periodic, then

hm—Zf Z Z s (fia/0) T (g5a/q).

n<N q>1 amod™q

From which he deduces for instance that there are infinitely many
squarefree integers n such that n + 1 is also squarefree. This material
was presented at several conferences but no published form exists as of
now. He utilizes the circle method; our method clearly dispenses with it
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as it does in the case of squarefree numbers (see chapter 19), where we
furthermore get a quantitative statement.

Schlage-Puchta went one step further in (Puchta, 2002), where the
following Theorem is proved:

Theorem 20.2. Let N be a set of integers and let f be its characteristic
function. Then f is B2-almost periodic if and only if the following three
conditions are verified:

(1) N has positive density.
(2) The frequencies F(f;q,b) defined in (20.4) exist.
(8) We have

> Y melfia/)P = im S Fw)

qg>1 amod™*q n<N

In particular, (Puchta, 2002) and (Briidern, 2000-2004) prove that a
set A with a multiplicative characteristic function and positive density
satifies these conditions.

20.3. A large sieve equality: a pedestrian approach

We consider the problem of equality from a different angle and ask for a
special form for f so as to satisfy (20.1). The form we choose is the one
that appears in sieve theory, namely the convolution of a sequence with
small support with the constant sequence 1.

We start with a simple result whose proof is illuminating.

Theorem 20.3. Let g > 2 be an integer and let L and Lo be two non-
negative real numbers. For every arbitrary sequence of complex numbers
(bm)m<Mm, we have

D

amod™*q

2
S

qlm

q)L?

Z bme(alm/q)

Lo<t<Lo+L
m<M

< LB(||b|3Mq)"? Log g + ||b]|3 (Mg + ¢*) Log? q

with [b]3 = ¥, [bul? and B = 5, [bul-

Proof.  'We discuss according to whether ¢|m or not, and sum over £.
Discarding the latter terms gives rise to the main term. To get a rigorous
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error term, take modulus and sum over a prime to ¢. We have

S buelatm/e) =7 Y bt S 501/ lam/ql)

Lo<f<Lg+L m<M, m<M,
m<M qlm qfm

where ||| stands for the distance to the nearest integer and L* is the
number of integer points in the interval |Lg, Lo + L]. Summing over a
ranging reduced residues classes, the error term is O of

LY bl D lbwl D 1/am/ql]

m/ <M, m<M, amod *q

qlm/ qtm
+ > (ballbarl Y 1/ (lam/gllllam’ /q])).
mym’'<M, amod *q
atm,qtm’

For the first one, proceed as follows: set (m,q) = q/d < ¢q. Split sum-
mation over a according to classes modulo d; there are ¢(q)/é(d) < q/d
elements per class where the latter inequality is proven by appealing to
multiplicativity. Say a = b[d]. We have

Z 1/|lem/q|| < d(Logd + 1) < dLog ¢

cmod *d

which we multiply by ¢/d. This amounts to a contribution not more
than

LY |bwl| Y |bm| O(qLogq) < LB|bll2/M/q qLog g
m/'<M, m<M,
qlm’ atm
which is O(LB||b||2(Mq)*/? Log q). Tt is a striking feature of this simple-
minded proof that M/q occurs and not M/q+ 1. As for the second part
of the error term, we use 2|by,by| < [bm|? + |by|? to get it is not more
— up to a multiplicative constant — than

Yo lbwl Yo >0 1/(lam/glllam’/q]).

m<M, amod *qgm/'<M,
gtm gtm’

For the sum over m’ we split the range of summation in interval of length
q and get it is O((1 + M/q)qLog q). We treat the sum over a as above
and get a total contribution of

O(|IblI3(M + q)qLog?q)

as required. The error due to the replacement of L* with L is absorbed
in the already existing error term. 000
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The statement of the above Theorem can be simplified by using B? <
M]|[b|3, but this may lead to a severe loss when the sequence b has a
small support. If this happens, a similar loss most probably occurs in
the second part of the error term; the reader may try to recover this loss
by inspecting the proof above: after using 2|b,,bp | < b |? + [byy |2, we
extend the summation over m’ to every integers < M and this can be
costly (for instance when b, is supported by the squares).

Summing over ¢, we get an impressive result which will compare easily
with the theorem proved in section 20.5.

Corollary 20.2. Let Q be a set of moduli, all < Q. For every sequence
of complex numbers (by)m<nr, we have

Z Z Z bme(alm/q)

q€Qamod*q Lo<l<Lo+L m,m/ <M
m<M

+ O(LB|b]l2(MQ?)"/? Log Q + [[bl|3(MLQY? + MQ* + Q%) Log® Q)
with notations as in Theorem 20.3 and

(20.7) Vm,m' € N\ {0}, (m,m)g= Y o).
teQ,

t|m,t|m/

To understand the strength of this corollary, consider case b,, = 1 and
Q = {¢ < Q}. Then the main term is of size (LM Log M)?, while the
error term is of size at most M (MLQ?? + MQ? + Q%) Log? Q which is
indeed an error term when @ < L2/3. This is a considerable improvement
on the large sieve inequality when M is relatively small! The latter would
yield the upper bound (L?M? + LM Q?) Log? M which is superseded by
the above when M < min(L,Q'/?) and LM > Q; the most astonishing
part of our result is that under some circumstances, we may take ()
larger than /L M. For instance, with M = N® and L = N~ for some
o € [0,1/2], we can take Q = N2(1=®/3 which is indeed larger than
VN if o < 1/4.

We have taken here the convolution of 1 with (by,), but we could
easily replace 1 with any smooth function over this interval as we do in
section 20.5. Since we do not require the Poisson summation formula
here, we do not even need it to be differentiable at the endpoints of the
interval of summation.
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20.4. An application

The previous section contains results of a methodological character. As
such they have been presented in what we expect to be the simplest
setting, but applications call for slightly different statements. Let us
start with the following Lemma.

Lemma 20.1. Let ¢ > 2 be an integer and let N be a non-negative real
numbers. For every arbitrary sequence of complex numbers (bp,)m<nr,
we have

2 2

Z Z bne(alm/q)| — é(q) me[N/m]
amod™*q' (>1, qlm
m<M,
Im<N
1/2 |bm| 2 2 2
< NBq'?Logq » , —+|[b|3(Mq+¢*) Log®q
m<M,
qlm

with [b]3 = ¥, [bul? and B = 5, [bral-

For the use we have in mind, namely the squarefree numbers, replac-
ing the integer part [N/m] by N/m up to a O(1) would be too costly
without any further assumptions on (b,,). We thus keep the main term
in this fairly raw format.

Proof.  The proof is simply an adaptation of the one given for Theo-
rem 20.3. We start from

Y= Z bme(alm/q) = Z b [N/m] + Z bmO(1/[lam/ql|)

£>1, m<M, m<M,
m<M, qlm qtm
Im<N

Summing over a ranging reduced residues classes, we first get that

2

T = ¢<q>‘ > bm[N/m]

m<M,
qlm
N !

v 2 bl S bl lam ol

m<M, amod *qgm/<M,

qlm gtm’

5 ol 3 1/(||am/q||uam'/q||>)

m,m’' <M, amod *q

gtm,gtm/
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where we handle the error term as in the proof of Theorem 20.3. <o©

Summing over ¢, we infer the following Theorem.

Theorem 20.4. Let Q be a set of moduli, all < Q. For every sequence
of complex numbers (by,)m<m, we have

DS =Y wie X [N [)

Z bme(alm/q)

qeQamod*q' £>1, m,m/<M qeQ,
m<M, gl(m,m’)
Im<N

+O(NB|bll2 Log(MQ) + [[bI5(MQ* + Q%) Log* Q)

with [l = 32, [bm[* and B =37, |bm|.

Proof. We note that

PR ED SRS

q<Q m<M, m<M qlm
qlm
1 o\ 1/2
<l X (X va))
m<M qlm
and end the proof by noticing that
1 2
Z W(Z\/(_]) <K LOgM
m<M qlm
by appealing for instance to Theorem 21.1. RS

When the main term in the above Theorem is of size about N? and
16]|3 is of size about M, the formula stated yields an asymptotic provided
Q,M = o(N?/3) and QM = o(N).

Lemma 20.2. For every sequence of bounded complex numbers (cq)q<p,
we have

> 2

q<Q amod*q

2

Z cge(ald®/q)| < NQ?’D~2? + N3D *Log N.

0>1,
d>D,
Ld2<N
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Proof. We simply expand the range of the inner summation over a to
all of Z/qZ. Calling ¥ the sum we want to estimate, this leads to

DR Z |Cd10d2| Z Z q.

D<d1,d2§\/ﬁ n1,n2<N, q<Q,
d%\m, qlni—n2
d3|n2

The diagonal terms n; = no give rise to a contribution at most

NQ* Y MG <NQT Y (d],d3)/(d}d3)

D<dy,d2<vVN D<dy,do<VN

2
< NQ? Z¢(5)< > 1/d2>
s D<d<+v/N,
8]d
by using yet again Selberg’s diagonalization process. When § < D,
we bound the inner sum by O(1/(Dd)), while we bound it by O(1/6%)
otherwise. The total contribution of the diagonal terms is thus seen to
be not more than O(NQ?D~2). Concerning the non-diagonal ones, we

use
Zq :mH(l +1/p) < m-exp(Z l/p) < mLogm
alm plm p=m

to get a contribution of order at most:

N
> > — Log N < N3LogN Y dy'dy?
D<d1§d2§x/N”1d’QfSM ! D<d1<d2<v'N
ni,
dl%lm

<« N3Log N Z d1_5 < N3D *Log N
D<d1<d2<v'N
000

Theorem 20.5. For every Q < N7/1272¢ with ¢ being positive and <
1/6, we have

> 2.

q<Q amod™q

S w¥nlelan/a)| = (6/7)N? + O(N>).

n<N

We have not tried to get the best exponent instead of 7/12, but have
restrained our argument to remain somewhat general. This Theorem is
of special interest: first, it offers a large sieve equality and second, we
can even allow @ to be strictly larger than N/2. The reader will find
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in (Briidern & Perelli, 1999) more information on the exponential sum
over the squarefree numbers. It seems that the above Theorem is novel.

Proof. ~ We denote in this proof the constant 6/72 by C to simplify
the typographical work . We start as in section 19.2 with the formula
ur(n) = 22y (@) from which we infer

(20.8) w2 =3 )+ Y wd)

d<D, d>D,

d?n d?n
for some parameter D < min(N'/3,Q). We then apply Theorem 20.4
with m = d?, M = D? and b,, = p(d) when m = d? and b,, = 0
otherwise. The main term reads

2
=3 ola) (3w

q<Q d<D,
qld?

When ¢ is not cubefree, the inner summation vanishes, so we may write
q = q1q¢3 with ¢; and go being squarefree and coprime. We set ¢’ = q1qz.
The condition q|d? translates into ¢’|d. We have

> u@N/d)| < Nfg® Y |ud)] < D/,

d<D, d<D,
qld? qld?
so that
2
H=N* Y M2(Q1QQ)¢(Q1)Q2¢(QQ)< > M(d)/d2> + O(NDLogD)
q143<D? d<D,
q1gz2|d

2 1\-2

— C2N2 Z H (m%)f(;ll)(?(%) H (1 _ _2) + O(N2D™Y
na3<D? itz P

=CN?*+O(N’D™1)

where the last constant is a bit messy to compute: we first extend the
summation to all gq;gs with negligible error term and then proceed by
multiplicativity. We first note that

> 1°(9192)9(q1) b (g2) I <1_i>—2

aa p?

plq1qz

q1,92>1 plarg2

2 p—1 2 p(p—1)
ZZM(m)HW Z 'u(q2)H(p2_1)2:C,
q>1 plg1 221, plai
(q1,91)=1
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say, and from then onward, continue routinely. We get

p—1 p(p—1)
= ZM2(Q1)H P> —12+pp-1) H(l—i_W)

=1 pla1 p>2
p—1 p(p—1)
:E(l " (p* = 1)? +p(p - 1)> 1,1;[2(1 " W>

= 1/C

p>2

as claimed. The error term in Theorem 20.4 is (’)((ND3/2 + D3Q? +
D@?)Log?*(MQ)). Let us define

2
=2 D | > mdelatd/q)
q<Q amod *q' ¢>1,

d<D,
Ld2<N

and X9 with the size condition on d being reversed. We have just shown
that X1 = CN24+O(N?D '+ (ND3*? 4+ D3Q*+ DQ?) Log?(MQ)) while
Lemma 20.2 yields the bound
Yo < NQ?’D~ 2 + N3D*Log N.
Let us select D = NV4*t¢ and Q = N7/12-2¢ We readily get
22 < N27267 21 _ CN2 < N11/8+2€ +N23/127€/2 +N2746 < N276

since € < 1/6. We use

2 2

2

> wld)e(atd® jq) + Y pld)e(ald® /q)

¢<Qamod *q' (>1, £>1,
d<D, d>D,
Ld2<N Ld?<N
ST-2RY D Y plde(atd®/fq) D pld)e(—ald® /q) + T
¢<Qamod*q £>1, £>1,
d<D d>D
0d2<N Ld2<N

and we invoke Cauchy inequality for the middle term to prove it is not
more than /X125 < N27¢; the Theorem is proved. OO
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20.5. A large sieve equality: using more advanced
technology

We get here an equality in the large sieve inequality in a wider range of
M, in fact for M up to L. This time the range for ) will be restricted
to be not more than the squareroot of the length of summation.

(Friedlander & Iwaniec, 1992) already considered the case of f being
the convolution of 1 with a shortly supported arithmetical function and
proved more refined estimates than ours. The proof below is essentially
a simplified extract of theirs. Note however that in the Theorem below,
we do not use the special set of moduli {¢ < Q}.

We take

(20.9) fn) =" bug(0)
Im=n

m< M

where ¢ is smooth. More precisely, we assume that g is C°° and that
(20.10) 9V ()] < (€)™

for all 7 > 0 for some parameter { €|1/L,1] and L > 1. We further
assume that g(t) = 0 if ¢ > 2L. For simplicity, the reader may only
consider the case £ = 1 which will convey the main ideas and difficulties.
The hypothesis on g is patterned on the following examples: take a C*°
compactly supported function G on [1,2] and set g(t) = G(t/L). Such a
function will verify our assumptions with £ = 1. In this way we can for
instance approximate the characteristic function of the interval [L,2L].
The parameter £ is here to handle the precision of this approximation,
and the smaller it is, the better the approximation. There are several
examples to understand this point: first, we may simply take a function
G en [1,2/¢] and set g(n) = G(n/({L)). Of course, £ = 1/L corresponds
to the maximum precision. The example we took in section 1.2.1 does not
concern a C° function but is very closely related. Function b, defined
in (15.6) has |b,(,])(t)| < 87 for j < 2v+ 2 (see (15.11)) and falls again
in this category but for the assumption that it should vanish for ¢t > 2L.

Theorem 20.6. Let f be as above and Q be a set of moduli, all < Q.
We have

> 3 | setnara)] = ( [ Zg(w)dw>zz/bmb_w(mam/)g

qgeQamod*q N
+ 0. (LIBQQ + LM (a1 /(6L)7 ) (L)
for any j > 2 and any € > 0. Notation (m,m')g is defined in (20.7).
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In applications, {L/M is at least a small power of LM, so, by taking j
large enough, the term LM?(M/(£L))’ becomes not more than (LM)®.
This is usually less than Q.

Proof. We only consider the case @ = {¢ < @} for notational simplicity.
We have

2

=Y > | D bmg()e(tma/q)

q<Q amod *q £m<1‘741
Z Zg Vb b Zcqﬁm I'm’)
m,m/ <M 0.0’ q<Q
= _dM(Q/d) D bmbwg(O)g(t)
d<@ m,m/ 0.0
ml=m'{'[d]
=Y dM(Q/d) Y Z Db g(€)g(£')
d<Q [r|<SN/d  m,m’ L

méfm/f/:dr

where M(X) = >,y #(g) is the summatory function of the Moebius
function.

Next, we have mf—m/¢' = dr and thus ¢m = dr[m']. Let (m,m’) =4,
a divisor of dr. We set m = dn, m’ = dn’ and k = dr /6. We define

(20.11) =3 bbb S g(ﬁ)g(ngn_/k>

dldr (m,m')=4 {=nk[n']

and get

=2 2

a\dr(mm')—a " ez —00
e IRGIECN T

by Poisson summation formula. In this expression, we shall separate
h into three ranges: h = 0 gives the main term, 0 < |h| < H could be
treated in a non trivial way, something we do not wish to dwelve on here,
while the contribution with |h| > H will be discarded simply because
Fourier coefficients tend to zero when the argument tends to infinity.
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20.5.1. h = 0. The corresponding part of ¥(f, Q) reads

a=Tu(f) 55 [ e
S|dr

Here, § being fixed, we want to sum over . We need to have §/(6,d)|r
so that with r = sd/(6,d)

Z g(u—ds/(é,d)) :/OO g(u_vi{(é’d)>dv+(’)(1)

n/ o
|s| <N %D
5 d / [e’e]
= LA ™ gwyaw + o),

from which we infer

(2012) Y / /k)du

rl<Nyd "

d|dr
The change of variable © — k = v enables us to exchange roles of n and
n’, resulting in an error term of O(L/(n + n')).
Treatment of the main term when h = 0. Plugging such an estimate
back into Xo(f, @), we get, for the main term

(/_Z > Zb b Y ((m,m),d)M(Q/d).

d<Q

Separate (m,m’) and d by appealing to £ = 3, ,&(t) and get that the
above is

00 2
(/ g(w)dw) > b > (6) > M(Q/d).
- m,m/ t|(m,m’) dflf

We check that 3, ;<o M(Q/d) = 1if t < @Q, and 0 otherwise. The main

term now reads
o 2
( / g(w)dw) S by (m. ).
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Treatment of the error term when h = 0. Plugging (20.12) into the
definition of X¢(f, @), we get the error term

QLZ Z QZLme’b mbmy |

d<Q (m,m’)= 5 m+m

We separate m and m’ in two steps by using ¢ = Zt\f ¢(t) and then
noting 2(by by | < b |? + |bpr|?. We get the above to be not more than

Q2LZ¢ ) lom* Y —

tim tim’

7 <e Q*LM?||b|3.

20.5.2. |h| > H. We simply use a bound for the Fourier coefficient that
is obtained by integrating j > 2 times.

‘/Zg(v/n)g . ) (;:h>dv

so the contribution to X(f, Q) is at most

YA X S S bl (e5) T

d<Q Ir|<N/d |h|>H (m,m’)=5|dr

ML
< Q= Ih3(

M
¢LH

because the summation over h converges by the assumption 57 > 2 and
since N <« LM. As it turns out, our statement corresponds to H = 1.

)H Log(LM)

20.5.3. 0 < |h| < H. This subpart has no reasons to be, since we take
H = 1. Tt would have become necessary to handle this case if we were
to take €L < M.

000

20.6. Equality in the large sieve inequality, II

We should compare the main term in Theorems 20.3 and 20.6 to N|| f||3
where IV is supposedly the length, a notion that is not clearly defined
here. In the large sieve inequality, N is an upper bound for the length.
What is clear is that N should be of order LM. We consider only the
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simpler case of Theorem 20.3. Let us express | f||3 in another manner:

E= Y babw 301

m,m/<M LU<L,
Im=0'm'

In the inner sum, we write 6 = (m,m’) and m = dén as well as m’ = on’.
We should have £ = nh and ¢ = n’h and we get

IfB=1 3 maxmm)< m, ') + O(M]b]3).

m,m/ <M

This is to be compared with the main term we got on taking Q = {¢ <
Q} and @ > M, namely:

(L/M) Z by (M, m).

m,m’ <M

Both expressions are close but not close enough and it is likely that
the latter should be a fraction of the former. The case b,, = 1 when
m €]M /2, M], and 0 otherwise is enlightening. We see directly that

M/2<mm/'<M d<M M/2<m<m/<M,
dlm,d|m’

which we readily evaluate. It is

23" @ 3 <Log% +0<%)) + O(M)
d<M M/Q(;ZSM,
=(1-Log2)M > _ %l) +O(M)
d<M

= (1 —Log2)M - CLogM + O(M)

for a positive constant C' while one readily checks that

M
(1/M) g (m,m'):Z-CLogM—i—O(M).
M/2<mm' <M

This example shows that a loss of a multiplicative constant is to be
expected. We are really interested in what happens when one takes
sieve weights, in which case b,, varies in sign while ¢ is not constrained
as in Theorem 20.1, but I expect a similar phenomenom to happen. It
is however out of the scope of this monograph.
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20.7. The large sieve inequality reversed

(Duke & Iwaniec, 1992) proved a very interesting reversed large sieve
inequality that we only state here. We are somehow off topic.

Theorem 20.7. Let (by)n>1 be a sequence of compler numbers. For
M > 2N > 4, there exist Q < /N and a smooth function f supported
on a subinterval of [M — N, M + 2N] of length Y = Qv/'N and whose
derivatives verify | f9)| <; (LogY)/Y7 for any j >0, such that

2
S bl @@ S S bufme(na/a)

M<n<M+N q<Q amodq' M

The reader should be wary of the apparently small changes in the
quantities considered: first, the summation runs over all a’s modulo ¢
and not only over the invertible residue classes ans secondly, we divide
by 1/q and not by 1/Q. This last change has momentous consequences
which are better described by looking at the case b, = 1. The right-hand
side of the above equation is then of order NQ Log @ while the left-hand
side is only of size N! We gather by inspecting this example that the
above inequality should be used only when ) b,e(na/q) is expected to
be negligible for all small ¢’s.
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21.1. A general mean value estimate

Here is a theorem inspired by (Halberstam & Richert, 1971) but where
we take care of the values of our multiplicative function on powers of
primes as well. The reader will find in (Martin, 2002) an appendix with
a similar result. Moreover, we present a completely explicit estimate,
which complicates the proof somewhat. In (Cazaran & Moree, 1999),
the reader will find, inter alia, a presentation of many results in the
area, a somewhat different exposition as well as a modified proof: the
authors achieve there a better treatment of the error term by appealing
to a preliminary sieving.

Theorem 21.1. Let g be a non-negative multiplicative function. Let k,
L and A be three non-negative real parameters such that

> (") Log(p”) = HLog% L0 (Q>w>1),
p>2,v>1
w<p’<Q
> > 9(@)g(p”) Log(p¥) < A.
p>2v,k>1

Then, when D > exp(2(L + A)), we have

> 9(d) = C (Log D)" (1 + O*(B/ Log D))

d<D
_ !

B=2(L+ A)(1+2(s+ 1)et1).

with

If in many applications the dependence in L is important, the one in
A is most often irrelevant. In the context of the sieve, k is called the
dimension of the sieve: it is the parameter that determines the size of
the average we are to compute and is, of course, of foremost importance.
Let us mention in this direction that (Rawsthorne, 1982) obtains a one-
sided result from one-sided hypothesis, following a path already thread
in (Iwaniec, 1980).
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Proof. Let us start with the idea of (Levin & Fainleib, 1967):

D)Log D =" g(d) Log % + > g(d)Logd

d<D d<D
=Y g(d) Log—+ > g(p) Log(p”) Y g(0).
d<D p>2,v>1 L<D/p¥
p’<D (£,p)=1

Next we set

Gp(X)= D g(0)
<X
(21.1) (tp)=1

T(D) =Y g Log— /G

d<D
so that we can rewrite the above as
G(D)Log(D) =T(D)+ Y _ g(p")Log(p")Gp(D/p").
p>2>1
p¥<D

Moreover

Gp(X) = G(X) = > g(p*)Gp(X/p")

E>1
which, when combined with our hypothesis, yields

G(D)Log(D) =T(D)+ Y g(p") Log(p")G(D/p") + O*(AG(D))

p=>2,v>1

p¥<D
D)+ > g(d) > g(p")Log(p") + O*(AG(D))
d<D p>2,0>1
p’<D/d

=TD)(k+1)+O0*((L+ AG(D))
which we rewrite as
(k+1)T(D) =G(D)Log D (1+r(D))
L+ A
LogD>'

with (D) = 0*<

We see the previous equation as a differential equation. We set

(k+1)T(D) _ G(D)
(Log D)*+1 " (Log D)*

exp E(D) = (1+r(D))
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getting for D > Dy = exp(2(L + A))

y B T'(D) (k+1) ~ —r(D)(k+ 1)
E(D) = T(D) DLogD (14 r(D))DLogD
2L+ A)(k+1)
=© ( D(Log D)? >

since [r(D)| < 1/2 when D > Dy and on computing 7"(D) through (21.1).
Now, still for D > Dy, we have

Gathering our results, and using exp(z) < 1+ zexp(z) valid for z > 0,
we infer that
D E(D E(o0) 2(L+ A
G( ) :exp ( ) — € 1+O* M(K/_}_l)eli‘i’l .
(LogD)* 1+4+r(D) 1+4+r(D) Log D
We next use 1/(14z) < 142z valid when 0 < z < £ and (1+2)(1+y) <
(1 + 2z +y) valid for x,y > 0 and y < 1 to infer

% = B() (1 + O* (%(1 +2(k + 1)e“+1)>>.

This ends the main part of the proof. We are to identify e®(>) = (.
Note that the above proof is apriori wrong since T'(D) # G(D)/D at the
discontinuity points of GG, but we simply have to restrict our attention
to non integer D’s and then proceed by continuity.

An expression for C. We define, for s a positive real number,

(d) dD

D(g,s) = FT s/ G(D)Der1
d>1 1

= ,sc/1 (LogD)”% + (9<5C’/1 (LogD)*”v—l%)
=C(s™"TI'(k+1) + (9(81_"‘1‘(/4)))
and consequently
C = lim D(g,s)s"T'(k+1)"!

s—0t+

= lir(1)1+ D(g,s)¢(s+1)"I'(k+1)"L.

It is then fairly easy to check that the Eulerian product
1\" y
[{(1-;) S0}
p>2 v>0

is convergent with value CT'(k + 1) as required. SRR
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21.2. A first consequence

It is not difficult by following (Wirsing, 1961) to derive a stronger mean
value result from Theorem 21.1. Since it will be required in one of the
applications below, and since all the necessary material has been already
exposed, we include one such result.

Theorem 21.2. Let f be a non-negative multiplicative function and k
be non-negative real parameter such that

> f(p) Log(p") = kQ+ 0(Q/Log(2Q))  (Q>1),
p>3<VQ>1

S > F0") (") Log(r”) < VQ,

p>2 vk>1,
PR<Q

then we have
> f(d)=rC-D(LogD)* ' (1+0(1))
d<D

where C is as in Theorem 21.1.

Proof. We proceed as in Theorem 21.1. Write
D)=} f(d
d<D
By using Theorem 9.2 followed by an application of Theorem 21.1, we
readily obtain the following apriori bound

(21.2) S(D) < D(Log(2D))" 1.
Consider now S*(D) = ;. p f(d) Log d. Proceeding as in the proof of

Theorem 21.1, we get
= 2 J0")Les(r) >,

p>2,0>1 <D/p*
p’<D (¢,p)=1
=Y f©) > f(p)Log(p”)
(<D p>2,0>1
p’<D/L,
(p,0)=1

so that S*(D) equals

SHO D> FE) Log() = > 0 > (@) F(P") Log(p”)
{<D p>2,v>1 (<D p>2,v,k>1
p’<D/t ptE<D/e,
(p4)=1
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We use our hypothesis on this expression and conclude that

P f(0) ) ( f(€)>

S*(D) =kD 0)/t+ O —_— @) —= .
(©) =D 3 si0)t+ (Qémg@@m ro(vaz

Both error terms are shown to be O(Q Log(2Q)"~!) by appealing to (21.2)
while the main term is evaluated via Theorem 21.1. We finally use an

integration by parts:
dt S*(D)

D
S(D)=1 S*(t
(D) +/g ( )tLog2t + Log D

to get the claimed asymptotic. OO

21.3. Some classical sieve bounds

Using Corollary 2.1 with Theorem 21.1 yields some classical sieve bounds.

Sums of two squares. Let us recall that a positive integer is a sum
of two coprime squares if and only if its prime factor decomposition
contains only powers of 2 or of primes congruent to 1 modulo 4. Let us
call B the set of such numbers.

We consider the compact set I built as follows: if p is = 2 or a prime
= 1[4], K, is Z/pZ, and if p = 3[4], K, = U,. We then build K, for
squarefree d by split multiplicativity and, in general, ICgq by lifting &y in
a trivial way through o4, (see (2.1)), where ¢ is the squarefree kernel
of d. The resulting compact set is multiplicatively split and squarefree.
We readily check that

{h(2”) =h(p")=0 when p = 1[4] and v > 1,
h(p) =1/(p—1) and h(p”) = 0 when p = 3[4] and v > 2.

Let b(q) be the characteristic function of the integers whose prime factors
are all = 3[4]. We find that

(21.3) G =Y B9 Ef()qb)(Q)

q<Q
to which we apply Theorem 21.1 with x = 1/2. We get
(21.4) G1(Q) ~ By/TogQ

with B the product over all primes of /1 —p~! when p = 1[4] and

1/4/1 —p~! when p = 3[4], which product we multiply by +/2/m (the
contribution of the factor 2 and of the I'-factor, since I'(1/2) = /7). On
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taking Q = \/N/ Log N, we find that the number of elements in 5 in an
interval of length N is not more than

(21.5) (1+0(1))%2N//Log N.

This is to be compared to the number of elements of this sequence in the
initial interval [1, N]. Using Theorem 21.2, we find that this cardinality
is

(21.6) {beBb< N} =(1+0(1 ))\f \/_N/\/LON

so that our upper bound is about 77/\/5 = 2.22... times off the exact
answer in this case. The combinatorial sieve is able to get the asymptotic
here, or even in the case of an interval [M + 1, M 4+ N], when N is not
too large with respect to M.

On the number of prime twins. We will give an upper bound for the
number of prime twins up to N, as N goes to infinity, by applying
Selberg sieve. We already gave such a bound in chapter 9 by using our
local models. The compact set we take is simply K = U N (U — 2) as was
the case then. It is multiplicatively split as well as squarefree. For the
associated function h, we readily find that

h(2) =1 and h(2")=0 ifv>2,
h(p) =2/(p—2) and h(p”)=0if p>3and v > 2.

This gives us

(21.7) =y p—

a<Q plq
p#2
to which we apply Theorem 21.1 with x = 2 to get
1 (p— 1)2 2
21.8 G1(Q) ~ - ——(Log Q)“.

We again choose Q = v/N/Log N to find that

[{p < N /p+2is prime}| < 16(1 + o(1) Hp N/ Log N)?2
p>3

a bound that is 8 times larger than its conjectured value. (Siebert, 1976)
establishes the above inequality for all N > 1 with no o(1) term. If we
were to use the Bombieri-Vinogradov Theorem as in section 13.5, we
would get a bound only 4 times off the expected one. Note that (Wu,
2004) reduces this constant to 3.3996; that such an improvement holds
only when we look at prime twins located on the initial segment [1, N],
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contrarily to the above bound which remains valid for any interval of
length V.

21.4. Products of four special primes in arithmetic
progressions

Let us start by roughly recalling the notion of sufficiently sifted sequence
as has been developed by (Ramaré & Ruzsa, 2001). Essentially, such a
sequence A is infinite and of fairly large density: the number of its
elements > X is > X/(Log X)" for X large enough and a given x; and
for each large parameter X, we can find a Yx < X, so that the finite
subsequence AN[Yyx, X] can be sifted by a multiplicatively split compact
set K satisfying the Johnsen-Gallagher condition, up to a level @), in
such a way that the associated G;-function satisfies G1(Q) > (Log X)".
Alternatively, we may say that the characteristic function of AN[Yx, X]
is carried by KC up to level ). Such conditions ensure that the number
of elements < X in A is of order X/(Log X )" but also that we have
at our disposal a surrounding compact. This latter condition provides
us with good arithmetical properties: in (Ramaré & Ruzsa, 2001), we
investigated its implications on additive properties; it is also a main
ingredient in (Green & Tao, 2004) and (Green & Tao, 2006) concerning
arithmetic progressions within such sets. We rapidly present here a third
kind of use, namely to prove the existence of products of elements of
this sequence in some arithmetic progressions to large moduli. This is,
of course, a generalization of section 5.1.

But let us first comment some more on the definition of a sufficiently
sifted sequence and provide the reader with some examples. The se-
quence of primes is a good candidate, with kK = 1. We see in this example
that the introduction of Yx is necessary: we cannot say that the primes
up to X are the integers coprime with every integers < Q = VX ... if
we want to keep some elements in our sequence! Note that () also has
to depend on X, all of them conditions that gives a technical flavour to
our definition but are required if we want it to be flexible enough for
applications. A trivial example is also given by the sequence of positive
integers, with k = 0, or by the sequence of squarefree integers, also with
dimension x = 0. More exotic is the sequence of integers n that are sums
of two coprime squares and such that n 4+ 1 also shares this property.
Its dimension is k = 1, as shown in (Indlekofer, 1974/75). The sequence
of those prime numbers p that can be written as p = 1 + m? + n? with
(m,n) = 1 yields another uncommon example, with dimension k = %
thanks to (Iwaniec, 1972).
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Instead of going for a general result which would be very intricate, we
use this latter sequence as an example: let A be the sequence of those
prime numbers p that can be written as p = 1+m?+n? with (m,n) = 1.

Theorem 21.3. There exists Xg > 1 and h > 2 with the following
property. Let X > Xy be an integer and q1,..., qp be pairwise coprime
moduli, all not more than X3 and all prime to 3. Then modulo one
of the q;’s, all invertible residue classes contain a product of four primes
from A, the four of them being not more than X.

The bound X*/3 may be replaced by X%_a for any € > 0 but then h
may depend on . As a second remark, note that we detect a product of
two primes, but in fact we can equally guarantee that each class modulo
the same ¢; contains also a product of five (or any number as well) primes
from A. Finally, we should mention that the modulus 3 is a special case
since elements of A are congruent to 2 modulo 3 and in particular no
product of a fixed number of them can cover all of Us.

The reader may try to get a similar result by taking for A the sequence
of integers n and n+1 that are sums of two coprime squares. Note finally
that (Pomerance et al., 1988) somewhat draws on similar lines.

Proof. We split this proof in several steps.

General setting: We call Ax the sequence of elements of A that be-
long to [vX,X], a sequence we can sieve up to level Q = v/X. The
cardinality of Ay is denoted by Ax.

The compact set K can be defined by multiplicativity: when p = 1[4],
then KCp, is simply the set of invertibles U, while when p = 3[4], then IC,
is the set of invertibles modulo p from which we remove the class 1. As
for p = 2, we simply take Iy = {1}, without further ado. We then lift
KCpp trivially to define ICpv for v > 1.

Applying Theorem 21.1, we find that x = 3/2, from which we infer
G1(Q) > (Log Q)*? while an appeal to Lemma 2.3 yields

(21.9) G4(Q) = G1(Q/q) > (Log(Q/))*?,

the implied constant being of course independent of ¢ < Q.
First step: By using (5.5), we get an analog of (5.2), namely that

2

Gl(Q)A?)(_{' Z GQi(Q)3/Z|qu‘| Z

1<i<h beky,

Y 1 Ax/IK,]

a€Ax
a=b[q;]
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is bounded from above by Ax (X +Q?). We then appeal to (21.9), recall
that Q = VX and get

Log g\ %>
3 (1—2L0‘§g) Kl 3

1<i<h beKy,

2
<c

1
Ax Z 1-1/|Kq,|

acAx
a=b[q;]

for some constant ¢ > 0 and all X > X,. The introduction of this Xj is
necessary since we do not have Ax > X/(Log X)3/? when X is too small.
We use the same optimization process as in the proof of Theorem 5.1.
First define

Ax(qi) ={a € Z/q;Z/ Ip € Ax,p = a[g]}-
Then there holds for X > Xj:
3 <1 B 2Logq@->3/2 ( Kol 1) -

Log X |Ax (a:)] B

1<i<h

From this inequality, we get, for one ¢; we call ¢:

. 3/2 "Cq’ _ ) <

0 (it -1) <

ie. |Ax(q)|/IKq] > 1/(1 + 3¢/3/h) which can be arbitrarily close to 1
when h is large enough.

Second step: We have just shown that the cardinality of | Ax (g)| could
be almost |K,| but this latter can be very small with respect to ¢(q) when
q has lots of prime factors = 3[4]. However, we show here that the set
B(q) of products of two elements is large with respect to ¢(g). The
process we use to achieve this is rather classical. Let r(n) (resp. 7(n))
be the number of ways the integer n can be written as a product (resp.
quotient) of two elements of Ax(¢) modulo g. Using Cauchy’s inequality

yields
2
|Ax<q>|4=< 3 r<n>) <1B@)l Y r)

nmod*q nmod*q

We are to find an upper bound for 3" 7(n)?, but first we note that

doorm)P= > 1= > 1= ) #n)?
nmod*q a,b,c,de Ax (q) a,b,c,de Ax(q) nmod*q
ab=cd|q] a/c=d/blq]
Next, we compute an upper bound for 7(n) simply by extending in n =
a/b the range of a and b to all of IC;. This way, the new 7(n), say 7o(g,n),
is multiplicative. Furthermore, 7o(p",n) = (|[ICpv|/|Kp|)70(p, n) for any
v > 1. If p=1[4], then ro(p,n) = |IC;| =p — 1. Of course 7y(2,n) = 1.
To cover the case p = 3[4], we note that in a = nb, all values of b are
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accepted when n = 1[p] and only p — 3 of them otherwise. From these
remarks, and denoting by ¢* the squarefree kernel of ¢, we get

> folgn)* = ",Iccq“z IT (v -1k,

nmod*q pp|{][,4}
x I (=2 -3)7%+@-2)7)
o2

K[! I (=32 -1+p-2)(p—1)
0@ s (r—2)°

_ Il 1+ ! < 1.011K,|*

= ——= | < 101K, [*/6(q)
oy 1L (1 5ap) !

this latter inequality being true since the primes p intervening in the
Euler product are > 7. Gathering our estimates, we reach

(Ax (a)l/IKq])* < 1.011B(q)l /¢(q)
and thus for h large enough, we have |B(q)|/¢(q) > 2/3.
Third step. : We conclude as in the proof of Corollary 5.1: since
B(gq) contains more than ¢(q)/2 elements of U, each class of U, can be
reached by a product of two elements from B(q). 000



Notations

Notations used throughout these notes are standard ... in one way or
the other! Here is a guideline:

— The use of the letter p for a variable always implies this variable
is a prime number.

— e(y) = exp(2imy).

— T'(2) is the usual Euler I'-function. In particular, I'(1/2) = /7.

— ||lal|2 stands for the norm, according to the ambient hermitian
structure, or the L?-norm when no such structure has been spec-
ified. This is to be distinguished from ||u|| which stands for the
distance to the nearest integer. In chapters 4 and 19, the norms
will be denoted with another subscript, usually d or ¢, and it
will still be hermitian norms and will not be linked in any way
to Li-spaces.

— [d, d'] stands for the lem and (d,d’) for the ged of d and d'. We
denote as usual the closed interval with endpoints M and N as
[M, N]. Hermitian products will be denoted by [f|g] with or
without any subscript. And in chapter 20, we will denote by
[N/m] the integer part of N/m.

— |A| stands for the cardinality of the set A while 14 stands for
its characteristic function.

— 1 denotes a characteristic function in one way or another. For
instance, g, is 1 if n € K4 and 0 otherwise, but we could
also write it as 1,ex,, closer to what is often called the Dirac
d-symbol. We shall also use 1(,, g)—1 and L,—y.

— ¢||d means that ¢ divides d in such a way that ¢ and d/q are
coprime. In words we shall say that q divides d ezactly.

— The squarefree kernel of the integer d = [[,p;" is [[, ps, the
product of all prime factors of d.

— w(d) is the number of prime factors of d, counted without mul-
tiplicity.

— ¢(d) is the Euler totient, i.e. the cardinality of the multiplicative
group of Z/dZ.

— o(d) is the number of positive divisors of d, except in section 13.1
where it will denote a density.

— u(d) is the Moebius function, that is 0 when d is divisible by
a square > 1 and otherwise (—1)" otherwise, where r is the
number of prime factors of d.
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— ¢4(n) is the Ramanujan sum. It is the sum of e(an/q) over all a

modulo ¢ that are prime to ¢. See also (8.12).

A(n) is van Mangoldt function: which is Logp is n is a power
of the prime p and 0 otherwise.

The notation f = O4(g) means that there exists a constant
B such that |f| < Bg but that this constant may depend on
A. When we put in several parameters as subscripts, it simply
means the implied constant depends on all of them.

The notation f = O*(g) means that |f| < g, that is a O-like
notation, but with an implied constant equal to 1.

The notation f * g denotes the arithmetic convolution of f and
g, that is to say the function h on positive integers such that
h(d) =>4 f(2)g(d/q).

The notation F * G denotes the real functions convolution, that
is to say the function H on the real line defined by H(z) =
ffooo F(xz — y)G(y)dy provided the latter expression exists for
every real number x.

— U is the compact set (Uy)g where, for each d, Uy is the set of

invertible elements modulo d.

7 is ... the usual real number about 3.1415...! But also identi-
fies the counting function of the primes: 7w(6) = 3 for instance.
We tried to avoid this notation when not too awkward, just
as we did not use the Chebyshev ¢ and 1 functions except in
chapter 6.
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ABSTRACT. This book is an elaboration of a series of lectures given
at the Harish-Chandra Research Institute in February 2005. The
reader will be taken through a journey on the arithmetical sides
of the large sieve inequality when applied to the Farey dissection.
This will reveal connections between this inequality, the Selberg
sieve and other less used notions like pseudo-characters and the Ag-
function, as well as extend these theories. One of the leading theme
of these notes is the notion of so-called local models that throws a
unifying light on the subject. As examples and applications, we
present, among other things, an extension of the Brun-Tichmarsh
Theorem, a new proof of Linnik’s Theorem on quadratic residues
and an equally novel one of the Vinogradov three primes Theorem,;
we also consider the problem of small prime gaps, of sums of two
squarefree numbers and several other ones, some of them being new,
like a sharp upper bound for the number of twin primes p that are
such that p+1 is squarefree. We end our journey by considering the
problem of equality in the large sieve inequality and prove several
results in this area.



