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Prefa
eThese le
tures were given in February 2005 while I was a guest ofthe Harish-Chandra Resear
h Institute, and the bulk of these notes waswritten while I was staying there.Though this 
ourse was intended for people having some ba
kgroundin analyti
 number theory, e�orts have been made to restri
t the pre-requisites to a minimum. As an e�e
t, most of these notes 
an be readwith no prior knowledge in the area, ex
ept for some appli
ations whi
hrequire the prime number Theorem for arithmeti
 progressions and, insome pla
es, the Bombieri-Vinogradov Theorem.I wish to thank the Harish-Chandra Resear
h Institute for givingme the opportunity to give this series of le
tures and for providing ex-tremely agreeable surroundings, the CEFIPRA programme "Analyti
and Combinatorial Number Theory", proje
t 2801-1 dire
ted by Profes-sors Bhowmik and Balasubramanian, for funding most of my journey,and �nally my host, Professor Adhikari, without whom none of thiswould have been possible. I am also indebted to S. Baier who attendedthese le
tures and pointed out useful referen
es, as well as to the otherpersons in the audien
e for questions that helped me 
larify these notes.Professor D. Surya Ramana has been of great help during the writingof this monograph: he has read many a new version, 
he
ked formu-lae, 
orre
ted referen
es as well as provided a most wel
omed linguisti
support. Chapter 3 is his, so is the last part of se
tion 1.2.1 as well asseveral parts of the proofs presented. Both of us would like to thank theIndo-Fren
h Institute for Mathemati
s for supporting this 
ollaboration.O. Ramaré
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Introdu
tionThe idea of the large sieve appeared for the �rst time in the foun-dational paper of (Linnik, 1941). Later (Rényi, 1950), (Barban, 1964),(Roth, 1965), (Bombieri, 1965), (Davenport & Halberstam, 1966b) de-veloped it and in parti
ular, two distin
t parts emerged from these works:(1) An analyti
 inequality for the values over a well-spa
ed set ofpoints of a trigonometri
 polynomial S(α) =
∑

1≤n≤N une(nα),whi
h, in arithmeti
al situations, most often redu
es to(0.1) ∑

q≤Q

∑

amod∗q

∣

∣S(a/q)
∣

∣

2 ≤ ∆
∑

n

|un|2for some ∆ depending on the length N of the trigonometri
polynomial and on Q. The best value in a general 
ontext is
∆ = N − 1 +Q2 obtained independently in (Selberg, 1972) andin (Montgomery & Vaughan, 1973).(2) An arithmeti
al interpretation for∑amod∗q

∣

∣S(a/q)
∣

∣

2, where thistime, information on the distribution of (un) modulo q is intro-du
ed. The most popular approa
h goes through a lower boundand is due to Montgomery, leading to what is sometimes referredto as Montgomery's sieve, by referen
e to (Montgomery, 1968).Today the terminology large sieve refers to a 
ombination of the twoaforementioned steps. We refer the reader to the ex
ellent le
ture notes(Montgomery, 1971) and the survey paper (Montgomery, 1978) for theearly part of the development, but 
ite here the papers of (Bombieri &Davenport, 1968) and (Bombieri, 1971).Almost simultaneously, (Selberg, 1949) introdu
ed another way ofsieving, whi
h we now des
ribe rapidly in the following simple form forthe primes: to �nd an upper bound for the number of primes in theinterval ]
√
N,N ], 
onsider the following inequality(0.2) ∑

√
N<p≤N

1 ≤
∑

n≤N

(

∑

d|n
λd

)2valid for any λd's subje
t to λ1 = 1 and λd = 0 if d > z for someparameter z ≤ √N . This leads to the determination of the minimum ofthe quadrati
 form on the R.H.S. of (0.2), a method for whi
h Selbergdesigned an appropriate elementary method.



2 0 Introdu
tionThe similarity between the large sieve pro
edure and Selberg's is farfrom obvious, but one readily notes that both of these are based on an L2-kind of argument, and that both rely on an arithmeti
al inequality whi
his 
ontrolled only extremely loosely. Moreover it turns out that both,despite their simpli
ity, lead to best results in sieve theory (provided thesieve dimension is ≥ 1).That both of these pro
edures were related be
ame apparent at leastin the early seventies as 
an be seen from the papers of (Huxley, 1972b),(Kobayashi, 1973) and (Motohashi, 1977), so word went around thatboth sieves are dual to ea
h other, at least in a vague sense, though thepapers quoted above of 
ourse give a pre
ise meaning to this suggestedduality. Things get somewhat more intri
ate if one noti
es that the largesieve inequality may be proved via its dual form as in (Elliott, 1971). Letus mention here that this very �exible pro
ess usually leads to boundsof good quality.Our aim in these le
tures is to develop a unique setting for the largesieve and Selberg sieve, based on hermitian inequalities. This 
an beseen as an elaboration of ideas due to Selberg, as exposed in (Bombieri,1987). Along the way, we shall meet, re
ognize and show links betweennotions used at di�erent pla
es.In the �rst stage, we extend the 
lassi
al arithmeti
 form of the largesieve, in a fashion very mu
h inspired by (Bombieri & Davenport, 1968).This generalization will have 
onsequen
es, and we shall in parti
ularimprove on the large sieve inequality when applied to sifted sequen
es.Our 
loser s
rutiny will provide a large sieve extension of the sieve boundbut only under a spe
i�
 
ondition, thus showing some dis
repan
y be-tween both sieving pro
esses, besides the fa
t that the large sieve appliesonly when sieving intervals while Selberg sieve en
ompasses the 
ase ofgeneral sequen
es. By a large sieve extension, we mean that we areable to bound not only the number of points satisfying some 
ongru-en
e 
onditions, but also are able to give an upper bound for quantitiesmeasuring distribution in arithmeti
 progressions, as in the theorems of(Barban, 1963), (Barban, 1964), (Barban, 1966), (Davenport & Halber-stam, 1966a) and (Davenport & Halberstam, 1968).In the se
ond stage, we develop a theory of what we 
all lo
al models,essentially through examples. Roughly speaking, we build an approxi-mation of the fun
tion we are interested in modulo q by multiplying amodel for its redu
tion modulo q and a model for its behavior from thepoint of view of size 
ondition (our pla
e at in�nity, to use the languageof number theory). As an appli
ation we shall prove a large sieve typeinequality but with an error term similar to the one appearing in Selberg



0 Introdu
tion 3sieve and improve on the asymptoti
 Brun-Tit
hmarsh inequality. Thisthird approa
h will show how the two previous ones, via the large sieveand via Selberg sieve, are 
onne
ted. But it will also lead to further de-velopments and, in parti
ular, to some results on some binary additiveproblems, via a method not unlike an abstra
t 
ir
le method. We notehere that (Heath-Brown, 1985) has already pointed in this dire
tion.In the third stage, drawing on what we introdu
ed earlier, we presentthe Selberg sieve in an elementary fashion so as to en
ompass the 
ase ofnon-squarefree sifting 
onditions. This approa
h will apply to sequen
esas well, while earlier expositions in (Selberg, 1976) or (Motohashi, 1983)did not. Moreover we shall also understand Selberg's pseudo-
hara
ters(see for instan
e (Motohashi, 1983) for a de�nition) and extend the resultof (Kobayashi, 1973) to our more general situation. This part will alsoshow links between this sieving pro
ess and approximation of the vanMangoldt fun
tion Λ as it appears, for instan
e, in (Motohashi, 1978),(Heath-Brown, 1985), (Goldston, 1992) or (Iwanie
, 1994). As a matterof fa
t, this line of thought arose from ideas at the very origin of Selbergsieve, see (Selberg, 1942).In the fourth and �nal stage, we develop our material in several di-re
tions. We �rst show the 
lassi
al theorem of (Bombieri & Davenport,1966) on prime gaps by our method, and in parti
ular without any useof the 
ir
le method. We also handle in a similar fashion the 
ase of therepresentation of an integer by a sum of two squarefree numbers. It is atthis that we shall prove a general approximation theorem for a fun
tionby lo
al models: we delayed su
h a statement this mu
h be
ause it re-quires a 
lari�
ation of the notion of lo
al model, notably 
on
erning theway to handle the in�nite pla
e. We end our journey by dis
ussing whi
hbinary problems are a

essible through this pass, meeting here with somematerial due to (Brüdern, 2000-2004) and some due to (Friedlander &Iwanie
, 1992).In between, we shall expand on the parti
ularly elegantsmoothing fun
tions due to (Holt & Vaaler, 1996) that will allow us toprove a novel generalization of the large sieve inequality, while simplify-ing estimations in the 
ontext of our lo
al models.We have attempted to present all this material in a manner as ele-mentary as possible, and this sometimes prevents us from gaining someheight. Already as su
h, we require several unusual de�nitions. Forthis reason we have supplemented our exposition with the 
hapter 4and 14, whi
h des
ribe with greater 
are the surroundings and preparethe ground for a more axiomati
 approa
h. In parti
ular, we insist ongetting what we 
all a geometri
al interpretation to 
onne
t our 
ombina-torial 
onstru
tions with properties of sets su
h as Z/dZ. The situation



4 0 Introdu
tionis more di�
ult than that, and indeed, eventually, we will 
ontend withproperties on the spa
e of fun
tions on su
h sets.We �nally mention that Motohashi has developed the arithmeti
alsetting of the large sieve in a very di�erent dire
tion, see for instan
e (Mo-tohashi, 1983). Moreover, many arithmeti
al appli
ations of the largesieve inequality stem from its multipli
ative form, a subje
t whi
h weshall not tou
h upon: the reader is referred to the ex
ellent broa
hof (Bombieri, 1987). Among general referen
es on the subje
t, we men-tion the books of (Halberstam & Ri
hert, 1974) and of (Huxley, 1972a).Furthermore, Elsholtz has developped 
ombinatorial uses of the largesieve inequality, a subje
t we shall not tou
h at all; We simply referto (Elsholtz, 2001), (Elsholtz, 2002), (Elsholtz, 2004) and (Croot III &Elsholtz, 2004). Finally, the reader will �nd in (Huxley, 1968), (Huxley,1970) and (Huxley, 1971) material pertaining to a large sieve inequalityfor algebrai
 number �elds as well as several appli
ations of it.Individual 
hapters in these notes are meant to present a 
ir
le ofideas, with referen
es given therein to other parts where a di�erent pointof view is taken, or where one has an easier a

ess to 
ertain lemmas ornotions. Su
h a 
hoi
e is rendered ne
essary by the subje
t itself: weintend showing di�erent developments in a uni�ed 
ontext, but thesedevelopments are in fa
t quite entangled one with another. We studyseveral examples, some of them leading to new results, but limited someof the proofs to illuminating spe
ial 
ases.A �nal word on averages of non-negative multipli
ative fun
tions.Evaluating su
h averages is a most 
ommonly met question, and wehave de
ided to present the 
onvolution method as well as a number ofresults originating from (Levin & Fainleib, 1967). We have isolated themain result of this 
elebrated paper in an appendix, in a slightly moregeneral form required in our 
ontext and took the opportunity to detailthere two 
lassi
al examples. However, sin
e these results are s
atteredthroughout the monograph, here is an index:(1) Lemma 2.3 is a generalization of a lemma due to (van Lint &Ri
hert, 1965).(2) Proof of Theorem 2.2, page 23: an ad-ho
 lower bound.(3) Se
tion 5.3, page 42 starts with a sket
h of the 
onvolutionmethod.(4) Proof of Theorem 5.4 
ontains page 45 another example on the
onvolution method.(5) Proof of Lemma 6.2, page 57 relies on the idea of (Levin &Fainleib, 1967).



0 Introdu
tion 5(6) Theorem 9.2, page 77 is yet another use of this idea.(7) Se
tion 13.3, page 112 
ontains an appli
ation of our version ofthe Levin-Fainleib Theorem, namely Theorem 21.1, while se
-tion 13.5 
ontains another one.(8) The appendix presents statement and proof of this Theorem 21.1,together with yet another instan
e of its use.The reader should however be aware that the theory is in no way re-stri
ted to these two lines of approa
h and will 
onsult with bene�t(Wirsing, 1961), (Halász, 1971/72), (Montgomery & Vaughan, 2001)and (Granville & Soundararajan, 2003).Multipli
ativity and its numerous variations are freely used through-out this book, as is the arithmeti
al 
onvolution. We have tried to sti
kto 
ommon notations and to summarise most of them page 187. Wehope that this summary, together with the referen
e index, will help thereader navigate at his or her own will within this monograph!





1 The large sieve inequalityWe begin with an abstra
t hermitian setting whi
h we will use toprove the large sieve inequality. We develop more material than is re-quired for su
h a task. This is simply to prepare the ground for futureuses, and we shall even expand on this setting in 
hapter 7; the �nalstroke will only appear in se
tion 10.1.1.1. Hilbertian inequalitiesLet us start with a 
omplex ve
tor spa
e H endowed with a hermitianform [f |g], left linear and right sesquilinear. To be 
onsistent with laternotations, the norm of ϕ is denoted by ‖ϕ‖2.The easiest exposition goes through a formal de�nition:De�nition 1.1. By an almost orthogonal system in H, we mean a
olle
tion of three sets of data(1) a �nite family (ϕ∗i )i∈I of elements1 of H,(2) a �nite family (Mi)i∈I positive real numbers,(3) a �nite family (ωi,j)i,j∈I of 
omplex numbers with ωj,i = ωi,j,all of them given so that(1.1) ∀(ξi)i ∈ CI ,
∥

∥

∥

∑

i

ξiϕ
∗
i

∥

∥

∥

2

2
≤
∑

i

Mi|ξi|2 +
∑

i,j

ξiξjωi,j.We 
omment on this de�nition. If the family (ϕ∗i )i∈I were orthogonal,we 
ould ask for equality with Mi = ‖ϕ∗i ‖22. As it turns out, in theappli
ations we have in mind, this family is not orthogonal, but almostso. It is this almost orthogonality that the above 
ondition is meant tomeasure.Our �rst lemma reads as followsLemma 1.1. For any �nite family (ϕ∗i )i∈I of points of H, the systembuilt with Mi =
∑

j |[ϕ∗i |ϕ∗j ]| and ωi,j = 0 is almost orthogonal.So that if [ϕ∗i |ϕ∗j ] is small for i 6= j then Mi is indeed 
lose to ‖ϕ∗i ‖221The reader may wonder why I 
hose to denote the members of this family witha star . . . It is to be 
onsistent and to avoid 
onfusion with notation that will appearlater on.



8 1 The large sieve inequalityProof. We write
∥

∥

∥

∑

i

ξiϕ
∗
i

∥

∥

∥

2

2
=
∑

i,j

ξiξj[ϕ
∗
i |ϕ∗j ]and simply apply 2|ξiξj| ≤ |ξi|2 + |ξj|2. The lemma readily follows. ⋄ ⋄ ⋄Here is an enlightening reading of this lemma: the hermitian formthat appears has a matrix whose diagonal terms are the ‖ϕ∗i ‖22's. Atheorem of Gershgorin says that all the eigenvalues of this matrix lie inthe union of the so 
alled Gershgorin's dis
s 
entered at the points ‖ϕ∗i ‖22,with radius ∑j 6=i |[ϕ∗i |ϕ∗j ]|. This approa
h is due to (Elliott, 1971). Ithas a drawba
k: we do not know that ea
h Gershgorin dis
 does indeed
ontain an eigenvalue, a �aw that is somehow repaired in the abovelemma.In general, and only assuming (1.1), we get the following kind ofParseval inequality:Lemma 1.2. For any almost orthogonal system, and any f ∈ H, let usset ξi = [f |ϕ∗i ]/Mi. We have

∑

i

M−1
i |[f |ϕ∗i ]|2 ≤ ‖f‖22 +

∑

i,j

ξiξjωi,j.On
e again, the orthogonal 
ase is enlightening: if the (ϕ∗i ) are or-thogonal, then we may take Mi = ‖ϕ∗i ‖22 and ωi,j = 0. The L.H.S.be
omes the square of the norm of the orthonormal proje
tion of f onthe subspa
e generated by the ϕ∗i 's.Without the ωi,j and appealing to Lemma 1.1, this is due to Selberg,as mentioned in se
tion 2 of (Bombieri, 1987) and in (Bombieri, 1971).Proof. For the proof, we simply write
∥

∥

∥f −
∑

i

ξiϕ
∗
i

∥

∥

∥

2

2
≥ 0and expand the square. We take 
are of ‖∑i ξiϕ

∗
i ‖22 by using (1.1),getting

‖f‖22 − 2ℜ
∑

i

ξi[f |ϕ∗i ] +
∑

i

Mi|ξi|2 +
∑

i,j

ξiξjωi,j ≥ 0.We now 
hoose the ξi's optimally, negle
ting the bilinear form 
ontainingthe ωi,j. We take ξi = [f |ϕ∗i ]/Mi, the lemma readily follows. ⋄ ⋄ ⋄Combining Lemma 1.2 together with Lemma 1.1 yields what is usu-ally known as �Selberg's lemma� in this 
ontext. The introdu
tion ofthe ωi,j is due to the author to enable a re�ned treatment of the error



1.2 The large sieve inequality 9term as well as provide a hybrid between the weighted large sieve resultsand Selberg sieve results. In these le
tures however, we shall only have aglimpse of this aspe
t. Nevertheless we show in 
hapter 9 a simplemindeduse of this bilinear part.The a
tual value of ξi in the statement is usually of no importan
e,only its order of magnitude being relevant.Let us end this se
tion with a histori
al remark: though the materialpresented here is re
ent, the reader will �nd in the seventh part of (Rényi,1958) a similar approa
h, relying on the notion, borrowed from (Boas,1941), of quasi-orthogonal sequen
e of random variables. Furthermore,(Rényi, 1949) already introdu
es a notion of quasi-orthogonality in the
ontext of the large sieve inequality. We 
lose this parenthesis and referthe reader to (Montgomery, 1971) for more histori
al material.1.2. The large sieve inequalityThe large sieve inequality reads as follows.Theorem 1.1. Let X be a �nite set of points of R/Z. Set
δ = min

{

‖x− x′‖, x 6= x′ ∈ X
}

.For any sequen
e of 
omplex numbers (un)1≤n≤N , we have
∑

x∈X

∣

∣

∣

∑

n

une(nx)
∣

∣

∣

2
≤
∑

n

|un|2(N − 1 + δ−1).The L.H.S. 
an be thought as a Riemann sum over the points in X ;at least when the set X is dense enough. The spa
ing between two 
on-se
utive points being at least δ, this L.H.S. multiplied by δ 
an thoughtas approximating
∫ 1

0

∣

∣

∣

∑

n

une(nα)
∣

∣

∣

2
dα =

∑

n

|un|2.This is essentially so if δ−1 is mu
h greater than N , but it turns out thatthe 
ase of interest in number theory is the opposite one. In this 
ase,we 
an look at∑n une(nx) as being a linear form in (un)n. The spa
ing
ondition implies that X has less than δ−1 elements, so that the numberof linear forms implied is indeed less than the dimension of the ambientspa
e (whi
h is N). In that 
ase these linear forms are independentas shown by 
omputing a van der Monde determinant, and otherwise,there is some redundan
y. So what is really at stake here is more almost



10 1 The large sieve inequalityorthogonality than approximation, whi
h is why I 
hose this method ofproof.The theorem in this version is due to Selberg. The same year and bya di�erent method, a marginally weaker version (without the −1 on theright) was proved by (Montgomery & Vaughan, 1973). We shall prove aslightly weaker result, namely with N+1+2δ−1 instead of N−1+δ−1 inthis 
hapter and delay a full proof until 
hapter 15, where we shall alsoprovide a generalization. First we re
all what is the Fourier transformof the de la Vallée-Poussin kernel.1.2.1. A Fourier transform. Let N ′ and L be two given positive in-tegers. Consider the fun
tion F (n) whose graph is:
We are to 
ompute its Fourier transform whi
h 
an be 
umbersome.We present two proofs, the �rst one being more geometri
al but onlyadapted to the present situation while the se
ond one is less visual butoften trivialises 
omputations of this kind.First proof. To simplify 
al
ulations, we write F = (G−H)/L where
G and H are drawn below. We write
L
∑

n∈ZF (n)e(ny) =
∑

n∈ZG(n)e(ny)−
∑

n∈ZH(n)e(ny)

=
∑

0≤|n|≤N ′+L

(N ′ + L− |n|)e(ny)−
∑

0≤|n|≤N ′

(N ′ − |n|)e(ny)and obtain
L
∑

n∈ZF (n)e(ny) =

∣

∣

∣

∣

∑

0≤m≤N ′+L

e(my)

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∑

0≤m≤N ′

e(my)

∣

∣

∣

∣

2

.This �nally amounts to(1.2) ∑

n∈ZF (n)e(ny) =
1

L

∣

∣

∣

∣

sinπ(N ′ + L)y

sinπy

∣

∣

∣

∣

2

− 1

L

∣

∣

∣

∣

sinπN ′y
sinπy

∣

∣

∣

∣

2

,the value at y = 0 being given by ∑n∈Z F (n) = 2N ′ + L.



1.2 The large sieve inequality 11

Se
ond proof. Let us de�ne(1.3) f(y) =
∑

n∈ZF (n)e(ny)and introdu
e the operator on 
ompa
tly supported sequen
es:(1.4) ∆(F ) = ∆
(

(F (n))n∈Z) =
(

(F (n)− F (n− 1))n∈Z).We readily see that
f(y)(e(y)− 1) =

∑

n∈ZF (n)e(ny)(e(y) − 1)

= −
∑

n∈Z∆(F )(n) e(ny)whi
h is our main equation. Iterating on
e, we get(1.5) f(y)(e(y) − 1)2 =
∑

n∈Z∆2(F )(n) e(ny).The reader will 
he
k that ∆2(F )(n) = F (n)−2F (n−1)+F (n−2) andfrom there derive(1.6) L∆2(F ) = 1n=−N ′−L+1 − 1n=−N ′+1 − 1n=N ′+1 + 1n=N ′+L+1.



12 1 The large sieve inequalityThis �nally yields
Lf(y) =

e(y)
(

e(−(N ′ + L)y)− e(−N ′y)− e(N ′y) + e((N ′ + L)y)
)

(e(y) − 1)2

=
cos(2π(N ′ + L)y)− cos(2πN ′y)

−2 sin(πy)2

=
sin2(π(N ′ + L)y)− sin2(πN ′y)

sin(πy)2as required.1.2.2. Proof of (a weak form of) Theorem 1.1. We use Lemma 1.2together with Lemma 1.1. First noti
e that we may assume N tobe an integer. Next set N ′ = ⌊N/2⌋ the integer part of N/2 and
f(n) = uN ′+1+n (with uN+1 = 0 if N is even) so that f is supported on
[−N ′, N ′]. The Hilbert spa
e we take is ℓ2(Z) with its standard s
alarprodu
t so that f belongs to it when extended by setting f(n) = 0 forany integer n not in the interval above. Noti
e also that(1.7) ‖f‖22 =

∑

n

|un|2.We need to de�ne our almost orthogonal system. We take(1.8) ∀x ∈ X , ϕ∗x(n) = e(nx)
√

F (n),where F is as de�ned in se
tion 1.2.1. Sin
e f vanishes outside [−N ′, N ′],we �nd that(1.9) [f |ϕ∗x] = e(−(N ′ + 1)x)
∑

1≤n≤N

une(nx).The 
omputations of the pre
eding se
tion show that(1.10) ‖ϕ∗x‖22 = 2N ′ + L, |[ϕ∗x|ϕ∗x′ ]| ≤ 1

4L‖x− x′‖2 if x 6= x′by using the 
lassi
al inequality | sinx| ≤ 2‖x‖/π. When x is �xed, we�nd that
∑

x′∈X
x′ 6=x

|[ϕ∗x|ϕ∗x′ ]| ≤
∑

x′∈X
x′ 6=x

1

4L‖x− x′‖2

≤ 2
∑

k≥1

1

4L(kδ)2
≤ π2

12Lδ2sin
e the de�nition of δ implies that the worst 
ase that 
ould happenfor the sequen
e (‖x − x′‖)x′ would be if all x′'s were lo
ated at x+ ℓδwith ℓ an integer taking the values ±1,±2,±3, . . . . Next we 
hoose L



1.3 Introdu
ing Farey points 13an integer so as to nearly minimize 2N ′+L+ π2/(12Lδ2), i.e., with ⌈x⌉denoting the least integer larger than x,(1.11) L =

⌈

π

2
√

3δ

⌉whi
h yields 2N ′ + L+ π2/(12Lδ2) ≤ N + 1 + π√
3
δ−1. We 
on
lude bynoting that π/√3 ≤ 1.82 ≤ 2.Let us end this se
tion by a methodologi
al remark : (Montgomery,1971) proves in an appendix the inequality (sinπx)−2 ≤ (π‖x‖)−2 + 1valid for 0 ≤ x ≤ 1/2. On using it we obtain a better bound for [ϕ∗x|ϕ∗x′ ]above and 
onsequently, improve our N + 1 + πδ−1/

√
3 to N + 3 +

2δ−1/
√

3.1.3. Introdu
ing Farey pointsIn most arithmeti
al appli
ations, the set X is simply a trun
ation ofthe Farey series, that is(1.12) X =
{

a/q, q ≤ Q, a mod∗ q}where Q is a parameter to be 
hosen and a mod∗ q means a ranging overall the invertible residue 
lasses modulo q. Next when a/q and a′/q′ aretwo distin
t points of X , we have(1.13) ∣

∣

∣

∣

a

q
− a′

q′

∣

∣

∣

∣

=
|aq′ − a′q|

qq′
≥ 1

qq′
≥ Q−2sin
e aq′ − a′q is an integer that is distin
t from 0.2 We set 
lassi
ally(1.14) S(x) =

∑

1≤n≤N

une(na/q)and get(1.15) ∑

q≤Q

∑

amod∗q

|S(a/q)|2 ≤
∑

n

|un|2(N +Q2)whi
h is essentially what is referred to as the large sieve inequality. In
hapter 20, we shall provide some 
ases where we are able to 
omputean asymptoti
 for the L.H.S.. Moreover, but only for a restri
ted familyof sequen
es, we shall even be able to do so with Q being larger than√
N � while the main term will still be of order of N∑n |un|2 �, thusdramati
ally improving on this inequality.2By dis
ussing whether q = q′ or not, one 
an enlarge this bound to 1/(Q(Q−1)).



14 1 The large sieve inequality1.4. A digression: dual form and double large sieveThe large sieve inequality bounds ∑x∈X |S(x)|2. If we open one S(x),we see that this quantity is also(1.16) ∑

n,x

unS(x)e(nx)whi
h 
an now be 
onsidered a bilinear form in the two sets of vari-ables (un)n and (S(x))x, simply by forgetting how S(x) is de�ned interms of the un's. Su
h an expression has been 
onsidered in (Bombieri& Iwanie
, 1986) where they obtain a bound for it now known as thedouble large sieve inequality (see also (Selberg, 1991)). This bound is ofsimilar strength as the one given by Theorem 1.1, up to a multipli
ative
onstant, when applied to our situation. This line of ideas leads us �though histori
ally, it is the reverse pro
ess that o

ured � to 
onsiderthe so-
alled dual form of the large sieve inequality, whi
h 
on
erns theexpression obtained simply by ex
hanging the variables n and x:(1.17) ∑

n

∣

∣

∣

∣

∑

x∈X
S(x)e(nx)

∣

∣

∣

∣

2where this time (S(x))x is any sequen
e of 
omplex numbers. Pro
eedingas before but with the variable x, the above expression is also(1.18) ∑

n,x

S(x)W (n)e(−nx) with W (n) =
∑

y∈X
S(y)e(ny)to whi
h we apply the Cau
hy-S
hwarz inequality in the x-variable toget

(

∑

n

∣

∣

∣

∣

∑

x∈X
S(x)e(nx)

∣

∣

∣

∣

2
)2

≤
∑

x

|S(x)|2
∑

x

∣

∣

∣

∣

∑

n

W (n)e(−nx)
∣

∣

∣

∣

2

.Applying the usual large sieve inequality to the latter sum, we end upwith the dual form of the large sieve inequality:(1.19) ∑

n

∣

∣

∣

∣

∑

x∈X
S(x)e(nx)

∣

∣

∣

∣

2

≤
∑

x

|S(x)|2(N − 1 + δ−1).1.5. Maximal variantWe re
ord here a maximal version of Theorem 1.1 whose proof is notyet 
ompletely satisfa
tory. This theorem is due to (Montgomery, 1981),improving on an earlier result of (U
hiyama, 1972).



1.5 Maximal variant 15Theorem 1.2. There exist a 
onstant C > 0 with the following property.Let X be a �nite set of points of R/Z. Set
δ = min

{

‖x− x′‖, x 6= x′ ∈ X
}

.For any sequen
e of 
omplex numbers (un)1≤n≤N , we have
∑

x∈X
max
K≤N

∣

∣

∣

∑

1≤n≤K

une(nx)
∣

∣

∣

2
≤ C

∑

n

|un|2(N + δ−1).The problem remains to evaluate the 
onstant C, at least asymp-toti
ally in N . (Elliott, 1985) gives a � next to trivial � proof of theinequality
∑

x∈X
max

u<v≤N,
v−u≤H

∣

∣

∣

∑

u≤n≤v

une(nx)
∣

∣

∣

2
≤
∑

n

|un|2(H + 2δ−1 Log(e/δ))whi
h is better in that the interval whi
h the variable n ranges is arbi-trarily lo
ated and further restrained in size. Furthermore, no implied
onstant appear, but the dependan
e in δ is worse. Montgomery's proofrelies on Hunt's quantitative form of Carleson's theorem on almost sure
onvergen
e of L2 Fourier series. As an e�e
t, the 
onstant C above ise�e
tive but no expli
it version of it have been given � as of today, atleast!





2 An extension of the 
lassi
al arithmeti
altheory of the large sievePart of the material given here has already appeared in (Ramaré &Ruzsa, 2001). Theorem 2.1 is the main landmark of this 
hapter. Fromthere onwards, what we do should be
ome 
learer to the reader. Inparti
ular, we shall detail an appli
ation of Theorem 2.1 to the Brun-Tit
hmarsh Theorem.2.1. Sequen
es supported on 
ompa
t setsWe introdu
e in this se
tion some vo
abulary that allows us handle mod-ular arithmeti
. All of it is trivial enough but will make life easier lateron.
◦◦ By a 
ompa
t set K, we mean a sequen
e K = (Kd)d≥1 satisfying(1) Kd ⊂ Z/dZ for all d ≥ 1.(2) For any divisor d of q, we have σq→d(Kq) = Kd where σq→d isthe 
anoni
al surje
tion (also 
alled the restri
tion map) fromZ/qZ to Z/dZ:(2.1) σq→d : Z/qZ→ Z/dZ

x mod q 7→ x mod d.When K is not empty, we have K1 = Z/Z. As examples, we 
an take
Kd = Z/dZ for all d or Kd = Ud, where Ud is the set of invertible 
lassesmodulo d. The interse
tion and union of 
ompa
t sets is again a 
ompa
tset.We 
an also 
onsider K a subset of Ẑ = lim←−Z/dZ, in whi
h 
ase it isindeed a 
ompa
t set. Furthermore we shall sometimes 
onsider Kd as asubset of Z: the set of relative integers whose redu
tion modulo d fallsinside Kd.
◦◦ We say that the 
ompa
t set K is multipli
atively split if for any d1and d2 
oprime positive integers, the Chinese remainder map(2.2) Z/d1d2Z −→ Z/d1Z× Z/d2Zsends Kd1d2 onto Kd1 × Kd2 . In this 
ase, the sets Kpν for prime p and
ν ≥ 1 determine K 
ompletely. Noti
e that when K is multipli
ativelysplit:(2.3) |K[d,d′]||K(d,d′)| = |Kd||Kd′ |



18 2 An extension of the 
lassi
al theoryfor any d and d′, where [d, d′] is the l
m and (d, d′) the g
d of d and d′.Here |A| stands for the 
ardinality of a set A.
◦◦ A 
ompa
t set is said to be squarefree if

Kq = σ−1
q→d(Kd)whenever d divides q and has the same prime fa
tors. For instan
e, U issquarefree sin
e being prime to q or to its squarefree kernel is the same.

◦◦ A parti
ularly su

essful hypothesis on K was introdu
ed by (John-sen, 1971) in the 
ontext of polynomials over a �nite �eld and used inthe 
ase of the integers by (Gallagher, 1974) (see also (Selberg, 1976)).It reads
∀d|q, ∀a ∈ Kdthe quantity ∑

n≡a[d]
n∈Kq

1 is independent of a.(2.4)Another way to present this quantity would be to say it is the 
ardinalityof σ−1
pν→pν−1({a}). Sin
e the introdu
tion of this 
ondition in our 
ontextis due to (Gallagher, 1974), we shall refer to it as the Johnsen-Gall-agher 
ondition. Note that this 
ondition does not require K to bemultipli
atively split, although all our examples will also satisfy thisadditional hypothesis.Any squarefree 
ompa
t set automati
ally satis�es the Johnsen-Gall-agher hypothesis. Sin
e the sieve kept to su
h sets for a very long time,and the 
ombinatorial sieve still does, this 
ondition does not show upin 
lassi
al expositions. We present in Theorem 13.1 a result that isunrea
hable if we were to 
on�ne ourselves to squarefree sieves.2.2. A family of arithmeti
al fun
tionsLet us start with a multipli
atively split 
ompa
t set K. We 
onsiderthe non-negative multipli
ative fun
tion h de�ned by(2.5) h(d) =

∏

pν‖d

(

pν

|Kpν | −
pν−1

|Kpν−1 |

)

≥ 0, h(1) = 1where q‖d means that q divides d in su
h a way that q and d/q are
oprime. We shall say that q divides d exa
tly. Note that(2.6) d

|Kd|
=
∑

δ|d
h(δ).



2.2 A family of arithmeti
al fun
tions 19We further de�ne(2.7) Gd(Q) =
∑

δ≤Q,
[d,δ]≤Q

h(δ)whi
h we also denote by Gd(K, Q) when mentioning the 
ompa
t set Kis of any help. Let us note that in the extremal 
ase Kd = Z/dZ, wehave h(d) = 0 ex
ept when d = 1 in whi
h 
ase we have h(1) = 1. Thisimplies that Gd(Q) = 1 for all d's. These fairly unusual fun
tions appearin the following form:Lemma 2.1. We have
Gd(Q) =

∑

q≤Q
d|q

(

∑

f/d|f |q
µ(q/f)f/|Kf |

)

.This is easily proved using (2.6). We present in 
hapter 3 a more ab-stra
ted approa
h to this set of fun
tions.Often, the set K is squarefree, in whi
h 
ase the above expressionsimpli�es and we re
ognize, up to a fa
tor, the usual fun
tions from theSelberg sieve (see (2.8) below). In parti
ular, we know how to evaluatethem. We shall give two examples of su
h an evaluation in se
tions 2.4and 5.4 and a general theorem in the Appendix. The reader should 
on-sult (Levin & Fainleib, 1967), (Halberstam & Ri
hert, 1971) and (Hal-berstam & Ri
hert, 1974) for the general theory. Meanwhile, we moveto another lemma.Lemma 2.2. We have
|Kd|

∑

q≤Q
d|q

µ(q/d)Gq(Q) = d
∑

ℓ≤Q
d|ℓ

µ(ℓ/d).We refer to se
tion 11.3 for an interpretation of the above lemma andba
kground information on how it 
ame to be.Proof. We appeal to Lemma 2.1 and write:
∑

q≤Q
d|q

µ(q/d)Gq(Q) =
∑

q≤Q
d|q

µ(q/d)
∑

ℓ≤Q
q|ℓ

(

∑

q|f |ℓ
µ(ℓ/f)f/|Kf |

)

=
∑

ℓ≤Q
d|ℓ

∑

d|f |ℓ
µ(ℓ/f)

f

|Kf |
∑

q≤Q
d|q|f

µ(q/d)in whi
h only the term d = f remains, thus proving our assertion. ⋄ ⋄ ⋄



20 2 An extension of the 
lassi
al theoryWe 
on
lude by a lemma that is in fa
t a generalization of a lemmaof (van Lint & Ri
hert, 1965) but whi
h is trivial in our setting.Lemma 2.3. We have Gℓ(Qℓ/d) ≤ Gd(Q) ≤ Gℓ(Q) for ℓ|d.When the 
ompa
t set is squarefree, the reader will 
he
k from (2.5)that h(d) = 0 as soon as d is not squarefee. In that 
ase, the summandappearing in Lemma 2.1 vanishes whenever q/d and d are 
oprime. We
an thus write q = dℓ with (ℓ, d) = 1 in this Lemma, whi
h leads to (seealso (5.9))(2.8) Gd(Q) =
d

|Kd|
∑

ℓ≤Q/d
(ℓ,d)=1

h(ℓ).Sin
e in 
lassi
al literature K is always squarefree, authors tend to 
all
Gd(Q) what is in fa
t |Kd|Gd(Q)/d in our notation. We had the optionof introdu
ing another name, but we prefered to retain the same namein these le
tures, for the reason that the most important value G1(Q) isun
hanged. Note that it is usual to simply denote this latter value by
G(Q), a usage that we avoid.2.3. An identityWe say that the sequen
e (un)n≥1 of 
omplex numbers is 
arried by Kup to level Q when the support of (un)n≥1 belongs to Kq for all q ≤ Q,or formally:(2.9) un 6= 0 =⇒ ∀q ≤ Q,n ∈ Kq.As examples, note that every sequen
e is 
arried by (Z/qZ)q≥1 up to anylevel, and that the sequen
e of primes > Q is 
arried by U up to level Q.Here is a generalization of known identities, see (Rényi, 1958), (Rényi,1959), (Bombieri & Davenport, 1968), (Montgomery, 1971) as well as(Bombieri, 1987):Theorem 2.1. When K is multipli
atively split and veri�es the John-sen-Gallagher 
ondition (2.4) and (un) is a sequen
e 
arried by K up tolevel Q we have
∑

q≤Q

Gq(Q)|Kq|
∑

b∈Kq

∣

∣

∣

∣

∑

ℓ|q
µ
(q

ℓ

) |Kℓ|
|Kq|

∑

m≡b[ℓ]

um

∣

∣

∣

∣

2

=
∑

q≤Q

∑

amod∗q

∣

∣

∣

∣

∑

n

une(
na

q
)

∣

∣

∣

∣

2

.



2.3 An identity 21The same identity holds true but with the set {q ≤ Q} repla
ed byany set Q of moduli 
losed under division, by whi
h we mean that if
q ∈ Q and d|q then d is also in Q. It is easy to see, simply by followingthe proof below, that 
ondition (2.4) is indeed required. Note that inorder to handle the non-square-free q, a proper de�nition of Gq is needed.Proof. Let ∆(Q) be the R.H.S. of the above equality. We have

∆(Q) =
∑

m,n

umun

∑

d|m−n

d
∑

q≤Q/d

µ(q).On using Lemma 2.2 to modify the inner sum we obtain
∆(Q) =

∑

q

Gq(Q)

{

∑

d|q
µ(q/d)|Kd|

∑

m≡n[d]

umun

}

.Let us set(2.10) Θ(q) = |Kq|
∑

b∈Kq

∣

∣

∣

∣

∑

ℓ|q
µ(q/ℓ)

|Kℓ|
|Kq|

∑

m≡b[ℓ]

um

∣

∣

∣

∣

2

.On expanding the square we get
Θ(q) =

∑

m,n

umun

∑

ℓ1|q,ℓ2|q
µ(q/ℓ1)µ(q/ℓ2)

|Kℓ1 ||Kℓ2 |
|Kq|

∑

b∈Kq,
m≡b[ℓ1],
n≡b[ℓ2]

1.We introdu
e d = (ℓ1, ℓ2). Our 
onditions imply that m ≡ n[d]. On
ethis is guaranted, b is determined modulo [ℓ1, ℓ2] by m and n; the John-sen-Gallagher 
ondition (2.4) then implies that there are |Kq|/|K[ℓ1,ℓ2]|
hoi
es for b. Re
alling (2.3), we rea
h
Θ(q) =

∑

d|q

∑

m≡n[d]

umun|Kd|
∑

ℓ1|q,ℓ2|q
(ℓ1,ℓ2)=d

µ(q/ℓ1)µ(q/ℓ2).We are left with 
omputing the most inner sum whi
h is readily done:
∑

ℓ1|q,ℓ2|q
(ℓ1,ℓ2)=d

µ(q/ℓ1)µ(q/ℓ2) =
∑

r1|q/d
r2|q/d

µ((q/d)/r1)µ((q/d)/r2)
∑

δ|r1

δ|r2

µ(δ)

= µ(q/d)as required. ⋄ ⋄ ⋄



22 2 An extension of the 
lassi
al theoryTo understand the L.H.S. of this theorem, 
onsider the 
ase Kd =Z/dZ due to (Montgomery, 1968) but redu
e it to the 
ase when q = pa prime numberas in (Rényi, 1958). We get(2.11)
|Kp|

∑

b∈Kp

∣

∣

∣

∣

∑

ℓ|p
µ(p/ℓ)

|Kℓ|
|Kp|

∑

m≡b[ℓ]

um

∣

∣

∣

∣

2

= p
∑

bmod p

∣

∣

∣

∣

∑

m≡b[p]

um −
∑

m um

p

∣

∣

∣

∣

2so this quantity measures the distortion from equidistribution in arith-meti
 progressions. This is also true of the quantity with general q, asthe reader will realize after some thought. However, if we know the se-quen
e 
an only rea
h some 
ongruen
e 
lasses, namely the ones in some
Kp, then the proper approximation is ∑m um/|Kp| and not ∑m um/p.This is what is put in pla
e in the above result. In 
hapter 4 we providea more geometri
al interpretation.We re
over in this manner a theorem of (Gallagher, 1974). This is ananalogue of a similar theorem proved in (Johnsen, 1971) in the 
ontextof polynomials over �nite �elds.Corollary 2.1 (Gallagher). Assume K is multipli
atively split and veri-�es the Johnsen-Gallagher 
ondition (2.4). Let Z denotes the number ofintegers in the interval [M +1,M +N ] that belongs to Kd for all d ≤ Q.We have

Z ≤ (N +Q2)/G1(Q).It was (Bombieri & Davenport, 1968) who �rst used the large sieveto get this kind of result, namely for primes, and (Montgomery, 1968)worked out a general theorem along lines 
loser to that of (Rényi, 1958).We derive some 
lassi
al bounds from this inequality in the Appendix.It will also give the reader the opportunity to manipulate the 
on
ept ofa 
ompa
t set in 
onne
tion with sieve problems.Proof. We take for (un)n≥1 the 
hara
teristi
 fun
tion of the set whose
ardinality is to be evaluated and apply Theorem 2.1 together with thelarge sieve inequality. We �nally dis
ard all terms on the L.H.S. ex
eptthe one 
orresponding to q = 1. ⋄ ⋄ ⋄Note that (Selberg, 1976) proves a similar theorem but without theJohnsen-Gallagher 
ondition. We shall do so in 
hapter 13, this timeenabling also the sieving of a general sequen
e instead of an interval,but note that our present way of doing o�ers what is sometimes knownas a large sieve extension of this bound, in the spirit of the theoremof (Bombieri & Davenport, 1968) we re
all in se
tion 2.5. See also The-orem 15.3 for a generalization in another dire
tion.



2.4 The Brun-Tit
hmarsh Theorem 232.4. The Brun-Tit
hmarsh TheoremThis theorem reads as follows:Theorem 2.2. Let M ≥ 0 and N > q ≥ 1 be given and let a be aninvertible residue 
lass modulo q. The number Z of primes in the interval
[M + 1,M +N ] lying in the residue 
lass a modulo q veri�es

Z ≤ 2N

φ(q) Log(N/q)
.This neat and e�e
tive version is due to (Montgomery & Vaughan,1973). Earlier versions essentially had 2 + o(1) instead of simply 2. Thename �Brun-Tit
hmarsh� Theorem stems from (Linnik, 1961). Indeed,Tit
hmarsh proved su
h a theorem for q = 1 with a Log Log(N/q) terminstead of the 2 to establish the asymptoti
 for the number of divisorsof the p + 1, p ranging through the primes, and he used the methodof Brun. The 
onstant 2 (with a o(1)) appeared for the �rst time in(Selberg, 1949).To 
larify the argument we restri
t our attention to the 
ase q = 1and get 2+o(1) instead of 2. Start with Corollary 2.1 applied to K = U .To make this possible we restri
t our attention to primes > Q. We then�nd that(2.12) |Kd| = φ(d), and h(d) = µ2(d)/φ(d).So we are left with �nding a lower bound for G1(Q). Write

µ2(d)

φ(d)
=
µ2(d)

d

∏

p|d

1

1− 1
p

=
µ2(d)

d

∏

p|d

(

1 +
1

p
+

1

p2
+ . . .

)

= µ2(d)
∑

k≥1,d|k
[p|k =⇒ p|d]

1

kwhi
h we sum to get(2.13) G1(Q) =
∑

d≤Q

µ2(d)
∑

k≥1,d|k
[p|k =⇒ p|d]

1

k
≥
∑

k≤Q

1

k
≥ LogQ.It 
an be fairly easily shown that in fa
t G1(Q) = LogQ+O(1), eitherby reading se
tion 5.3 or by applying Theorem 21.1 from the appendix.We now 
hoose Q =

√
N/LogN , getting(2.14) Z ≤ 2N(1 +O(Log−2N))

LogN − 2Log LogN
+Q



24 2 An extension of the 
lassi
al theorywhi
h is indeed not more than 2(1 + o(1))N/LogN . To prove the theo-rem for primes in a residue 
lass, sieve the arithmeti
 progression a+mq,where m varies in an interval, up to a level Q =
√

N/q/Log(N/q).2.5. The Bombieri-Davenport TheoremThis se
tion is somewhat astray from our main line but deserves a pla
esin
e it is this result that led the author to believe that something likeTheorem 2.1 ought to exist.Theorem 2.3 (Bombieri & Davenport). When (un)n≤N is su
h that unvanishes as soon as n has a prime fa
tor less than Q, we have
∑

q≤Q

Log(Q/q)
∑

χmod∗q

∣

∣

∣

∣

∑

n

unχ(n)

∣

∣

∣

∣

2

≤
∑

n

|un|2(N +Q2)where χ mod∗ q denotes a summation over all primitive 
hara
ters mod-ulo q.With K = U and our terminology above, the hypothesis says that
(un) is 
arried by K upto the level Q. We now dedu
e this result fromTheorem 2.1.Proof. We �rst show that what we termed Θ(q) in (2.10) is in fa
tthe summand of the L.H.S. above. When χ is a 
hara
ter, we denote its
ondu
tor by fχ. On dete
ting the 
ongruen
e 
ondition m ≡ b[ℓ] usingmultipli
ative 
hara
ters (this is possible be
ause b and un are prime to
ℓ), we get for any �xed multiple q of ℓ:

∑

m≡b[ℓ]

um =
1

φ(ℓ)

∑

χmod ℓ

∑

m

χ(b)χ(m)um

=
1

φ(ℓ)

∑

χmod q
fχ|ℓ

∑

m

χ(b)χ(m)um.From whi
h we easily dedu
e
∑

ℓ/ℓ|q
µ(q/ℓ)

φ(ℓ)

φ(q)

∑

m≡b[ℓ]

um =
∑

ℓ|q

µ(q/ℓ)

φ(q)

∑

χmod q
fχ|ℓ

∑

m

χ(b)χ(m)um

=
1

φ(q)

∑

χmod∗q

∑

m

χ(b)χ(m)um.



2.5 The Bombieri-Davenport Theorem 25Squaring this quantity, summing it over all redu
ed residue 
lasses mod-ulo q and multiplying the result by φ(q) indeed gives
Θ(q) =

∑

χmod∗q

∣

∣

∣

∣

∑

m

χ(m)um

∣

∣

∣

∣

2

.This last step amounts to applying Plan
herel formula on (Z/dZ)∗. To�nd a lower bound for the fa
tor Gq(Q) we use Lemma 2.3 and get
Gq(Q) ≥ G1(Q/q), whi
h using (2.13) this is indeed ≥ Log(Q/q). Thetheorem now follows. ⋄ ⋄ ⋄The proof that Bombieri & Davenport gave uses the value of theGauss sums, and my �rst motivation was to remove this part, sin
eit seemed 
lear, it was only a matter of orthonormal systems. Thenthe multipli
ativity of these 
hara
ters is not used either and ba
k in1992, I started developing a general theory of �
hara
ters� to prove asimilar result. This was however not very 
onvenient be
ause I had toexplain what these were; after having understood the Selberg sieve in asimilar setting, something we shall do in 
hapter 11, I �nally found theidentity of Theorem 2.1 with a proof from whi
h my abstra
t 
hara
tersdisappeared.Note further that it is not enough to substitute Theorem 1.2 to The-orem 1.1 to get a maximal variant of this theorem (i.e. a result in whi
hthe |∑n unχ(n)| would be repla
ed by maxK≤N |

∑

1≤n≤K unχ(n)|). See(Elliott, 1991).The strength of this theorem seems to have been underestimated, andwe 
on
lude on this aspe
t, somewhat anti
ipating the proof of Theo-rem 5.2. (Elliott, 1983) improving on (Elliott, 1977) proves that
∑

q≤Q,
q prime(q − 1)

∑

amod ∗q

∣

∣

∣

∣

∑

p≤N,
p≡a[q]

up −
∑

p≤N up

q − 1

∣

∣

∣

∣

2

≪
( N

LogN
+Q54/11+ε

)

∑

p≤N

|up|2.As it turns out, the summand is simply ∑χmod ∗q

∣

∣

∑

p≤N upχ(p)
∣

∣

2, theonly non primitive 
hara
ter being the prin
ipal one, sin
e q is prime.We 
an thus use the Bombieri-Davenport Theorem up to level √N andrestri
t then summation to q ≤ Q (as in the proof of Theorem 5.2 below),getting the upper bound
2N

Log(
√
N/Q)

∑

p≤N

|up|2



26 2 An extension of the 
lassi
al theoryinstead of the above, whi
h allows Q up to N1/2−ε. Note further that inthis approa
h, we may repla
e the set p ≤ N , by any set of primes in aninterval of length N .Theorem 2 and Corollary 4 of (Pu
hta, 2003)1 follow similarly fromthis same remark, sin
e this author dire
tly dis
usses primitive 
hara
tersums. However, the methods used therein apply also to shorter sets of
hara
ters modulo a single modulus, and are now beyond the presentapproa
h. They still belong to the realm of almost orthogonality, andLemma 1.1 is still being used, but with �ne 
hara
ter sum bounds.2.6. A detour towards lower boundsThe L.H.S. of Theorem 2.1 will be very small when our sequen
e is verywell distributed in arithmeti
 progressions. On an other hand, the R.H.S.may be expe
ted to approximate ∑n |un|2Q2, if one follows for instan
ethe proof in terms of Riemann sums given by (Gallagher, 1967). Indeed(Roth, 1964) proved that dense sequen
es that are not too dense 
ouldnot be evenly distributed in arithmeti
 progressions. (Huxley, 1972b)strengthened this work to the 
ase of neither too thin nor too dense siftedsequen
es, by whi
h we mean a sequen
e whose 
hara
teristi
 fun
tionis �
arried� � see (2.9)� by some squarefree 
ompa
t set. The proof goesby �nding a lower bound for a 
ertain varian
e expression. It seemsplausible that with ideas from the proof of Theorem 2.1, one 
an extendthis result to the 
ase of non-squarefree 
ompa
t sets verifying the John-sen-Gallagher 
ondition, and that one 
ould also introdu
e a more pre
isekind of �varian
e� expression. See also se
tion 20.7 for a reversed largesieve inequality.

1I had very interesting dis
ussions with J.-C. Pu
hta in spring 2006 on this verysubje
t, whi
h is how I got to noti
e what I 
all here an �underestimation�.



3 Some general remarks on arithmeti
alfun
tionsWe present here some general material pertaining to the family offun
tions we 
onsider in our sieve setting (see 
hapter 2, in parti
ularse
tion 2.2).When d ≥ 1 is an integer, let us write δd to denote the arithmeti
alfun
tion whi
h takes the value 1 at d and the value 0 at all other integers
≥ 1. Let 1d·N denote the arithmeti
al fun
tion 1⋆ δd. It is easily veri�edthat 1d·N is the 
hara
teristi
 fun
tion of the set of multiples of d andthat (µ ⋆ δd)(m) = µ(m/d)1d·N(m), for all m ≥ 1.We re
all that a subset X of the integers ≥ 1 is said to 
losed underdivision if every divisor of ea
h element of X is also in X. We write
A (X) to denote the set of 
omplex valued fun
tions on X. It is easilyseen that A (X) is a 
ommutative ring with respe
t to addition and(diri
hlet) 
onvolution.Lemma 3.1. Let X be a subset of the integers ≥ 1 that is 
losed underdivision. Let φ be in A (X) and let ψ = µ ⋆ φ. For all f and g �nitelysupported fun
tions in A (X) we have the identities(3.1) ∑

k∈X

f(k)φ(k) =
∑

m∈X

ψ(m)
∑

k∈X,
m|k

f(k) =
∑

m∈X

∑

k∈X,
m|k

ψ(k/m)f(k)and(3.2) ∑

k∈X

∑

ℓ∈X

f(k)g(ℓ)φ((k, ℓ)) =
∑

m∈X

ψ(m)
∑

k∈X,
m|k

f(k)
∑

ℓ∈X,
m|ℓ

g(ℓ).Equation (3.2) is the heart of the Selberg diagonalization pro
ess, asit is used for instan
e in se
tion 11.3.Proof. Sin
e f and g are �nitely supported and sin
e all terms in (3.1)are linear in f and both sides in (3.2) are bilinear in f and g, it su�
es toverify these relations when f = δa and g = δb, for any integers a, b ∈ X.When this is the 
ase, and sin
e X is divisor 
losed, these relationsredu
e respe
tively to the obvious relations
φ(a) =

∑

m|a
ψ(m) =

∑

m|a
ψ(a/m) and φ((a, b)) =

∑

m,
m|a,m|b

ψ(m).

⋄ ⋄ ⋄



28 3 General remarks on arithmeti
al fun
tionsCorollary 3.1. Let a be an integer ≥ 1 and d a divisor of a. We thenhave that(3.3) δd(a) =
∑

k|a,
d|k

µ(a/d) =
∑

k|a,
d|k

µ(k/d).Proof. We apply (3.1) with f = δa and φ = δd and X the set of divisorsof a. ⋄ ⋄ ⋄Corollary 3.2. Let X be a subset of the integers ≥ 1 that is 
losed underdivision and d be an integer in X. For any �nitely supported fun
tion fin A (X) we have(3.4) f(d) =
∑

k∈X,
d|k

∑

q∈X,
k|q

µ(q/k)f(q) =
∑

k∈X,
d|k

µ(k/d)
∑

q∈X,
k|q

f(q).Proof. It su�
es to verify (3.4) when f is of the form δa, for any integer
a ∈ X. When this is the 
ase, and be
ause X is 
losed under divisionand δa(d) = δd(a), (3.4) redu
es to (3.3). ⋄ ⋄ ⋄Corollary 3.3. Let q be an integer ≥ 1 and d be a divisor of q. We thenhave the relation(3.5) ∑

k|q,ℓ|q,
(k,ℓ)=d

µ(q/k)µ(q/ℓ) = µ(q/d).Proof. We apply (3.2) with X taken to be the set of divisors of q, fand g both taken to be the fun
tion k 7→ µ(q/k) on X and φ = δd. Then
ψ(m) = µ(m/d)1d·N(m) and, using (3.3), the right hand side of (3.5)redu
es to µ(m/d)1d·N(m)δm(q) = µ(q/d). ⋄ ⋄ ⋄Let f be an arithmeti
al fun
tion and Q be a real number ≥ 1. forea
h integer d in the interval [1, Q] we de�ne(3.6) Gd(f,Q) =

∑

q/[d,q]≤Q

f(q).This set of fun
tions will be required to de�ne the λd's of se
tion 13.1.Corollary 3.4. Let f be an arithmeti
al fun
tion and let g = 1 ⋆ f .When Q is a real number ≥ 1, and for ea
h integer d in [1, Q], we have(3.7) Gd(f,Q) =
∑

k≥1,
d|k

g(k)
∑

q≤Q,
k|q≤Q

µ(q/k).



3 General remarks on arithmeti
al fun
tions 29Proof. We redu
e to the 
ase when f = δa, where a is an integer ≥ 1.Then g = 1a·N. On writing χQ to denote the 
hara
teristi
 fun
tion ofthe integers in the interval [1, Q] and using (3.4) with X taken to be theset of all integers ≥ 1 we then have
∑

[q,d]≤Q

δa(q) = χQ([a, d])

=
∑

k≥1,
[a,d]|k

∑

q,
k|q

µ(q/k)χQ(q)
∑

k≥1,
d|k

1a·N(k)
∑

q≤Q,
k|q

µ(q/k).

⋄ ⋄ ⋄Corollary 3.5. Let f be an arithmeti
al fun
tion and let g = 1 ⋆ f .When Q is a real number ≥ 1, and d is an integer in [1, Q], we have
∑

q≥1,
d|q

µ(q/d)Gq(f,Q) = g(d)
∑

q≤Q,
d|q

µ(q/d).Proof. Sin
e the arithmeti
al fun
tion
k 7→ g(k)

∑

q≤Q,
k|q

µ(q/k)vanishes when k > Q, it is of �nite support. Thus the 
orollary followsfrom (3.7) and (3.4) applied with X taken to be the set of all integers
≥ 1. ⋄ ⋄ ⋄





4 Geometri
 interpretationThe expression appearing in Theorem 2.1 may look unpalatable, butis in fa
t simply the norm of a suitable orthonormal proje
tion, as weshow here. The reader may skip this 
hapter. While it does di�erentinsights on what we are doing, it will not be invoked before 
hapter 19,with two short detours at se
tions 9.4 and 11.4.Throughout this 
hapter, we �x a multipli
atively split 
ompa
tset K verifying the Johnsen-Gallagher 
ondition (2.4). For �xed q let
F (Kq) be the ve
tor spa
e of 
omplex valued fun
tions over Kq . Su
hfun
tions may also be seen as fun
tions over Z/qZ that vanish outside
Kq. We endow this ve
tor spa
e with a hermitian produ
t by setting(4.1) [f |g]q =

1

|Kq|
∑

nmod q

f(n)g(n).We should emphasize that the split multipli
ativity is an essential partof the present study. In terms of sieving as the problem is exposed in
hapter 11 the 
ompa
t set K 
orresponds to the host sequen
e andthus will often be taken to be Ẑ also denoted by (Z/dZ)d dependingon the de�nition you prefer. But we have seen in Bombieri & Daven-port's approa
h how the host sequen
e 
ould be
ome the sifted one (seese
tions 2.3 and 2.5)!4.1. Lo
al 
ouplingsOur �rst task is to link together the arithmeti
 modulo distin
t moduli.To do so, we 
onsider the usual lift when d|q:(4.2) Ld̃
q̃ : F (Kd)→F (Kq)

f 7→ f ◦ σq→d : Kq → C
x 7→ f(x mod d)This fun
tion is a natural one. The reader may wonder why we 
hose q̃instead of q; it will avoid troubles latter on. In order to further 
omparethe hermitian stru
tures, we 
onsider the operator J q̃

d̃
from F (Kq) to

F (Kd) whi
h asso
iates to f ∈F (Kq) the fun
tion(4.3) J q̃

d̃
(f) : Kd → C, x 7→ |Kd|

|Kq|
∑

n∈Kq,
n≡x[d]

f(n).



32 4 Geometri
 interpretationThis operator veri�es the fundamental:(4.4) [Ld̃
q̃(f)|g]q = [f |J q̃

d̃
(g)]d.Proof. We simply 
he
k dire
tly that

[Ld̃
q̃(f), g]q =

1

|Kq|
∑

x∈Kd

f(x)
∑

n∈Kq,
n≡x[d]

g(n)

=
1

|Kd|
∑

x∈Kd

f(x)

( |Kd|
|Kq|

∑

n∈Kq,
n≡x[d]

g(n)

)as required. ⋄ ⋄ ⋄Thus the maps Ld̃
q̃ and J q̃

d̃
are adjoint one to another, even if the readermay be unfamiliar with the 
on
ept when applied to linear fun
tions thatare not homomorphisms! Let us de�ne(4.5) Uq̃→d̃ = Ld̃

q̃J
q̃

d̃
.The next se
tion is devoted to understanding these operators. Note thatthey depend on K even if our notation does not make this apparent.4.2. The Fourier stru
tureWe start with the following fundamental property.Lemma 4.1. The operator Uq̃→d̃ is hermitian. Furthermore, Uq̃→d̃1

and
Uq̃→d̃2


ommute with ea
h other and we have(4.6) Uq̃→d̃1
Uq̃→d̃2

= U
q̃→ ˜(d1,d2)

.Proof. The hermitian 
hara
ter is readily proved:
[Uq̃→d̃(f)|g]q = [Ld̃

q̃J
q̃

d̃
(f)|g]q = [J q̃

d̃
(f)|J q̃

d̃
(g)]q

= [J q̃

d̃
(g)|J q̃

d̃
(f)]q = [Ld̃

q̃J
q̃

d̃
(g)|f ]q = [f |Ld̃

q̃J
q̃

d̃
(g)]q ,where, in fa
t, we have not used any property of K. The 
ommutingproperty requires more hypothesis. By using the de�nition of Uq̃→d̃1

, we�nd that
Uq̃→d̃1

Uq̃→d̃2
(f)(x) =

|Kd1 |
|Kq|

∑

n∈Kq,
n≡x[d1]

Uq̃→d̃2
(f)(n)



4.2 The Fourier stru
ture 33into whi
h we plug the de�nition of Uq̃→d̃2
to rea
h

Uq̃→d̃1
Uq̃→d̃2

(f)(x) =
|Kd1 |
|Kq|

∑

n∈Kq,
n≡x[d1]

|Kd2 |
|Kq|

∑

m∈Kq ,
m≡n[d2]

f(m)

=
|Kd1 ||Kd2 |
|Kq|

∑

m∈Kq

W (m;x)f(m),say, where we have written W (m;x) to denote(4.7) W (m;x) =
∑

n∈Kq,
n≡x[d1],n≡m[d2]

1.The reader will 
he
k thatW (m;x) = 0 when m and x are not 
ongruentmodulo (d1, d2) and that W (m;x) = |Kd1 ||Kd2 |/|K(d1 ,d2)| when they are.This proves (4.6), and hen
e the fa
t that the operators Uq̃→d̃ 
ommutewith ea
h other. Note that this argument depends 
ru
ially on the splitmultipli
ativity of K. ⋄ ⋄ ⋄A 
onsequen
e of the above lemma is that Uq̃→d̃ is a hermitian pro-je
tion. Let us further de�ne(4.8) Uq̃→d =
∑

ℓ|d
µ(d/ℓ)Uq̃→ℓ̃.The main stru
ture Theorem is the following:Theorem 4.1. The operators (Uq̃→d)d|q are two by two orthogonal her-mitian proje
tions. For ea
h divisor r of q, we further have

Uq̃→r̃ =
∑

d|r
Uq̃→d.Note that Uq̃→q̃ is the identity.Proof. On applying the pre
eding lemma, we get

Uq̃→d1Uq̃→d2 =
∑

ℓ1|d1,ℓ2|d2

µ(d1/ℓ1)µ(d2/ℓ2)Uq̃→(̃ℓ1,ℓ2)

=
∑

t|(d1,d2)

(

∑

ℓ1|d1,ℓ2|d2

(ℓ1,ℓ2)=t

µ(d/ℓ1)µ(d/ℓ2)

)

Uq̃→t̃.The inner 
oe�
ient is multipli
ative and is readily seen to vanish when
d1 6= d2 and to equal µ(d1/t) otherwise, thus establishing that Uq̃→d is
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 interpretationindeed a proje
tion and that Uq̃→d1 and Uq̃→d2 are orthonormal when
d1 6= d2. The remaining statements follow. ⋄ ⋄ ⋄Theorem 4.1 is the main basis of what now follows. Let us set(4.9) M(q̃ → d) = Uq̃→dF (Kq)whi
h we endow with the s
alar produ
t of F (Kq). This set dependson q: it is made of fun
tions over Kq but this dependen
e is immaterialsin
eLemma 4.2.(4.10) J q̃

d̃

M(q̃ → d) −→←− M(d̃→ d)

Ld̃
q̃are isometries, inverses of ea
h other.This lemma legitimates a spe
ial name for M(d̃ → d), whi
h wesimply 
all M(d).Proof. We �rst note that Ld̃

q̃Ud̃→dJ
q̃

d̃
(F ) = Ud̃→d(F ), whi
h in passingproves that Ld̃

q̃M(d̃ → d) = M(q̃ → d). Next, given any two elements
Ud̃→d(f) and Ud̃→d(g) of M(d̃→ d), we have

[Ld̃
q̃Ud̃→d(f)|Ld̃

q̃Ud̃→d(g)]d = [Ld̃
q̃Ud̃→dJ

q̃

d̃
(F )|Ld̃

q̃Ud̃→dJ
q̃

d̃
(G)]dif we write f = J q̃

d̃
(F ) and g = J q̃

d̃
(G). We 
ontinue simply:

[Ld̃
q̃Ud̃→dJ

q̃

d̃
(F )|Ld̃

q̃Ud̃→dJ
q̃

d̃
(G)]d = [Uq̃→d(F )|Uq̃→d(G)]d

= [Uq̃→d(F )|G]d = [Ld̃
q̃Ud̃→dJ

q̃

d̃
(F )|G]d = [Ud̃→dJ

q̃

d̃
(F )|J q̃

d̃
(G)]d

= [Ud̃→d(f)|g]d = [Ud̃→d(f)|Ud̃→d(g)]dindeed proving that the restri
tion of Ld̃
q̃ to M(q̃ → d) is an isometry.To show that both operators are inverses of ea
h other, we note that

Ld̃
q̃

(

J q̃

d̃
Ld̃

q̃Ud̃→d(f)
)

= Uq̃→dUq̃→d(F ) = Uq̃→d(F ) = Ld̃
q̃

(

Ud̃→d(f)
)and sin
e L is an inje
tion, this indeed implies that

J q̃

d̃
Ld̃

q̃Ud̃→d(f) = Ud̃→d(f).The reverse equation
Ld̃

q̃J
q̃

d̃
Uq̃→d(f

′) = Uq̃→d(f
′)is readily proved. ⋄ ⋄ ⋄



4.3 Spe
ial 
ases 35Thus in the relation(4.11) F (Kq) =
⊥
�
r|q

M(q̃ → r)we may regroup ⊥�
r|d

M(q̃ → r) for some divisor d of q and identify it with
F (Kd) via L or J , and this identi�
ation respe
ts ea
h summand. Wemay then identify F (Kd) with the set of fun
tions of F (Kq) that dependonly on the 
lass of the variable modulo d, and M(q̃ → r) as being thefun
tions that depend only on the 
lass of the variable modulo r, where
r is minimal subje
t to this 
ondition. Naturally, r is some kind of a
ondu
tor.We may split f a

ording to (4.11), whi
h we term de
omposing f inFourier 
omponents, and this is done via(4.12) f =

∑

r|q
Uq̃→r(f).Note �nally that(4.13) ∥

∥Uq̃→r(f)
∥

∥

2

q
=

1

|Kq|
∑

n∈Kq

∣

∣

∣

∣

∑

d|q
µ(q/d)

|Kd|
|Kq |

∑

m≡n[d]

f(m)

∣

∣

∣

∣

2where the reader will re
ognize the expression appearing in Theorem 2.1.4.3. Spe
ial 
asesIt is 
ustomary when working with the large sieve to split sums 
ontain-ing e(nb/q) a

ording to the redu
ed form a/q = b/d with (b, d) = 1;when su
h sums 
ontain Diri
hlet 
hara
ters then a

ording to the 
on-du
tor of this 
hara
ter. We show below that su
h de
ompositions arespe
ial 
ases of the one exhibited in (4.11).No restri
tion. When the 
ompa
t set K is (Z/qZ)q, we have at ourdisposal the usual Fourier de
omposition(4.14) f(n) =
∑

d|q

∑

amod∗d

f̂(q, a/d)e(na/d)where(4.15) f̂(q, a/d) =
1

q

∑

nmod q

f(n)e(−na/d).



36 4 Geometri
 interpretationThis de
omposition is in fa
t exa
tly the one given by (4.12), for wereadily 
he
k that(4.16) Uq̃→d(f)(n) =
∑

amod∗d

f̂(q, a/d)e(na/d).Proof. Using (4.8), we infer
Uq̃→d(f)(n) =

∑

r|d
µ(d/r)

r

q

∑

m≡n[r]

f(m) =
1

q

∑

mmod q

f(m)
∑

r|d,
r|m−n

rµ(d/r)where we re
ognize the Ramanujan sum cd(n−m), getting
Uq̃→d(f)(n) =

1

q

∑

mmod q

f(m)cd(n−m)

=
1

q

∑

amod d

∑

mmod q

f(m)e(−ma/d)e(na/d)whi
h is exa
tly (4.16). ⋄ ⋄ ⋄Restri
ting to the invertible elements. When the 
ompa
t set K is U ,we 
an also write(4.17) f =
∑

d|q

∑

χmod q
χmod∗d

f̂(q, χ)χwhere the expression "χ mod q and χ mod∗ d" represents all Diri
hlet
hara
ters modulo q of 
ondu
tor d and where(4.18) f̂(q, χ) =
1

φ(q)

∑

nmod∗q

f(n)χ(n).The reader will 
he
k that here too that(4.19) Uq̃→d(f) =
∑

χmod q
χmod∗d

f̂(q, χ)χholds.4.4. Redu
tion to lo
al propertiesGiven a sequen
e (un)n≥1 
arried by K up to level D (see se
tion 2.3),we 
onsider(4.20) ∆d(u)(n) = |Kd|
∑

m≡n[d]

um



4.4 Redu
tion to lo
al properties 37whi
h is a fun
tion of F (Kd) provided d ≤ D, whi
h we assume. Wehave 
hosen this normalisation be
ause it yields(4.21) J q̃

d̃
∆q = ∆d,allowing us to use either notion. In parti
ular, it implies(4.22) ∥

∥Uq̃→d(∆q(u))
∥

∥

2

q
=
∥

∥Ud̃→d(∆d(u))
∥

∥

2

dwhenever d|q. With these notations, the L.H.S. of Theorem 2.1 reads(4.23) ∑

d≤D

Gd(Q)
∥

∥Ud̃→d(∆d(u))
∥

∥

2

dwhi
h was the aim of this whole 
hapter. We have interpreted ea
hsummand from the L.H.S. of Theorem 2.1 as a (square of a) norm ofa suitable orthonormal proje
tion of our initial fun
tion (un)n≥1. The
∥

∥Ud̃→d∆d

∥

∥ are independent of ea
h other and we even have a geometri
interpretation for these norms. Note that our spa
e is in fa
t(4.24) ⊥
�

d≤D
M(r)where one should point out a pe
uliarity: we do not really have a spa
eof fun
tions over a given set, whi
h is why we have to go through fun
-tions in the �rst pla
e. What we have is either a sequen
e of points in

∏

r≤D M(r) or, if we want to keep some geometri
 �avour, a sequen
e
(fd)d with the property that J q̃

d̃
(fq) = fd, as we 
he
ked in (4.21).In 
hapter 19, we shall de�ne a very natural adjoint for∆q (see (19.7)).A di�erent proof of Theorem 2.1. Let U ′q̃→d be the sequen
e of oper-ators U asso
iated with K = (Z/dZ)d and we note ‖ · ‖′q the asso
iatednorm (re
all that this norm depends on the ambient 
ompa
t set). Wealso use ∆′. We reserve Uq̃→d for the operators asso
iated with K, andex
eptionally here ‖ · ‖Kq for the relevant norm. Note that if f is in

F (Kd), then ‖f‖′2q = |Kq|‖f‖2Kq
/q and ∆′d = d∆d/|Kd|. The large sieveinequality gives a bound for(4.25) ∑

d≤D

∥

∥U ′
d̃→d

(∆′d(u))
∥

∥

′2
d
,sin
e in this 
ase Gd(Q) = 1 for every d. When we know our sequen
e is
arried by a smaller 
ompa
t set K, we may introdu
e this information
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 interpretationvia the following transformation (see (4.8)):
∥

∥U ′q̃→q(∆
′
q(u))

∥

∥

′2
q

=
∑

d|q
µ(q/d)

∥

∥∆′d(u)
∥

∥

′2
d

=
∑

d|q
µ(q/d)

d

|Kd|
∥

∥∆d(u)
∥

∥

2

Kd
.

=
∑

d|q
µ(q/d)

d

|Kd|
∑

r|d

∥

∥Ur̃→r∆r(u)
∥

∥

2

Kr
.Plugging this last expression into (4.25) and rearranging some terms werea
h (4.23).



5 Further arithmeti
al appli
ations5.1. On a large sieve extension of the Brun-Tit
hmarshTheoremIn this se
tion, we use the large sieve extension of the Brun-Tit
hmarshinequality provided by Theorem 2.1 to dete
t produ
ts of two primesis arithmeti
 progressions. Let us 
onsider the 
ase of primes in [2, N ],of whi
h the prime number theorem tells us there are about N/LogN .Next sele
t a modulus q. The Brun-Tit
hmarsh Theorem 2.2 impliesthat at least(5.1) φ(q)

2

(

1− Log q

LogN

)
ongruen
e 
lasses modulo q 
ontains a prime ≤ N , so roughly speakingslightly less than φ(q)/2 when q is N ε. If this 
ardinality is > φ(q)/3, one
ould try to use Kneser's Theorem and derive that all invertible residue
lasses modulo q 
ontain a produ
t of three primes, but the proof getsstu
k: all the primes we dete
t � to show the 
ardinality is more than
φ(q)/3 � 
ould belong to a quadrati
 subgroup of index 2 ... Howeverthe following theorem shows that if this is indeed the 
ase for a givenmodulus q then the number of 
lasses 
overed modulo some q′ prime to
q is mu
h larger:Theorem 5.1. Let N ≥ 2. Set P to be the set of primes in ]

√
N,N ], of
ardinality P , and let (qi)i∈I be a �nite set of pairwise 
oprime moduli,not all more than √N/LogN . De�ne

A(qi) = {a ∈ Z/qiZ/ ∃p ∈ P, p ≡ a[qi]}.As N goes to in�nity, we have
∑

i∈I

(

1− 2Log qi
LogN

)(

φ(qi)

|A(qi)|
− 1

)

≤ 1 + o(1).A similar Theorem is an essential ingredient of (Ramaré, 2007b).Let us note for histori
al referen
e that (Erdös, 1937) already showeda result of similar �avour, though weaker in several respe
ts. See also
hapter 6 for a di�erent hindsight on the problem and Theorem 21.3 ofthe appendix for a similar reasoning in a more general 
ontext.



40 5 Further appli
ationsProof. We �rst present a proof when qi's are prime numbers. ApplyingTheorem 2.1 to the 
hara
teristi
 fun
tion (un) of the primes in P andthe 
ompa
t set K = U and then redu
ing the summation to summandsfrom (qi), we get(5.2)
G1(Q)P 2 +

∑

i∈I

Gqi(Q)φ(qi)
∑

bmod∗qi

∣

∣

∣

∣

∑

p∈P
p≡b[qi]

1− P/φ(qi)

∣

∣

∣

∣

2

≤ P (N +Q2).Now applying Lemma 2.3 to get a lower bound for Gqi(Q) in terms of
G1, whi
h we bound in turn by (2.13), we infer that
P 2 LogQ+

∑

i∈I

Log(Q/qi)φ(qi)
∑

bmod∗qi

∣

∣

∣

∣

∑

p∈P
p≡b[qi]

1−P/φ(qi)

∣

∣

∣

∣

2

≤ P (N+Q2).With i �xed, set(5.3) xb =
∑

p∈P
p≡b[qi]

1.We know that ∑b xb = P and that xb is zero when b is not in A(qi) andwe seek the minimum of ∑b(xb − P/φ(q))2. This is most immediatelydone on setting the non-zero xb to be all equal to P/|A(qi)|. A modest
al
ulation then reveals that(5.4) ∑

i∈I

(

1− Log qi
LogQ

)(

φ(qi)

|A(qi)|
− 1

)

≤ N +Q2

P LogQ
− 1.Setting Q =

√
N/LogN yields the inequality we 
laimed. To extendthe proof to non prime moduli, we have to 
he
k that (5.2) still holds inthis 
ase, provided the qi's are pairwise 
oprime. The required identityfollows on 
ombining (5.6) below together with(5.5) ∑

d|q
|Kd|

∑

b∈Kd

∣

∣

∣

∣

∑

ℓ|d
µ(d/ℓ)

|Kℓ|
|Kd|

∑

m≡b[ℓ]

um

∣

∣

∣

∣

2

= |Kq|
∑

b∈Kq

∣

∣

∣

∣

∑

m≡b[q]

um

∣

∣

∣

∣

2whenever um vanishes ifm is not in Kq, and where K is a multipli
ativelysplit 
ompa
t set verifying the Johnsen-Gallagher 
ondition. The 
ase
K = U would of 
ourse be enough for us here, but we 
an as easily getto the general 
ase. To prove this latter identity, rewrite the L.H.S. as
∑

d|q Θ(d) where Θ(d) is being de�ned in (2.10). We showed there that
Θ(d) =

∑

r|d
µ(d/r)|Kr|

∑

m≡n[r]

umun



5.1 On an extension of the Brun-Tit
hmarsh Theorem 41so that
∑

d|q
Θ(d) = |Kq|

∑

m≡n[q]

umun.Our 
laim follows readily on noting that(5.6)
|Kq|

∑

b∈Kq

∣

∣

∣

∣

∑

m≡b[q]

um

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∑

m

um

∣

∣

∣

∣

2

= |Kq|
∑

b∈Kq

∣

∣

∣

∣

∑

m≡b[q]

um −
∑

m um

|Kq|

∣

∣

∣

∣

2

.An alternative proof in the 
ase of primes 
an be worked out by usingthe expression of Θ(q) obtained in the proof of the Bombieri-DavenportTheorem, here Theorem 2.3. A third and mu
h more 
on
eptual proofis available to the reader who has gone through 
hapter 4: it pro
eedsby noti
ing that (5.5) may simply be rewritten as
∑

d|q

∣

∣[Uq̃→d(∆q(u))|∆q(u)]q
∣

∣

2
= ‖∆q(u)‖2qon joining (4.1) and (4.13) with (4.20), a relation whi
h holds by (4.12).

⋄ ⋄ ⋄Corollary 5.1. Let us 
onsider the set of primes ≤ N . Let q1 and q2be two 
oprime moduli both not more than N1/5. Then modulo q1 or q2,when N is large enough, all invertible residue 
lasses 
ontain a produ
tof two primes.The limit of this 
orollary is qi ≤ N 1
4−ε. Taking three or more moduliwould of 
ourse redu
e this limitation.Proof. We apply the pre
eding theorem to obtain that for q1 or q2, sayfor q, we have

2

(

1− 2Log q

LogN

)(

φ(q)

|A(q)| − 1

)

≤ 1 + o(1)from whi
h we infer that |A(q)|/φ(q) > 1/2. It is then 
lassi
al ad-ditive number theory (applied to the multipli
ative group of Z/qZ) toprove the result: for ea
h invertible residue 
lass b modulo q, the set
{ba−1, a ∈ A(q)} has more than φ(q)/2 elements and this implies thatits interse
tion with A(q) is non-empty. On 
onsidering an element inthis interse
tion, one gets an expression of b as a1a2 as required. ⋄ ⋄ ⋄We shall use this approa
h in a di�erent example in se
tion 21.4. Itmay appear surprising at �rst sight that we should be able to �nd aprodu
t of two primes (exa
tly two primes, and not "having at most twoprime fa
tors�) in an arithmeti
 progression to a better level than what
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ationsone gets for a single prime. This is due to the additionnal stru
ture thisset has and whi
h we put to use.5.2. Improving on the large sieve inequality for siftedsequen
esWe next use Theorem 2.1 to re�ne the large sieve inequality.Theorem 5.2. Assume K is multipli
atively split and veri�es the John-sen-Gallagher 
ondition (2.4). Let (un) be a sequen
e 
arried by K up tolevel Q. Then for Q0 ≤ Q, we have
∑

q≤Q0

∑

amod∗q

∣

∣

∣

∣

∑

n

une(na/q)

∣

∣

∣

∣

2

≤ G1(Q0)

G1(Q/Q0)

∑

n

|un|2(N +Q2)Proof. Call Σ(Q0) the L.H.S. of the above inequality. By Theorem 2.1and using the notation Θ(q) that appears in its proof, we get
Σ(Q0) =

∑

q≤Q0

Gq(Q)
Gq(Q0)

Gq(Q)
Θ(q) ≤ max

q≤Q0

(

Gq(Q0)

Gq(Q)

)

∑

q≤Q0

Gq(Q)Θ(q)

≤ max
q≤Q0

(

Gq(Q0)

Gq(Q)

)

∑

q≤Q

Gq(Q)Θ(q) = max
q≤Q0

(

Gq(Q0)

Gq(Q)

)

Σ(Q)from whi
h we 
on
lude via Lemma 2.3. ⋄ ⋄ ⋄This inequality re�nes the large sieve inequality when Q0 is smallwhile Q is large (but ≤ √N in what we have in mind). Using dire
tlythe large sieve inequality for Q0 would lose the fa
t that we 
an indeedsieve up to Q, information that we preserve in the above theorem.Without going into any further details, let us mention that this in-equality is optimal, at least in full generality and that even its spe
ial-ization to the 
ase of primes below is optimal, up to the 
onstant impliedin the ≪-symbol.This re�ned inequality has been used in (Ramaré & Ruzsa, 2001).5.3. An improved large sieve inequality for primesWe proved in se
tion 2.4 that the G1-fun
tion asso
iated with K = Uveri�es G1(Q) ≥ LogQ. This is in fa
t the true order of magnitude,but the proof is somewhat more di�
ult and relies on the 
onvolutionmethod. Here is rough sket
h.



5.3 An improved large sieve inequality for primes 43Proof. We start with
∑

q≥1

µ2(q)

φ(q)qs
= ζ(s+ 1)

∏

p≥2

(

1 +
1

(p− 1)ps+1
− 1

p2s+1

)

.The latter series, say H(s) whi
h appears on the R.H.S. is 
onvergentfor ℜs > −1/2. We expand it in Diri
hlet series in this half plane:
H(s) =

∑

n≥1

h(n)

ns
.We have

µ2(q)

φ(q)
=
∑

d|q

d

q
h(d)whi
h in turn yields

G1(z) =
∑

d≤z

dh(d)
∑

q≤z
d|q

1

q
=
∑

d≤z

h(d) (Log(z/d) + γ +O(d/z)) .We 
he
k that |h(d)| ≪ d−1.4 (this 1.4 is any number < 1.5 and the
onstant in the ≪-symbol depends on this 
hoi
e), from whi
h we infer
G1(z) = Log z + γ +H ′(0) +O(Log z/z0.4).

⋄ ⋄ ⋄In Lemma 3.5 of (Ramaré, 1995), it is proved that(5.7) G1(z) ≤ Log z + 1.4709 (∀z ≥ 1).Theorem 5.3. If (un)n≤N is su
h that un vanishes as soon as n has aprime fa
tor less than √N , then
∑

q≤Q0

∑

amod∗q

∣

∣

∣

∣

∑

n

une(na/q)

∣

∣

∣

∣

2

≤ 7
N LogQ0

LogN

∑

n

|un|2for any Q0 ≤
√
N and provided N ≥ 100.Proof. On
e again, we translate our hypothesis by saying that (un) is
arried by K = U upto level Q =

√
N . If Q0 ≥ N3/10, the proof followsdire
tly from the large sieve inequality. Else, Theorem 5.2 gives us abound that our estimates on the G-fun
tions translate into the requiredstatement, the 
ontant being majorized by

α+ 1.4709/Log(100)
1
2 − α

× 2



44 5 Further appli
ationswhere Q0 = Nα and by using (5.7) together with (2.13). A numeri
alappli
ation 
on
ludes. ⋄ ⋄ ⋄An inequality of similar strength is stated in Lemma 6.3 of (Elliott,1985). The reader may have di�
ulties in noti
ing the 
onne
tion withour result, sin
e, in Elliott's Lemma, the sum is restri
ted to primemoduli and 
on
erns primes in progressions instead of exponential sumsas here, but it is really the same me
hanism that makes both proofswork.5.4. A 
onsequen
e for quadrati
 sequen
esHere, to alleviate typographi
al work, we use Logk to denote the k-thiterated logarithm.Theorem 5.4. For every real numbers Q0 ≥ 10 and N , and any se-quen
e of 
omplex numbers (un), we have
∑

q≤Q0

∑

amod ∗q

∣

∣

∣

∣

∣

∣

∑

n≤N

une(n
2a/q)

∣

∣

∣

∣

∣

∣

2

≤ c(Q0)Q0 · (N +Q0g(Q0)) ·
∑

n≤N

|un|2with g(x) = exp(20Log2(3x) Log3(9x)) and c(Q0) = 4000Log2
2(3Q0).A similar result with n2 being repla
ed with a �xed quadrati
 poly-nomial is easily a

essible by the method given here. In between, (GyanPrakash & Ramana, 2008) generalized greatly this result by a di�erentmethod and in parti
ular, they are able to handle the 
ase of arbitrarypolynomials (instead of only quadrati
 ones), provided the 
oe�
ientsare integers. They are even able to handle the 
ase of arbitrary intervals.The above is still slightly better where it applies.Proof. We �rst slightly modify the proof of Theorem 5.2 : we are tomajorize

max
d≤Q0

{Gd(Q0)/Gd(Q) }.Next, we should de�ne our set K and the fun
tions G. The level ofsieving is Q = max(N,Q0g(Q0)).When d is squarefree we take for Kd the set of squares and when dis not squarefree we trivially lift Kℓ to Z/dZ, where ℓ is the squarefreekernel of d. This set K satis�es the Gallagher-Johnsen 
ondition (2.4)



5.4 A 
onsequen
e for quadrati
 sequen
es 45and is multipli
atively split. Furthermore(5.8) 





|Kpν |p−ν =
p+ 1

2p
if p 6= 2 and ν ≥ 1,

|K2ν |2−ν = 1 if ν ≥ 1.The asso
iated fun
tion h vanishes on non-squarefree integers and oth-erwise veri�es
h(2) = 0, h(p) =

p− 1

p+ 1
if p 6= 2.In this situation, we have

Gd(Q) =
∑

δ/ [d,δ]≤Q

h(δ) =
∑

q,r
(q,d)=1,r|d,

q≤Q/d

h(r)h(q)i.e.(5.9) Gd(Q) =
|Kd|
d

∑

q≤Q/d
(q,d)=1

h(q)(by writing δ = qr) as soon as d ≤ Q. When f is an odd integer we inferthat(5.10) G2uf (Q) =
∏

p|f

2p

p+ 1

∑

q≤Q/(2uf)
(q,2f)=1

µ2(q)
∏

p|q

(

p− 1

p+ 1

)

.Note that we should pay attention to the dependen
e in u and f whileevaluating these averages. De�ne the multipli
ative fun
tions a and b by






a(p) =
p− 1

p+ 1
when p ∤ 2f ,

a(pν) = 0 otherwise, 

































b(p) =
−2

p+ 1
when p ∤ 2f ,

b(p) = −1 otherwise,
b(p2) = −p− 1

p+ 1
when p ∤ 2f ,

b(pν) = 0 otherwise,so that a = 1 ⋆ b and we have
G2uf (Q) =

∏

p|f

2p

p+ 1

∑

q≤Q/(2uf)

a(q).We 
ontinue by appealing to Rankin's method. We use
∑

n≤X

1 = X +O∗(Xα) (α > 0,X ≥ 0)
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ationsto get
∑

q≤D

a(q) =
∑

d≥1

b(d)

{

D

d
+O∗((D/d)α)

}

= B(f)D +O∗
(

DαB∗
∏

p|2f

(

1 +
1

pα

))where B(f) =
∑

d≥1 b(d)/d veri�es
B(f) =

∏

p≥2

(

1− 3p− 1

p2(p+ 1)

)

∏

p|2f

(

1− 1

p

)(

1− 3p − 1

p2(p+ 1)

)−1

≥ 0.35
∏

p|2f

(

1− 1

p

)(

1− 3p− 1

p2(p+ 1)

)−1(

1 +
1

p

)

∏

p|2f

(

1 +
1

p

)−1

≥ 0.35
∏

p|2f

(

1 +
1

p

)−1

.We 
hoose α = max(3/4, 1 − 1/Log2(3f)). Note that, for α ≥ 3/4,
B∗ =

∏

p≥3

(

1 +
2

(p+ 1)p3/4
+

p− 1

(p+ 1)p3/2

)

≤ 2.3,hen
e, by getting rid of the Euler fa
tor at 2, we get
∑

q≤D

a(q) = B(f)D

(

1 +O∗
(

6.7Dα−1
∏

p|f

(

1 +
1

pα

)2)
)

.Odd integers f ≤ ee
4
/3 have not more than 18 prime fa
tors, sin
e theprodu
t of the 18 �rst odd primes is greater than ee

4
/3. This impliesthat ∏p|f

(

1 + p−3/4
) not more than 55 for those f 's. We pro
eed tomajorize this produ
t when f ≥ ee

4
/3. Setting L = Log 3f , we readily
he
k that

∏

p|f
p≥L

(

1 +
1

pα

)2

≤ exp

(

2Log(f)

Lα LogL

)

≤ 1.2sin
e there are at most Log(f)/LogL prime divisors of f that are ≥ L.On the other hand, and on using the elementary Log(1+x)−Log(1+
y) ≤ x− y when 0 ≤ y ≤ x, we get
∏

p≤L

(

1 +
1

pα

)(

1 +
1

p

)−1

≤ exp
∑

p≤L

( 1

pα
− 1

p

)

≤ exp
∑

p≤L

e(1−α) Log p − 1

p
.



5.5 A Bombieri-Vinogradov type Theorem 47We now utilize ex − 1 ≤ ex when 0 ≤ x ≤ 1, getting
∏

p≤L

(

1 +
1

pα

)2(

1 +
1

p

)−2

≤ exp

(

2.4(1 − α)
∑

p≤L

Log p

p

)

≤ e2.4 ≤ 12sin
e ∑p≤L(Log p)/p ≤ LogL by (3.24) of (Rosser & S
hoenfeld, 1962).This leads to
∏

p|f,p≤L

(

1 +
1

pα

)2

≤ 12
∏

p≤L

(

1 +
1

p

)2

≤ 12 exp

(

∑

p≤L

2

p

)

≤ 12 exp(2Log LogL+ 2) ≤ 89Log2(3f)2sin
e (
∑

p≤L 1/p ≤ Log LogL + 1 when L ≥ 3 by (3.20) of (Rosser &S
hoenfeld, 1962). Gathering our estimates, we infer
1− 716Log2(3f)2 exp(−LogD/Log2(3f))

≤ 1

DB(f)

∑

q≤D

a(q) ≤ 716Log2(3f)2when 3f ≥ ee
4 . The reader will easily get a better bound when f issmaller. We will use this lower estimate with D = Q0/(2

uf) and theupper one with D = Q/(2uf). Sin
e(5.11) Log(D) ≥ Log(Q/Q0) ≥ 20Log2(3Q0) Log3(9Q0)we get
1− 716Log2(3f)2 exp(−LogD/Log2(3f)) ≥ 1− 716

Log2(9Q0)18
≥ 1/5.Finally

max
d≤Q0

{Gd(Q0)/Gd(Q) } ≤ 4000(Log2(3Q0))
2Q0/Qending the proof. ⋄ ⋄ ⋄5.5. A Bombieri-Vinogradov type TheoremWe 
an establish Bombieri-Vinogradov type of results from Theorem 5.4by adapting the s
heme developed in (Bombieri et al., 1986). We usethe notation p ∼ P to say P < p ≤ 2P .



48 5 Further appli
ationsTheorem 5.5. For every A ≥ 1, there exists B su
h that for all D ≤
P (LogP )−B and D ≤ N/g(N), we have
∑

d≤D

max
amod∗d

∣

∣

∣

∣

∑

n∼N,p∼P
(n2+1)p≡a[d]

α(n)− π̃(P )

φ(d)

∑

(n2+1,d)=1

α(n)

∣

∣

∣

∣

≪A
PN1/2‖α‖
(LogP )Afor any sequen
e of 
omplex numbers (α(n))n and where π̃(P ) is thenumber of primes p ∼ P .The fun
tion g appearing in this statement is of 
ourse the one ap-pearing in Theorem 5.4.For instan
e, this implies that the level of distribution of the sequen
eof (p2

1 + 1)p2 with p1 and p2 prime numbers su
h that N ≤ p1, p2 ≤ 2Nis larger than N . Using the general theory of the weighted sieve (see forinstan
e (Greaves, 2001)), we infer that the sequen
e 1+(p2
1 +1)p2 with

1
2 ≤ p1/p2 ≤ 2 
ontains in�nitely many elements having at most fourprime fa
tors. This spe
ial result has already been proved by (Greaves,1974); Greaves's result is more general than ours in some aspe
ts whileours prevails in some other. For the sequen
e 2 + p2

1p2, it is possibleto simplify the following proof by appealing to the Barban-Davenport-Halberstam Theorem.Proof. Let us put D = P/(Log P )2A+4. We study
Σ =

∑

d≤D

max
amod∗d

∣

∣

∣

∣

∑

n∼N,p∼P
(n2+1)p≡a[d]

α(n)− π̃(P )

φ(d)

∑

(n2+1,d)=1

α(n)

∣

∣

∣

∣

.We have
Σ =

∑

d≤D

max
amod ∗d

∣

∣

∣

∣

1

φ(d)

∑

χmodd
χ 6=χ0

S(χ)T (χ)χ̄(a)

∣

∣

∣

∣

≤
∑

d≤D

1

φ(d)

∑

χmod d
χ 6=χ0

|S(χ)| |T (χ)|with(5.12) S(χ) =
∑

n∼N

α(n)χ(n2 + 1) and T (χ) =
∑

p∼P

χ(p).



5.5 A Bombieri-Vinogradov type Theorem 49As usual, we infer that
Σ≪ LogD

∑

1<q≤D

1

φ(q)

∑

χmod ∗q

|S(χ)| |T (χ)|

≪ (LogD)2
(

∑

1<q≤D0

∑

χmod ∗q

|S(χ)|2
)1/2

max
χmod∗q
1<q≤D0

|T (χ)|

+(LogD)Σ′.Let us re
all the 
lassi
al inequality of (Gallagher, 1967)
∑

χmod ∗q

|S(χ)|2 ≤ φ(q)

q

∑

amod ∗q

∣

∣

∑

n∼N

α(n) e((n2 + 1)a/q)
∣

∣

2
.(5.13)Using the Siegel-Wal�sh Theorem (whi
h we re
all later in Lemma 10.4in se
tion 10.4) for T (χ) and Theorem 5.4 for S(χ) through the aboveinequality, we get

Σ≪C1 (LogP )−C1PD
1/2
0 (LogD0)(N +D0g(D0))

1/2‖α‖2 + (LogD)Σ′for D0 = (LogP )2A+6 and C1 = 2A + 6. As for Σ′, we split the sum-mation over q a

ording to the size of this parameter. We are then leftwith the problem of �nding an upper bound for
Σ′′(Q) =

LogQ

Q

∑

Q<q≤2Q

∑

χmod∗q

|S(χ)| |T (χ)|whi
h we treat using the Cau
hy-S
hwarz and the large sieve inequality :
Σ′′(Q)≪ LogQ

Q
(P + P 1/2Q)

(

∑

Q<q≤2Q

∑

χmod ∗q

|S(χ)|2
)1/2

.Invoking Theorem 5.4, we get for N ≥ Dg(D)

Σ′′(Q)≪ Log2Q

Q
(P + P 1/2Q)Q1/2‖α‖2N1/2

≪ ‖α‖2P 1/2N1/2
(P 1/2

Q1/2
+Q1/2

)

Log2QHen
e
Σ≪A ‖α‖2(LogD)3PN1/2

(

(LogP )−C1D
1/2
0 +

1

D
1/2
0

+
D1/2

P 1/2

)and the theorem follows readily. ⋄ ⋄ ⋄





6 The Siegel zero e�e
tWhen dealing with the Brun-Tit
hmarsh Theorem (Theorem 2.2 ofthis monograph), and in general, with sieve methods, the question of the
onne
tions between the parity prin
iple, the 
onstant 2 in this theoremand the so-
alled Siegel zeros 
annot be avoided. (Selberg, 1949) showsthat the 
onstant 2 + o(1) in the Brun-Tit
hmarsh Theorem is optimal,if we sti
k to a sieve method in a fairly general 
ontext. He expandedthis theory into what is known as the "parity prin
iple" in (Selberg,1972). See also (Bombieri, 1976). However, this obje
tion is methologi
aland belongs mu
h more to the realm of the 
ombinatorial sieve. In therestri
ted framework of the Brun-Ti
hmarsh Theorem, or in the evenmore restri
ted framework of this Theorem for the initial interval only,the 
onstant 2 and "the parity prin
iple" are indeed two di�erent issues.This 
hapter is �rst devoted to links and parallels between Siegel zerosand the 
onstant 2 in the aforementioned Theorem.We 
omplete this 
hapter with large sieve estimates on the numberof quadrati
 
hara
ters χ for whi
h the least prime p with χ(p) = −1(resp. χ(p) = 1) is large.6.1. Zeros free regions and Siegel zerosLet us start with a Theorem initially due to de la Vallée-Poussin in 1896,whi
h we present in the re�ned form given in (Kadiri, 2002):Theorem 6.1. The Diri
hlet L-fun
tions asso
iated to the modulus qdo not vanish in the region
ℜs ≥ 1− 1

R log(qmax(1, |ℑs|)) with R = 6.4355,with the ex
eption of at most one of them. This ex
eption 
orreponds toa real 
hara
ter and has at most one real zero in the given region.This zero is 
alled the "Siegel zero�, or sometimes the "ex
eptionalzero�. The reader should note that su
h a de�nition depends on theshape of the region, and parti
ularly on the value of R. Some authors
all "Siegel zero� a sequen
e of su
h zeros when R goes to 0. We knowsin
e Diri
hlet in 1839-40 that su
h a zero 
annot be in s = 1, but it 
anbe very 
lose to it. First there is a link between this zero and the size of
L(1, χ), where χ is the asso
iated real Diri
hlet 
hara
ter. This link is



52 6 The Siegel zero e�e
tnot as tight as one 
ould expe
t, but is strong enough for our purpose.The �rst part is a theorem due to He
ke around 1915 whi
h 
an be foundin (Landau, 1918). The pre
ise form we state 
omes from (Pintz, 1976).Theorem 6.2. When an L-fun
tion belonging to the real non-prin
ipal
hara
ter χ modulo q ≥ 200 has no zero in the interval [1− α, 1], where
0 < α < (20Log q)−1, we have L(1, χ) > 0.23α.Whi
h implies that if L(1, χ) = o(1/Log q), then there is an ex
ep-tional zero. A 
onverse statement arises from the following lemma:Lemma 6.1. When an L-fun
tion belonging to the real non-prin
ipal
hara
ter χ modulo q, where q ≥ 200, has a real zero β ≥ 1− (Log q)−1,then L(1, χ) ≤ 2(1− β) Log2 q.Proof. The mean value Theorem tells us that there exists a u in [β, 1]su
h that L(1, χ) − 0 = (1 − β)L′(u, χ). We bound the latter quantitytrivially:

L′(u, χ) =
∑

n≤q

χ(n) Log n

nu
+

∫ ∞

q

∑

q<n≤t

χ(n)
uLog t− 1

tu+1
dtand hen
e

|L′(u, χ)| ≤ e
(

Log2 q

2
− Log2 3

2
+

Log 3

3
+

Log 2

2

)

+ q
Log q

qu

≤ e
(

Log2 q

2
+ Log q + 0.11

)

≤ 2Log2 q.

⋄ ⋄ ⋄See also (Goldfeld & S
hinzel, 1975), as well as the mentioned paperof Pintz for more pre
ise links between L(1, χ) and 1− β.(Landau, 1918) proved that the modulus asso
iated to any two su
hzeros 
annot be 
lose one to the other. Here is the latest result due to(Kadiri, 2007) in this dire
tion:Theorem 6.3. Let χ1 modulo q1 and χ2 modulo q2 be two real primitive
hara
ters, and let β1 > 0 (resp. β2 > 0) be a real zero of L(s, χ1) (resp.
L(s, χ2)). Assume that q1 and q2 are 
oprime. Then

min(β1, β2) ≤ 1− 1

2.31Log(q1q2/47)
.The reader may wonder why su
h zeros are 
alled Siegel zeros, andindeed the name Landau-Siegel zeros may well be better suited, sin
e



6.2 Gallagher's prime number Theorem 53(Landau, 1935) is the very �rst su

ess at proving a result like Theo-rem 6.4 below with an ε < 1/2 (Landau still required ε > 3/8). Here isa version from (Tatuzawa, 1951) of the Theorem of (Siegel, 1935) thatwarranted this nomen
lature.Theorem 6.4. For any ε > 0, and any primitive real 
hara
ter χ modulo
q, we have L(1, χ) ≥ ε/(10qε) with the ex
eption of at most one valueof q.The reader may 
onsult (Ho�stein, 1980) as well as (Ji & Lu, 2004).for improved versions of this result. Theorem 6.4 has the following 
on-sequen
e: for any ε > 0, there exists a 
onstant c(ε) > 0 su
h that
L(1, χ) > c(ε)q−ε. However, this proof does not allow us to e�e
tively
ompute the 
onstant c(ε), even if we take ε = 1/3 for instan
e. As amatter of fa
t, we know an e�e
tive solution only in the 
ase ε = 1/2.On this subje
t, the reader may read the groundbreaking paper of(Goldfeld, 1985) as well as (Gross & Zagier, 1983) and (Oesterlé, 1985).6.2. Gallagher's prime number TheoremThe existen
e of a possible ex
eptional zero has a deep impa
t on the dis-tribution of primes in arithmeti
 progressions. The theorem we presenthere is one of the �nest a
hievements in this dire
tion and 
lari�es greatlythe situation. Some of the results we seek 
an be shown without havingto appeal to su
h a heavyweight, but using it is enlightening.The prime number theorem of (Gallagher, 1970) has a long an
estry,steming originally from (Linnik, 1944a) and (Linnik, 1944b). Anothermodern form of these 
elebrated papers 
an be found in (Bombieri, 1987),Theorem 16. See also (Motohashi, 1978).One of the key to su
h results is the Deuring-Heilbronn phenomenon:when there is an ex
eptional zero, all other L-fun
tions have no zeroin a region wider than usual, and this region be
omes wider as thisex
eptional zero 
loses to 1.Let us now state Gallagher's Theorem. Assume L(β, χ) = 0 for a βsu
h that 1− β = o(1/Log q). We set δ = 1− β. In this 
ase(6.1) ψ(X; q, ℓ) =

X

φ(q)

(

1− χ(ℓ)
X−δ

β

)

+O
(

Xδ Log T

φ(q)

(

e−c1
Log X
Log T

LogX
+
q LogX√

T
+
T 5.5

√
x

)

)
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tif X ≥ T c2 ≥ T ≥ q where c1, c2 > 0 are two e�e
tive 
onstants. The
onstant implied in the O-symbol is equally e�e
tive. If no ex
eptionalzero exists modulo q (that is, also for no divisor of q), the pre
edingformula holds with minor modi�
ations: we use β = 1
2 in the main termand δ Log T = 1 in the remainder term.6.3. Siegel zero and Brun-Tit
hmarsh TheoremWe prove here the following Theorem whose idea 
omes from (Motohashi,1979), where a similar result is proved by a very di�erent method.Theorem 6.5. There exist two e�e
tive 
onstants c3 and c4, su
h thatfor q ≥ c4, the following two 
onditions are equivalent.(1) For any real 
hara
ter modulo q, we have L(1, χ)≫ 1/Log q.(2) There exist a 
onstant ξ > 0 su
h that for any ℓ prime to q, wehave, with X = qc3:(6.2) ∑

X<p≤2X,
p≡ℓ[q]

1 ≤ 2− ξ
φ(q)

∑

X<p≤2X

1.Su
h a statement is always somewhat tri
ky. For instan
e, we indeeduse 
hara
ters and not only primitive 
hara
ters. We 
an take c3 =
max(36, 3c2), where c2 appears in (6.1).Proof. We shall use Gallagher's Theorem (6.1) with T = q3 and X ≥
qmax(36,3c2), so that the error term there is O of X/(φ(q) Log q). First,assume L(1, χ) = o(1/Log q) for one 
hara
ter χ. Then, by He
ke'stheorem, there is indeed an ex
eptional zero, say β, asso
iated to a
hara
ter χ. We have X−δ = 1 + o(1). In parti
ular, if we take aninvertible residue 
lass ℓ su
h that χ(ℓ) = −1, we have ψ(X; q, ℓ) ∼
2X/φ(q), and this readily implies that ξ 
annot exist.For the reverse impli
ation, we follow (Rama
handra et al., 1996). Bysumming our upper bound over all ℓ su
h that χ(ℓ) = −1, we dis
overthat the number of primes in ]X, 2X] with χ(p) = 1 is at least

ξ
∑

X<p≤2X

1/2.Consider next G(s) = ζ(s)L(s, χ) =
∑

n≥1 g(n)n−s where g(n) = 1 ⋆
χ(n). Note that g(n) is non-negative. Note, furthermore, that g(p) = 2when χ(p) = 1, from whi
h we infer

∑

X<n≤2X

g(n) ≥
∑

X<p≤2X

g(p)≫ ξX/LogX.



6.3 Siegel zero and Brun-Tit
hmarsh Theorem 55This readily yields
1

2iπ

∫ c+i∞

c−i∞
G(s+ 1)Γ(s)

(

(2X)s −Xs
)

ds

=
∑

n≥1

g(n)

n

(

e−n/(2X) − e−n/X
)

≫
∑

X<n≤2X

g(n)

X
≫ ξ/LogX.Next, shifting the path of integration in the above integral to ℜs = −1/4,we see that it is

L(1, χ) Log 2 +O
(

X−1/4

∫ c+i∞

c−i∞
|G(s + 1)Γ(s)|ds

)

.The exponential de
ay of Γ(s) in verti
al strips (a 
onsequen
e of theStirling formula) as well as the bound |G(3/4+it)| ≪ q1/4(1+|t|) ensuresus that this last error term is at most O((q/X)1/4), whi
h in turn is
O(q−1) sin
e c3 ≥ 5. So that we �nd that L(1, χ)≫ 1/LogX ≫ 1/Log qas required. ⋄ ⋄ ⋄Thus, improving on the 
onstant 2 in the Brun-Tit
hmarsh Theoremwhen X is a power of q would remove any Siegel zero. Note that we useonly the Brun-Tit
hmarsh Theorem for the initial range. Drawing onsimilar ideas, (Basquin, 2006) established a theorem linking an e�e
tivelower bound for L(1, χ) of the shape 1/qc for some c ∈]0, 1/2] with theimprovement on the 
onstant 2 in the Brun-Tit
hmarsh Theorem, butin a di�erent range for X:Theorem 6.6. Let c > 0 be a parameter. The following three problemsare equivalent:(1) For every ε > 0, and every real 
hara
ter χ, prove in an e�e
tiveway that L(1, χ)≫ q−c−ε.(2) For every ε > 0, prove (6.2) for every q ≤ (LogX)(1/c)−ε.(3) For every ε > 0, prove in an e�e
tive way that ψ(X; q, ℓ) ∼

X/φ(q) for every q ≤ (LogX)(1/c)−ε.This statement also tells us that, if we are able to beat the fa
tor 2in the upper bound, then a mu
h stronger 
on
lusion follows, namely anequivalent for ψ(X; q, ℓ). This situation is similar to what happens withthe elementary proof of the prime number theorem, a proof this timeheavily linked to the parity prin
iple. See (Selberg, 1949b), (Selberg,1949a) and (Erdös, 1949).
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t6.4. The Siegel zero e�e
tWe have seen that the distribution of primes in arithmeti
 progressionsmodulo q stumbles on the possible existen
e of the so 
alled Siegel zero.The existen
e of su
h a zero would have the e�e
t that only about halfthe residue 
lasses would 
ontain primes. However, the reader shouldnoti
e that this philosophi
al statement is sustained by theorems onlywhen q is a small power of X.When approa
hing the problem of this distribution through zerosof L-fun
tions, this e�e
t is well 
ontrolled and is avoided by a simplefa
t: two moduli q1 and q2 
oprime and not too far apart in size 
annotsimultaneously have a Siegel zero by Theorem 6.3. For instan
e, thisremedy is used in (M
Curley, 1984) and (Cook, 1984). The 
onditionof 
oprimality is not minor in any sense: if q has a Siegel zero, thenthe distribution of primes modulo 3q for instan
e is still going to beunbalan
ed.From the sieve point of view, zeros do not appear as su
h, but asimilar role is played by the fa
t that we 
an only prove that the numberof primes in a given arithmeti
 progression is about twi
e what it shouldbe. Indeed, this implies that, then, primes 
annot a

umulate on asubset of (Z/qZ)∗ that 
ontains less than (1−ε)φ(q)/2 elements. Again,this is true only when q is small when 
ompared to X, but, when q islarger, we 
an still prove that a subset of positive density (with respe
tto (Z/qZ)∗) is attained.We also have a similar e�e
t to Landau's, even if we are not a
-tually able to produ
e a 
orresponding zero. And, indeed, by using alarge sieve extension of the Brun-Tit
hmarsh inequality, we saw in The-orem 5.1 that primes 
annot a

umulate in some small sets modulo two
oprime moduli of similar size. Further the density of the set attained
an even be shown to be rather 
lose to 1 if we are ready to 
hose onemodulus among say T 
andidates. Exa
tly how large depends on thesize of the modulus, say q and of T , but we 
an roughly show that morethan (1 + 2LogX/(T Log(X/q2))
)−1

φ(q) 
lasses are rea
hed and thisindeed will be larger than a half provided T is large enough dependingon Log(X/q2).This is what we loosely 
all the Siegel zero e�e
t, though no zeros areinvolved. And sin
e it �nds its justi�
ation in sieves, it 
an be used onother sequen
es as well; we provide su
h an example in Theorem 21.3 of
hapter 21.



6.5 A detour: the pre
ursory theorem of Linnik 576.5. A detour: the pre
ursory theorem of LinnikProving that L(s, χ) has no zero 
lose to 1 has to do with proving that
L(1, χ) 
annot be small, whi
h means, when χ is quadrati
, proving that
χoften takes the value 1. Curiously enough, we do not know how to proveeither that χ(p) often takes the value −1 1, or that it takes often thevalue 1 2, where here it is ne
essary to spe
ify that we seek the valueat prime argument for the problem to be non trivial. One of the �rstarithmeti
al use of the large sieve te
hnique o

urred in (Linnik, 1942),where the author provesTheorem 6.7. For every ε > 0, there exists c(ε) su
h that, for every N ,the number of prime numbers ≤ N that have no non-quadrati
 residue
≤ N ε is at most c(ε).We refer the reader to (Montgomery, 1971) for a more thorough treat-ment of the history of the subje
t. We now present a proof of this result.As usual we shall have to 
ompute a density, for whi
h we rely on thefollowing lemma.Lemma 6.2.The number of integers ≤ N whose prime fa
tors are all ≤ N ε is
≫ε N .There exist better proofs than the one we give now, and it is knownin parti
ular that this set has a 
ardinality equivalent to a 
onstant(depending on ε) times N . However, the one we present relies on
e moreon the idea of (Levin & Fainleib, 1967). Moreover, it appears to be novel.Proof. Set ǫ = 1/k, where k ≥ 1 is an integer. Let S be the set ofintegers that have no prime fa
tors ≤ N ǫ and let Z be the number ofthem that are ≤ N . Let us �rst write
Z LogN =

∑

n∈S,
n≤N

LogN ≥
∑

n∈S,
n≤N

∑

p|n
Log p ≥

∑

p≤Nǫ

Log p
∑

n∈S,
np≤N

1

≥
∑

n∈S,
N1−ǫ<n≤N

∑

p≤N/n

Log p ≥ C6N
∑

n∈S,
N1−ǫ<n≤N

1/n − C7Z1If the 
ondu
tor, say f, of χ is prime, then p is a non quadrati
 residue, i.e. isnot a square in Z/fZ.2This time, when the 
ondu
tor of χ is prime, p would be a quadrati
 residue.
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tfor some 
onstants C6, C7 > 0. We shall get a lower bound for the sumof 1/n when n ranges S and in above interval by following a similarpath. We will a
hieve this by a re
ursion whose main ingredient is thefollowing fa
t: There exist two 
onstants c1 = c1(ǫ) et N0 = N0(ǫ) su
hthat for every ℓ ∈ {0, . . . , k − 1} and N ≥ N0, we have(6.3) ∑

n∈S,
2ℓN1−(ℓ+1)/k<n≤N1−ℓ/k

1/n ≥ c1
∑

n∈S,
2ℓ+1N1−(ℓ+2)/k<n≤N1−(ℓ+1)/k

1/n.Let us �rst establish this inequality. We write
LogN

∑

n∈S,
2ℓN1−(ℓ+1)/k<n≤N1−ℓ/k

1/n ≥
∑

n∈S,
2ℓN1−(ℓ+1)/k<n≤N1−ℓ/k

(Log n)/n

≥
∑

n∈S,
2ℓN1−(ℓ+1)/k<n≤N1−ℓ/k

(

∑

p|n
Log p

)

/n

≥
∑

p≤Nǫ

Log p

p

∑

m∈S,
2ℓN1−(ℓ+1)/k<mp≤N1−ℓ/k

1/mand an inter
hange of summations yields the lower bound
∑

m∈S,
2ℓ+1N1−(ℓ+2)/k<m≤N1−ℓ/k

(1/m)
∑

p≤Nǫ,
N1−(ℓ+1)/k<mp≤N1−ℓ/k

Log p

p
.If m ≤ N1−(ℓ+1)/k, then the only upper bound for p is p ≤ N ǫ. Thelower bound reads N1−(ℓ+1)/k < mp, and

∑

p≤Nǫ,
N1−(ℓ+1)/k/m<p

Log p

p
≥ C1 Log(mN−1+(ℓ+2)/k)− C2for some 
onstants C1, C2 > 0. When m > N1−(ℓ+1)/k, the only lowerbound for p is 2, but its upper bound this time depends on m. We get

∑

p≤N1−ℓ/k/m

Log p

p
≥ C3 Log(N1−ℓ/k/m)− C4for some 
onstants C3, C4 > 0. On the other hand, when m veri�es

2ℓ+1N1−(ℓ+2)/k < m ≤ N1−(ℓ+1)/k, then for all p ∈ [12N
ǫ, N ǫ], we have
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N1−(ℓ+1)/k < m′ = mp ≤ N1−ℓ/k. Sin
e there exists C5 > 0 (indepen-dent of x ≥ 2 !) su
h that ∑x/2≤p≤x 1/p ≥ C5, we rea
h
C1 Log(mN−1+(ℓ+2)/k)−C2 +

∑

1
2Nǫ≤p≤Nǫ

1

p

(

C3 Log(N1−ℓ/k/m′)−C4

)

≥ C1 Log(mN−1+(ℓ+2)/k)− C2 + C5

(

C3 Log(N1−(ℓ+1)/k/m)− C4

)

≥ min(C1, C5C3) Log(N1/k)− C2 − C5C4 ≫ LogNifN ≥ N0(ǫ). We simply 
olle
t our estimates together to establish (6.3).A repeated use of it yields
∑

n∈S,
N1−1/k<n≤N

1/n ≥ ck−1
1

∑

n∈S,
2k−1<n≤N1/k

1/n.whi
h is≫ LogN ǫ sin
e the 
ondition n ∈ S is there super�uous. Hen
e
(C6 LogN + C7)Z ≫ǫ N LogNwhi
h is what we wished to prove. ⋄ ⋄ ⋄Proof of Theorem 6.7. Let P be the set of prime numbers ≤ Q = N1/4that have no quadrati
 non-residue ≤ N ε, and let S be the set of integerswhose prime fa
tors are ≤ N ε. The 
ompa
t set we use is de�ned in thefollowing way: Kp is the set of quadrati
 residues if p ∈ P, of 
ardinality

(p + 1)/2. If p /∈ P, we take simply Kp = Z/pZ. We extend thisde�nition to Kpν by taking the inverse image of Kp under the 
anoni
alsurje
tion when ν ≥ 2. We get a squarefree 
ompa
t set. In order toapply Gallagher's theorem we �rst 
he
k that
G(Q) ≥

∑

p∈P,
p≤Q

p− 1

p+ 1
≥ #{p ≤ Q, p ∈ P}/3and thus

Z ≤ (N +Q2)/G(Q)whi
h yields G(Q) ≤ (N + Q2)/Z. Next, we noti
e that in the points
ounted in Z, we �nd all the integers n whose prime fa
tors are lessthan N ε: indeed ea
h of its prime fa
tor belongs to K, whi
h impliesthat n belongs to it also. Here we use the fa
t that we are lookingfor a quadrati
 residue; a similar proof would not work in the 
ase ofquadrati
 non-residues. As a 
onsequen
e, Z ≥ c(ε)N for a 
onstant
c(ε) > 0, whi
h in turns implies that the number of elements of P thatare not more than Q = N1/4 is �nite. But what if we go upto N ? Wesimply use this result with N4 instead of N and ε/4 instead of ε. ⋄ ⋄ ⋄
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tAnd what if we were to 
onsider non-quadrati
 residues modulo nonprime q ? If q = q1q2 where q1 and q2 are 
oprime, and every integer
≤ N ε is a square modulo q, then the same property holds also for q1and q2. Let us restri
t the problem to squarefree moduli q. Start from aset S of S moduli q su
h that every integer ≤ N ε is a quadrati
 residue.The set P of prime divisors of every elements of S 
ontains at least
(LogS)/Log 2 elements and is bounded by the theorem above. Thisimplies that S is also bounded.6.6. And what about quadrati
 residues ?The situation 
on
erning prime quadrati
 residues is mu
h less satisfa
-tory and we are not able to prove that there exist su
h a prime lessthan the 
ondu
tor, even if we are to admit a �nite number of ex
ep-tions! (Elliott, 1983) and (Pu
hta, 2003) prove results in this dire
-tion. In this pre
ise 
ase, they are all a 
onsequen
e of the Bombieri-Davenport Theorem 2.3. Let ε > 0 be given. Consider the set Q ofmoduli q ≤ Q = N (1/2)−ε and su
h that there exists a primitive real
hara
ter χq satisfying

∀p ≤ N, χq(p) = −1.We take for (un) the 
hara
teristi
 fun
tion of those primes in [
√
N,N ]and use Theorem 2.3. We get

Log
√
N
∣

∣

∣

∑

√
N≤p≤N

1
∣

∣

∣

2
+
∑

q∈Q
Log(

√
N/q)

∣

∣

∣

∑

√
N≤p≤N

χq(p)
∣

∣

∣

2
≤ 2N

∑

√
N≤p≤N

1.After some shu�ing, we 
on
lude that |Q| ≪ 1/ε. Hen
e, apart froma �nite number of ex
eptions, for every primitive real 
hara
ter modulo
q ≤ Q, there is a prime p ≤ Q2+ε su
h that χq(p) = 1.Note here that a smaller bound (namely Q1+ε instead of Q2+ε) followsfrom the beautiful result of (Heath-Brown, 1995), though with a largerset of ex
eptions. We state this result for 
ompleteness.Theorem 6.8. Let X (Q) be the set of primitive quadrati
 
hara
ters of
ondu
tor ≤ Q. Then for every ε > 0, we have

∑

χ∈X (Q)

∣

∣

∣

∑

n

♭
unχ(n)

∣

∣

∣

2
≪ε (NQ)ε(N +Q)

∑

n

|un|2where ∑♭ denotes a summation restri
ted to squarefee integers.



7 A weighted hermitian inequalityWe 
ontinue to develop the theory in the general 
ontext of 
hapter 1with a view to an appli
ation in the 
hapter that follows.Sometimes, a partial treatment of the bilinear form is readily availablein the form of(7.1) ∀(ξi)i ∈ CI ,
∥

∥

∥

∑

i

ξiϕ
∗
i

∥

∥

∥

2
≤
∑

i

Mi|ξi|2 +

(

∑

i

|ξi|ni

)2for some positive Mi, and ni (here again, Mi is generally an approx-imation to ‖ϕ∗i ‖2). This leads, naturally, to the de�nition of a mixedalmost orthogonal system. With su
h an inequality at hand, the proof ofLemma 1.2 leads to the inequality(7.2) ‖f‖2 − 2ℜ
∑

i

ξi[f |ϕ∗i ] +
∑

i

Mi|ξi|2 +

(

∑

i

|ξi|ni

)2

≥ 0.When using it, we shall take for ϕ∗i a "lo
al approximation" to f in asense to be made pre
ise later on, but it already implies we 
an assume
[f |ϕ∗i ] to be a non-negative real number. It is also readily seen thatthe ξi's minimizing the R.H.S. are non-negative. Finally, we are led to
hoosing these ξi's so as to minimize

‖f‖2 − 2
∑

i

ξi[f |ϕ∗i ] +
∑

i

Miξ
2
i +

(

∑

i

ξini

)2

.We handle this optimization using 
al
ulus by setting ξi = ζ2
i . Easymanipulations then allow us to 
on
lude that there exists a subset I ′ of

I su
h that ξi = 0 if i ∈ I \ I ′ and(7.3) ∀i ∈ I ′, ξi =
[f |ϕ∗i ]−Xni

Mi
, X =

∑

j∈I′ nj[f |ϕ∗j ]/mj

1 +
∑

j∈I′ n
2
j/mjprovided that(7.4) ∀i ∈ I ′, [f |ϕ∗i ]/ni ≥ X.With these 
hoi
es and hypotheses, we infer the bound(7.5) ‖f‖2 +X2

(

1 +
∑

j∈I′

n2
j/mj

)

≥
∑

i∈I′

M−1
i |[f |ϕ∗i ]|2.However, determining optimal I ′ is di�
ult: the 
ondition (7.4) is 
om-pli
ated by the appearan
e of the 
ontribution from the index i on both



62 7 A weighted hermitian inequalitysides. It is easier to set(7.6) ξi =
[f |ϕ∗i ]− Y ni

Mi
,for a Y to be 
hosen but whi
h guarantees ξi ≥ 0. The optimal Y is of
ourse Y = X. Next we note that we 
ould add a general inno
uous term

∑

i,j ξiξjωi,j to (7.1) and still follow the above reasoning. Continuing inthis dire
tion, we see that it is enough to start from (1.1), but to 
hoosethe weight ξi given by (7.6), where this time the ni's are to be 
hosen!Of 
ourse the above dis
ussion tells the user when to use su
h weights,how to 
hoose the ni's as well as whi
h set of moduli to sele
t (namelytake the indi
es i su
h that ξi ≥ 0).Here is the theorem we have rea
hed:Theorem 7.1. Suppose that we are given an almost orthogonal systemin the notations of de�nition 1.1. Let f be an element of H and Y bea real number ≥ 0. Let (ni)i be a 
olle
tion of 
omplex numbers. Set
ξi = ([f |ϕ∗i ]− Y ni)/Mi for ea
h i. Then we have that

∑

i

Mi|ξi|2 + 2Y ℜ
∑

i

niξi −
∑

i,j

ξiξjωi,j ≤ ‖f‖2With ni = 0, this is lemma 1.2.



8 A �rst use of lo
al modelsWe now turn towards another way of using the large sieve inequalityin an arithmeti
al way, here on prime numbers. This appli
ation 
omesfrom (Ramaré & S
hlage-Pu
hta, 2008). A exposition in the Fren
haddressing a large audien
e 
an be found in (Ramaré, 2005).8.1. Improving on the Brun-Tit
hmarsh TheoremWe prove the following result:Theorem 8.1. There exists an N0 su
h that for all N ≥ N0 and all
M ≥ 1 we have

π(M +N)− π(M) ≤ 2N

LogN + 3
.As we remarked earlier, (Selberg, 1949) shows that the 
onstant 2 +

o(1) in the above numerator is optimal, if we are to sti
k to a sievemethod in a fairly general 
ontext.It is thus of interest to try to quantify the o(1) in 2 + o(1). The �rstupper bound of the shape 2N/(LogN + c) with an unspe
i�ed but verynegative c is due to (van Lint & Ri
hert, 1965) though (Selberg, 1949)mentions su
h a result around equation (6) of this paper, albeit withoutgiving a proof. (Bombieri, 1971) gave the value c = −3 and (Montgomery& Vaughan, 1973) the valuec = 5/6. In se
tion 22 of �le
tures on sieves�,(Selberg, 1991) gives a proof for c = 2.81, a proof from whi
h we havetaken several elements. The treatment we present here leads to a valueof c that is slightly larger than 3; it is further developed in (Ramaré &S
hlage-Pu
hta, 2008) where the value c = 3.53 is obtained.In our problem, we sele
t an integer f that will be taken to be 210at the end of the proof and 
onsider the 
hara
teristi
 fun
tion w of thepoints in [M + 1,M + N ] that are 
oprime with f. This being 
hosen,our s
alar produ
t on sequen
es over [M + 1,M +N ] is de�ned by(8.1) [g|h] =
∑

M+1≤n≤M+N

w(n)g(n)h(n).We need very re�ned estimates 
on
erning this s
alar produ
t, and thisis the subje
t of next se
tion.We write ρ = φ(f)/f to simplify the typography.



64 8 Lo
al models8.2. Integers 
oprime to a �xed modulus in an intervalWe study here the quantities






























θ−
f

(u) = min
y∈R min

0≤x≤u
x∈R ( ∑

y<n≤y+x,
(n,f)=1

1− ρx
)

,

θ+
f (u) = max

y∈R max
0≤x≤u

x∈R ( ∑

y<n≤y+x,
(n,f)=1

1− ρx
)

.In order to 
ompute these fun
tions, we need to restri
t both x and
y to integer values. This is the role of next lemma.Lemma 8.1. We have


































θ−f (u) = min
ℓ∈N( min

k∈N,
0≤k≤u

(

∑

ℓ+1≤n≤ℓ+k−1,
(n,f)=1

1− ρk
)

,
∑

ℓ+1≤n≤ℓ+[u],
(n,f)=1

1− ρu
)

,

θ+
f (u) = max

k,ℓ∈N,
k<u+1

(

∑

ℓ≤n≤ℓ+k−1,
(n,f)=1

1− ρ(k − 1)

)

The fun
tion θ+
f
is a non de
reasing step fun
tion whi
h is left 
ontin-uous with jumps at integer points. The fun
tion θ−f is non-in
reasing
ontinuous : it alternates from linear pie
es with slope −ρ to 
onstantpie
es. The 
hanges o

ur at integer points. Both are 
onstant if u ≥ f.Proof. We start with θ+

f
. First �x y. The fun
tion∑y<n≤y+xw(n)−ρxis linear non-in
reasing in x from 0 to 1−{y}, then from 1−{y} to 2−{y}and so on. Its maximum value is rea
hed at x = 0 or x = k − {y} forsome integer k, thus

θ+
f (u) = max

y∈R max
k∈N,

k≤u+{y}

(

∑

y<n≤[y]+k

w(n) + ρ(−k + {y})
)

.The 
ondition is in
reasing in {y} and so is the term that is to be max-imized. We may take y to be just below an integer ℓ, rea
hing theexpression we announ
ed.Let us now 
onsider θ−f . We start similarly by �xing y. The minimumis rea
hed at x = k − {y} − 0 or at x = u, where k is an integer and the
−0 means we are to take x just below this value. We get θ−f (u) equals



8.2 Integers 
oprime to a �xed modulus in an interval 65to
min
y∈R( min

k∈N,
k≤u+{u}

(

∑

y<n≤[y]+k−1

w(n) + ρ({y} − k)
)

,
∑

y<n≤[y]+u

w(n)− ρu
)

.As for the last sum, the worst 
ase is when y is an integer ℓ ≥ 0, getting(8.2) min
ℓ∈N( ∑

ℓ+1≤n≤ℓ+u

w(n)− ρu
)

.For the �rst minimum, we distinguish between k ≤ [u] and k = [u] + 1(whi
h 
an happen only if u is not an integer). If k ≤ [u], we may take
y to be integral. If k = [u] + 1, then {y} ≥ 1− {u} whi
h is indeed theworst 
ase: we take y = ℓ+ 1−{u}. This last 
ontribution turns out tobe exa
tly the same as the one in (8.2). ⋄ ⋄ ⋄Next we 
onsider the fun
tion(8.3) θ∗f (v) = max(θ+

f (1/v),−θ−f (1/v))whi
h this time is right 
ontinuous with jump points at 1/m, where mranges integers from 1 to f. Of 
ourse, θ∗f (1) = 0.Case of f = 210. Here is our fun
tion:
θ∗210(1/u) =







































1 if 0 < u ≤ 1

54/35 if 1 < u ≤ 3

57/35 if 3 < u ≤ 7

76/35 if 7 < u ≤ 9

79/35 if 9 < u ≤ 79/8

8u/35 if 79/8 ≤ u ≤ 10































16/7 if 10 < u ≤ 13

82/35 if 13 < u ≤ 17

94/35 if 17 < u ≤ 41/2

8u/35 − 2 if 41/2 ≤ u ≤ 22

106/35 if 22 < u ≤ 210Polynomial approximation to θ∗f (v). Starting from a polynomial ap-proximation to θ∗f (v) of the form
∣

∣θ∗f (v)−
∑

0≤r≤R

b̃rv
r
∣

∣ ≤ ǫfor 0 ≤ v ≤ V we infer the upper bound(8.4) θ∗f (v) ≤
∑

0≤r≤R

brv
r.We build our approximation from Bernstein polynomials, sin
e theyare usually good 
andidates for approximating a 
ontinuous fun
tion inthe L∞ sense. We let(8.5) Bn,k(x) =

(

n

k

)

xk(1− x)n−k
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1

1

2

3

Figure 8.1. Graph of θ∗210and we 
onsider(8.6) B∗n =
∑

0≤k≤n

Bn,k(v/V )θ∗210(V k/n).in order to approximate θ∗210 on [0, V ], where we shall 
hoose V later on.But be
ause of the dis
ontinuities, this approximation 
annot be 
loserthan half the maximal jump, that is to say 1
2(76/35− 57/35) = 19/70 =

0.27 . . . . We 
an re
over a part of this loss sin
e we are only 
on
ernedwith an upper bound of a nonin
reasing fun
tion.8.3. Some auxiliary estimates on multipli
ative fun
tionsWe shall require some 
umbersome estimates for 
ertain multipli
ativefun
tions, and we prefer 
learing these questions before entering into themain part of the proof. To alleviate somewhat the typographi
al work,we de�ne(8.7) ηr(k) =
∏

p|k

1 + pr+1

p− 1
, η♭

r(k) =
∏

p|k

1 + pr+2−2pr+1

(p− 1)2
.
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ative fun
tions 67Lemma 8.2. Let f∗ be a positive integer. We set ρ∗ = φ(f∗)/f∗ and use
t(q) = 1− σ(q)/S∗. For any real number S∗ going to in�nity, we have

∑

q/σ(q)≤S∗,
(q,f∗)=1

t(q)2

φ(q)
= ρ∗(LogS∗ + κ(f∗)) + o(1)with

κ(f∗) = γ +
∑

p≥2

(

Log p

p(p− 1)
− Log(1 + p−1)

p

)

+
∑

p|f∗

Log(p+ 1)

p
− 3

2(κ(210) = 1.115 37 . . . ) and
∑

q/σ(q)≤S∗,
(q,f∗)=1

ηr(q)t(q) =
ρ∗

2(r + 1)

∏

p∤f∗

(

1− pr − 1

pr+1(p + 1)

)

S∗(r+1)(1 + o(1)).Proof. The �rst estimate 
omes from (Selberg, 1991), who follows amethod already used by (Bateman, 1972). We follow 
losely Selberg'sproof and get
∑

q/σ(q)≤S∗,
(q,f∗)=1

ηr(q)t(q)

qr
=
ρ

2

∏

p∤f∗

(

1− pr − 1

pr+1(p+ 1)

)

S∗ + o(S∗).We 
on
lude by using an integration by parts. ⋄ ⋄ ⋄Note that the quantities we end up 
omputing are the same as theones that appear in (Selberg, 1991), though we have one less to handle.We de�ne(8.8) Cr(∆) =
φ(∆)2

∆2

∑

δ1δ2δ3|∆

η♭
r(δ1)ηr(δ2δ3)

σ(δ1)2r+2σ(δ2)r+1σ(δ3)r+1as well as(8.9) cr(p) = (p − 1)2(p+ 1)2r+2
(

(p+ 1)r+1(p− 1) + 2pr+1 + 2
)

+
(

1 + pr+1(p − 2)
)(

(p+ 1)r+1(p− 1) + pr+1 + 1
)The next lemma gives a multipli
ative expression for Cr.Lemma 8.3.

Cr(∆) =
∏

p|∆

cr(p)

(p− 1)p2(p+ 1)3r+3
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al modelsProof. We start with δ3:
∑

δ3|∆/(δ1δ2)

ηr(δ3)

σ(δ3)r+1
=

∏

p|∆/(δ1δ2)

(

1 +
1 + pr+1

(p+ 1)r+1(p− 1)

)

=
∏

p|∆/(δ1δ2)

(p + 1)r+1(p− 1) + pr+1 + 1

(p+ 1)r+1(p − 1)
.Our sum redu
es to

∏

p|∆

(

(p+ 1)r+1(p− 1) + pr+1 + 1
)

(p− 1)

p2(p+ 1)r+1

×
∑

δ1δ2|∆

∏

p|δ1
(

1 + pr+1(p − 2)
)

ηr(δ2)

φ(δ1)2σ(δ1)2r+2σ(δ2)r+1

∏

p|δ1δ2

(p+ 1)r+1(p− 1)

(p + 1)r+1(p − 1) + pr+1 + 1
.We 
ontinue with δ2:

∑

δ2|∆/δ1

1 + pr+1

(p− 1)(p + 1)r+1

(p + 1)r+1(p− 1)

(p+ 1)r+1(p− 1) + pr+1 + 1

=
∏

p|∆/δ1

(

1 +
pr+1 + 1

(p+ 1)r+1(p− 1) + pr+1 + 1

)

=
∏

p|∆/δ1

(p+ 1)r+1(p− 1) + 2pr+1 + 2

(p+ 1)r+1(p− 1) + pr+1 + 1
.Hen
e Cr(∆) redu
es to

∏

p|∆

(

(p+ 1)r+1(p− 1) + 2pr+1 + 2
)

(p− 1)

p2(p+ 1)r+1

×
∑

δ1|∆

∏

p|δ1

1 + pr+1(p − 2)

(p− 1)2(p+ 1)2r+2

(p+ 1)r+1(p− 1) + pr+1 + 1

(p+ 1)r+1(p− 1) + 2pr+1 + 2whi
h reads
∏

p|∆

(

(p+ 1)r+1(p− 1) + 2pr+1 + 2
)

(p− 1)

p2(p+ 1)r+1

× cr(p)

(p− 1)2(p+ 1)2r+2
(

(p+ 1)r+1(p− 1) + 2pr+1 + 2
)

=
∏

p|∆

cr(p)

(p − 1)p2(p+ 1)3r+3

⋄ ⋄ ⋄



8.4 Lo
al models for the sequen
e of primes 698.4. Lo
al models for the sequen
e of primes8.4.1. Choi
e of the lo
al system. First, some remarks on what�sieving� means. Sieving is about gaining information on a sequen
efrom what we know of it modulo d for several d's. If one looks at thesequen
e of primes modulo d and if we negle
t the prime divisors of d,it simply is the set of redu
ed residue 
lasses modulo d, whi
h we have
alled Ud. Thus, on the one hand we have the 
hara
teristi
 fun
tion ofprimes in the interval [M + 1,M + N ], say f , and on the other handthe 
hara
teristi
 fun
tion ϕd of the integers in this interval that are
oprime to d for all d ≤ √N . Noti
e here that it is enough to restri
tour attention to squarefree d's.Re
alling what we did in se
tion 1.1, we 
ould simply try to get anapproximation to f in terms of the ϕd's. However, the study there is pat-terned for almost orthogonal ϕq 's, whi
h is not the 
ase of the sequen
e
(ϕd)d: if q|d, knowing that a given integer is 
oprime with d implies itis 
oprime with q, so there is redundan
y of information. It implies inturn that these fun
tions are far from being linearly independent. Weuns
rew the situation in the following way. When d is squarefree, we set(8.10) d

φ(d)
ϕd =

∑

q|d
ϕ∗qwhere(8.11) ϕ∗q(n) = µ(q)cq(n)/φ(q)and cq(n) is Ramanujan sum given by(8.12) cq(n) =

∑

amod∗q

e(na/q) =
∑

ℓ|q
ℓµ(q/ℓ).Verifying (8.10) is easy:

∑

q|d
µ(q)cq(n)/φ(q) =

∏

p|d

(

1−
{

1 if p|n
−1/(p − 1) otherwise) .To understand better the fun
tions ϕ∗q de�ned by (8.10), the reader may
onsult se
tion 11.8 and in parti
ular equation (11.33).Here is our set of moduli q:(8.13) {

q / σ(q) ≤ S, µ2(q) = 1, (q, f) = 1
}

,where σ(q) =
∑

d|q d. The reason for this 
hoi
e will be
ome 
lear lateron.



70 8 Lo
al models8.4.2. Study of the lo
al models. Note that(8.14) [ϕ∗q |ϕ∗q′ ] =
µ(q)

φ(q)

µ(q′)
φ(q′)

∑

n

w(n)cq(n)cq′(n).We note that when q and q′ have a prime fa
tor in 
ommon, say δ, then
cδ(n)2 = φ((n, δ))2 would fa
tor out: this 
ontribution is non-negativeand we use this fa
t here. Let ∆ be a squarefree integer 
oprime with f.Write (q, q′,∆) = δ, so that [ϕ∗q |ϕ∗q′ ] equals(8.15)
µ(q)µ(q′)
φ(q)φ(q′)

∑

ℓ|q/δ
ℓ′|q′/δ

h|δ

ℓµ

(

q

ℓ

)

ℓ′µ

(

q

ℓ′

)

(µ ⋆ φ2)(h)

(

ρN

h[ℓ, ℓ′]
+Rh[ℓ,ℓ′](M,N, f)

)

where(8.16) Rd(M,N, f) =
∑

M+1≤n≤M+N
d|n

w(n)− ρN

d
.The reader will 
he
k that the main term (
orresponding to ρN/[ℓ, ℓ′])vanishes if q 6= q′ and is ρN/φ(q) otherwise. We 
arry over this 
hangeto the bilinear form ∥

∥

∑

q ξqϕ
∗
q

∥

∥

2, whi
h equals to the diagonal term
ρN

∑

q |ξq|2/φ(q) to whi
h we add
R =

∑

δ1δ2δ3|∆

µ(δ2δ3)

φ(δ1)2φ(δ2)φ(δ3)

∑

(ℓ,f∆)=1
(ℓ′,f∆)=1

µ(ℓ)ξδ1δ2ℓ

φ(ℓ)

µ(ℓ′)ξδ1δ3ℓ′

φ(ℓ′)

×
∑

d|ℓδ2
d′|ℓ′δ3
h|δ1

dd′µ(ℓδ2/d)µ(ℓ′δ3/d
′)(µ ⋆ φ2)(h)Rh[d,d′](M,N, f).The simpli
ity of the method is somewhat obs
ured by the pre
ise han-dling of R, but this is the pri
e we pay for an improved bound. Howeverthe reader might want to start with ∆ = 1 and bound Rd(M,N, f) by

O(1). We may even use what follows in this spe
ial 
ase: simply take
R = 1 and b0 = 2 in (8.17). In the general 
ase, we treat the error termby invoking say (8.4):(8.17) ∣

∣Rh[d,d′](M,N, f)
∣

∣ ≤ θ∗f (h[d, d′]/N) ≤
∑

0≤r≤R

br(h[d, d
′]/N)r.
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e of primes 71We infer
R ≤

∑

0≤r≤R

brN
−r

∑

δ1δ2δ3|∆

1

φ(δ1)2φ(δ2)φ(δ3)

∑

(ℓ,f∆)=1
(ℓ′,f∆)=1

|ξδ1δ2ℓ|
φ(ℓ)

|ξδ1δ3ℓ′ |
φ(ℓ′)

×
∑

d|ℓδ2
d′|ℓ′δ3
h|δ1

dd′(µ ⋆ φ2)(h)hr [d, d′]r.Re
alling (8.7), it is straightforward to simplify the 
oe�
ient of brN−rinto
∑

δ1δ2δ3|∆
η♭

r(δ1)ηr(δ2δ3)
∑

(ℓ,f∆)=1
(ℓ′,f∆)=1

|ξδ1δ2ℓ|ηr(ℓ)|ξδ1δ3ℓ′ |ηr(ℓ
′)

×
∏

p|(ℓ,ℓ′)

1 + 2pr+1 + pr+2

(1 + pr+1)2
.The fa
tor that depends on (ℓ, ℓ′) is somewhat troublesome. We handleit in the following way: for r = 0, it is equal to 1. Otherwise, let P bethe smallest prime number that does not divide f∆. This prime fa
toris going to go to in�nity, and we approximate the fa
tor depending on

(ℓ, ℓ′) essentially by 1 +O(P−1). More pre
isely, we write
∑

(ℓℓ′,f∆)=1

|ξδ1δ2ℓ|ηr(ℓ)|ξδ1δ3ℓ′ |ηr(ℓ
′)

∣

∣

∣

∣

∏

p|(ℓ,ℓ′)

1 + 2pr+1 + pr+2

(1 + pr+1)2
− 1

∣

∣

∣

∣

≪r

∑

p≥P

∑

(m,pf∆)=1,
(m′,pf∆)=1

|ξδ1δ2pm|ηr(pm)|ξδ1δ3pm′ |ηr(pm
′)

≪r

∑

p≥P

p2r
∑

m,m′

|ξδ1δ2pm|ηr(m)|ξδ1δ3pm′ |ηr(m
′)The idea here is that the fa
tor ξδ1δ2pm for
es m to be rather small.Indeed, anti
ipating the values of ξ in (8.18) and using Lemma 8.2, weget the above to be not more than

(

Z

ρN

)2
∑

p≥P

p2r (S/p)2r+2 ≪r

(

Z

ρN

)2

S2r+2P−1.This will give rise to the error term
(

Z

ρN

)2
∑

δ1δ2δ3|∆

η♭
r(δ1)ηr(δ2δ3)

σ(δ1δ2)r+1σ(δ1δ3)r+1

∑

1≤r≤R

S2r+2|br|
N rP
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al modelswhi
h up to a multipli
ative 
onstant is not more than
(

Z

ρN

)2
∏

p|∆
(1 + p−1)2

∑

1≤r≤R

S2r+2|br|
N rP

.The fa
tor P−1 will indeed be enough to 
ontrol this quantity. Hen
e,again anti
ipating (8.18), we rea
h
∥

∥

∥

∑

q

ξqϕ
∗
q

∥

∥

∥

2
≤ ρN

∑

q

|ξq|2/φ(q)

+
∑

0≤r≤R

br
N r

∑

δ1δ2δ3|∆
η♭

r(δ1)
∑

(ℓ,f∆)=1,
(ℓ′,f∆)=1

|ξδ1δ2ℓ|ηr(δ2ℓ)|ξδ1δ3ℓ′ |ηr(δ3ℓ
′)

+O
((

Z

ρN

)2
∏

p|∆
(1 + p−1)2

∑

1≤r≤R

S2r+2|br|
N rP

)

.8.5. Using the hermitian inequalityOptimizing in ξ is too di�
ult. We sti
k to the simplest 
hoi
e: Mi =
ρN/φ(q), [f |ϕ∗i ]/Mi = Z/(ρN), ni = σ(q)/φ(q) and Y = Z/S.(8.18) ξq =

Z

ρN
t(q), t(q) = 1− σ(q)

Sfor a parameter S we shall 
hoose later on.We invoke Lemma 8.2 to 
ompute ∑(ℓ,f∆)=1 |ξδ1δ2ℓ|ηr(ℓ) with S∗ =

S/σ(δ1δ2) and f∗ = f∆. There appear 
onstants in the form of an Eulerprodu
t, say Sr(f
∗), whi
h we again approximate by 1 +O(P−1). In a�rst step we rea
h

Z ≥
(

Z

ρN

)2

ρ2N (LogS + κ(f)) +
2Z2

ρNS

∑

(q,f)=1

σ(q)t(q)

φ(q)

−
∑

0≤r≤R

Z2br
ρ2N r+2

∑

δ1δ2δ3|∆
η♭

r(δ1)
∑

(ℓ,f∆)=1
(ℓ′,f∆)=1

t(δ1δ2ℓ)ηr(ℓδ2)t(δ1δ3ℓ
′)ηr(ℓ

′δ3)

+O
(

(

Z

ρN

)2
∏

p|∆
(1 + p−1)2

∑

1≤r≤R

S2r+2|br|
N rP

)

.



8.6 Generalization to a weighted sieve bound 73After some rearrangement, we obtain:
N/Z ≥ LogS + κ(f) + 1−

∑

0≤r≤R

br(S
2/N)r+1

4(r + 1)2
Cr(∆)2Sr(f∆)2

+O
(

∏

p|∆
(1 + p−1)2P−1

∑

1≤r≤R

|br|(S2/N)r+1
)

+ o(1)And sin
e Sr(f∆) = 1 +O(P−1), we �nally rea
h
N/Z−1

2 LogN ≥ 1
2 Log(S2/N)+κ(f)+1−

∑

0≤r≤R

br(S
2/N)r+1

4(r + 1)2
Cr(∞/f)2

+O
(

∏

p|∆
(1 + p−1)2P−1

∑

1≤r≤R

|br|(S2/N)r+1
)

+ o(1).At this level, we send ∆ (and P ) to in�nity and we are left with �nding anoptimal value for S2/N . It would be satisfa
tory to have an expressionfor the �nal 
onstant, but we are not able to rea
h su
h pre
ision. Inparti
ular, the br's should not appear in su
h an expression. We are,however, able to get numeri
al results.Some numeri
al results:
n V S2/N

10 1.2 0.883 867 2.958 900
40 1.2 0.903 740 2.990 585
60 1.2 0.922 038 3.004 986

100 1.2 0.923 831 3.009 657
100 1.1 0.926 587 3.010 5368.6. Generalization to a weighted sieve boundWe anti
ipate somehow the forth
oming 
hapters. To get similar re-sults in the general 
ase, we would start from (11.21) with ψ∗q de�nedin (11.13). When sieving an interval, |R([ℓ, ℓ′])| 
an be bounded by

|Lℓ||Lℓ′ |, and some work later, we end up in the situation of a mixed al-most orthogonal system as in se
tion 1.1. Following the theory therein,we end up with a weighted sieve bound as in the example above. Weshould add that (Montgomery & Vaughan, 1973) (see also (Preissmann,1984)) already gave weighted bounds, and for instan
e, (Siebert, 1976)employed them to prove a neat upper bound for the number of twinprimes, see se
tion 21.3. Note that these weights do not depend on theused 
ompa
t set. The path presented here is in
omplete in more than
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al modelsone aspe
t, and the main de�
ien
y being that fairly intri
ate averagesare required, similar to the ones studied in Lemma 8.2, nevertheless, itdoes lead to a weighted bound depending on K.



9 Twin primes and lo
al modelsWe saw in the previous se
tion, and in an extremely simple example,how lo
al models enter into the game of sieving. Further, we took theopportunity of exploring somewhat more intri
ate weights. While doingthis, we missed one 
ru
ial fa
t: the good almost orthogonality boundsfor our lo
al models in the previous 
hapter 
ome from the simple stru
-ture of the set we are sieving, as will be more evident in Lemma 19.4.Te
hni
ally speaking, the expression for cq in terms of additive 
hara
-ters has φ(q) summands, while the one in terms of divisors (8.12) hasonly 2ω(q) summands. We now give further details in the 
ase of primetwins, where this feature will 
learly show up. A general treatment isgiven in se
tion 11.6.We prove here the following 
lassi
al result:Theorem 9.1. The number of primes p in the interval [M,M +N ] thatare su
h that p+ 2 is also a prime number is not more than
(16 + o(1))

∏

p≥3

(

1− 1

(p− 1)2

)

N

Log2Nwhere the o(1) denotes a quantity that goes to 0 when N goes to in�nity.This bound is believed to be 8 times too large. The 
ase M = 0 hasseen a number of re�nements: using the Bombieri-Vinogradov Theoremdire
tly redu
es this bound by 2 (
ase M = 0) and further works led toredu
e the 16+o(1), among whi
h we sele
t the redu
tion to 7.835+o(1)due to (Chen, 1978), to 6.836 due to (Wu, 1990), re
ently to 6.812+o(1)by (Cai & Lu, 2003) and even more re
ently to 6.7992 + o(1) by (Wu,2004).9.1. The lo
al model for twin primesLet us �rst de�ne our set of moduli:(9.1) Q = {q ≤ Q, q odd and squarefree}.To ea
h 
ouple (q, d) where q in Q and d is a divisor of q, we asso
iate
uq,d the unique integer between 1 and d su
h that (q/d)uq,d ≡ 1[d]. Our



76 9 Twin primeslo
al model is then(9.2) ϕ∗q(n) =
µ(q)

φ2(q)

∑

d|q
cq(n+ 2uq,dq/d)with φ2(q) =

∏

p|q(p − 2). We take the simplest hermitian produ
t,namely
[f |g] =

∑

M<n≤M+N,
(n,2)=1

f(n)g(n).The next step is to evaluate pairwise the s
alar produ
ts of our lo
almodels:
[ϕ∗q |ϕ∗q′ ] =

µ(q)µ(q′)
φ2(q)φ2(q′)

∑

d|q,
d′|q′

∑

n

cq(n+ 2uq,dq/d)cq′(n+ 2uq′,d′q
′/d′)

=
µ(q)µ(q′)
φ2(q)φ2(q′)

∑

d|q,
d′|q′

∑

δ|q,
δ′|q′

δµ(q/δ)δ′µ(q′/δ′)
∑

n/



n≡−2uq,dq/d[δ],
n≡−2uq′,d′q

′/d′[δ′]

1.The last two 
ongruen
es are not always 
ompatible: if p divides δ and δ′,and if it divides q/d and q′/d′, both 
ongruen
es redu
e to n ≡ 0[p]. If pdivides neither q/d nor q′/d′, then the 
ongruen
es redu
e to n ≡ −2[p].Whi
h means we need p to divide (q/d, q′/d′) or (d, d′). As a result, weinfer that [ϕ∗q |ϕ∗q′ ] equals
Nµ(q)µ(q′)
φ2(q)φ2(q′)

∑

d|q,
d′|q′

∑

δ|q,δ′|q′
(δ,δ′)|(d,d′)(q/d,q′/d′)

δµ(q/δ)δ′µ(q′/δ′)
[δ, δ′]

+O∗
(

2ω(q)σ(q)

φ2(q)

2ω(q′)σ(q′)
φ2(q′)

)

.We evaluate the arithmeti
 part of the main term by plugging the sum-mations over d and d′ inside: the part of d that divides q/(δ, δ′) is freely
hosen, giving 2ω(q)−ω((δ,δ′)) 
hoi
es, and similarly for d′ with q′. Next aprime divisor of δ and δ′ either divides both of d and d′ or divides noneof them. Thus there is a divisor, say h, of (δ, δ′) that divides exa
tly dand d′. We have 2ω((δ,δ′)) su
h divisors. Colle
ting these observations,we readily dis
over our inner sum to be equal to 2ω(q)+ω(q′)−ω((δ,δ′)) sothat we get
[ϕ∗q |ϕ∗q′ ] =

2ω(q)+ω(q′)N

φ2(q)φ2(q′)

∑

δ|q,δ′|q′

δµ(δ)δ′µ(δ′)

[δ, δ′]2ω((δ,δ′))
+O∗

(

2ω(q)σ(q)

φ2(q)

2ω(q′)σ(q′)
φ2(q′)

)

.



9.2 Estimation of the remainder term 77When there is a prime that divides q but not q′, the main term vanishes.We are thus left with the 
ase q = q′, getting(9.3) [ϕ∗q |ϕ∗q′ ] =
2ω(q)N1q=q′

φ2(q)
+O∗

(2ω(q)σ(q)

φ2(q)

2ω(q′)σ(q′)
φ2(q′)

)

.Con
erning the almost orthogonality hypothesis, we take the easiest wayout: we setMq = 2ω(q)N/φ2(q) and send the error term into the bilinearform, i.e. we write(9.4) ∣

∣

∣

∑

q

ξqϕ
∗
q

∣

∣

∣

2
≤
∑

q

Mq|ξq|2 +
∑

q,q′

ξqξq′mq,q′with(9.5) |mq,q′ | ≤
2ω(q)σ(q)

φ2(q)

2ω(q′)σ(q′)
φ2(q′)

.9.2. Estimation of the remainder termTo handle the error term, we are to 
ompute or at least give an upperbound for the average
∑

q∈Q
µ2(q)2ω(q)σ(q)/φ2(q).This is standard theory: one possibility would be to �rst evaluate the av-erage of the summand above divided by q via the 
onvolution method asin se
tion 5.3 and then re
over the one we are interested in by a summa-tion by parts. The Levin-Fainleib like theorem presented in 
hapter 21as Theorem 21.1 would also su�
e: however the summation by partswould lead to a 
an
ellation of the "main terms", leaving us only with a

O-result of the good order of magnitude, while Theorem 21.2 or the 
on-volution method would give rise to an asymptoti
 expression. We presentan alternative path that also leads only to an upper bound. First, weprove the following theorem that relies on a theme initially developedin (Hall, 1974). The best result in this dire
tion is in (Halberstam &Ri
hert, 1979). Of 
ourse, we also extend it to en
ompass values at pow-ers of primes. The starting idea is still taken from the 
elebrated (Levin& Fainleib, 1967).Theorem 9.2. Let D ≥ 2 be a real parameter. Assume g is a multi-pli
ative non-negative fun
tion su
h that
∑

p≥2,ν≥1
pν≤Q

g
(

pν
)

Log
(

pν
)

≤ KQ+K ′ (∀Q ∈ [1,D])



78 9 Twin primesfor some 
onstants K,K ′ ≥ 0. Then for D > exp(K ′ − 1), we have
∑

d≤D

g(d) ≤ (K + 1)D

LogD −K ′ + 1

∑

d≤D

g(d)/d.Proof. Let us set G̃(D) =
∑

d≤D g(d)/d. Using Log D
d ≤ D

d − 1, we get
G(D) LogD =

∑

d≤D

g(d) Log
D

d
+
∑

d≤D

g(d) Log d

≤ DG̃(D)−G(D) +
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

g(ℓ)where we get the se
ond summand by writing Log d =
∑

pν‖d Log
(

pν
).Finally

∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

g(ℓ) =
∑

ℓ≤D

g(ℓ)
∑

p≥2,ν≥1
pν≤D/ℓ
(p,ℓ)=1

g
(

pν
)

Log
(

pν
)

≤
∑

ℓ≤D

g(ℓ)
(KD

ℓ
+K ′

)from whi
h the theorem follows readily. ⋄ ⋄ ⋄On
e we apply this result, we are again left with getting an upperbound for the average of µ2(q)2ω(q)σ(q)/(qφ2(q)), where we apply The-orem 21.1. As a result, we get the bound(9.6) ∑

q∈Q
µ2(q)2ω(q)σ(q)/φ2(q)≪ QLog(3Q).9.3. Main proofLet f be the 
hara
teristi
 fun
tion of the twin primes in our interval.Note that(9.7) [f |ϕ∗q ] = µ2(q)2ω(q)Z/φ2(q)with Z =

∑

n f(n). We apply Lemma 1.2. We have ξq = µ2(q)Z/N , sowe get
G1(Q)Z2/N ≤ Z + (Z/N)2

(

∑

q

2ω(q)σ(q)/φ2(q)
)2

≤ Z +O
(

(ZN−1QLogQ)2
)



9.4 Guessing the lo
al model 79with(9.8) G1(Q) =
∑

q∈Q
2ω(q)/φ2(q)whi
h is evaluated by standard means. We give su
h an evaluation in
hapter 21. We even 
onsider this very spe
ial 
ase in se
tion 21.3 wherewe show how the standard sieve bound (that is Corollary 2.1, page 22)works on this spe
ial 
ase. The evaluation of the remainder term 
omesfrom (9.6), and we rea
h

(

G1(Q)−O
(

N−1Q2 Log2Q
))

Z ≤ Nwith
G1(Q) ∼ 1

4

∏

p≥3

(p− 1)2

p(p− 2)
Log2Q.We 
an thus take Q = o(

√
N), improving on the usual proof via Selberg'ssieve whi
h a priori only allows for Q = o(

√
N/LogN). When 
arefullystudied, a similar improvement is a

essible there, as shown in the notesof the 
orresponding 
hapter of (Halberstam & Ri
hert, 1974).9.4. Guessing the lo
al modelWe simply exhibited ϕ∗q , taken straight from our hat... But now theproof has been shown to fun
tion, some more explanations are surely
alled for! As a matter of fa
t, most of the mystery gets 
leared on
e werewrite cq(n+ 2uq,dq/d) in a multipli
ative form (remember that sin
e qis squarefree, d and q/d have distin
t prime fa
tors):

cq(n+ 2uq,dq/d) =
∏

p|d
p|n+2

(p− 1)
∏

p|d
p∤n+2

(−1)
∏

p|q/d
p|n

(p− 1)
∏

p|q/d
p∤n

(−1)

= µ(q)
∏

p|d
p|n+2

(1− p)
∏

p|q/d
p|n

(1− p)so that
ϕ∗q(n) =

1

φ2(q)

∏

p|q

(

1− p1p|n+2 + 1− p1p|n
)

=
1

φ2(q)

∏

p|q

(

2− p1Lp(n)
)and this in turn implies (re
all that |Kr| = φ2(r))(9.9) ∑

q|r
ϕ∗q(n) =

∏

p|r

(

1 +
2− p1Lp(n)

p− 2

)

=
r

|Kr|
1Kr(n)



80 9 Twin primesunveiling at on
e most of the hidden me
hanism! The 
orre
ting 
oe�-
ient r/|Kr| has however still to be explained: imagine we were startingfrom 1Kr(n) and 
onsidered "the solution� (ϕ∗q)q|r of (9.9). Then wewould dis
over that ea
h ϕ∗q in fa
t depend on r. A way to explain the
orre
ting 
oe�
ient is simply to say that, with it, this dependan
e dis-appears. But, why does it indeed disappear? One way of explainingthis fa
t is to say that this fun
tion is invariant under the operators J q̃

d̃introdu
ed in 
hapter 4 (with K = Ẑ), so that (9.9) is simply the Fourierde
omposition. We 
an however go one step further and pre
isely pointout where this invarian
e 
omes from: we are to have
[c(q)1q|Ld̃

q̃f ]q = [c(d)1d|f ]dfor d|q, some 
oe�
ients (c(d))d|q and every time for every fun
tion fthat depends only on its argument modulo d. This equation reads
c(q)

q

∑

a∈Kq

f(a mod d) =
c(d)

d

∑

b∈Kd

f(b).On taking for f the 
hara
teristi
 fun
tion of a single point modulo d,we see that c(q)/q = 1/|Kq| is the only 
hoi
e. As a by-produ
t of this
onstru
tion, we see that we 
an only extend the method to 
ompa
tathat verify the Johnsen-Gallagher 
ondition.9.5. Prime k-tuplesWe were looking at pairs (n, n + 2) for whi
h ea
h 
omponent is prime.Extending the problem to k-tuples means looking for in�nitely manyintegers n for whi
h all the 
omponents of (n+h1, . . . , n+hk) are simul-taneously prime. Determining whi
h tuples (h1, . . . , hk) should have thisproperty is a non trivial problem; Noti
e �rst that (0, 1) is 
learly not agood 
hoi
e! Here the obstru
tion 
omes from what happens modulo 2.In general the 
onje
ture known as the prime k-tuples 
onje
ture, �rststated by (Hardy & Littlewood, 1922) is that obtru
tions 
an only belo
al. This warrants a de�nition:De�nition 9.1. A k-tuple (h1, . . . , hk) of in
reasing integers is said tobe a k-tuple of admissible shifts if the set {h1, . . . , hk} does not 
over allof Z/pZ for any prime p.The length of su
h tuple of a admissible shifts being hk − h1 + 1, itis enough to restri
t p to be not more than this length in the statement.For example (0, 2, 6, 9, 12) is admissible of length 13.



9.5 Prime k-tuples 81An interesting problem is to �nd as dense as possible su
h tuples,where the density is best quanti�ed in terms of the length N = hk −
h1 + 1 
ompared to the number of primes less than N , whi
h we denoteex
eptionally here by π(N). (Hensley & Ri
hards, 1974) proved thatthere exist k-tuples of admissible shifts of size

k ≥ π(N) + (Log 2− ε) N

Log2Nfor every ε > 0 and provided N is large enough in terms of ε. Note thatthe Brun-Tit
hmarsh Theorem says that k is bounded by 2N/LogN .If one is ready to believe the prime k-tuple 
onje
ture, su
h extremeexamples of admissible shifts thus provides us with a lower bound forthe best possible upper bound in the Brun-Tit
hmarsh Theorem. Inorder to avoid to appeal to the prime k-tuple 
onje
ture, it would bene
essary to indeed exhibit spe
i�
 examples of su
h tuples, but this isstill beyond the power of nowadays algorithms and 
omputers. As oftoday, the best(Dusart, 1998) has built a 1 415-uple of admissible shifts of length
11 763, while π(11 763) = 1 409, but no one has been yet able to produ
ea 
orresponding prime 1 415-uple. The reader will �nd on the site of(Forbes, n.d.) a list of long prime tuples, for instan
e:

1 906 230 835 046 648 293 290 043 + 0, 4, 6, 10, 16, 18, 24, 28,

30, 34, 40, 46, 48, 54, 58, 60, 66, 70due to J. Waldvogel & P. Leikauf in 2001. It 
ontains 18 primes for alength of 70, while π(70) = 19.Let us mention �nally (Elsholtz, 2004) where the reader will �ndanother appli
ation of sieve te
hnique to k-tuple problems, but this timewith a k of size LogN for primes of size N .





10 Handling an additive problem with thelarge sieve: a new proof of the three primestheoremWe prove here the 
elebrated theorem of (Vinogradov, 1937):Theorem 10.1.Every large enough odd integer is a sum of three prime numbers.The proof we present uses our large sieve setting intensively, both thelarge sieve inequality and the notion of lo
al models. The novelty hereis in dispensing with the 
ir
le method. Proofs exhibiting su
h a featurehave already been given by both (Heath-Brown, 1985) and (Iwanie
,1994) via, if not exa
tly, the dispersion method, or at least using ideasderived from it. The �rst author establishes as a preliminary step anestimate for the L2-mean of the number of representations as a sum oftwo primes, as we do here, while the se
ond one goes dire
tly to thenumber of representations of an integer as a sum of three primes. Weuse yet another path, though part of the te
hniques developed here areinspired by 
hapter XX of (Iwanie
 & Kowalski, 2004).The proof will unfold in two steps: we �rst prove the required asymp-toti
 for(10.1) R =
∑

m

r2(m)2 where r2(m) =
∑

n1+n2=m

Λ̃(n1)Λ̃(n2)and Λ̃(n) = Λ(n)FN (n), FN being a smoothing fun
tion des
ribed innext se
tion. The forth
oming proof will show a use of the large sieveinequality 
lose to that of the Parseval identity. It has already beenpartially used in (Ramaré, 1995). The asymptoti
 for R also implies thefollowing result.Theorem 10.2 (T
hudakov, van der Corput, Estermann).Almost every even integer is a sum of two prime numbers.We sket
h the proof in se
tion 10.6. In the se
ond step we shall provethe three primes theorem. We shall use a lo
al model for the (suitablymodi�ed) number of representations of an integer as a sum of two primesand not for the primes. It turns out that both are proportional here, upto the in�nite fa
tor.



84 10 An additive problem10.1. An approximate Bessel inequalityLet us keep the notations of Lemma 1.2 and 
onsider the following her-mitian produ
ts:(10.2) 〈f |g〉 =
∑

i

M−1
i [f |ϕ∗i ][g|ϕ∗i ]and(10.3) Jf |gK = [f |g]− 〈f |g〉+
∑

i,j

ξi(f)ξj(g)ωi,j.Lemma 1.2 tells us that this last one is non-negative, so that we may ap-ply the Cau
hy-S
hwarz inequality. When the 
ontribution of the ωi,j'sis indeed an error term, and when 〈f |f〉 approa
hes ‖f‖22 �su�
ientlywell�, then Jf |fK is small and 〈f |g〉 is an approximation to [f |g] for rea-sonable g's. This is the key to our approa
h to some binary additiveproblems.10.2. Some Fourier analysis to handle the size 
onditionThe fun
tion F we use is essentially Fejer kernel and its graph is the onebelow.
1

1
0 1/2

2x 1− 2x

F

Its Fourier transform is given by(10.4) F̂ (y) =

∫ ∞

−∞
F (x)e(xy)dx = e(y/2)

(

sin πy
2

πy

)2

.



10.3 A general problem 85Fourier inversion yields(10.5) F (x) =

∫ ∞

−∞
F̂ (y)e(−xy)dy.We also set FN (x) = F (x/N). Finally(10.6) ∫ ∞

−∞

(

sin π
2 y

πy

)8

dy =
151

40 320a 
onstant we shall meet at several di�erent pla
es, and whi
h we 
all
C0.Of 
ourse, this fun
tion is nothing spe
ial and we 
ould have 
hosenany fun
tion that vanishes at 0 and 1 whose Fourier transform de
reasesfast enough. This smoothing fun
tion is introdu
ed to handle the size
ondition 0 ≤ n1 ≤ N on all our variables. By approximating the
hara
teristi
 fun
tion of the interval [0, 1] by su
h fun
tions in the L1-sense, we 
ould of 
ourse dispense with them and produ
e the asymptoti
for ∑p1+p2+p3=N 1.10.3. A general problemIn order not to do twi
e the same work, let us look at the somewhatmore general problem of estimating(10.7) R =

∑

n1+n2=h+k

Λ̃(n1)Λ̃(n2)uhvkFN (k)where Λ̃(n) = Λ(n)FN (n) and(10.8) vk = −
∑

ℓ|k
ℓ≤L

µ(ℓ) Log ℓfor some L ≤ N and general (uh). We de�ne(10.9) S(α) =
∑

n

Λ̃(n)e(αn), U(α) =
∑

h

uhFN (h)e(αh),and get the following lemma, reminis
ent of the treatment designedin (Ramaré, 1995):



86 10 An additive problemLemma 10.1. For D ≥ 1/2 and not more than (LogL)B for some B,we have
R =

∑

q≤D

µ(q)

φ(q)

∑

amod∗q

∫ ∞

−∞
S

(

a

q
− y

N

)2

U

(

a

q
+
y

N

)

F̂ (y)dy

+OB

(

N(ND−1 + L)max
α
|U(α)|(LogN)3

)

.This lemma is also reminis
ent of the 
ir
le method, but the readershould noti
e that, F̂ (y) having a sharp peak in 0 and de
reasing rapidlyas |y| in
reases, the perturbation y/N in the exponential is a lot easierto treat than the one arising in the 
ontext of the 
ir
le method.Proof. With the aid of (10.8), we rea
h
R = −

∑

ℓ≤L

µ(ℓ) Log ℓ
∑

n1,n2,h
ℓ|n1+n2−h

Λ̃(n1)Λ̃(n2)uhFN (n1 + n2 − h).We separate variables in FN (n1 +n2−h) by using the Fourier transform,getting(10.10) R =

∫ ∞

−∞
F̂ (y)Rydywhere(10.11)

Ry = −
∑

ℓ≤L

µ(ℓ) Log ℓ
∑

n1,n2,h
ℓ|n1+n2−h

Λ̃(n1)Λ̃(n2)uhe
(y(h− n1 − n2)

N

)

.We now dete
t 
ondition ℓ|n1 + n2 − h through additive 
hara
ters:(10.12) 1{ℓ|n} =
1

ℓ

∑

amod ℓ

e(na/ℓ) =
1

ℓ

∑

q|ℓ

∑

amod∗q

e(na/q).Set(10.13) w(q, L) = −
∑

ℓ≤L
q|ℓ

µ(ℓ) Log ℓ

ℓ
.We get(10.14) Ry =

∑

q≤L

w(q, L)
∑

amod∗q

S

(

a

q
− y

N

)2

U

(

a

q
+
y

N

)



10.4 Asymptoti
 for R 87We propose to restri
t this summation to q ≤ D. To do so, we �rstnoti
e that |w(q, L)| ≪ (LogL)2/q and then pro
eed as follows.
∑

D<q≤L

|w(q, L)|
∑

a mod∗q

∣

∣

∣

∣

S

(

a

q
− y

N

)∣

∣

∣

∣

2 ∣
∣

∣

∣

U

(

a

q
+
y

N

)∣

∣

∣

∣

≪ (LogL)2 max
α
|U(α)|

∑

D<q≤L

1

q

∑

amod∗q

∣

∣

∣

∣

S

(

a

q
− y

N

)∣

∣

∣

∣

2and we bound the last sum by partial summation and the large sieveinequality applied to sets of points of the form
X =

{

a

q
− y

N
/ q ≤ Q, a mod∗ q}.On
e this redu
tion is done, we simplify the remaining w(q, L)'s, forwhi
h the prime number theorem yields(10.15) w(q, L) =

µ(q)

φ(q)
+O(2ω(q)D−4)and su
h an estimate is enough. ⋄ ⋄ ⋄10.4. Asymptoti
 for RLet us set(10.16) S2,2 =

∏

p≥2

(

1 +
1

(p− 1)3

)

.We state formally what we establish here:Theorem 10.3. For any A ≥ 1 and as N goes to in�nity
R = C0S2,2N

3 +OA(N3(LogN)−A).From now on, we sele
t A ≥ 1.First we note that
Λ(n) = −

∑

d|n
µ(d) Log d = −

∑

d|n
d≤
√

N

µ(d) Log d−
∑

d|n
d>
√

N

µ(d) Log d

= Λ♯(n) + Λ♭(n)(10.17)say. Sin
e µ(d) is supposed to vary 
onsiderably in signs, we expe
t thelast sum to 
ontribute only to the error term. Here we follow notations



88 10 An additive problemof Iwanie
. We de
ompose Λ(n4) = Λ♯(n4) + Λ♭(n4) in(10.18) R =
∑

n1+n2−n3=n4

Λ̃(n1)Λ̃(n2)Λ̃(n3)Λ̃(n4)to split R into R = R♯ + R♭.Dis
arding R♭. We write(10.19) Λ(n3) = −
∑

d|n3

µ(d) Log dso that Lemma 10.1 applies with h = n4, k = n3, vk = Λ(n3) and
uh = Λ̃♭(n4). We 
hoose D = 1/2. To handle the 
ontribution from U ,we use the following lemma from (Davenport, 1937a; Davenport, 1937b)Lemma 10.2 (Davenport). Uniformly in α and for every positive B,we have

∣

∣

∣

∣

∣

∣

∑

h≤H

µ(h)e(hα)

∣

∣

∣

∣

∣

∣

≪B H/(LogH)B .This proof 
ontains the innovation due to Vinogradov 
on
erning theestimation of exponential sums with prime argument through a 
ombi-nation of sieve method and bilinear forms te
hniques. We do not provethis lemma here, as it is way out of our ground. But we note it also re-quires the use of the prime number theorem in arithmeti
 progressions,whi
h we re
all below.Using this lemma, we getLemma 10.3. |U(α)| ≪B N/(LogN)B.Proof. We write k = ℓn and
U(α) = −

∫ ∞

−∞
F̂ (y)

∑

n≤
√

N

∑

√
N<nℓ≤N

µ(ℓ)(Log ℓ)e((α − y/N)ℓn)dywhile, by partial summation, we have
∣

∣

∣

∣

∣

∣

∑

nℓ≤N

µ(ℓ)(Log ℓ)e(βℓ)

∣

∣

∣

∣

∣

∣

≪ N

n
/LogB(N/n)≪ N

n
/LogB N.The lemma follows readily. ⋄ ⋄ ⋄This �nally yields with B = A+ 3(10.20) R♭(y) = OA(N3(LogN)−A).



10.4 Asymptoti
 for R 89Treating R♯. First, we take the opportunity of this se
tion to state aresult that is so often used in this monograph.Lemma 10.4 (The prime number theorem for arithmeti
 progressions).For every 
onstants B and C and as N goes to in�nity, we have
∑

n≤N
n≡a[q]

Λ(n) =
N

φ(q)
(1 +OB,C(1/LogB N))for every q ≤ LogC N and any a 
oprime to q.We now resume the 
ourse of the proof and use Lemma 10.1 with

h = n3, k = n4, vk = Λ♯(n4) and uh = Λ̃(n3). We get
R♯

y =
∑

q≤D

µ(q)

φ(q)

∑

amod∗q

S

(

a

q
− y

N

)2

S♯

(

a

q
− y

N

)

+O(N3(LogN)−A)where D is (LogN)A+3. At this level we 
an 
omplete S♯ by S♭ tore
over S up to an a�ordable error term, where the reader has alreadyunderstood that S♯ (resp. S♭) stands for the trigonometri
 polynomialasso
iated to Λ♯ (resp. Λ♭).Lemma 10.5. We have for all q ≤ D
S

(

a

q
+
y

N

)

=
µ(q)N

φ(q)
F̂ (y) +O(ND−4(1 + |y|)).Proof. First set F̌N (y) =

∑

n FN (n)e(ny/N) and write
S

(

a

q
+
y

N

)

−µ(q)

φ(q)
F̌N (y) =

∑

n

(

Λ(n)e(na/q) − µ(q)

φ(q)

)

FN (n)e(ny/N).The key to this 
lassi
al evaluation is to use summation by parts withrespe
t to n. This may be surprising at start be
ause we are trying toderive a result in (a/q) + (y/N) from one in a/q. But remember thisdeviation has been introdu
ed pre
isely to handle the size 
ondition.This also means that we use the prime number theorem not only at size
N but also for nearby values. We thus note that

FN (n)e(ny/N) = −
∫ N

n
∆(t)dtwith ∆(t) = (F ′(t) + 2iπyF (t))e(yt)/N whi
h enables us to write

S

(

a

q
+

y

N

)

− µ(q)

φ(q)
F̌N (y) = −

∫ N

1

∑

n≤t

(

Λ(n)e(na/q) − µ(q)

φ(q)

)

∆(t)dt.



90 10 An additive problemHere, we simply split the inner summation into the 
ongruen
e 
lassesof n modulo q. The n's that are not 
oprime with q 
ontribute to
∑

p|q
Log p

∑

r≥1
pr≤t

1 ≤ ω(q) Log t≪ Log2Nwhile Lemma 10.4 yields
∑

bmod∗q

∑

n≤t
n≡b[q]

Λ(n)e(na/q) =
t

φ(q)

∑

bmod∗q

e(ba/q) +O(qN/LogB N)

=
tµ(q)

φ(q)
+O(ND−4)on sele
ting B su
h that (LogN)B ≥ D5. Gathering our estimates, werea
h(10.21) S

(

a

q
+
y

N

)

− µ(q)

φ(q)
F̌N (y) = O(ND−4).Next we evaluate F̌N (y) in terms of F̂ by 
omparing the former to anintegral:

F (n/N)e(ny/N) = N

∫ n/N

n−1
N

F (x)e(xy)dx +O(1/N).The lemma follows readily. ⋄ ⋄ ⋄Using the approximation given by Lemma 10.5, we infer that(10.22) R♯
y =

∑

q≤D

µ(q)2N3

φ(q)3
F̂ (−y)2F̂ (y) +O(N3(1 + |y|)/D).We shall use this bound for |y| ≤ Y . The almost trivial bound R

♯
y(D) =

O(N3 LogN) (by the large sieve inequality) su�
es otherwise. Thisamounts to
R♯ = N3

∫ ∞

−∞
F̂ (y)2F̂ (−y)2dy

∑

q≤D

µ(q)2

φ(q)3
+O

(

N3 Log Y

D
+
N3 LogN

Y

)in whi
h the 
hoi
e Y = D is a

eptable. We then simply 
omplete theseries in q. This ends the proof.10.5. The lo
al modelVery similar to what we did in 8.4.1, we set(10.23) ϕ∗q(n) =
µ(q)cq(n)

φ(q)
(F ∗ F )(n/N)



10.5 The lo
al model 91where F ∗ F denotes the usual 
onvolution. We should expand a bit onthis 
hoi
e; �rst, one should note that it is 
omposed of two di�erentparts, one taking 
are of the arithmeti
 modulo q while the other onetakes into a

ount the size 
onditions. Se
ond, the proper de�nition ofthe �rst fa
tor should be µ2(q)cq(n)/φ(q)2 as the reader will dis
over by
omputing the sum over the divisors q of d of this fun
tion, a de�nitionthat di�ers from our 
hoi
e only by a multipli
ative fa
tor. This isirrelevant as far as the main term for given q is 
on
erned but be
omesimportant at the level of (10.26) where we have to add all the terms
oming from [ϕ∗q |ϕ∗q′ ] with q′ 6= q. There, it is best to have r(q′) of
onstant mean value whi
h explains why we divide by φ(q) in (10.23)and not by φ(q)2.As in se
tion 8.4.2, we get
[ϕ∗q |ϕ∗q′ ] =

µ(q)

φ(q)

µ(q′)
φ(q′)

∑

n

cq(n)cq′(n)(F ∗ F )(n/N)2and we express both Ramanujan sums in terms of divisors of q, q′ and
n getting(10.24)

[ϕ∗q |ϕ∗q′ ] =
µ(q)

φ(q)

µ(q′)
φ(q′)

∑

d|q
d′|q′

dµ(q/d)d′µ(q′/d′)
∑

n
[d,d′]|n

(F ∗ F )(n/N)2.For the innermost sum, we have
∑

n
[d,d′]|n

(F ∗ F )(n/N)2 =

∫ ∞

−∞
F̂ (y)2

∑

n
[d,d′]|n

(F ∗ F )(n/N)e(−ny/N)dyand using a 
omparison to an integral for the inner sum, we �nd thisintegral to be C0N/[d, d
′] +O(1), so that(10.25) [ϕ∗q |ϕ∗q′ ] =
µ2(q)NC0

φ(q)
1q=q′ +O(r(q)r(q′))with r(q) = σ(q)/φ(q). This yields for �xed q:(10.26) ∑

q′

|[ϕ∗q |ϕ∗q′ ]| =
µ2(q)NC0

φ(q)
+O(r(q)Q).Let c be su
h that the O(r(q)Q) is not more in absolute value than

cr(q)Q. We set(10.27) Mq =
µ2(q)NC0

φ(q)
+ cr(q)Q.



92 10 An additive problemWe further �nd that for q ≤ Q = (LogN)A, we have by expressing cq(n)in terms of e(an/q) and F ∗ F (n/N) in terms of its Fourier transform
[r2|ϕ∗q ] =

µ(q)

φ(q)

∑

n1+n2=n

Λ̃(n1)Λ̃(n2)(F ∗ F )(n/N)cq(n)

=
µ(q)

φ(q)

∑

amod∗q

∫ ∞

−∞
F̂ (y)2S

(

a

q
− y

N

)2

dy

=
µ(q)NC0

φ(q)3
+O(NQ−3).(10.28)From whi
h we infer(10.29) R−

∑

q≤Q

M−1
q [r2|ϕ∗q ]2 = O(N3/Q).10.5.1. Proof of the three primes Theorem. Let N be the oddinteger we want to represent. Set f1 the 
hara
teristi
 fun
tion of thoseprimes that are in the interval ]Q,N ] (this notation represents the in-terval of real numbers between Q and N but where Q is ex
luded while

N is in
luded) and f(n) = f1(N − n). We de�ne Jf |gK as in (10.3) butwith ωi,j = 0 and with Q = (LogN)100. First note that(10.30) r3(N) =
∑

n1+n2+n3=N

f1(n3)Λ̃(n1)Λ̃(n2) = [f |r2]and use(10.31) |Jf |r2K|2 ≤ Jf |fKJr2|r2K.Equation (10.29) tells us that Jr2|r2K is suitably small. It is easy to seethat Jf |fK is ≪ N so that |Jf |r2K| is small, namely(10.32) |Jf |r2K| ≪ N2/(LogN)50.This means in turn that 〈f |r2〉 approximates r3(N) su�
iently well. Thisleads to a quantitative version of the three primes theorem provided we
ompute 〈f |r2〉. But this is simple enough: [r2|ϕ∗q ] is given in (10.28)



10.6 A slight digression 93while
[f |ϕ∗q ] =

µ(q)

φ(q)

∑

n∈Z(F ∗ F )(n/N)f(n)cq(n)

=
µ(q)

φ(q)

∑

n3∈Z(F ∗ F )((N − n3)/N)f1(n3)cq(N − n3)

=
µ(q)

φ(q)

∑

amod∗q

e

(

Na

q

)

×
∫ ∞

−∞
F̂ 2(y)

∑

n3

Λ(n3)e

(−an3

q
+

y

N

)

e(−y)dywhere we expressed cq(N − n3) in terms of e((N − n3)a/q) and (F ∗
F )((N − n3)/N) in terms of its Fourier transform. By now, the readershould be well a
quainted with these te
hniques. We pursue the proofby appealing to Lemma 10.5 and �nally get(10.33) [f |ϕ∗q ] =

µ2(q)Ncq(N)C1

φ(q)2
(1 +O(Q−2))where the 
onstant C1 is(10.34) C1 =

∫ ∞

−∞
|F̂ 2(y)|F̂ (y)e(−y/2)dy = 0.013688 . . .This amounts to

〈f |r2〉 = NC1

∑

q≤Q

µ(q)cq(N)

φ(q)3
+O(N2/Q)and 
ompleting the summation in q, we end up with(10.35) 〈f |r2〉 = NC1

∏

p≥2

(

1 +
1

(p− 1)3

)

∏

p|N

p2 − 3p + 2

p2 − 3p + 3
+O(N2/Q).Note, and that is reassuring, that the �rst term vanishes if N is even.By (10.32), this expression is valid for [f |r2] whi
h is nothing but r3(N),
on
luding the proof of Theorem 10.110.6. A slight digressionWe sket
h here a proof of Theorem 10.2. We are to 
ompute(10.36) V =

∑

n

(

r2(n)−NS2(n)(F ∗ F )(n/N)
)2



94 10 An additive problemwith(10.37) S2(n) = C2

∏

p|n
p 6=2

p− 2

p− 1
= C2

∑

d|n
(d,2)=1

µ2(d)

φ(d)and(10.38) C2 = 2
∏

p≥3

p(p− 2)

(p− 1)2
.To 
ompute V , we expand the inner square. The �rst term is R whilethe third one is trivial to estimate. As for the 
ross term, we write

∑

n

S2(n)r2(n)(F ∗ F )(n/N) = C2

∑

d≥1
(d,2)=1

µ2(d)

φ(d)

∑

n≥0
d|n

r2(n)(F ∗ F )(n/N).In the latter expression, we noti
e that only the 
ongruen
e 
lasses of
n1 and n2 modulo d intervene, with notations from (10.1). For large d,the Brun-Tit
hmarsh theorem is enough to show that the 
orresponding
ontribution is negligible, while for small d's, the prime number theoremin arithmeti
 progressions applies. The reader will �nally rea
h(10.39) V ≪A N3/(LogN)Ameaning that most of the N summands are not more than N2/(LogN)A,and this in turns implies that for those n's, we have(10.40) r2(n) = NS2(n)(F ∗ F )(n/N) +OA(N/(LogN)A/2)whi
h is what was to be proved.



11 The Selberg sieveIn this 
hapter, we �rst present the Selberg sieve in a fashion similarto what we did up to now. In passing, we shall extend the Selberg sieveto the 
ase of non-squarefree sifting sets, as was already done in (Selberg,1976), but our setting will also 
arry through to sieving sequen
es andnot only sets. Furthermore, this setting will enable us to 
ompare thethree di�erent approa
hes: via the large sieve inequality, via lo
al modelsor via the Selberg sieve.11.1. Position of the problemTo properly set the sieve problem, one needs two obje
ts:(1) A �nite host sequen
e A; for instan
e, as was the 
ase upto nowin these le
tures, A = [M + 1,M +N ].(2) A 
ompa
t set K, i.e. a �nite 
olle
tion of well-behaved � seese
tion 2.1 � subsets Kd of Z/dZ.The question is then to understand(11.1) S = {n ∈ A / ∀d ≤ D, n ∈ Kd}and, in parti
ular, to evaluate its 
ardinality. We met this question al-ready at several di�erent pla
es, with Kd = (Z/dZ)∗ the set of invertibleelements modulo d to rea
h the prime numbers, and with Kd being thesets of squares modulo d to rea
h the (integer) squares.11.2. Bordering system asso
iated to a 
ompa
t setWe de�ne here another sequen
e of sets (Ld)d≥1 
omplementary to (Kd) :we set L1 = {1} and Lpν = Kpν−1 − Kpν , i.e. the set of elements of
x ∈ Z/pνZ su
h that σpν→pν−1(x) ∈ Kpν−1 but that do not belong to
Kpν . We further de�ne Ld by �multipli
ativity�. It is important to note,and that is di�erent from what happens to K, that we do not have
Lℓ = Ld/ℓZ if ℓ|d. Using 1A to denote the 
hara
teristi
 fun
tion of A,our de�nitions imply that(11.2) 













1Ld
=
∏

pν‖d

(1Kpν−1 − 1Kpν

)

= (−1)ω(d)
∑

δ|d
µ(d/δ)1Kδ1Kd

=
∏

pν‖d

(1− 1Lp − 1Lp2 − · · · − 1Lpν

)

=
∑

δ|d
(−1)ω(d)1Lδ

.



96 11 The Selberg sieveA remark on why one should introdu
e L: to start with, let us notethat 
lassi
al sieve expositions stress more on the 
lasses that one ex-
ludes modulo p, than on the 
lasses that are retained, whi
h in oursetting means that the sets Lp are de�ned �rst, and the sets Kp are usu-ally not spe
i�ed. This is so be
ause we usually ex
lude few 
lasses, i.e.
Lp is small while Kp is large. This notion of small and large is in fa
twhat led to the nomen
lature �large sieve�: in the example treated (seese
tion 6.5), (Linnik, 1941) had to ex
lude many 
lasses.Introdu
ing Kp allows us to get a geometri
al setting, i.e. leads to anatural de�nition of Kd � while that of Ld is mu
h less natural � and,in general, to smoother formulae for the main terms. However, when it
omes to 
omputing error terms, the fa
t that Ld has small 
ardinalityin usual problems turns out to be extremely e�e
tive.At the end of next se
tion, we explain in terms of information this
hange of view point.11.3. An extremal problemIn our presentation of the Selberg sieve, we 
onsider the following ex-tremal problems(11.3) 









∑

d λ
♯
d = 1 , λ♯

d = 0 if d ≥ DMain term of ∑

M<n≤M+N

(

∑

d/n∈Kd

λ♯
d

)2 minimaland(11.4) 









λ1 = 1 , λd = 0 if d ≥ DMain term of ∑

M<n≤M+N

(

∑

d/n∈Ld

λd

)2 minimal.We swit
h from one problem to the other using (11.2) :(11.5) 













(−1)ω(d)λd =
∑

d|ℓ
λ♯

ℓ , λ♯
ℓ =

∑

ℓ|d
µ(d/ℓ)(−1)ω(d)λd,

∑

d/n∈Ld

λd =
∑

d/n∈Kd

λ♯
d.Solving the �rst problem is very easy be
ause K is multipli
atively split,and is performed via the diagonalization pro
ess of Selberg. Indeed, we



11.3 An extremal problem 97write
∑

M<n≤M+N

(

∑

d/n∈Kd

λ♯
d

)2

=
∑

d1,d2≤D

λ♯
d1
λ♯

d2

∑

M<n≤M+N
n∈K[d1,d2]

1

=
∑

d1,d2≤D

λ♯
d1
λ♯

d2

|K[d1,d2]|
[d1, d2]

N + error termSet ρ(d) = |Kd|/d and let h be the solution of 1/ρ = 1 ⋆ h as in (2.5).We then have
∑

d1,d2≤D

λ♯
d1
λ♯

d2

|K[d1,d2]|
[d1, d2]

=
∑

d1,d2≤D

λ♯
d1
ρ(d1)λ

♯
d2
ρ(d2)(1 ⋆ h)((d1, d2))

=
∑

q≤D

h(q)

(

∑

q|d≤D

λ♯
dρ(d)

)2

.We 
omment on the above relations: �rst we note that any two randomly
hosen integers have a small g
d, so that we indeed redu
e the di�
ultyby ex
hanging l
m with g
d; the next problem is still the fa
t that d1and d2 are linked and the introdu
tion of h is a key idea to separatethem fully. Pursuing the proof, we de�ne(11.6) yq =
∑

q|d≤D

λ♯
dρ(d)and re
over the λ♯

d's from the yq's by1(11.7) ρ(d)λ♯
d =

∑

d|q≤D

µ(q/d)yqwhi
h enables us to establish that(11.8) 1 =
∑

d

λ♯
d =

∑

q

h(q)yq.Weminimize the quadrati
 form∑h(q)y2
q subje
t to the 
ondition (11.8).On using Lagrange multipliers, we see optimal2 yq's should all be equalto 1/

∑

d h(d) i.e. 1/G1(D).1Equation (11.6) may be seen as a linear system expressing the yq's in terms ofthe (λ♯
dρ(d))'s. This system being in triangular form, the (λ♯

dρ(d))'s are uniquelydetermined in terms of the yq's. The reader will 
he
k that the RHS of (11.7) veri�esthis system, and hen
e, is equal to λ♯
dρ(d).2When h(q) vanishes, the 
orresponding value of yq has no in�uen
e whatsoever;the 
orresponding λq will always appear with 
oe�
ient h(q), The solution yq we
hoose is the one that yields uniform formulae.



98 11 The Selberg sieveGathering our results we infer (see also (18.2))(11.9)
λ♯

d =
d

|Kd|
∑

q≤Q/d

µ(q)/G1(D) and λd = (−1)ω(d)Gd(D)/G1(D).From the information theory point of view, going from (λ♯
d) to (λd) maybe explained by the following remark : when writing n ∈ Kpν , we forgetwe already know that n ∈ Kpν−1 ; Removing this redundan
y leads to

(Ld) and to (λd). The reader will perhaps appre
iate Lemma 2.2 betternow. The L.H.S. is G1(D)λ♯
d while the R.H.S. is its expression in termsof the λd's. Indeed this was how this lemma was invented.Note that Lemma 2.3 tells us simply that |λd| ≤ 1.As for the 
ardinality of S (de�ned in (11.1)), we dire
tly get

|S| ≤
∑

n≤N

(

∑

d/n∈Kd

λ♯
d

)2

=
∑

n≤N

(

∑

d/n∈Ld

λd

)2

≤ N

G1(D)
+

(

∑

d

|Ld||λd|
)2(11.10)Going from (λ♯

d) to (λd) is thus extremely immportant to redu
ing theerror term, thanks to Lemma 2.3. Now (11.10) improves on Corollary 2.1in that the Johnsen-Gallagher 
ondition is no more required.In (Selberg, 1976) and (Motohashi, 1983), the reader will �nd anotherexposition and in (Gallagher, 1974) 
losely related material.Three last remarks are to be made:(1) We do not require K to be squarefree.(2) We do not require K to satisfy the Johnsen-Gallagher 
ondition,
ontrarily to what happened in Corollary 2.1 or Theorem 2.1 .But we had a

ess to a large sieve extension, while this resultprovides us with no su
h extension.(3) All of what we do is valid when sieving an arbitrary sequen
es
A, like the sequen
e of primes. This only alters the de�nitionof ρ as exposed in 
hapter 13. Again this is not the 
ase ofTheorem 2.1.11.4. More on 
ompa
t setsLet K be a multipli
atively split 
ompa
t set. We set(11.11) ψd(n) =

d

|Kd|
1Kd

(n)



11.5 Pseudo-
hara
ters 99where the 
oe�
ient d/|Kd| will yield smoother formulae3. We have(11.12) ψd(n) =
∑

q|d
ψ∗q (n)with(11.13) ψ∗q (n) =

∑

δ|q
n∈Kδ

µ(q/δ)δ/|Kδ |.It will be better to repla
e the 
ondition n ∈ Kd with n ∈ Ld, whi
h wedo via (11.2) and get(11.14) ψ∗q(n) =
∑

ℓ|q
n∈Lℓ

(−1)ω(ℓ)H(ℓ, q)with(11.15) H(ℓ, q) =
∑

ℓ|δ|q
µ(q/δ)δ/|Kδ |.Note that H(1, q) is simply the fun
tion h(q) we de�ned in (2.5) andthat we did in fa
t already meet this fun
tion H(ℓ, q): Lemma 2.1 mayalso be written in the form(11.16) Gd(Q) =
∑

q≤Q
d|q

H(d, q).11.5. Pseudo-
hara
ters(Selberg, 1972) introdu
ed the notion of pseudo-
hara
ters, a notion thathas proved to be most e�
ient in the 
ontext of log-free zero densityestimates by (Motohashi, 1978). We show here that they di�er from our
ψ∗q 's only by a multipli
ative fa
tor.To do so, we follow 
losely 
hapter 1 of (Motohashi, 1983) and westart by translating his notations into our 
ontext:� Fun
tion θ used therein and de�ned in (1.1.17) is in fa
t θ(q) = |Kq|/q.� Fun
tion g de�ned by (1.1.18) and (1.1.21) is given in our notationsby g(q) = H(1, q) = h(q).� Fun
tion ∆q de�ned by the equation following (1.2.3) is 1Kq .3For the reader who went through 
hapter 4: if K satis�es the Johnsen-Gallagher
ondition, we have J q̃

d̃
(ψq) = ψd, where J is asso
iated with the host 
ompa
t set

(Z/dZ)d. The de
omposition given in (11.12) is simply the one 
oming from (4.12).See se
tion 9.4 for a more detailled argument. But even without knowing that
J q̃

d̃
(ψq) = ψd, su
h an identity holds sin
e it is proved by purely 
ombinatorial means.



100 11 The Selberg sieveFrom these remarks, one easily re
ognizes on using (11.13) from hereand (1.2.3) from Motohashi's work that our two fun
tions, the one thatMotohashi 
alls a pseudo-
hara
ter and our ψ∗q , are in fa
t multiples ofea
h other. But sin
e this 
oe�
ient depends only on q, both notionshave the same e�
ien
y.The reader may 
onsult (Graham & Vaaler, 1981) for related material.The short paper (Elliott, 1992) shows 
learly, on the example of primenumbers, how to use these pseudo-
hara
ters to produ
e a sieving e�e
t.11.6. Selberg's bound through lo
al modelsOur aim here is to show that one 
an derive a bound of the same strengthas (11.10) through yet another method relying on what we termed �lo
almodels�. This last method will show 
lear 
onne
tions between the studyof additive problems as in se
tion 10 and this sieve method. It is ageneralization, though with a weaker remainder term, of what we didwith the Brun-Tit
hmarsh inequality in se
tion 8.1.We restri
t our attention to sieving intervals, for simpli
ity. So ourhost sequen
e is [M + 1,M + N ] and the s
alar produ
t on fun
tionsover this interval is given by(11.17) [g|h] =
∑

M<n≤M+N

g(n)h(n).Let us look at the bilinear form asso
iated to the sequen
e (ψ∗q )q≤Q(de�ned by (11.13)):(11.18) ∥

∥

∥

∥

∑

q

ξqψ
∗
q

∥

∥

∥

∥

2

=
∑

q,q′

ξqξq′ [ψ
∗
q |ψ∗q′ ].On using (11.14), we infer that(11.19) [ψ∗q |ψ∗q′ ] =

∑

ℓ|q
ℓ′|q′

(−1)ω(ℓ)H(ℓ, q)(−1)ω(ℓ′)H(ℓ′, q′)
∑

n∈Lℓ
n∈Lℓ′

1.The last sum is to be 
omputed, but the reader should note that the
ondition does not in general redu
e to n ∈ L[ℓ,ℓ′] as it would if L wererepla
ed by K. To express this sum, we introdu
e a notation from (Sel-berg, 1976):(11.20) ε(ℓ, ℓ′) =

{

1 if [p|(ℓ, ℓ′) =⇒ vp(ℓ) = vp(ℓ
′)]

0 else.



11.6 Selberg's bound through lo
al models 101A moment re�e
tion will reveal that
[ψ∗q |ψ∗q′ ] =

∑

ℓ|q
ℓ′|q′

(−1)ω(ℓ)+ω(ℓ′)H(ℓ, q)H(ℓ′, q′)ε(ℓ, ℓ′)
∑

n∈L[ℓ,ℓ′]

1whi
h be
omes
∑

ℓ|q
ℓ′|q′

(−1)ω(ℓ)+ω(ℓ′)H(ℓ, q)H(ℓ′, q′)ε(ℓ, ℓ′)

(

N |L[ℓ,ℓ′]|
[ℓ, ℓ′]

+R([ℓ, ℓ′])

)where R([ℓ, ℓ′]) is O∗(|L[ℓ,ℓ′]|). The main term (i.e. the term 
ontaining
N in fa
tor) vanishes if q 6= q′ and equals Nh(q) otherwise. So we get(11.21) ∥

∥

∥

∥

∑

q

ξqψ
∗
q

∥

∥

∥

∥

2

= N
∑

q

|ξq|2h(q) +
∑

ℓ,ℓ′

ε(ℓ, ℓ′)R([ℓ, ℓ′])zℓzℓ′with(11.22) zℓ = (−1)ω(ℓ)
∑

ℓ|q
ξqH(ℓ, q).This study being over, we 
an turn to sieving questions and applyLemma 1.2. Here f is the 
hara
teristi
 fun
tion of the set S we wishto 
ount (de�ned in (11.1)). Denote its 
ardinality by Z. First 
he
k byusing (11.13) that(11.23) [f |ψ∗q ] = h(q)Zso that Lemma 1.2 gives us(11.24) ∑

q≤Q

h(q)2Z2

h(q)N
≤ Z +

∑

ℓ,ℓ′

ε(ℓ, ℓ′)R([ℓ, ℓ′])zℓzℓ′with ξq = Z/N . This value of ξq gives(11.25) zℓ = (−1)ω(ℓ) Z

N

∑

q/ℓ|q
H(ℓ, q) = (−1)ω(ℓ)ZGℓ(Q)/N.We then use |R([ℓ, ℓ′])| ≤ |Lℓ||L′ℓ| and (−1)ω(ℓ)Gℓ(Q)/G1(Q) = λℓ to get(11.26) Z ≤ N

G1(Q)
+
ZG1(Q)

N

(

∑

ℓ

|Lℓ||λℓ|
)2

.This is to be 
ompared with (11.10): it is slightly weaker sin
e the
oe�
ient ZG1(Q)/N may well be ≥ 1, though not by mu
h. Modifyingthe value of ξd to take 
are of the remainder term as in Theorem 7.1would improve on this part.



102 11 The Selberg sieve11.7. Sieve weights in terms of lo
al modelsIf we look 
arefully at the way Lemma 1.2 is proved, we see that weapproximate the 
hara
teristi
 fun
tion f of the set we are interested inwith(11.27) ∑

q

ξqψ
∗
q =

Z

N

∑

q

ψ∗q .On the other hand, the Selberg pro
ess as we exposed it introdu
es theweights(11.28) ∑

d/n∈Kd

λ♯
d =

∑

d

λ♯
d1Kd

(n).We now express 1Kd
via (11.11) and (11.12), getting

∑

d/n∈Kd

λ♯
d =

∑

d

λ♯
d

|Kd|
d

∑

q|d
ψ∗q (n) =

∑

q

ψ∗q (n)
∑

q|d

|Kd|
d
λ♯

d.We readily 
he
k that(11.29) ∑

d/q|d

|Kd|
d
λ♯

d = 1/G1(Q)hen
e we almost re
over (11.27):(11.30) ∑

d/n∈Kd

λ♯
d =

∑

q

ψ∗q/G1(Q).The mira
le here is that, even though (Z/N)
∑

q ψ
∗
q has been inventedto approximate f , it turns out that it also majorizes this fun
tion point-wise, provided we 
hange the �rst 
oe�
ient from (Z/N) to 1/G1(Q).Note that (11.30) in the 
ase of primes appears already in (Selberg,1942), and (Selberg, 1943) and is in fa
t at the origin of what is nowknown as the Selberg sieve! It appears under the de�nition(11.31) ΛQ(n) =

∑

q≤Q

µ(q)

φ(q)
cq(n)where only the 
orre
ting fa
tor (N/Z or 1/G1(Q)) is missed. Su
h afun
tion has also been exploited in (Selberg, 1942), (Motohashi, 1978),(Heath-Brown, 1985), (Goldston, 1992), (Goldston, 1995), (Friedlander& Goldston, 1995), and in (Vaughan, 2003) among other pla
es, butit is generally asso
iated to what is sometimes known as a Ramanujanexpansion as in (Hildebrand, 1984) and not to the notion of lo
al modelsas we have introdu
ed them here. In the above mentioned works, thefun
tion Λ is approximated by ΛQ and 
ontribution of the di�eren
e
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Λ−ΛQ is shown to be negligible in a proper average way. One 
an workdire
tly with (10.17) and repla
e this ΛQ by Λ♯, provided we modifyslightly the bound over d there from d ≤

√
N to the more general d ≤ Q.Indeed, we have(11.32) Λ♯(n) = −

∑

d|n
d≤Q

µ(d) Log d =
∑

q≤Q

w(q,Q)cq(n)where w(q,Q) is de�ned in (10.13) and evaluated in (10.15). We obtainsu
h an expression on using (10.12). This fun
tion Λ♯ may well be abetter approximation than ΛQ in some 
ir
umstan
es.11.8. From the lo
al models to the dual large sieveinequalityNow that we have found a link between the λd's given by Selberg sieveand the ψ∗q 's obtained from the point of view of lo
al models, we shall getthe bound given by Selberg's bound through the large sieve inequalityprovided the Johnsen-Gallagher 
ondition (2.4) is satis�ed. In passing,this will extend the argument of (Kobayashi, 1973) to the 
ase of non-squarefree 
ompa
t sets. Roughly speaking we pro
eed by expressing thefun
tion ψ∗q in terms of additive 
hara
ters modulo q. Re
alling (11.13),we see that
ψ∗q (n) =

∑

δ|q
µ(q/δ)

δ

|Kδ |
(

∑

b∈Kδ

1

δ

∑

cmod δ

e(nc/δ)e(−cb/δ)
)whi
h we modify as follows:

ψ∗q (n) =
∑

δ|q
µ(q/δ)

1

|Kδ |
∑

b∈Kδ

∑

ℓ|δ

∑

cmod∗ℓ

e(nc/ℓ)e(−cb/ℓ)

=
∑

ℓ|q

∑

cmod∗ℓ

(

∑

ℓ|δ|q
µ(q/δ)

1

|Kδ |
∑

b∈Kδ

e(−cb/ℓ)
)

e(nc/ℓ).In the innermost sum, only the value of b modulo ℓ is required. Onthe Johnsen-Gallagher 
ondition (2.4), a value modulo ℓ yields |Kδ |/|Kℓ|values of b in Kδ. Next the summation over δ of µ(q/δ) is 0 if ℓ 6= q, sothat only the value ℓ = q remains. We have rea
hed(11.33) ψ∗q(n) =
∑

cmod∗q

(

1

|Kq|
∑

b∈Kq

e(−cb/q)
)

e(nc/q).And of 
ourse, the 
oe�
ient that appears here is simply the Fourier
oe�
ient of ψ∗q . . . Let us 
all this 
oe�
ient ψ̂q(c/q). Note, however,



104 11 The Selberg sievethat we have required 
ondition (2.4) to re
over this expression. We thenhave(11.34) ∑

n

(

∑

d/n∈Kd

λ♯
d

)2

=
∑

n

∣

∣

∣

∣

∑

q≤Q

∑

cmod∗q

ψ̂q(c/q)e(nc/q)/G1(Q)

∣

∣

∣

∣

2where the reader will re
ognize the dual expression to the one studiedin the large sieve inequality, i.e. (1.19). The bound there thus applies,yielding(11.35) ∑

n

(

∑

d/n∈Kd

λ♯
d

)2

≤ (N +Q2)
∑

q≤Q

∑

cmod∗q

∣

∣ψ̂q(c/q)/G1(Q)
∣

∣

2
.Now,

∑

cmod∗q

∣

∣ψ̂q(c/q)
∣

∣

2
=

1

|Kq|2
∑

b,b′∈Kq

cq(b− b′) =
1

|Kq|2
∑

d|q
dµ(q/d)

∑

b,b′∈Kq

b≡b′[d]

1

=
∑

d|q
dµ(q/d)

1

|Kd|
= h(q)by using on
e again the Johnsen-Gallagher 
ondition. Sin
e ∑q h(q) =

G1(Q), we have proved that(11.36) ∑

n

(

∑

d/n∈Kd

λ♯
d

)2

≤ (N +Q2)/G1(Q)namely the Selberg sieve bound for an interval through the large sieveinequality, provided (2.4) holds. This time, the error term is alreadyevaluated and we do not have to worry whether λd is bounded by 1 ornot.We have thus re
overed Gallagher's bound via the large sieve inequal-ity. (Motohashi, 1983) gives a more extensive treatment of this kind ofmaterial but avoids the Johnsen-Gallagher 
ondition. He does not getany large sieve extension, while our method gives one, but he extendsthe result in another dire
tion. So, the problem of �nding a large sieveextension to the sieve bound in the 
ase of a 
ompa
t set that does notsatis�es (2.4) remains open. The reader may obje
t that su
h 
ompa
tsets are not 
ommon in pra
ti
e; it would however enable us to gatherour results in one single inequality.Finally (Huxley, 1972b) draws on the same 
ir
le of ideas. In parti
u-lar, in the 
ase of a squarefree sieve, this author gets essentially (11.33),but starting from the weights ∑d/n∈Ld
λd instead of starting from ψ∗q aswe have done here.



12 Fourier expansion of sieve weightsThe previous 
hapter 
ontains an expansion of∑d λd1Ld
(n) as a lin-ear 
ombination of additive 
hara
ters, simply by 
ombining (11.30)and (11.33). The theme of the present 
hapter is to expand similarlythe sieve weights(12.1) βK(n) =

(

∑

d

λd1Ld
(n)
)2
.This is indeed what is done in the 
ase of primes in (Ramaré, 1995)and what is rapidly presented in a general 
ontext in (Ramaré & Ruzsa,2001), equation (4.1.21). Su
h a material is used in (Green & Tao, 2006).We assume throughout this 
hapter that K is multipli
atively splitand veri�es the Johnsen-Gallagher 
ondition.12.1. Dimension of the sieveUp to now we have avoided to provide a general s
heme to evaluatethe G-fun
tions appearing in the Selberg sieve and only drove su
h anevaluation in spe
ial 
ases. This is to en
ompass usual situations whenthe sieve is said to have a dimension κ ≥ 0, i.e. when we have(12.2) ∑

p≤X

(1− |Kp|/p) Log p = κLogX +O(1)as well as the general 
ase, for instan
e the one appearing when sievingsquares as in the proof of Theorem 5.4. If (12.2) is veri�ed and the sieveis squarefree, then Theorem 21.1 yields(12.3) G1(z) = C(K) Logκ z +O(Logκ−1 z)where C(K) is a positive 
onstant. We refer to (Halberstam & Ri
hert,1974), (Gallagher, 1974), (Iwanie
, 1980) as well as (Rawsthorne, 1982)for more details 
on
erning sieve dimensions. We quote furthermore thepaper (Vaughan, 1973) where the reader will �nd more di�
ult evalua-tions of G1(z).We will simply follow the 
onvention to say that the sieve has dimen-sion κ whenever (12.3) holds.



106 12 Fourier expansion12.2. The Fourier 
oe�
ientsWe now de�ne for a prime to q what will be our Fourier 
oe�
ients,namely
w(a/q) = lim

Y→∞
1

Y

∑

n≤Y

(

∑

n∈Kd

λ♯
d

)2

e(na/q)

=
∑

q|[d1,d2]

λ♯
d1
λ♯

d2

[d1, d2]

∑

b∈K[d1,d2]

e(ab/q).(12.4)We shall also require the following (rather ugly) fun
tion:(12.5) ρz(q, δ) =
∑

q1q2q3=q/(δ,q)
(q1,q2)=(q1,q3)=(q2,q3)=1

max(q1q3δ,q2q3δ)≤z

(−1)ω(q3).Note that ρz(q, δ) = 1 when qδ ≤ z and vanishes when √qδ > z(sin
e max(q1q3, q2q3) ≥
√

q/δ). Moreover we 
he
k that |ρz(q, δ)| ≤
3ω(q/(δ,q)). The reader should also noti
e that, though this fun
tion isintri
ate enough in its de�nition, it is universal : it does not depend onthe set K.A third de�nition is required:(12.6) w♯

q =
∑

δ≤z

h(δ)ρz(q, δ)/G1(z)
2where h is de�ned in (2.5) (see also (11.15)).Lemma 12.1. We have

w(a/q) =
∑

b∈Kq

e(ab/q)w♯
q/|Kq|.Proof. From (12.4), we infer

w(a/q) =
∑

q|[d1,d2]

λ♯
d1
λ♯

d2

[d1, d2]
|K[d1,d2]|

∑

b∈Kq
e(ab/q)

|Kq|

= w♯
q

∑

b∈Kq
e(ab/q)

|Kq|
(12.7)
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oe�
ients 107say. Repla
ing λ♯ by its value, we get
G1(z)

2w♯
q =

∑

q|[d1,d2]

(d1, d2)

|K(d1,d2)|
∑

d1|ℓ1≤z

∑

d2|ℓ2≤z

µ(ℓ1/d1)µ(ℓ2/d2)

=
∑

ℓ1,ℓ2≤z

∑

d1|ℓ1,d2|ℓ2
q|[d1,d2]

(d1, d2)

|K(d1,d2)|
µ(ℓ1/d1)µ(ℓ2/d2)i.e.

G1(z)
2w♯

q =
∑

δ≤z

h(δ)
∑

ℓ1,ℓ2≤z

∑

δ|d1|ℓ1
δ|d2|ℓ2

q|[d1,d2]

µ(ℓ1/d1)µ(ℓ2/d2) =
∑

δ≤z

h(δ)ρz(q, δ)with
ρz(q, δ) =

∑

ℓ′1,ℓ′2≤z/δ

∑

d1|ℓ′1,d2|ℓ′2
q/(δ,q)|[d1,d2]

µ(ℓ′1/d1)µ(ℓ′2/d2)and we now evaluate the inner sum by multipli
ativity to re
over ourde�nition above. Its value is 0 as soon as there is a prime p whi
h divides
ℓ′1 or ℓ′2 but not q/(δ, q). Let then p be a prime su
h that pa‖ℓ′1, pb‖ℓ′2and pc‖q/(δ, q) with c ≥ 1. We 
he
k su

essively that the value of theinner sum is 0 if c ≤ max(a, b) − 1, or if c = max(a, b) > min(a, b) ≥ 1.Its value is 1 if c = max(a, b) > min(a, b) = 0 and −1 if c = a = b.We 
an thus write ℓ′1 = q1q3, ℓ′2 = q2q3 with q/(δ, q) = q1q2q3 and
(q1, q2) = (q1, q3) = (q2, q3) = 1 and the value of the inner sum is
(−1)ω(q3). This justi�es the de�nition of ρz in (12.5). ⋄ ⋄ ⋄If we have a sieve of dimension κ, then re
alling (2.7) we rea
h

G2
1(z)w

♯
q = G1(z) +O

(

3ω(q)(G1(z)−G1(z/q))
)whi
h we 
ombine with (12.3) to infer(12.8) G1(z)w

♯
q = 1 +O

(

3ω(q)(Log q)/Log z
)

, (q ≤ z).Uniformy, we have the bound(12.9) |G1(z)w
♯
q| ≪ 3ω(q),this being a dire
t 
onsequen
e of (12.5)�(12.6).To 
on
lude this part, we 
onsider ∑b∈Kq

e(ab/q). First as an easyappli
ation of the 
hinese remainder theorem, we readily dis
over thebound(12.10) ∣

∣

∣

∣

∑

b∈Kq

e(ab/q)

∣

∣

∣

∣

≤
∏

pν‖q

(

pν − |Kpν |
)

.



108 12 Fourier expansionNext if c/M = a/q with (a, q) = 1, then note that(12.11) 1

|KM |
∑

b∈KM

e(cb/M) =
1

|Kq|
∑

b∈Kq

e(ab/q).12.3. Distribution of βK in arithmeti
 progressionsWe assume K is of dimension κ. We further assume that(12.12) pν − |Kpν | ≤ cpνξfor some c > 0 and ξ ∈ [0, 1
2 [ whi
h implies (see (12.7), (12.8) and(12.10))(12.13) |G1(z)w(a/q)| ≪ q−1/2.We then get by using additive 
hara
ters

∑

n≤X

(

∑

n∈Kd

λ♯
d

)2

e(na/q) = Xw#
q

∑

b∈Kq
e(ab/q)

|Kq|
+O(z2)

=
X

G1(z)

∑

b∈Kq
e(ab/q)

|Kq|
+O

(

z2 +
X
√
q

|Kq|G1(z) Log z

)the last equality 
oming from (12.8), (12.10) and (12.12). As an easy
onsequen
e and re
alling (12.1), we get(12.14) ∑

n≤X
n≡b[q]

βK(n) =
X1b∈Kq

G1(z)|Kq |
+O

(

z2 +
X
√
q

|Kq|G1(z) Log z

)

.12.4. Fourier expansion of βKIn order to have a 
onfortable setting to evaluate ∑n βK(n)F (n), where
βK is de�ned in (12.1), we seek another expression of βK as in (Ramaré,1995). Note that

βK(n) =

(

∑

d/n∈Kd

λ♯
d

)2

=
∑

d1,d2

λ♯
d1
λ♯

d2
1K[d1,d2]

(n).



12.4 Fourier expansion of βK 109We now express the inner 
hara
teristi
 fun
tion by using additive 
har-a
ters and get
βK(n) =

∑

d1,d2

λ♯
d1
λ♯

d2

[d1, d2]

∑

amod [d1,d2]

e(an/[d1, d2])
∑

b∈K[d1,d2]

e(−ab/[d1, d2])

=
∑

d1,d2

λ♯
d1
λ♯

d2

[d1, d2]

∑

q|[d1,d2]

∑

amod ∗q

e(an/q)
∑

b∈K[d1,d2]

e(−ab/q).Re
alling (12.4), we see that we have rea
hed the fundamental identity(12.15) βK(n) =
∑

q≤z2

∑

amod ∗q

w(a/q)e(an/q).





13 The Selberg sieve for sequen
esThe setting we developed for the Selberg sieve enables us to sievesequen
es even if the 
ompa
t set K is not squarefree, though it will stillhave to be multipli
atively split. The adaptation is easy enough but were
ord the ne
essary formulae and detail some examples.13.1. A general expressionLet (un)n∈Z be a weighted sequen
e, the weights un being non-negativeand su
h that ∑n un < +∞. Let K be a multipli
atively split 
ompa
tset. We assume there exists a multipli
ative fun
tion σ♯, a parameter Xand a fun
tion R♯
d su
h that(13.1) ∑

n∈Kd

un = σ♯(d)X +R♯
d.We assume further that σ♯ is non-negative and de
reases on powers ofprimes (a likely hypothesis if one 
on
eives of σ♯(d) as being a density),whi
h translates into σ♯(q) ≥ σ♯(d) whenever q|d. Equivalently, we as-sume the existen
e of σ and Rd su
h that(13.2) ∑

n∈Ld

un = σ(d)X +Rdbut the non-in
reasing property on 
hains of multiples is way less obviousto state. Swit
hing from (13.1) to (13.2) is readily done through (11.2).There 
omes(13.3) 













(−1)ω(d)σ(d) =
∑

δ|d
µ(d/δ)σ♯(δ),

σ♯(d) =
∑

δ|d
(−1)ω(δ)σ(δ).All the analysis of se
tion 11.3 applies, ex
ept we are to 
hange thede�nition of our G-fun
tions. First, h is the solution of(13.4) 1

σ♯(d)
=
∑

q|d
h(q)(
ompare with (2.6)), that is to say(13.5) h(d) =

∏

pν‖δ

(

1

σ♯(pν)
− 1

σ♯(pν−1)

)

≥ 0.



112 13 The Selberg sieve for sequen
esPro
eeding as in se
tion 11.3, but with ρ = σ♯, we get(13.6) ∑

n∈S
un ≤

X

G1(z)
+
∑

d1,d2

λd1λd2R[d1,d2],with S de�ned by (11.1). Noti
e that we still have |λd| ≤ 1 as in thesimpler 
ase of intervals.13.2. The 
ase of host sequen
es supported by a 
ompa
tsetThe two main types of sequen
es that we want to sieve are the sequen
eof prime numbers, and the one of polynomial values :(13.7) A =
{

F (n)/ n ∈ [M + 1,M +N ]
}

.In both 
ases, the host sequen
e is supported by some multipli
ativelysplit 
ompa
t set. That is U for the sequen
e of primes, whi
h furtherveri�es the Johnsen-Gallagher 
ondition (2.4); and in fa
t (Z/dZ)d inthe 
ase of polynomial values! The polynomial intervenes in that our
ompa
t is of the shape (F−1
(

K′d
))

d
: we want n su
h that F (n) belongsto K′d for all d's below some bound.This latter 
ompa
t is wilder than it seems and does not in generalverify the Johnsen-Gallagher 
ondition: with F = X2, and K′ = 1 + U ,the 
lass 0 modulo p lifts to only one 
lass modulo p2 while all otherslift to (p − 1)/2 
lasses when p 6= 2.We shall treat an example with the sequen
e of prime numbers. Thissequen
e is 
arried by U , so that in our de�nition of Ld, we 
ould restri
tour attention to invertible 
lasses, or repla
e Ld by Ld∩Ud, as is apparentfrom (13.2).We shall 
omment on the problem of sieving the sequen
e of primeswith a non-squarefree sieve that would sieve out many 
lasses in se
-tion 13.4.13.3. On a problem of GallagherLet us explore and generalize a problem of (Gallagher, 1974). This willgive us ba
kground information for next se
tion, an example on how totreat the remainder term in Selberg sieve as well as an unusual appli
a-tion of Theorem 21.1 that we prove in the appendix. Our generalizationdepends on two parameters: an integer k ≥ 1 and a polynomial F withinteger 
oe�
ients. These two parameters being �xed, we 
onsider the



13.3 On a problem of Gallagher 113set de�ned as follows
K′(p, F ) =

{

F (n) / F (n) = a0 + a1p+ . . . ,with 0 ≤ aν ≤ p− 1, aν 6= 0 if ν < k(13.8) and n ∈ [M + 1,M +N ]
}

.In the aforementioned paper, Gallagher established the upper bound(13.9) ∣∣{n ≤ N / ∀p 6= n, n ∈ K′(p,X)
}∣

∣ ≤ (1 + o(1))2k(k!)2
N

Logk Nby using Corollary 2.1. We examine now the 
ase F = X2−2 and k = 2.We seek an upper bound for(13.10) ∣

∣

{

n ≤ N / ∀p 6= F (n), F (n) ∈ K′(p, F )
}∣

∣ .Our 
ompa
t set K is de�ned by split multipli
ativity: modulo pν , it is
F−1(K′(p, F )) taken modulo pν . First, we need the 
ardinality of Kq,for whi
h we �nd that







|K2| = 1, |K4| = 2,
|Kp| = p− 2, |Kp2| = p2 − 3p + 3 if p ≡ ±1[8],
|Kp| = p, |Kp2 | = p2 − p+ 1 if p ≡ ±3[8].Before proving this point, let us re
all that 2 is a square modulo odd pif and only if p ≡ ±1[8].Proof. We only handle 
ase p ≥ 3. If 2 is a quadrati
 residue modulo p,then one should avoid its two square roots. If 2 is not a quadrati
 residue,then no 
lasses are to be avoided modulo p. Let us turn to what happensmodulo p2 and 
onsider (a+ bp)2 − 2 = a2 − 2 + 2abp with 0 ≤ a, b < pand where a2 − 2 is prime to p. If a is prime to p, then 2abp takes anyvalue divisible by p by 
hoosing b properly. If a = 0 then by noting that

−2 = (p− 2) + p(p− 1), we see that any lift of a is allowed. ⋄ ⋄ ⋄For higher values of ν in pν , there are no further 
onstraints. Weinfer from the above that














|L2| = 1, |L4| = 0,

|Lp| = 2, |Lp2| = p− 3 if p ≡ ±1[8],
|Lp| = 0, |Lp2| = p− 1 if p ≡ ±3[8].The 
ardinality of |Lpν | vanishes when ν ≥ 3. Let us 
all D (resp. D′)the set of squarefree integers whose prime fa
tors are all ≡ ±1[8] (resp.

≡ ±3[8]). The error arising from use of (13.6) in our problem is not
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esmore than
(

∑

d≤Q

|Ld|
)2

≤
(

∑

d1d2
2d2

3≤Q
d1,d2∈D,(d1,d2)=1

d3∈D′

d2d32
ω(d2)

)2

≪ (QLog3Q)2.As for the main term, �rst note that


















|h(2)| = 1, |h(4)| = 0,

|h(p)| = 2

p− 2
, |h(p2)| = p2 − 3p

(p − 2)(p2 − 3p+ 3)
if p ≡ ±1[8],

|h(p)| = 0, |h(p2)| = 2p− 2

p2 − p+ 1
if p ≡ ±3[8].We evaluate the G-fun
tion by appealing to Theorem 21.1. We notesu

essively that

∑

p1≤Q
p1≡±1[8]

2Log p1

p1 − 2
= (1 + o(1))21

2 LogQ,that
∑

p2
2≤Q

p2≡±1[8]

(p2 − 3)p2 Log p2

(p2 − 2)(p2
2 − 3p2 + 3)

= (1 + o(1))1
2 Log

√

Q,and �nally that
∑

p2
2≤Q

p2≡±1[8]

(p3 − 1) Log p3

p2
3 − p3 + 1

= (1 + o(1))1
2 Log

√

Q.On 
olle
ting these estimates, we �nd that κ = 3/2. Let us de�ne
C =

∏

p≥3Cp where Cp is given by
Cp =



















(

1− 1

p

)3/2 p2

p2 − 3p+ 3
when p ≡ ±1[8],

(

1− 1

p

)3/2 p2

p2 − p+ 1
when p ≡ ±3[8]so that, by taking Q =

√
N/(LogN)4, our 
ardinal de�ned by (13.9) isno more than

(1 + o(1))
2
√
π N

C (LogN)3/2
.



13.5 On a subset of prime twins 11513.4. On a problem of Gallagher, IIWe 
ontinue to explore the pre
eding problem. Let k ≥ 1 be a �xedinteger. We 
onsider again
K′(p,X) =

{

n/n = a0 + a1p+ . . . ,with 0 ≤ aν ≤ p− 1, aν 6= 0 when ν < k
}

.While evaluating the 
ardinality of the L.H.S. of (13.9) in the 
ase F =
X, one may remark that all n belonging to the set we are interested inare prime numbers: we 
an thus sieve the sequen
e of primes insteadof the one of integers. But a problem arises while 
ontrolling the errorterm. We are required to bound(13.11) ∑

q≤Q

∣

∣

∣

∣

∑

p≤N
p∈Lq

Log p− |Lq|N
φ(q)

∣

∣

∣

∣by N/(LogN)k+1 at least, when Q = N
1
2−ε. This does not follow in animmediate way from the Bombieri-Vinogradov (see Lemma 13.1 below)theorem be
ause |Lq| is large. Roughly speaking, the reader will 
he
kthat if q = q1q

2
2q

3
3 · · · qk

k with the qi's being squarefree, then |Lq| is oforder q12q23 · · · qk−1
k . Splitting the remainder term into a 
ontributionfrom ea
h residue 
lass and applying Hölder's inequality, we redu
e theproblem to bounding

(

∑

q≤Q

|Lq|B max
ℓ∈Uq

∣

∣

∣

∣

∑

p≤N
p≡ℓ[q]

Log p− N

φ(q)

∣

∣

∣

∣

)1/B(
∑

q≤Q

max
ℓ∈Uq

∣

∣

∣

∣

∑

p≤N
p≡ℓ[q]

Log p− N

φ(q)

∣

∣

∣

∣

)1/Awith A−1 +B−1 = 1. In the summation 
ontaining B, we use the Brun-Tit
hmarsh Theorem to dispose of the part depending on the primes. Bytaking A to be large and B very 
lose to one, the Bombieri-VinogradovTheorem (see Lemma 13.1) would allow us to prove the �rst fa
tor tobe not more than a power of LogQ if only |Lq| were just smaller, or if
B = 1 were allowed.This tantalizing problem is open.13.5. On a subset of prime twinsOur aim here is to give an upper bound for the number of primes p notmore than N that are su
h that p+2 is a prime, while p+1 is squarefree.The 
ompa
t set K we 
hoose is de�ned by split multipli
ativity: forprime p, Kp is Up ∩ (Up + 2) while Kp2 is the set of invertibles that are
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esnot 
ongruent to −2 modulo p and not 
ongruent to −1 modulo p2. Forhigher powers of p, Kpν is de�ned by trivially lifting Kp2 , and so will beof no interest. This yields
{

|K2| = 1, |K4| = 1,
|Kp| = p− 2, |Kp2 | = p(p− 2)− 1 = p2 − 2p − 1 if p ≥ 3.But now the host sequen
e is that of primes p weighted with a Log pea
h so that(13.12) σ(d) = |Kd|/φ(d)Of 
ourse Ld ∩ Ud has at most one 
lass (
lass −2 modulo p and 
lass

−1 modulo p2), implying that the error term(13.13) Rd =
∑

p≤N
p∈Ld∩Ud

Log p− |Ld ∩ Ud|N
φ(d)may be 
ontrolled byLemma 13.1 (Bombieri-Vinogradov). For any B ≥ 0, there exists an

A ≥ 0 su
h that
∑

q≤Q

max
y≤N

max
amod∗q

∣

∣

∣

∣

∑

p≤N
p≡a[q]

Log p− N

φ(q)

∣

∣

∣

∣

≪ N/(LogN)Bfor Q =
√
N/(LogN)A.Note that this "lemma� 
ontains Lemma 10.4. By taking B = 2, thisyields

∑

d1,d2≤D

|λd1λd2R[d1,d2]| ≪ N/(LogN)2provided D2 =
√
N/(LogN)A. As for the main term, we 
he
k that







h(2) = 0, h(4) = 1,

h(p) =
1

p− 2
, h(p2) =

p− 1

p3 − 4p2 + 3p + 2
if p ≥ 3.Theorem 21.1 applies with κ = 1. We �nally getTheorem 13.1. The number of primes p ≤ N that are su
h that p + 1is squarefree and p+ 2 is prime does not ex
eed

4(1 + o(1))
∏

p≥3

p2 − 2p − 1

(p− 1)2
N

Log2Nas N goes to in�nity.



13.5 On a subset of prime twins 117This bound is 4 times larger than what is 
onje
tured but the mainpoint here is that this bound is indeed smaller than the one one gets forprime twins (see se
tion 21.3) by a large fa
tor, namely
2
∏

p≥3

p(p− 2)

p2 − 2p− 1
= 3.426 . . .





14 A general overviewIt is time for us to take some height and look at what we have beendoing from farther away. The �rst approa
h, through the large sieveinequality, relied on an arithmeti
al rewriting of
∑

q

∑

amod∗q

|S(a/q)|2
(

S(α) =
∑

n

une(nα)
)

.This rewriting did in fa
t handle the sum W (q) =
∑

amod∗q |S(a/q)|2 asone single term, and we tried to maximize it in the subsequent analysis.More pre
isely, whenever (un) vanishes outside of a given 
ompa
t set,we prove a useful lower bound for this quantity.Viewing W (q) as some kind of norm (the norm of a proje
tion ontosome subspa
e) makes it plausible that W (q) is also the s
alar produ
tof S by some fun
tion, namely the orthogonal proje
tion of S on theproper subspa
e1. This is pre
isely what our lo
al models ϕ∗q are for: toprovide a good approximation to this �proje
tion�. The 
ase of primesis most telling: in essen
e, Corollary 2.1 relies on(14.1) W (q) ≥ µ2(q)

φ(q)
|S(0)|2if (un) is 
arried by U up to at least q, while with ϕ∗q(n) = µ(q)cq(n)/φ(q)de�ned in (8.11), we get(14.2) [(un)|ϕ∗q ] =

µ2(q)

φ(q)
|S(0)|2.This is how lo
al models enter the game. Note that the lo
al models weintrodu
ed for the sums of two primes also take 
are of the size of theelements, so, using algebrai
 number theory terminology, they take 
areof the lo
al 
ontribution not only from the �nite pla
es, but also fromthe one at in�nity.The third viewpoint is then to try to re
onstru
t (un) from theselo
al models, and that is exa
tly where the Selberg sieve 
omes in. We
onsider C∑q ϕ

∗
q with some 
oe�
ient C, and we say it ought to be anapproximation of the 
hara
teristi
 fun
tion of our set. This s
heme isalso the one followed to build the fun
tion ΛQ (see (11.32)) for the primesand is further impli
it in the work of (Huxley, 1972b). But an additionalun
alled for event happens here: by 
hanging slightly the 
oe�
ient C,1The reader who went through 
hapter 4 would re
ognize W (q) as being

‖Uq̃→q(∆q(f))‖2
q , the surrounding 
ompa
t set being (Z/dZ)d.



120 14 A general overviewwe dis
over that we 
an arrange matters so that C∑q ϕ
∗
q is exa
tly 1 onthe set S we want to dete
t (use (11.13) and Lemma 2.1 with d = 1).It is expe
ted to be of small size on the 
omplement of S, so, followingSelberg, we repla
e C∑q ϕ

∗
q by its square and get an upper bound forthe 
hara
teristi
 fun
tion of S. This is the third aspe
t.



15 Some spe
ial weighted sequen
esUpto now, we did not investigate pre
isely what happens at the pla
eat in�nity. We introdu
ed some Fourier transforms in 
hapter 10, andwe already saw some expressions frequent in this area of mathemati
s inse
tion 1.2.1. We expand all these 
onsiderations in this 
hapter, and,inter alia, shall provide a proof of Theorem 1.1.The approa
h we follow here is due to Selberg to prove the large sieveinequality; in parti
ular he built the fun
tion f−1/2 given below but itturned out that Beurling had already a
hieved su
h a 
onstru
tion inthe late 1930's without publishing. This explains why this fun
tion isnow refered to as the Beurling-Selberg fun
tion.The reader should 
onsult the paper of (Vaaler, 1985) (see also (Gra-ham & Vaaler, 1981)) and of (Holt & Vaaler, 1996) on whi
h we will relyheavily. Let us note �nally that the generalisation of Theorem 1.1 whi
hwe provide in Theorem 15.2 appears to be novel, as well as its 
orollary,Theorem 15.3.15.1. Some spe
ial entire fun
tionsLet ν > −1 be a real number. Following (1.16) of (Holt & Vaaler, 1996)we set
kν(z) = kν(0, z) =

2Γ(ν + 2)

z
(2/z)ν Jν+1(z)(15.1)

=
∑

n≥0

(−1)n(z/2)2n(ν + 1)

n!(ν + 1) . . . (ν + n+ 1)
,(15.2)where Jν+1(z) is the Bessel fun
tion of order ν + 1. Let us quote thefollowing properties of kν from (Holt & Vaaler, 1996):Lemma 15.1. The fun
tion kν is even (kν(−z) = kν(z)). Its growth is
ontrolled in verti
al strips by the estimate kν(z) = O (exp(|ℑz|)) whileon the real axis we have

kν(x)
2 ≪ν

1

(1 + |x|)2ν+3
, |kν(x)| ≤ (ν+1) exp(x2/(4(ν+1))) (x ∈ R).Finally, we also have

∫ +∞

−∞
kν(x)

2|x|2ν+1dx = Γ(ν + 1)Γ(ν + 2)22ν+2.



122 15 Some weighted sequen
esBy a "verti
al strip", we mean a set {z ∈ C, a ≤ ℜz ≤ b} for some�nite a and b.Proof. Only the se
ond bound is non obvious but derives easily fromthe Taylor expansion (15.2). ⋄ ⋄ ⋄We dedu
e the following Theorem from (Holt & Vaaler, 1996):Theorem 15.1. There exists a real entire fun
tion ℓν su
h that
{

ℓν(z) = Oε (exp{(2 + ε)|ℑz|}) for any ε > 0,
| sgn(x)− ℓν(x)| ≤ kν(x)

2 (x ∈ R).Case ν = −1/2 gives rise to the so-
alled Beurling-Selberg fun
-tion. The reader will �nd an expli
it expression for the fun
tions impliedin (Vaaler, 1985), together with a full presentation of the interpolationside of the problem.Proof. We quietly read the proof of Theorem 1 of (Holt & Vaaler,1996), with ξ = 0. Equations referen
es here refer to equations of thispaper. We 
on
lude that






sν(z, 0, 1/π) = ℓν(0, z) − kν(0, z)
2,

tν(z, 0, 1/π) = ℓν(0, z) + kν(0, z)
2,

uν(0, 1/π) =
∫∞
−∞ kν(0, x)2dx = Γ(ν + 1)Γ(ν + 2)22ν+2,on reading (5.5), (5.6) together with the 
omments around these equa-tions in (Holt & Vaaler, 1996). Note that sν(z, 0, 1/π) = S(z) and

tν(z, 0, 1/π) = T (z) for the proper spa
e. The fun
tions Aν and Bν arede�ned in (1.13) and (1.14) while the fun
tions kν and ℓν are de�nedjust before the proof of Theorem 1. In parti
ular
kν(0, z) =

Kν(0, z)

Kν(0, 0)
, πzKν(0, z) = Bν(z)Aν(0)−Aν(z)Bν(0)where the latter 
omes from (3.5). But Bν(0) = 0 while Aν(0) = 1, and

Kν(0, z) =
Bν(z)

πz
=

Γ(ν + 1)

πz
(2/z)ν Jν+1(z).We �nd that Kν(0, 0) = 1/(2π(ν + 1)), so that

kν(0, z) =
2Γ(ν + 2)

z
(2/z)ν Jν+1(z)as announ
ed. ⋄ ⋄ ⋄Note that

k−1/2(x) =
sinx

x
, and k1/2(x) =

sinx− x cos x

x3/3
,both having value 1 at x = 0.



15.2 Majorants for the 
hara
teristi
 fun
tion of an interval 12315.2. Majorants for the 
hara
teristi
 fun
tion of anintervalLet ǫ > 0 be a real number that is �xed upto the end of the next se
tion.Eventually, we shall let ǫ go to 0.We 
onsider here(15.3) χ(x) =











1 if M − ǫ < x < M +N + ǫ,

1/2 if x = M − ǫ or x = M +N + ǫ,

0 if x /∈ [M − ǫ,M +N + ǫ]whereM and N are two non-negative real numbers. This is the fun
tionfor whi
h we seek a well behaved majorant, where what well behavedexa
tly means will be 
lear from the proof below.Let us set(15.4) fν(z) = ℓν(z) + kν(z)2and next de�ne bν(x) by
2bν(x) = fν(2πδ(x − (M − ǫ))) + fν(2πδ(M +N + ǫ− x)),(15.5)

= 2χ(x) + fν(2πδ(x − (M − ǫ)))− sgn(2πδ(x − (M − ǫ)))
+fν(2πδ(M +N + ǫ− x))− sgn(2πδ(M +N + ǫ− x)).By Theorem 15.1, the fun
tion bν is an upper bound for χ (whi
h implies,in parti
ular, that it is non negative) and veri�es for z in C
bν(z) = Oε (exp{πδ(2 + ε)|ℑz|}) for any ε > 0.This bound expresses the fa
t that bν is of exponential type 2πδ. Itholds also for xhbν(x) (h non negative integer), a fun
tion that is in

L1(R) ∩ L2(R), both results provided 2ν + 2 > h.Lemma 15.2. Let ν > −1. Let R be a polynomial of degree < 2ν + 2and α ∈ R/Z. We have, if |α| ≥ δ,
∑

n∈ZR(n)bν(n)e(nα) = 0.Furthermore
∑

n∈ZR(n)bν(n) =

∫ +∞

−∞
R(t)bν(t)dt.Proof. We write R =

∑

rhX
h. The Poisson summation formula gives

∑

n∈ZR(n)bν(n)e(nα) =
∑

m∈Z∑h

rhb̂
(h)(m− α)/(2iπ)h.
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esEvery term on the R.H.S. vanishes when |α| ≥ δ by the Paley-WienerTheorem and our remark that nhbν(n) is of exponential type 2πδ when
h < 2ν + 2. ⋄ ⋄ ⋄15.3. A generalized large sieve inequality.Let us start with some preliminary material on polynomials. Let Q ∈C[X] of degree ≤ 2ν + 1 and de�ne Q∗(X) = Q((X − M + ǫ)/N).Lemma 15.2 yields
∑

n∈ZQ∗(n)bν(n) = N

∫ +∞

−∞
Q(t)bν(Nt +M + ǫ)dt

= N

∫ 1

0
Q(t)dt +O∗

(

1

2πδ

∫ +∞

−∞
k2

ν(t)
∣

∣

∣
Q
( t

2πNδ

)

+Q
( 1− t

2πNδ

)∣

∣

∣
dt

)

= N

∫ 1

0
Q(t)dt +O∗

(

δ−1ρν(Q, 2πδN))
)say, where ρν(Q, ξ) is an upper bound for

1

2π

∫ +∞

−∞
k2

ν(t)
(

∣

∣Q(t/ξ) +Q((1− t)/ξ)
∣

∣

)

dt.We de�ne further(15.6) Q♭(x) =
∑

h

|qh|x−h when Q(x) =
∑

h

qhx
h.The following lemma provides us with a manageable upper bound for

ρν(Q, ξ).Lemma 15.3. We have ρν(Q, ξ) ≤ ρ♭
νQ

♭(ξ) where
ρ♭

ν = max
0≤h≤2ν+1

1

2π

∫ +∞

−∞
k2

ν(t)|th + (1− t)h|dt.Moreover ρ♭
ν ≤ 3

2(2ν+2)2ν+2 for ν ≥ −1/2 and more pre
isely ρ♭
−1/2 = 1.Proof. To give an upper bound for ρν , note that |th + (1 − t)h| ≤

(1 + 22ν+1)max(|t|2ν+1, 1) if h ≤ 2ν + 1. Using Lemma 15.1, we get
ρ♭

ν ≤
1 + 22ν+1

2π

{

2(ν + 1)2 exp(1/(2(ν + 1))) + Γ(ν + 1)Γ(ν + 2)22ν+2
}

.It is then easy to numeri
ally verify the upper bound, sin
e we 
an
ontrol what happens for large ν by using
Γ(x) ≤

√
2πx(x/e)x exp(1/(12x)), (x > 0).



15.3 A generalized large sieve inequality. 125see (Abramowitz & Stegun, 1964) equation (6.1.38). As a matter offa
t, we have the stronger bound ρ♭
ν ≤ 1

6(2ν + 2)2ν+2 for ν ≥ 1/2 and
ρ♭
1/2 ≤ 3.6 ⋄ ⋄ ⋄Let us now set(15.7) SQ(α) =

M+N
∑

n=M

anQ
∗(n)e(nα) =

M+N
∑

n=M

anQ

(

n−M
N

)

e(nα).The following theorem generalizes Theorem 1.1, whi
h we re
over ontaking ν = −1/2 and Q = {1} sin
e the previous lemma gives ρ♭
−1/2 = 1.1Theorem 15.2. Let Q be a �nite set of polynomials of degree ≤ ν+1/2and orthonormal for the s
alar produ
t ∫ 1

0 P1(t)P2(t)dt. Let X be a δ-wellspa
ed set of points of R/Z. We have
∑

Q∈Q

∑

x∈X
|SQ(x)|2 ≤ ‖S‖22

(

N + δ−1ρ♭
ν

∑

Q∈Q
Q♭(2πδN)2

)

.In this Theorem, ǫ is taken to be 0 and ρ♭
ν is de�ned in Lemma 15.3.Proof. We have

Σ =
∑

Q∈Q

∑

x∈X
|SQ(x)|2 =

M+N
∑

n=M

an

∑

Q∈Q

∑

x∈X
SQ(x)Q∗(n)e(nx)to whi
h we apply Cau
hy's inequality. We get

Σ2 ≤ ‖S‖22
∑

n∈Z bν(n)
∑

Q1,Q2∈Q

∑

x,y∈X
SQ1(x)SQ2(y)Q

∗
1(n)Q∗2(n)e(n(x− y))whi
h is not more than

‖S‖22







N
∑

Q∈Q

∑

x∈X
|SQ(x)|2 + δ−1ρ♭

ν

∑

x∈X

(

∑

Q∈Q
|SQ(x)|Q♭(2πδN)

)2






.We use Cau
hy's inequality on the inner square and get
Σ ≤ ‖S‖22

{

N + δ−1ρ♭
ν

∑

Q∈Q
Q♭(2πδN)2

}as required. Note that Q has 
ardinality at most ν + 1. We �nally let ǫtend to 0. ⋄ ⋄ ⋄1The reader might wonder why we haveN here instead of N−1 as was announ
ed.This is be
ause our interval is slightly di�erent, fromM+0 toM+N instead of from
M + 1 to M +N .
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es15.4. An appli
ationOne may wonder whether this result is stronger than the 
lassi
al largesieve inequality or not. Well, in fa
t, it is essentially equivalent, at leastif 2πδN is bounded below away from 0, and for the following reason.First, it 
ontains this inequality; on the other side, the modi�
ationsintrodu
ed by the Q∗ enables us to lo
alize n essentially in intervals ofsize N/(ν + 3/2). However, one 
ould �rst split our interval in smallerpie
es and we apply on these the 
lassi
al large sieve inequality; we getthis way bounds of the same strength as the one above. Nonetheless,this inequality has some interesting 
onsequen
es, as we shall see below.For Q, we 
an take a modi�
ation of the Legendre polynomials:(15.8) Q = {Lm(2X − 1),m ≤ ν + 1/2}, Lm =
1

2mm!

dm

dxm
(1− x2)m.We have(15.9) L0 = 1, L1 = x, L2 = (3x2 − 1)/2, L3 = (5x3 − 3x)/2.Restri
ting our attention to ν = 1/2, we readily get the following The-orem, whi
h generalizes Corollary 2.1.Theorem 15.3. Assume K is multipli
atively split and veri�es the John-sen-Gallagher 
ondition (2.4). Let f be the 
hara
teristi
 fun
tion ofthose integers of the interval [M,M +N ] that belongs to Kq for all q ≤

Q ≤ 2
√
N . We set Z =

∑

n f(n). We have
Z +

∣

∣

∣

∣

∑

n

(2n

N
− 1
)

f(n)

∣

∣

∣

∣

2

/Z ≤ (N + 20Q2)/G1(Q).Proof. The proof is straightforward and only varies from the oneof Corollary 2.1 in that we use Theorem 15.2 with ν = 1/2 insteadof Theorem 1.1 and use the set Q de�ned in (15.8). Our hypothesis
Q ≤ 2

√
N ensures us that 2πδN ≥ 2, so that

∑

Q∈Q
Q♭(2πδN)2 ≤ 1 + (1 + 21

2)2 = 5.The reader will easily draw the required 
on
lusion. ⋄ ⋄ ⋄Compared to Corollary 2.1, we lose the fa
tor 20, a fa
t that is irrel-evant for most appli
ations, but gain the term ∣

∣

∑

n

(

2n
N − 1

)

f(n)
∣

∣

2
/Z. It
ontributes if the un-sifted elements (the n's with f(n) = 1) a

umulatemore on [0, N/2] or on [N/2, N ]. For the Brun-Tit
hmarsh inequality,it means that we 
ould beat the 
onstant 2 if su
h a 
ase were to hap-pen . . .



15.5 Perfe
t 
oupling 127Similar type of results have re
ently been studied by (Coppola &Salerno, 2004).15.5. Perfe
t 
ouplingThe proof above has several interesting features, but a main one is toprovide us with a weighted sequen
e that is perfe
tly behaved in arith-meti
 progressions: the sequen
e (bν(n)) is a majorant for the sequen
eof integers in the interval [M,M +N ] and veri�es
∑

n∈Z bν(n)e(na/q) = 0 if (a, q) = 1 and 1 < q ≤ 1/δso that, if we set B =
∑

n∈Z bν(n), we get(15.10) ∀q ≤ δ−1,
∑

n∈Z
n≡c[q]

bν(n) = B/qwhere the main feature is that no error term o

urs. By taking ν largeenough, we 
an also be sure that bν(n) de
reases rapidly enough. Con-
erning its derivative, the Paley Wiener Theorem ensures that the de-rivative of fν de�ned in (15.4) is indeed bounded in terms of ν, so that(15.11) |b′ν(x)| ≪ν δ.Su
h an inequality proves that bν does not vary mu
h over intervals ofsize not more than δ−1.We shall see in the next 
hapter how su
h a weighted sequen
e may beused to 
onsiderably simplify the study of the hermitian produ
t derivedfrom a lo
al system.





16 On the di�eren
e between 
onse
utiveprimesIn this 
hapter, we show how the perfe
tly well distributed weightedsequen
e (bν(n))n built in the pre
eding 
hapter 
an be used to simplifythe analysis of the hermitian produ
t stemming from a lo
al system.We show furthermore that the key point of Bombieri & Davenport'sproof 
on
erning small di�eren
es between primes is in fa
t 
ontained inLemma 1.2 and 1.1.16.1. Introdu
tionSmall di�eren
es between primes are a 
hoi
e subje
t between additiveand multipli
ative number theory. To show this di�eren
e is in�nitelyoften equal to 2 is nothing else than the prime twin 
onje
ture. We
onsider here a mu
h more modest aim and show that (pn+1−pn)/Log pnis in�nitely often ≤ 0.5 and even a bit better, where (pn) is the sequen
eof primes.The prime number Theorem tells us that there are asymptoti
ally
x/Log x prime numbers up to x, so that the mean di�eren
e is Log x,whi
h implies that (pn+1−pn)/Log pn is in�nitely often ≤ 1+ε for every
ε > 0.We set(16.1) Λ1 = lim inf

pn+1 − pn

Log pn
.In 1940 Erdös was the �rst one to go beyond Λ1 ≤ 1 in (Erdös, 1940)by showing that Λ1 ≤ 57/59. He of 
ourse did not use the Bombieri-Vinogradov Theorem (whi
h was proved only in 1965). This result hasthen been improved upon, in (Rankin, 1947) and then again in (Rankin,1950) by plugging in sieve results. A further improvement was a
hievedin (Ri

i, 1954) where the inequality Λ1 ≤ 15/16 is proved. The se
ondmajor step is due to (Bombieri & Davenport, 1966) whi
h establishesthat Λ1 ≤ 0.467, this time using the Bombieri-Vinogradov Theorem.(Huxley, 1973) started another round of improvements by introdu
ing
ombinatorial arguments. In 1977, he �nally got Λ1 ≤ 0.443.This part of the story ends up with (Maier, 1988) who employed hisnow famous matrix method and improved all previous results by an e−γfa
tor. In parti
ular Λ1 ≤ 0.249.



130 16 Small gaps between primes(Goldston et al., 2005) is a major breakthrough in this area. Meth-ods used therein are not foreign to what is exposed here but are overalltoo new and shifting to be part of this book. The reader will �nd severalpreprints on the Arxiv server.We prove here that Λ1 ≤ 1/2 by using the setting developed till here.In parti
ular we do not require any 
ir
le method. It would be an easytask to improve on this bound, and we indi
ate in a last se
tion howto a
hieve this. Note that if we were to avoid the Bombieri-VinogradovTheorem, the base method developed here would yield Λ1 ≤ 1, that
ould also be improved into Λ1 < 1. This time only the prime numbertheorem in arithmeti
 progressions would be used so that we 
ould gete�e
tive results and even expli
it ones. Furthermore, the simpli
ity ofthe approa
h renders it usable for a large variety of sequen
es.Throughout this 
hapter we shall use(16.2) S = 2
∏

p≥3

(1− (p− 1)−2) , S(j) = S
∏

2<p|j

p− 1

p− 2
.16.2. Some preliminary materialLemma 16.1. There exists a positive 
onstant c0 su
h that every intervalof length at least c0/φ(q) 
ontains at least a point a/q with (a, q) = 1.Proof. Let I be an interval of length q/φ(q) in [1, q]. Fix some u >

0. The number of points divisible by a prime fa
tor ≥ qu is at most
1+ q1−uφ(q)−1 and the number of su
h primes it as most 1/u. Thus thenumber of points in I that are 
oprime to all the prime fa
tors of q lessthan z = qu for a small enough u is, by Brun's sieve (Theorem 2.1 ofChapter 2 of (Halberstam & Ri
hert, 1974), on taking κ = b = 1 and
λ = 0.1) , at least(16.3) 2

3
|I|φ(q)

q
− (1 + q1−uφ(q)−1)/u ≥ 1

2
|I|φ(q)

qwhen q is large enough, say q ≥ q0, and u small enough. When q issmall, there is at least one su
h point in [1, q]. Hen
e the result with
c0 = max{φ(q), q < q0}. ⋄ ⋄ ⋄Lemma 16.2. We have
∑

amod ∗q

∣

∣

∣

∣

∑

1≤m≤M

g(m)e(ma/q)

∣

∣

∣

∣

2

≫
(

1−O(M2/φ(q)2)
)

φ(q)
∑

m

|g(m)|2



16.3 The a
tors and their lo
al approximations 131where the 
onstants implied in the O- and ≫-symbols do not depend on
g nor on q.Proof. Put S(u) =

∑

1≤m≤M g(m)e(mu) and set δ = c0/φ(q) the valuegiven by Lemma 16.1. We then have
|S(a/q)− S(u)| ≤ 2π|u− a/q|

∑

1≤m≤M

|mg(m)|and thus
|S(a/q)|2 ≥ |S(u)|2 − 4π|u− a/q|

∑

1≤m≤M

|mg(m)|
∑

m

|g(m)|.Integrating this inequality yields
|S(a/q)|2 ≥ δ−1

∫ a/q+δ/2

a/q−δ/2
|S(u)|2 du− 2πδM

(

∑

1≤m≤M

|g(m)|
)2from whi
h the result follows easily. ⋄ ⋄ ⋄16.3. The a
tors and their lo
al approximationsLet 2J + 2 be the minimum of p′ − p when p′ > p ≥ N : we are requiredto bound J from above. Let K be an integer whi
h we assume prime inthe range 1

10 LogN ≤ K ≤ LogN . The simplest appli
ation will take
K ≃ J . We also assume N large enough, and in parti
ular K 6= 2.For ea
h j ∈ [1,K], we 
onsider(16.4) f (j)(n) =

{

Log(n+ 2j) if n+ 2j is a prime in ∈ [N, 2N ],
0 else,as well as f =

∑

j f
(j). We shall approximate these fun
tions modulo qby(16.5) ϕ(j)

q = 1(n+2j,q)=1

√

b(n)where b(n) = b−1/2(n) is des
ribed in the previous 
hapter, at the levelof equation (15.6), related to the parameter δ = Q−2. We shall 
hosethe parameter Q later on: it regulates in (16.8) below the size of thesifting set on moduli. This weighted sequen
e is introdu
ed so as tohave (16.10). Sin
e having a proper majorant at the end point of theinterval [N, 2N ] is not important, we take ǫ = 0 and �nd that
∑

n∈Z b(n) = b̂(0) = N +Q2.



132 16 Small gaps between primesTo ϕ(j)
q , we also asso
iate (see (8.10))(16.6) ϕ(j)∗

q (n) =
µ(q)cq(n+ 2j)

φ(q)

√

b(n).We further set(16.7) ϕ∗q =
∑

1≤j≤K

ϕ(j)∗
q .We have just been talking about approximating but we still have tospe
ify for whi
h norm . . . A gap we �ll in the next two subse
tions.The hermitian produ
t. Our main lo
al system is given by (ϕ∗q)q∈Qfor(16.8) Q = {q ≤ Q,µ2(q) = 1, q 6= K, 2K}.The parameter Q 
an be taken as √N/LogAN for a su�
iently large

A; this is the level to whi
h we shall sieve and is for
ed by our use of theBombieri-Vinogradov Theorem (see Lemma 13.1). If in this theorem,one 
ould rea
h moduli till Qθ say, with θ > 1/2, then we would get
Λ1 ≤ 1 − θ by following our proof (or Bombieri & Davenport's originalone). We take simply Q =

√
N exp(−√LogN), to avoid having to seewhi
h power A we will need 
hoose. This gives rise to the hermitianprodu
t(16.9) 〈h|g〉 =
∑

q∈Q
[h|ϕ∗q ][g|ϕ∗q ]/[ϕ∗q |ϕ∗q ]as in (10.2), sin
e(16.10) [ϕ∗q |ϕ∗q′ ] = 0 (∀q 6= q′ ≤ Q).Su
h a relation of 
ourse simpli�es a great deal of our work. Sin
e we
ould dispense with it in this proof, it 
annot be 
onsidered as beingessential. The reader should however keep in mind when dealing withsu
h a problem of this possibility. Looking ba
k on the way we initiallyproved Theorem 1.1, we see that the fa
tor √F (n) in (1.8) had exa
tlythe same role.We need an apriori lower bound for [ϕ∗q |ϕ∗q ].Lemma 16.3. When q ∈ Q, then K3[ϕ∗q |ϕ∗q ]≫ N/φ(q).



16.3 The a
tors and their lo
al approximations 133Proof. Let us remark that
[ϕ∗q |ϕ∗q ] =

∑

1≤j,k≤K

µ(q)2

φ2(q)
cq(2(j − k))(N +Q2)(16.11)

=
µ(q)2(N +Q2)

φ2(q)

∑

amod ∗q

∣

∣

∣

∑

1≤j≤K

e(2aj/q)
∣

∣

∣

2
.(16.12)When q ≥ cK for a large enough c, then Lemma 16.2 yields the result.When q ≤ cK, we restri
t the sum over a to a = 1. We have

∑

1≤k≤K

e(2k/q) = e(2/q)
1 − e(2K/q)
1− e(2/q)whi
h is at least 1/q if q ∤ 2K so that K3[ϕ∗q |ϕ∗q ]≫ N/φ(q) in this 
ase.The 
ase q = 2 is readily worked out. Note that for q = K or q = 2K(forbidden by our de�nition of Q), the above norm indeed vanishes. ⋄⋄⋄Repla
ing f (j) by its lo
al approximation (ϕ

(j)
q )q. The main Theoremon whi
h the proof really relies is the following one. In its proof, we showthat the Bombieri-Vinogradov Theorem enables us to approximate f (j)by its lo
al approximation (ϕ

(j)
q )q . The proof then splits into two parts:showing that the hypothesis of this theorem are met (what we 
all aprioriestimates), and 
omputing the resulting arithmeti
al expressions, a partthat is tedious but with no real di�
ulties.Theorem 16.1. Let (αq)q∈Q be a sequen
e of 
omplex numbers, with

|αq| ≤ 2ω(q). We have
∣

∣

∣

∣

∑

q∈Q
αq[f

(j) − ϕ(j)
q |ϕ∗q ]

∣

∣

∣

∣

≪ N/Log100Nuniformly in j ≤ K.Proof. We �rst 
he
k that
[f (j)|ϕ(k)∗

q ] =
µ(q)

φ(q)

∑

bmod q

cq(b+ 2k)
∑

n≡b[q]
n+2j∈P

Log(n+ 2j)
√

b(n)

=
µ(q)

φ(q)

∑

amod q

cq(a+ 2k − 2j)
∑

m≡a[q]
m∈P

Logm
√

b(m− 2j)by setting m = n + 2j, and b+ 2j = a. If we were to approximate herethe sum over m by N/φ(q) when a is prime to q, then we would requiresu
h an approximation for all a modulo q: the Bombieri-Vinogradov



134 16 Small gaps between primesTheorem would not be enough to 
on
lude. We 
an however redu
e thisapproximation to essentially a single progression as follows:
[f (j)|ϕ(k)∗

q ] =
µ(q)

φ(q)

∑

d|q
dµ(q/d)

∑

amod q,
a+2(k−j)≡0[d]

∑

m≡a[q]
m∈P

Logm
√

b(m− 2j)

=
µ(q)

φ(q)

∑

d|q
dµ(q/d)

∑

m≡−2(k−j)[d]
m∈P

Logm
√

b(m− 2j).(16.13)So for every d having some prime fa
tor in 
ommon with 2(k − j) (thatis, for all d 6= 1's when j = k), the 
ontribution from the sum over
m is very small, in fa
t O(Log d), while otherwise we may approximatethis sum by N/φ(d). The overall error term thus introdu
ed is boundedvia the Bombieri-Vinogradov Theorem (see Lemma 13.1; removing the
√

b(m− 2j) is no problem be
ause j being small enough, the deriva-tive of the fun
tion is properly 
ontrolled by the fa
t that Q is small,see (15.11)) by O(N/Log100N). As for the main term, it is
µ(q)N

φ(q)

∑

d|q
(d,2(j−k))=1

dµ(q/d)

φ(d)whi
h exa
tly equals [ϕ
(j)
q |ϕ(k)∗

q ]N/(N +Q2), as expe
ted. ⋄ ⋄ ⋄16.4. Computation of some hermitian produ
tsWe �rst establish an apriori upper bound for [f (j)|ϕ(k)∗
q ].Lemma 16.4. We have |[f (j)|ϕ(k)∗

q ]| ≪ 2ω(q)N/φ(q).Proof. We use (16.13) and the Brun-Tit
hmarsh inequality to get
|[f (j)|ϕ(k)∗

q ]| ≪ µ(q)2

φ(q)

∑

d|q
dN/φ(d) ≪ 2ω(q)N/φ(q)as demanded. ⋄ ⋄ ⋄We next 
ompute the required s
alar produ
ts 〈f (j)|f〉.Lemma 16.5. Uniformly in 1 ≤ j ≤ K, we have 〈f (j)|f〉 = (2 +

o(1))KN .



16.4 Computation of some hermitian produ
ts 135Proof. We write
〈f (j)|f (k)〉 =

∑

q∈Q
[f (j)|ϕ∗q ][f (k)|ϕ∗q ]/[ϕ∗q |ϕ∗q ]in whi
h we �rst repla
e f (j) by ϕ(j)

q by using Theorem 16.1. Hypothesisare met by appealing to Lemma 16.3 and 16.4. As a se
ond step werepla
e f (k) by ϕ(k)
q and rea
h

〈f (j)|f (k)〉 =
∑

q∈Q
[ϕ(j)

q |ϕ∗q ][ϕ
(k)
q |ϕ∗q ]/[ϕ∗q |ϕ∗q ] +O(N/Log97N).We sum this expression over k and rea
h

〈f (j)|f〉 =
∑

q∈Q
[ϕ(j)

q |ϕ∗q ] +O(N/Log96N).Now we have as in (16.11)
[ϕ(j)

q |ϕ∗q ] = [ϕ∗(j)q |ϕ∗q ] =
∑

1≤k≤K

µ(q)2

φ2(q)
cq(2(j − k))(N +Q2).Summing over q, we readily re
ognize

(N +Q2)
(

∑

k 6=j

S(j − k) +O(Q−1 +K−1) +G(Q)
)where the O(K−1) is here to take 
are of the 
ondition q 6= K, 2K. Nextwrite(16.14) S(j − k) = S

∑

d|j−k
(d,2)=1

1

φ2(d)with φ2(d) =
∏

p|d(p− 2), getting
∑

k 6=j

S(j − k) = S
∑

d≤K,
(d,2)=1

1

φ2(d)

∑

k≡j[d],k 6=j

1

= S
∑

d≤K,
(d,2)=1

1

φ2(d)

(K

d
+O(1)

)

= (2 + o(1))K.The lemma follows readily. ⋄ ⋄ ⋄



136 16 Small gaps between primes16.5. Final argumentWe take for K the largest prime not more than J , where 2J + 2 is theminimum of p′ − p when p′ > p ≥ N . Due to the smoothing b(n),Lemma 1.2 simply reads(16.15) 〈f |f〉 ≤ [f |f ].We 
ontinue by expanding [f |f ]: the produ
ts [f (j)|f (k)] vanish by hy-pothesis when k 6= j. On the L.H.S., sin
e we are able to 
ompute therelevant produ
ts by Lemma 16.5, we show that they do not vanish, andthus this will for
e J to be small enough. More pre
isely we have(16.16) ∑

1≤j≤K

2KN +
∑

1≤j≤K

1
2N LogN ≤

∑

1≤j≤K

(1 + o(1))N LogNfrom whi
h we infer that 2K ≤ (1
2 + o(1)) LogN as required.Let us sket
h a method for improving on this bound. Take K some-what larger than J but still ≤ 2J . The same inequality gives

2K2N ≤ (1 + o(1))1
2KN LogN +

∑

|j−k|>J

∑

N<p,p′≤2N,
p−p′=2(j−k)

Log pLog p′.We 
an 
ontrol the right hand side by using the sieve bound
∑

N<p,p′≤2N,
p−p′=2(j−k)

Log pLog p′ ≤ 4(1 + o(1))NS(2(j − k))whi
h is 4 times larger than what is expe
ted to be true. A proof ofthis upper bound is provided in subse
tion 21.3, at least in the 
ase
j − k = 1, but the general 
ase is not mu
h more di�
ult. We readily
he
k by appealing to (16.14) that















∀j ≤ K − J,
∑

k≥j+J

S(2(j − k)) = 2(K − J − j) + o(K),

∀j ≥ J,
∑

k≤J−j

S(2(j − k)) = 2(j − J) + o(K),so that
∑

|j−k|>J

∑

N<p,p′≤2N,
p−p′=2(j−k)

Log pLog p′

≤ 8N

(

∑

j≤K−J

(K − J − j) +
∑

K≥j≥J

(j − J)

)

+ o(N Log2N)



16.5 Final argument 137whi
h we �nally bound by 8N(K − J)2 + o(N Log2N). Set K/J = θand (LogN)/J = λ. We 
hoose θ in su
h a fashion that �rst
4θ2 > θλ+ 16(θ − 1)2and se
ond so that λ is maximal. We take θ = 2/

√
3 and rea
h Λ1 ≤

(2 +
√

3)/8 = 0.466 · · · < 1/2 as announ
ed.





17 Approximating by a lo
al modelIt is high time we show in a somewhat general setting how to ap-proximate a given weighted sequen
e by a lo
al model. Let us start withsu
h a sequen
e (f(n))n together with an additional fun
tion ψ∞ (whi
hwill take 
are of the size 
onstraints), for whi
h we assume the followingbound:(17.1) ∑

q≤D

max
amod q

∣

∣

∣

∣

∑

n≡a[q]

f(n)ψ∞(n)− fq(a)X/q

∣

∣

∣

∣

≤ Efor some parameters D, E, X and (fq)q . The Bombieri-VinogradovTheorem falls within this framework with ψ∞ being the 
hara
teris-ti
 fun
tion of real numbers ≤ N and E = N/(LogN)A, togetherwith D =
√
N/(LogN)B for some B = B(A); then f(n) = Λ(n) and

fq = q1Uq/φ(q), and �nally X = N . Note that the fun
tion fq thatappears is pre
isely the one we used as a lo
al model for the primes.The parameter X is here for homogeneity and 
ould be dispensed with,simply by in
orporating it in fq. However, in usual appli
ations, X willbe here to treat the dependen
e on the size, i.e. the 
ontribution of thein�nite pla
e, while fq will be independent of it and only a

ounts forthe e�e
t of the �nite pla
es. We shall need some properties of these
fq's, namely:(17.2) ∀d|q,∀a mod d, J q̃

d̃
fq = fd.This equation may look unpalatable, but here is an equivalent formula-tion:(17.3) ∀d|q, fd(a)/d =

∑

bmod q
b≡a[q]

fq(b)/qwhere it is maybe easier to 
onsider fq/q as one fun
tion (the density,as in (13.1) and (13.2)).We often need an individual upper bound for ea
h of this remainderterm. This is not fundamental, and the end of the proof 
an be made towork with a large amount of variants, but usual sequen
es do verify thisadditional hypothesis: we assume that there exist A ≥ 1 and a 
onstant
C su
h that, for all q ≤ Q, we have(17.4) ∣

∣

∣

∣

∑

n≡a[q]

f(n)ψ∞(n)− fq(a)X/q

∣

∣

∣

∣

≤ CX AΩ(q)/q.



140 17 Approximating by a lo
al modelLet us turn next toward the base s
alar produ
t we use, where againwe seek some generality. Let K′ be a multipli
atively split 
ompa
t set,
L′ its bordering system and(17.5) βK′(n) =

(

∑

n∈L′
d

λd

)2be the asso
iated Selberg's weights (see (12.1)), where λd = 0 whenever
d > z a parameter at our disposal. The s
alar produ
t we 
onsider is

[βK′f |g] =
∑

n≥1

βK′(n)f(n)g(n)over fun
tions belonging to ℓ2(N)1. This way of denoting the s
alar prod-u
t has the advantage of making the dependan
e in K′ appear expli
itly.We are also to use another multipli
atively split 
ompa
t set K satis-fying the Johnsen-Gallagher 
ondition, together with its bordering sys-tem L and de�ne ψ∗q as in (11.13). We further sele
t the same fun
tion
ψ∞ as in the beginning, and de�ne(17.6) ψ∗q,∞ = ψ∗qψ∞.Some 
omments on this additional ψ∞ are 
alled for. We 
an expe
tto be able to prove (17.1) for a whole bun
h of fun
tions ψ∞, like allthe ones of type g(n/N) for some smooth g with 
ompa
t support. We
ould have phrased our hypothesis in these terms, then taken for ψ∞in (17.6) a fun
tion verifying proper 
onditions, and in due 
ourse, wewould have dis
overed that it is enough to have both fun
tions equal oneto another. This is indeed the pro
ess that is followed in appli
ations,but the exposition is simpler the way we took � albeit the need for thisremark!One way to get a global grasp of the family (fq)q is to 
onsider a(multipli
atively) large modulus M : by whi
h we mean a modulus di-visible by all the q's that intervene. Then fM is enough to reprodu
e all
fq's, simply by fq = JM̃

q̃ fM . The reader may have doubts as to the veryexisten
e of su
h an fM , but remembering the Fourier de
omposition weprodu
ed, we may simply take
fM =

∑

q≤D

Lq̃

M̃
Uq̃→qfq.Usually, we have at our disposal a smoother expression, like in the 
ase ofprimes where fM = M1UM

/φ(M) is a good 
hoi
e. Su
h an expressionis in no way unique sin
e only its orthonormal proje
tions "modulo q"for all q ≤ Q are of use.1By whi
h we design the set of sequen
es (f(n)) su
h that P

n≥1 |f(n)|2 is �nite.



17 Approximating by a lo
al model 141If we have at our disposal su
h a modulusM that is divisible by everyinteger ≤ z2, then βK′(n) has a well de�ned meaning for n ∈ Z/MZ.Let �nally (αq)q≤Q be a sequen
e of 
omplex numbers for whi
h wedo not assume anything. However, we think of αq as being bounded bya divisor fun
tion. We are to understand ∑q≤Q αq[f |ψ∗q ], for whi
h thefollowing theorem is the main key.Theorem 17.1. Let M be an integer divisible by every integer ≤ D =
z2Q. All other parameters are des
ribed above. We have
∣

∣

∣

∣

∑

q≤Q

αq

(

[βK′f |ψ∗q,∞]−X[βK′fM |Lq̃

M̃
ψ∗q ]M

)

∣

∣

∣

∣

≤
(

XBE
∑

q≤Q

|αq|2/q
)1/2with

B = C
∑

d≤D

(

∑

d=[ℓ,d1,d2]

∣

∣Lℓ

∣

∣

∣

∣L′d1

∣

∣

∣

∣L′d2

∣

∣

(

∑

ℓ|q≤Q

qH(K, ℓ, q)2
)1/2

)2

AΩ(d)/d.We expe
t B to evaluate to some power of LogD and this is readilydone given some de
ent hypothesis on K and K′. The fun
tion H(K, ℓ, q)is indeed the one de�ned by (11.15) but we have added an expli
it de-penden
e in K to avoid 
onfusion.Proof. We start from (11.14) and write
[f |ψ∗q,∞] =

∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

n∈Lℓ

βK′(n)f(n)ψ∞(n).Next, we write
βK′(n) =

∑

d1,d2

n∈L′
d1
∩L′

d2

λd1λd2so that
[f |ψ∗q,∞] =

∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

d1,d2≤z

λd1λd2

∑

n∈Lℓ∩L′
d1
∩L′

d2

f(n)ψ∞(n).The most inner sum bears on residue 
lasses modulo [ℓ, d1, d2] and weexpe
t the set Lℓ ∩ L′d1
∩ L′d2

to be small enough. We introdu
e theremainder term
max

amod q

∣

∣

∣

∑

n≡a[q]

f(n)ψ∞(n)−Xfq(a)/q
∣

∣

∣ = r∗qand �rst study the main term arising from this approximation. It equals
X
∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

d1,d2≤z

λd1λd2

∑

a∈Lℓ∩L′
d1
∩L′

d2

f[ℓ,d1,d2](a)/[ℓ, d1, d2].



142 17 Approximating by a lo
al modelWe go one huge step up and write it as
X
∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

d1,d2≤z

λd1λd2

∑

cmodM

fM (c)

M
1Lℓ

(c)1L′
d1

(c)1L′
d2

(c)whi
h we fold ba
k into
X
∑

ℓ|q
(−1)ω(ℓ)H(ℓ, q)

∑

cmodM

βK′(c)fM (c)1Lℓ
(c)/Mand �nally into

X
∑

cmodM

βK′(c)fM (c)ψ∗q (c)/M.We used a number of usual impre
isions during these steps: we shouldhave written Ld̃1

M̃
1L′

d1
(c) instead of 1L′

d1
(c) sin
e this latter fun
tion hasarguments in Z/d1Z and not in Z/MZ... A similar remark holds for1L′

d2
(c) and for ψ∗q (c).We handle the remainder term in a most straightforward way, withthe �rm belief that the 
ardinality of Lℓ ∩ L′d1

∩ L′d2
as a subset ofZ/[ℓ, d1, d2]Z will be small enough: we simply majorize it by |Lℓ||L′d1

||L′d2
|where the �rst (resp. se
ond, resp. third) one is a 
ardinality as a subsetof Z/ℓZ (resp. Z/d1Z, resp. Z/d2Z). The remainder is then at most

∑

d≤D

(

∑

d=[ℓ,d1,d2],
d1,d2≤z,

ℓ≤Q

∣

∣Lℓ

∣

∣

∣

∣L′d1

∣

∣

∣

∣L′d2

∣

∣

∑

ℓ|q≤Q

|H(ℓ, q)||αq |
)

r∗d.Sin
e we prepare this Theorem for the 
ase when Lℓ is small, we expe
t
H(ℓ, q) to behave like 1/q up to a divisor fun
tion. This motivates thenext line:

∑

ℓ|q≤Q

|H(ℓ, q)||αq | ≤
∑

ℓ|q≤Q

qH(ℓ, q)2
∑

q≤Q

|αq|2/q,whi
h most probably looses a fa
tor 1/ℓ that does not matter mu
h. Weuse Cau
hy's inequality and hypothesis (17.4) to 
on
lude. ⋄ ⋄ ⋄



18 Sele
ting other sets of moduliCon
erning the moduli, we used mainly the simple 
ondition d ≤ z,while everything we do is valid with a 
ondition d ∈ D for some divisor
losed set1. Usual sets are {d ≤ z}, or the set of integers ≤ z and withprime fa
tors belonging to some sets (like prime to 2 or bounded by some
y), or with a bounded number of prime fa
tors.Let us re
ord some formulae. We set(18.1) Gd(D) =

∑

δ∈D
[d,δ]∈D

h(δ)and following the method shown 
hapter 11 and 13, we get (see (11.9))(18.2) λ♯
d =

d

|Kd|

∑

q/dq∈D µ(q)

G1(D)
and λd = (−1)ω(d)Gd(D)

G1(D)
.These expressions may yield some surprises. For instan
e, on taking for

D the set of those primes that are ≤ z, to whi
h we add the element 1,we �nd that λp = −h(p)/G1(D). This 
an be extremely small, and doesnot appear as a modi�
ation of µ(p) = −1 anymore! However λ♯
p maybe used as su
h.18.1. Sieving by squaresWhile studying squarefree numbers, we should 
onsider only square mod-uli, and a large sieve inequality related to these moduli 
omes in handy,as in (Konyagin, 2003). In this dire
tion, Baier and Zhao, together orindependantly got several bounds as in (Zhao, 2004a), (Zhao, 2004b),(Baier, 2006) and (Baier & Zhao, 2005). Their latest result to date statesthat for N,Q > 0 and any ε > 0, we have(18.3) ∑

q≤Q

∑

amod∗q2

∣

∣

∣

∣

∑

n≤N

une(na/q
2)

∣

∣

∣

∣

2

≪ε (NQ)ε
(

Q3 +N + min(N
√

Q,
√
NQ2)

)

∑

n

|un|2.If we were to use the large sieve inequality for all moduli q2 ≤ Q2, wewould get the upper bound (N + Q4)
∑

n |un|2. We do not give any1A divisor 
losed set is a set su
h that every positive divisor of an element of thisset still belongs to this set. In parti
ular 1 always belongs to su
h a set.



144 18 Other sets of modulifurther details here but refer to (Baier & Zhao, 2005) for ba
kgroundinformations as well as other bounds. We are to stress that what 
ouldbe the best possible inequality in (18.3) is not known. In parti
ular,lower results are missing.(Granville & Ramaré, 1996) used su
h a large sieve inequality tostudy the distribution of squarefree binomial 
oe�
ients; we alreadymentionned the re
ent work (Konyagin, 2003), but the most beautifulappli
ation appears in (Baier & Zhao, 2006b). The authors �rst derivein (Baier & Zhao, 2006a) a Bombieri-Vinogradov type theorem, by fol-lowing the now 
lassi
al lines of (Bombieri et al., 1986) � that we alsofollowed in se
tion 5.5 �. From there, they prove:Theorem 18.1 (Baier & Zhao). Let ε > 0. There exist in�nitely manyprimes p that 
an be written in the form p = ℓm2 + 1 with ℓ≪ε p
5/9+ε.An old and mu
h sought-after 
onje
ture of (Hardy & Littlewood,1922) asserts that ℓ = 1 is admissible.18.2. A warningIn se
tion 8-9 of (Bombieri, 1987), the sum

∑

n∈A
βK′(n)

(

∑

d|n+2

ad

)is being studied, with no 
onstraints on the ad's and where A is a hostsequen
e. In the appli
ation given there, the host sequen
e is the one ofprimes, while a1 = 1, ap = −1 when p is a prime ≤ z and ad is otherwise
0. The idea is to show that this sum tends to in�nity: sin
e ∑d|n+2 ad
an only be positive if n+ 2 has all its prime fa
tors > z, this will showthat there are in�nitely many primes p su
h that p + 2 has no primefa
tors ≤ z. The temptation here is to repla
e 
ondition d|n + 2 by
n ∈ Ld with L being the bordering system asso
iated with U − 2, and to
onsider a set of moduli D restri
ted to the primes ≤ z and to 1. Thenwe would like to take for ad the asso
iated λd: however, we have justseen that these ones are too small! The good 
andidates are in fa
t the
λ♯

d, but we are to modify the 
ompa
t set, and take for K . . . pre
iselythe previous bordering system! That is to say Kp = {−2}. The nextstep would be to appeal to (11.30):(18.4) ∑

d/n∈Kd

λ♯
d =

∑

q

ψ∗q/G1(z).



18.2 A warning 145We 
ould 
ombine Theorem 17.1 together with the Bombieri-VinogradovTheorem (see Lemma 13.1) and be done. But our 
hange of 
ompa
t sethas another 
onsequen
e: the asso
iated bordering system is not smallanymore, and the error term given in Theorem 17.1 is unsuitable. Weleave the reader at this level!





19 Sum of two squarefree numbersTo illustrate further how we may handle additive problems with thematerial we have presented, we prove the following Theorem. Note thatwe freely use 
hapter 4 in the sequel.Theorem 19.1. Every large enough integer may be written as the sumof two squarefree integers. Furthermore the number r(N) of ways ofrepresenting N is this manner veri�es:
r(N) = S(N)N +Oε(N

2/3+ε)for every ε > 0, where
S(N) =

6

π2

∏

p|N

(

1 +
p+ cp2(N)

p2(p2 − 1)

)

.The fun
tion cp2 is again the Ramanujan sum, see (8.12).This theorem is originally due to (Evelyn & Linfoot, 1931). A sim-pli�ed proof was later given by (Estermann, 1931). (Brüdern & Perelli,1999) gave a quantitatively better version, but we are interested herein the manner. Of parti
ular interest is the fa
t that a path initiallydevised to get an upper bound 
an be used to get a lower bound (as in
hapter 10). Several features of the method will also be exhibited. Theproblem is furthermore interesting in that the set of moduli we use isdi�erent from the usual one. We take(19.1) Q = {q1q22 , µ2(q1q2) = 1, q1 ≤ Q1, q2 ≤ Q2}for some parameters Q1 and Q2 that we shall 
hoose later to be, respe
-tively, N1/6 and N1/3. We also set Q = max(Q1, Q2).19.1. Sket
h of the proofLet us 
onsider the fun
tions f(n) = µ2(n) and g(n) = µ2(N − n)de�ned on integers ≤ N . On using the 
anoni
al hermitian produ
t onthis spa
e, our number of representations reads(19.2) R(N) =
∑

N=n1+n2

µ2(n1)µ
2(n2) = [f |g].To 
ompute this s
alar produ
t, we shall use again the remark we madein se
tion 10.1 and approximate it by a 〈f |g〉 whi
h we still have to



148 19 Sum of two squarefree numbersde�ne. We �rst need to work out lo
al models for f and g. We shallthen use a lo
al system (ϕi)i that will take 
are of the sequen
e of lo
almodels of f and g, and that implies, in parti
ular, that our argumentsare going to be symmetri
al in f and g.19.2. General 
omputationsTo dete
t squarefree integers1 we use the 
lassi
al formula(19.3) µ2(n) =
∑

d2|n
µ(d)and extend it to negative values of the argument n by setting µ2(−n) =

µ2(n). Let us set(19.4) γq(c) =



















0 if ∃p2|q, c ≡ 0 [p2]

6

π2

∏

p|q

p2

p2 − 1

∏

p‖q
c≡0[p]

(

1− 1

p

) else.Lemma 19.1. For m = 0 or m = N , we have for every ε > 0

∑

n≡c[q]
n≤N

µ2(n−m) = (N/q)γq(c−m) +Oε(q
ε
√

N/q).The reader will noti
e by 
omparing with (4.20) that the 
omputedquantities are nothing else than ∆q(f)/q when m = 0 (sin
e µ2(−n) =
µ2(n)) and ∆q(g)/q if m = N .Proof. Let us write q = q1q

′ with q1 being squarefree, q′ being su
hthat p|q′ =⇒ p2|q′ and, of 
ourse (q1, q
′) = 1. If m− c is divisible by asquare that also divides q, then ∑n≡c[q] µ

2(n−m) = 0. Else we use therepresentation (19.3) to get
∑

n≡c[q]
n≤N

µ2(n−m) =
∑

d

µ(d)
∑

n≤N
n≡m−c[q]

d2|n

1 =
∑

d1|q1

(d3,q)=1

µ(d1d3)
∑

n≤N
n≡m−c[q]

d2
1d2

3|n

1.

1The 
hara
teristi
 fun
tion of their set is µ2.



19.2 General 
omputations 149We use an asymptoti
 for the inner sum and 
on
lude readily:
∑

n≡c[q]
n≤N

µ2(n−m) = N
∑

d1|q1

(d3,q)=1
0≡m−c[d1]
q1d1q′d2

3≤N

µ(d1d3)

q1d1q′d2
3

+O





∑

d1|q1

√

N

qd1





= (N/q)γq(c−m) +O(qε
√

N/q).

⋄ ⋄ ⋄We de�ne γ∗q by γ∗q (c) =
∑

d|q µ(q/d)γd(c). This implies that γq =
∑

d|q γ
∗
d , so that ea
h γ∗d is indeed the orthonormal proje
tion of γq on

M(d) (see the 
omment following Lemma 4.2 for a de�nition of this set).Let us de�ne(19.5) t(q) =
∏

p|q

−1

p2 − 1
.Now we haveLemma 19.2. If q is 
ubefree then γ∗q (c) = 6t(q)cq(c)/π

2, while if q hasa 
ubi
 fa
tor > 1, then γ∗q (c) = 0.Proof. We write q = q1q
2
2q
′′ where q1, q2 and q′′ are pairwise 
oprime,

q1 and q2 are squarefree and, if p|q′′, then p3|q′′. We have
γ∗q (c) =

6

qπ2

∏

p|q′′
p2∤(c,q)

(

p2

p2 − 1
− p2

p2 − 1

)

∏

p|q′′
p2|(c,q)

(0)

×
∏

p|q2

p2|(c,q)

( −p2

p2 − 1

(

1− 1

p

))

∏

p|q2

p‖(c,q)

p2

p2 − 1

(

1− 1 +
1

p

)

∏

p|q2

p∤(c,q)

p2

p2 − 1
(1− 1)

×
∏

p|q1

(

p2

p2 − 1
− 1

)

∏

p|(q1,c)

(

(p2 − 1)

(

p2

p2 − 1
(1− 1

p
)− 1

))

.Thus γ∗q (c) = 0 if q′′ 6= 1, and(19.6) γ∗q (c) =
6

qπ2

∏

p|q

1

p2 − 1

∏

p|(q1,c)

(1− p)×











p− p2 if p2|(c, q22),
p if p‖(c, q22),
0 else.Some more work yields the 
laimed expression. ⋄ ⋄ ⋄



150 19 Sum of two squarefree numbers19.3. The hermitian produ
tWe must �rst embark onto some general 
onsiderations. Lemma 19.1shows that c 7→ Nγq(c) is a good approximation for ∆q(f)/q, while
Nθq : c 7→ Nγq(N − c) is a good one for ∆q(g)/q, where ∆q is de�nedin (4.20). However, by a lo
al model, we mean a fun
tion over [1, N ]and not modulo q. This distin
tion is important to de�ne the hermitianprodu
t, so we need to lift both fun
tions to this set. We 
onsider(19.7) ∇q : F (Z/qZ) −→F ([1, N ])

h 7→ ∇q(h) : [1, N ] −→ C
x 7→ h(x mod q)whi
h veri�es(19.8) [∆q(h1)|h2]q = [h1|∇q(h2)],justifying again our s
aling in the de�nition of ∆q. Note further that(19.9) ∀d|q, ∇q(L

d̃
q̃(h)) = ∇d(h),both properties stated with obvious notations.This part being settled, we need to attend to a se
ond problem beforethe proof 
an unfold quietly. We need an orthogonal system modulo qthat takes both fun
tions Nγq and Nθq into a

ount, or more pre
iselyen
ompasses their orthogonal proje
tions Nγ∗q and Nθ∗q . Let us �rstnote that(19.10) ‖γ∗q‖2q = ‖θ∗q‖2q =

(

6t(q)

π2

)2 1

q

∑

amod q

|cq(a)|2 =

(

6t(q)

π2

)2

φ(q).Sin
e [γ∗q |θ∗q ]q = (6t(q)/π2)2cq(N) is a real number, the ve
tors de�nedby (6t(q)/π2)η∗q = B(q)(γ∗q + θ∗q)/2 and (6t(q)/π2)κ∗q = B(q)(γ∗q − θ∗q)/2where B(q) is de�ned on Q by(19.11) ∀q = q1q
2
2 ∈ Q, B(q) = B(q1q

2
2) = q−2

1 q−1
2are orthogonal. Of 
ourse B(q) 
ould be any positive quantity depend-ing only on q. We have 
hosen it so as to minimize the error term inLemma 19.6. See also Lemma 19.5. We further set(19.12) ϕ∗q = ∇qη

∗
q , ψ∗q = ∇qκ

∗
q.We readily 
ompute that(19.13) {‖η∗q‖2q = B(q)2(φ(q) + cq(N))/2,

‖κ∗q‖2q = B(q)2(φ(q)− cq(N))/2.Of 
ourse, when q|N , κ∗q is the zero ve
tor and so not of great interest.Otherwise here is a lemma that gives an apriori bound for their norms.



19.3 The hermitian produ
t 151Lemma 19.3. When q ∤ N , both norms ‖η∗q‖2q and ‖κ∗q‖2q lie between
B(q)2φ(q)/4 and B(q)2φ(q).Proof. Indeed |cq(N)| = φ((N, q)) divides stri
tly φ(q) and is hen
e atmost φ(q)/2. The lemma follows readily. ⋄ ⋄ ⋄We now need to de�ne the global s
alar produ
t. As an orthogonalsystem, we take the union of (ϕ∗q) and of (ψ∗q ) but in the latter family,we remove the terms for whi
h q|N .Lemma 19.4. Let q1 and q2 be too moduli, and q3 their l
m. If uq1 and
vq2 are respe
tively one of {η∗q1

, κ∗q1
} and {η∗q2

, κ∗q2
} then

[∇q1uq1|∇q2vq2] = N [Lq̃1

q̃3
uq1|Lq̃2

q̃3
vq2]q3 +O (B(q1)σ(q1)B(q2)σ(q2)) .A lemma where we somehow used deliberately a 
ompli
ated expres-sion. As it turns out, if q1 6= q2 or uq1 6= vq1 , the lo
al s
alar produ
tvanishes! To handle the hermitian properties of (ϕ∗q) and (ψ∗q ), we 
ouldtry something along the following lines:

[ϕ∗q |ϕ∗q ] = [∇qη
∗
q |∇qη

∗
q ] = [∆q∇qη

∗
q |η∗q ]q.However ∆q∇q is not a multiple of the identity! However

∆q∇qh(c) =

(

∑

n≡c[q],
n≤N

1

)

h(c)so that we 
an ∆q∇q 
an be thought as a perturbation of the identity.We es
aped from this 
ompli
ation in (16.5)-(16.10) by using a smoothmajorant of the 
hara
teristi
 fun
tion of the interval [1, N ].Proof. This expression is important in that it uses the stru
ture of theRamanujan sums. If we were to split the sum that de�nes the initials
alar produ
t in 
lasses modulo q3, the remainder term would only be
≪ q3

√

[uq1|uq1 ]q1[vq2 |vq2]q2 ,whi
h looses a power of q1 and one of q2. The result we 
laim is obtainedby appealing to cq(n) =
∑

d|(n,q) dµ(q/d), an expression that expressesthe fa
t that cq is not an intri
ate fun
tion. ⋄ ⋄ ⋄We are to majorize, when q is �xed:(19.14) ∑

q′∈Q
|[ϕ∗q |ϕ∗q′ ]|+

∑

q′∈Q
|[ϕ∗q |ψ∗q′ ]|,



152 19 Sum of two squarefree numbersand(19.15) ∑

q′∈Q
|[ψ∗q |ϕ∗q′ ]|+

∑

q′∈Q
|[ψ∗q |ψ∗q′ ]|.Lemma 19.5. When Q1, Q2 ≥ 100, we have

∑

q1≤Q1
q2≤Q2

(q1,q2)=1

µ2(q1)σ(q1)

q21

µ2(q2)q2σ(q2)

q2
≪ Q2

2 LogQ1.We take(19.16) Mq(ϕ
∗) = B(q)2

N(φ(q) + cq(N))

2
+ CB(q)σ(q)Q2

2 LogQand(19.17) Mq(ψ
∗) = B(q)2

N(φ(q) − cq(N))

2
+ CB(q)σ(q)Q2

2 LogQfor a C large enough that Mq(ϕ
∗) is more than (19.14) and that Mq(ψ

∗)is more than (19.15).19.4. Removing the Mq'sWe have 
hosen a somewhat intri
ate version of the Mq's to get rid ofthe bilinear form in ωi,j, but ultimately we will have to remove them toget smoother expressions.Lemma 19.6. If |βq| ≤ B(q)2(Nt(q)φ(q) +
√
Nq)2, then we have (forany ε > 0),

∑

q∈Q
Mq(ϕ

∗
q)
−1βq =

∑

q∈Q

2βq

NB(q)2(φ(q) + cq(N))
+Oε(Q2Q

1+ε)as well as
∑

q∈Q
q∤N

Mq(ψ
∗
q )−1βq =

∑

q∈Q
q∤N

2βq

NB(q)2(φ(q) − cq(N))
+Oε(Q2Q

1+ε).Proof. A similar treatment applies to both expressions. For instan
e,the di�eren
e between the R.H.S. and the L.H.S. of the �rst one is, byappealing to Lemma 19.3, at most
Q2

2Q
ε
∑

q∈Q

B(q)2(N2t(q)2φ(q)2 +Nq)B(q)σ(q)

(Nφ(q)B(q)2 +B(q)σ(q)Q2
2Q

ε)Nφ(q)B(q)2



19.5 Approximating f and g 153whi
h is bounded by
Q2

2Q
ε′
∑

q∈Q

Nt(q)2φ(q) + 1

NB(q) +Q2
2

≤ Q2
2Q

ε′
∑

q∈Q

(

Nt(q)2φ(q)

NB(q)
+

1

Q2
2

)for all ε > 0, where ε′ tends to zero with ε. ⋄ ⋄ ⋄19.5. Approximating f and gThe �rst lo
al approximation of f(n) = µ2(n) is ∆∗q(f)/q. Lemma 19.1ensures us that Nγq is an approximation of ∆q(f)s, whi
h suggests thatwe take ∇qγq (see (19.7)) as a lo
al approximation to f , well more pre-
isely ϕ∗q = ∇qγ
∗
q sin
e only the orthogonal proje
tion of γq over M(q) isof interest. This is the path we follow, and 
orrespondingly, we approxi-mate g by ψ. Before quantifying in a proper way this approximation, weneed an apriori upper bound. In this part, the roles of f and g are 
om-pletely similar and it is enough to handle the 
ase of f . The statementsare however 
omplete.Lemma 19.7. We have for every ε > 0 :

|[ϕ∗q |f ]|+ |[ψ∗q |f ]| ≪ε B(q)|t(q)|φ(q)N +B(q)
√

Nqqεand similarly by repla
ing f by g.Proof. We 
ompare [ϕ∗q |f ] to N [η∗q |γ∗q ]q. First we note that B(q)γ∗q =

(6t(q)/π2)(η∗q + κ∗q), from whi
h we dedu
e that(19.18) [η∗q |γ∗q ]q = 3B(q)t(q)(φ(q) + cq(N))/π2.Next, we 
he
k that
[ϕ∗q |f ] = [∇qη

∗
q |f ] = [η∗q |∆qf ]q = [η∗q |Nγ∗q ]q + [η∗q |∆q(f)−Nγq]q.Next Lemma 19.1 gives

[η∗q |∆q(f)−Nγq]q = Oε

(

B(q)
∑

d|q
dµ(q/d)O(dε

√

N/d)
)from whi
h we infer |[ϕ∗q |f ]| ≪ε B(q)(|t(q)|φ(q)N +

√
Nqqε) as 
laimed.

⋄ ⋄ ⋄Lemma 19.8. Let (αq) be 
omplex numbers su
h that(19.19) B(q)2Nφ(q)|αq | ≤ NB(q)|t(q)|φ(q) +B(q)
√

Nq.



154 19 Sum of two squarefree numbersWe have that for every ε > 0
∑

q∈Q
αq[ϕ

∗
q |f ] =

∑

q∈Q
αq[ϕ

∗
q |ϕ∗q + ψ∗q ] +Oε

(

Qε(
√
N +Q2Q1)

)and similarly by repla
ing f by g and ϕ∗ + ψ∗ by ϕ∗ − ψ∗.Proof. There 
omes
∣

∣

∣

∣

∑

q∈Q
αq[ϕ

∗
q |f − ϕ∗q − ψ∗q ]

∣

∣

∣

∣

≤
∑

q∈Q

∣

∣

∣

∣

t(q)B(q)2φ(q)
∑

d|q
dµ(q/d)O(qε

√

N/d)

∣

∣

∣

∣

≪ Qε(
√
N +Q2Q1)

⋄ ⋄ ⋄Lemma 19.9. Di�eren
e
[f |f ]−

∑

q∈Q
Mq(ϕ

∗)−1|[ϕ∗q |f ]|2 −
∑

q∈Q
q∤N

Mq(ψ
∗)−1|[ψ∗q |f ]|2is big-O of Qε(NQ−2

1 + NQ−1
2 + Q2Q +

√
N). The same bound holdswhen f is repla
ed with g.Proof. As �rst step we approximate f by ϕ∗q in the produ
ts [ϕ∗q |f ] and

[ψ∗q |f ]. To do so we set βq = Mq(ϕ
∗)−1[f |ϕ∗q], whose modulus indeedveri�es 
ondition (19.19) up to a Qε, and write

∑

q∈Q
Mq(ϕ

∗)−1|[ϕ∗q |f ]|2 =
∑

q∈Q
βq[ϕ

∗
q |f ].By the pre
eding lemma, we 
an thus repla
e f by its lo
al approxima-tion, up to an admissible error term. We reiterate the pro
ess:

∑

q∈Q
Mq(ϕ

∗)−1|[ϕ∗q |f ]|2 +
∑

q∈Q
q∤N

Mq(ψ
∗)−1|[ψ∗q |f ]|2 =

∑

q∈Q
Mq(ϕ

∗)−1|[ϕ∗q |ϕ∗q + ψ∗q ]|2 +
∑

q∈Q
q∤N

Mq(ψ
∗)−1|[ψ∗q |ϕ∗q + ψ∗q ]|2

+Oε

(

Qε(
√
N +Q2Q)

)

.Here we may repla
e [ϕ∗q |ϕ∗q + ψ∗q ] and [ψ∗q |ϕ∗q + ψ∗q ] respe
tively by
N [η∗q |γ∗q ]q and N [κ∗q |γ∗q ]q up to a negligible error term. In the se
ondstep, we need to 
ompute the R.H.S. First repla
e Mq(ϕ

∗) by [ϕ∗q |ϕ∗q ]
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ts 155with error term O(Q2Q
1+ε) by Lemma 19.6, and then do the same with

ψ∗. We 
he
k that
∣

∣[η∗q |γ∗q ]q
∣

∣

2‖η∗q‖−2
q +

∣

∣|[κ∗q |γ∗q ]q
∣

∣

2‖κ∗q‖−2
q = ‖γ∗q‖2q .Now ‖γ∗q‖2q is 
omputed in (19.10) and equals (6/π2
)2
φ(q)t(q)2. We sim-ply have to sum, 
omplete the resulting series and estimate the resultingerror term:

∑

q∈Q
φ(q)t(q)2 =

∑

q1≤Q1,q2≤Q2

(q1,q2)=1

µ2(q1q2)q2
φ(q1)σ(q1)2φ(q2)σ(q2)2that is

∑

q∈Q
φ(q)t(q)2 =

π2

6
+O(Q−2

1 +Q−1
2 ).Finally, re
all that [f |f ] = (6/π2)N +O(

√
N). The lemma follows read-ily. ⋄ ⋄ ⋄19.6. Crossed produ
tsLemma 19.10. The sum

∑

q∈Q
Mq(ϕ

∗)−1[f |ϕ∗q ][ϕ∗q |g] +
∑

q∈Q
q∤N

Mq(ψ
∗)−1[f |ψ∗q ][ψ∗q |g]equals, for every ε > 0:

NS(N) +Oε

(

Qε(
√
N +NQ−2

1 +NQ−1
2 +Q2Q)

)

.Proof. We follow 
losely the proof of Lemma 19.9 and repla
e thequantity ∑q∈QMq(ϕ
∗)−1[f |ϕ∗q ][ϕ∗q |g] by N

∑

q∈Q[γ∗q |η∗q ]q[η∗q |θ∗q ]q/‖η∗q‖2qat the 
ost of an error term of size Oε(Q
ε
√
N + Q2Q

1+ε). A similartreatment for the part with ψ leads to N∑q∈Q[γ∗q |κ∗q ]q[η∗q |κ∗q ]q/‖κ∗q‖2q .We note here that
[γ∗q |η∗q ]q[η∗q |θ∗q ]q‖η∗q‖−2

q + [γ∗q |κ∗q ]q[κ∗q |θ∗q ]q‖κ∗q‖−2
q = [γ∗q |θ∗q ]q.Extension to a 
omplete series 
osts O(N(Q−2

1 + Q−1
2 )). The 
onstant

S(N) appears here in the form
S(N) =

∏

p

(

1− 1

p2
+

1 + cp(N) + cp2(N)

p4

)

.

⋄ ⋄ ⋄



156 19 Sum of two squarefree numbers19.7. Main proofLet us set
〈h1|h2〉 =

∑

q∈Q
M−1

q (ϕ∗)[h1|ϕ∗q ][ϕ∗q |h2] +
∑

q∈Q
q∤N

M−1
q (ψ∗)[h1|ψ∗q ][ψ∗q |h2].We use Cau
hy's inequality on the semi2 hermitian produ
t [f |g]−〈f |g〉and get(19.20) ∣

∣[f |g]− 〈f |g〉
∣

∣ ≤
√

(

[f |f ]− 〈f |f〉
)

·
(

[g|g] − 〈g|g〉
)

,whi
h enables us to approximate [f |g] by 〈f |g〉 whi
h, in turn, we eval-uate via Lemma 19.10. Total error term is
Oε

(

Qε(NQ−2
1 +NQ−1

2 +Q2Q+
√
N)
)

.Our 
hoi
e of Q1 and Q2 yields the Theorem.19.8. AfterthoughtsWe insisted on taking 
are of both f and g while 
hoosing our orthogonalsystem. However, we 
ould have taken 
are of only one of them, sin
ethe other part will anyway not be of any use (as a kind of shorthand,we 
an say that only the orthornormal proje
tion of g on C · f has anye�e
t. This is only shorthand be
ause the involved hermitian produ
t inthe "orthonormal" above has not been spe
i�ed). This would howeverhave modi�ed the error term sin
e, in (19.20), only [f |f ]− 〈f |f〉 wouldhave been small.Let us turn to a di�erent 
onsideration. In the proof of Lemma 19.9,we simply said "we may repla
e [ϕ∗q |ϕ∗q ] by N‖η∗q‖2q� but the questionarises to know why we did not do it at the very beginning! This wouldhave required us to de�ne a lo
al model modulo q as a fun
tion overZ/qZ, whi
h would have had drawba
ks in other parts of the theory. Adi�erent approa
h looks promising: still use ϕ∗q = ∇qγ
∗
q as a lo
al modelmodulo q for f , but use ϕ̃∗q instead of ϕ∗q in the de�nition of the s
alarprodu
t, where ∆qϕ̃

∗
q = γ∗q . In fa
t, most of our argument works be
ause

∆q and ∇q are almost inverse of ea
h other, so our 
hoi
e is not so verywrong. It is indeed not wrong at all sin
e we would have to 
ompute
[ϕ̃∗q |ϕ̃∗q′ ]. With our de�nition, we have very expli
it expressions and areable to 
ompute the 
orresponding s
alar produ
t.2It may be not de�nite



19.9 Adding a prime and a squarefree number 15719.9. Adding a prime and a squarefree numberThe previous method would work with almost no 
hanges to 
omputethe number of representations of an integer N as a sum of a squarefreeinteger and a prime, with error term at most Oε(N
5/6+ε). We leave thedetails to the reader.





20 On a large sieve equalityThis last 
hapter presents dire
tions to investigate, some limitations,and other slightly o� topi
 material. We use also this pretext to providea simple introdu
tion to some modern te
hniques. Let us �nally pointout that (Ramaré, 2007a) 
ontains also material on this subje
t, butvery di�erent in nature. We omit it here.20.1. Informal presentationIn our studies of additive problems, the main argument 
onsists in show-ing that
∑

q

Mq(ϕ
∗)−1|[f |ϕ∗q ]|2 −→ ‖f |‖22.The question that naturally arises is to determine whi
h fun
tions f willsatisfy su
h a property, keeping in mind that we 
an 
hoose ϕ∗q in termsof f . We also want ϕ∗q to be a ∇qη

∗
q (see (19.7)) for some fun
tion η∗qfrom M(q). This is not exa
tly what we did in 
hapter 10, where wemultiplied a fun
tion ∇qη

∗
q by a fun
tion "with no arithmeti
 part" toget ϕ∗q , but we ignore this aspe
t here.In our s
heme, we also have essentially [f |ϕ∗q ] ≃ ‖ϕ∗q‖22 as well as

Mq(ϕ
∗) ≃ ‖ϕ∗q‖22 so that what we really require is

∑

q

‖ϕ∗q‖22 −→ ‖f‖22.Sin
e ∆q(f) de�ned in (4.20) is the best lo
al model for f modulo q, the
hoi
e ϕ∗q = ∇qUq̃→q∆q(f) is re
ommended, up to some res
aling. Wehave by (4.14)
Uq̃→q∆q(f)(n) =

∑

amod ∗q

Sf (−a/q)e(na/q)with Sf (α) =
∑

n f(n)e(nα). Next, and sin
e
[∇qUq̃→q∆q(f)|∇qUq̃→q∆q(f)] =

∑

n

∣

∣

∣

∣

∑

amod ∗q

Sf (a/q)e(na/q)

∣

∣

∣

∣

2

= (N +O(q2))
∑

amod ∗q

|Sf (a/q)|2,



160 20 On a large sieve equalitywe see that we should divide Uq̃→q∆q(f) by √N , so that we 
an guessthe fun
tions we are looking for are the ones for whi
h(20.1) ∑

q∈Q

∑

amod ∗q

|Sf (a/q)|2 −→ N‖f‖22.The symbol �−→� is not exa
tly well de�ned, sin
e several parametersmay vary together, like the set Q of moduli and N , but somehow, oneshould have equality in the large sieve inequality up to a negligible errorterm. From here onwards, two 
ourses of a
tions appear.20.2. A detour towards limit periodi
ityBy a limit periodi
 set, we mean a set whose 
hara
teristi
 fun
tion isa uniform limit of linear 
ombinations of periodi
al fun
tions. Let usstart with some generalities on su
h fun
tions. We refrain from using
‖f‖∞ to denote maxn |f(n)| where n ranges positive integers, be
ausethe notation ‖ · ‖ is already overloaded in this monograph.20.2.1. Survey of the general theory. As in most theories of almostperiodi
ity, a 
entral role is played by a kind of integral operator. Herethe key will 
ome from(20.2) TN (f, α) =

∑

1≤n≤N

f(n)e(−nα)/Nand we de�ne T∞(f, α) when the sequen
e (TN (f, α))N 
onverges as itslimiting value. When f is periodi
 over N, then T∞(f, α) indeed existsfor all values of α and is 0 whenever α /∈ Q. Furthermore the reader willreadily 
he
k that
T∞(e(·α′), α) =

{

0 if α′ 6= α,
1 if α′ = α.Let us now 
onsider a limit periodi
 fun
tion f , by whi
h we mean a limit,a

ording to the uniform norm on the positive integers, of a sequen
eof periodi
al fun
tions. We 
laim that T∞(f, α) exists for every α andvanishes if α /∈ Q.Proof. Let α in R and let ε > 0. There is a periodi
 fun
tion g su
hthat maxn |f(n)− g(n)| ≤ ε. Thus, for every N , we have

∣

∣TN (f, α)− TN (g, α)
∣

∣ ≤ ε.Sin
e (TM (g, α))M is Cau
hy, we �nd a N0(g, ε) su
h that, for N,N ′ ≥
N0(g, ε), we have |TN (g, α)−TN ′(g, α)| ≤ ε. Thus under the same 
ondi-tion, |TN (f, α)−TN ′(f, α)| ≤ 3ε, meaning that the sequen
e (TN (f, α))N



20.2 A detour towards limit periodi
ity 161is also Cau
hy. As a 
onsequen
e, we 
an assert that this sequen
e indeed
onverges. On
e this point is established, it is not di�
ult to see that
T∞(f, α) vanishes when α /∈ Q, a property inherited from the behaviourof periodi
al fun
tions. ⋄ ⋄ ⋄Now we have at our disposal a 
anoni
al approximation to limit pe-riodi
 f by setting(20.3) Ψ(f, q)(n) =

∑

amod q

T∞(f, a/q)e(na/q),whi
h happens to equal f when this fun
tion admits q as a period. Su
han expression is 
onvenient for our purpose and shows how 
ontributionswith a mod ∗ q add up. But this is not the best one to show that it doesindeed approximate f . To a
hieve this goal, note that the frequen
ies(20.4) F (f ; q, b) = lim
n→∞

q

N

∑

n≤N,
n≡a[q]

f(n)are well-de�ned and that we also have(20.5) Ψ(f, q)(n) =
∑

bmod q

F (f ; q, b)1n≡b[q].Next take ε > 0 and periodi
 g su
h that maxn |g(n)− f(n)| ≤ ε. Let qbe a period of g. We readily �nd that |F (f ; q, b)−F (g; q, b)| ≤ ε so that
max

n

∣

∣Ψ(f, q)(n)−Ψ(g; q)(n)
∣

∣ = max
bmod q

max
n≡b[q]

∣

∣Ψ(f, q)(n)−Ψ(g; q)(n)
∣

∣ ≤ ε.We 
an take for q the sequen
e lcmd≤Q d and the above to show that
(Ψ(f, q))q 
onverges uniformly towards f .20.2.2. L2-setting. If we sele
t a limit periodi
 set A and a bound
N ≥ 1, the sequen
e (1n∈A)n≤N is the limit of ((Ψ(1A, q)(n))n)q. Su
ha sequen
e is thus a good 
andidate for (20.1). It is however un
learif the 
ontext of limit periodi
 fun
tions is the proper one. Having al-most periodi
 fun
tions with spe
trum in Q (the spe
trum is the set of
α su
h that TN (f, α) does not vanish) is 
ertainly helpful in 
onstru
t-ing periodi
 approximation of f , and as su
h the 
ontext of Wiener orMar
inkiewi
z spa
es (see (Coquet et al., 1977) and (Bertrandias, 1966))appears to be relevant.We 
he
k immediately that

|F (f ; q, b)|2 ≤ lim inf
N→∞

q

N

∑

n≤N,
n≡b[q]

|f(n)|2



162 20 On a large sieve equalityfrom whi
h we infer(20.6) ∑

amod q

|T∞(f ; a/q)|2 ≤ lim inf
n→∞

1

N

∑

n≤N

|f(n)|2.However, the existen
e of the R.H.S. limit (as a limit and not as a lim inf)is far from obvious, though it is plausible. When limN
1
N

∑

n≤N |f(n)|2indeed exists and is the limit of∑amod q |T∞(f ; a/q)|2, then f is pseudo-periodi
; in the 
ontext developed by (Bertrandias, 1966) and (Coquetet al., 1977), it amounts to saying that the spe
tral measure asso
iatedto f is purely dis
rete. This statement is made with a �xed q.A fun
tion f on integers is said to be B2-almost periodi
, i.e. almostperiodi
 in the sense of Besi
ovit
h, if there is a sequen
e of periodi
fun
tions fq su
h that
lim

q→∞
lim sup
N→∞

1

N

∑

n≤N

|f(n)− fq(n)|2 = 0.The reader will �nd in (S
hwartz & Spilker, 1994) the theory of su
hfun
tions.Brüdern went into similar 
onsiderations and 
leared the situationfurther in (Brüdern, 2000-2004) by proving thatTheorem 20.1. Let f be su
h that all T∞(f ; a/q) exist. Then we haveequivalen
e between:(1) f is B2-almost periodi
,(2) limN
1
N

∑

n≤N |f(n)|2 =
∑

q≥1

∑

amod ∗q |T∞(f ; a/q)|2.As a 
onsequen
e, he 
onsidered the problem of representing an in-teger as a sum of two elements from two sequen
es, one of whi
h ver-i�es inequality (20.6) as an equality, and both su
h that the averages
T∞(1A; a/q) exist. The �rst step is the following 
orollary of the previ-ous Theorem:Corollary 20.1. If f and g are su
h that all T∞(g; a/q) and T∞(f ; a/q)exist, and moreover g is B2-almost periodi
, then

lim
N

1

N

∑

n≤N

f(n)g(n) =
∑

q≥1

∑

amod ∗q

T∞(f ; a/q)T∞(g; a/q).From whi
h he dedu
es for instan
e that there are in�nitely manysquarefree integers n su
h that n + 1 is also squarefree. This materialwas presented at several 
onferen
es but no published form exists as ofnow. He utilizes the 
ir
le method; our method 
learly dispenses with it



20.3 A large sieve equality: a pedestrian approa
h 163as it does in the 
ase of squarefree numbers (see 
hapter 19), where wefurthermore get a quantitative statement.S
hlage-Pu
hta went one step further in (Pu
hta, 2002), where thefollowing Theorem is proved:Theorem 20.2. Let N be a set of integers and let f be its 
hara
teristi
fun
tion. Then f is B2-almost periodi
 if and only if the following three
onditions are veri�ed:(1) N has positive density.(2) The frequen
ies F (f ; q, b) de�ned in (20.4) exist.(3) We have
∑

q≥1

∑

amod ∗q

|T∞(f ; a/q)|2 = lim
n→∞

1

N

∑

n≤N

|f(n)|2.In parti
ular, (Pu
hta, 2002) and (Brüdern, 2000-2004) prove that aset N with a multipli
ative 
hara
teristi
 fun
tion and positive densitysati�es these 
onditions.20.3. A large sieve equality: a pedestrian approa
hWe 
onsider the problem of equality from a di�erent angle and ask for aspe
ial form for f so as to satisfy (20.1). The form we 
hoose is the onethat appears in sieve theory, namely the 
onvolution of a sequen
e withsmall support with the 
onstant sequen
e 1.We start with a simple result whose proof is illuminating.Theorem 20.3. Let q ≥ 2 be an integer and let L and L0 be two non-negative real numbers. For every arbitrary sequen
e of 
omplex numbers
(bm)m≤M , we have

∑

amod ∗q

∣

∣

∣

∣

∑

L0<ℓ≤L0+L
m≤M

bme(aℓm/q)

∣

∣

∣

∣

2

− φ(q)L2

∣

∣

∣

∣

∑

q|m
bm

∣

∣

∣

∣

2

≪ LB(‖b‖22Mq)1/2 Log q + ‖b‖22 (Mq + q2) Log2 qwith ‖b‖22 =
∑

m |bm|2 and B =
∑

m |bm|.Proof. We dis
uss a

ording to whether q|m or not, and sum over ℓ.Dis
arding the latter terms gives rise to the main term. To get a rigorous



164 20 On a large sieve equalityerror term, take modulus and sum over a prime to q. We have
∑

L0<ℓ≤L0+L
m≤M

bme(aℓm/q) = L∗
∑

m≤M,
q|m

bm +
∑

m≤M,
q∤m

bmO(1/‖am/q‖)where ‖α‖ stands for the distan
e to the nearest integer and L∗ is thenumber of integer points in the interval ]L0, L0 + L]. Summing over aranging redu
ed residues 
lasses, the error term is O of
L∗

∑

m′≤M,
q|m′

|bm′ |
∑

m≤M,
q∤m

|bm|
∑

amod ∗q

1/‖am/q‖

+
∑

m,m′≤M,
q∤m,q∤m′

|bm||bm′ |
∑

amod ∗q

1/
(

‖am/q‖‖am′/q‖
)

.For the �rst one, pro
eed as follows: set (m, q) = q/d < q. Split sum-mation over a a

ording to 
lasses modulo d; there are φ(q)/φ(d) ≤ q/delements per 
lass where the latter inequality is proven by appealing tomultipli
ativity. Say a ≡ b[d]. We have
∑

cmod ∗d

1/‖cm/q‖ ≪ d(Log d+ 1)≪ dLog qwhi
h we multiply by q/d. This amounts to a 
ontribution not morethan
L
∑

m′≤M,
q|m′

|bm′ |
∑

m≤M,
q∤m

|bm| O(q Log q)≪ LB‖b‖2
√

M/q q Log qwhi
h is O(LB‖b‖2(Mq)1/2 Log q). It is a striking feature of this simple-minded proof that M/q o

urs and not M/q+ 1. As for the se
ond partof the error term, we use 2|bmbm′ | ≤ |bm|2 + |bm′ |2 to get it is not more� up to a multipli
ative 
onstant � than
∑

m≤M,
q∤m

|bm|2
∑

amod ∗q

∑

m′≤M,
q∤m′

1/
(

‖am/q‖‖am′/q‖
)

.For the sum over m′ we split the range of summation in interval of length
q and get it is O((1 +M/q)q Log q). We treat the sum over a as aboveand get a total 
ontribution of

O
(

‖b‖22(M + q)q Log2 q
)as required. The error due to the repla
ement of L∗ with L is absorbedin the already existing error term. ⋄ ⋄ ⋄



20.3 A large sieve equality: a pedestrian approa
h 165The statement of the above Theorem 
an be simpli�ed by using B2 ≤
M‖b‖22, but this may lead to a severe loss when the sequen
e b has asmall support. If this happens, a similar loss most probably o

urs inthe se
ond part of the error term; the reader may try to re
over this lossby inspe
ting the proof above: after using 2|bmbm′ | ≤ |bm|2 + |bm′ |2, weextend the summation over m′ to every integers ≤ M and this 
an be
ostly (for instan
e when bm is supported by the squares).Summing over q, we get an impressive result whi
h will 
ompare easilywith the theorem proved in se
tion 20.5.Corollary 20.2. Let Q be a set of moduli, all ≤ Q. For every sequen
eof 
omplex numbers (bm)m≤M , we have
∑

q∈Q

∑

amod ∗q

∣

∣

∣

∣

∑

L0<ℓ≤L0+L
m≤M

bme(aℓm/q)

∣

∣

∣

∣

2

= L2
∑

m,m′≤M

bmbm′(m,m′)Q

+O
(

LB‖b‖2(MQ3)1/2 LogQ+ ‖b‖22(MLQ3/2 +MQ2 +Q3) Log2Q
)with notations as in Theorem 20.3 and(20.7) ∀m,m′ ∈ N \ {0}, (m,m′)Q =

∑

t∈Q,
t|m,t|m′

φ(t).To understand the strength of this 
orollary, 
onsider 
ase bm = 1 and
Q = {q ≤ Q}. Then the main term is of size (LM LogM)2, while theerror term is of size at most M(MLQ3/2 +MQ2 +Q3) Log2Q whi
h isindeed an error term when Q ≤ L2/3. This is a 
onsiderable improvementon the large sieve inequality whenM is relatively small! The latter wouldyield the upper bound (L2M2 +LMQ2) Log2M whi
h is superseded bythe above when M ≤ min(L,Q1/2) and LM ≥ Q; the most astonishingpart of our result is that under some 
ir
umstan
es, we may take Qlarger than √LM . For instan
e, with M = Nα and L = N1−α for some
α ∈ [0, 1/2], we 
an take Q = N2(1−α)/3, whi
h is indeed larger than√
N if α ≤ 1/4.We have taken here the 
onvolution of 1 with (bm), but we 
ouldeasily repla
e 1 with any smooth fun
tion over this interval as we do inse
tion 20.5. Sin
e we do not require the Poisson summation formulahere, we do not even need it to be di�erentiable at the endpoints of theinterval of summation.



166 20 On a large sieve equality20.4. An appli
ationThe previous se
tion 
ontains results of a methodologi
al 
hara
ter. Assu
h they have been presented in what we expe
t to be the simplestsetting, but appli
ations 
all for slightly di�erent statements. Let usstart with the following Lemma.Lemma 20.1. Let q ≥ 2 be an integer and let N be a non-negative realnumbers. For every arbitrary sequen
e of 
omplex numbers (bm)m≤M ,we have
∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
m≤M,
ℓm≤N

bme(aℓm/q)

∣

∣

∣

∣

2

− φ(q)

∣

∣

∣

∣

∑

q|m
bm[N/m]

∣

∣

∣

∣

2

≪ NBq1/2 Log q
∑

m≤M,
q|m

|bm|
m

+ ‖b‖22(Mq + q2) Log2 qwith ‖b‖22 =
∑

m |bm|2 and B =
∑

m |bm|.For the use we have in mind, namely the squarefree numbers, repla
-ing the integer part [N/m] by N/m up to a O(1) would be too 
ostlywithout any further assumptions on (bm). We thus keep the main termin this fairly raw format.Proof. The proof is simply an adaptation of the one given for Theo-rem 20.3. We start from
Σ =

∑

ℓ≥1,
m≤M,
ℓm≤N

bme(aℓm/q) =
∑

m≤M,
q|m

bm[N/m] +
∑

m≤M,
q∤m

bmO(1/‖am/q‖)Summing over a ranging redu
ed residues 
lasses, we �rst get that
Σ = φ(q)

∣

∣

∣

∣

∑

m≤M,
q|m

bm[N/m]

∣

∣

∣

∣

2

+O
(

∑

m≤M,
q|m

|bm|
N

m

∑

amod ∗q

∑

m′≤M,
q∤m′

|bm′ |/‖am′/q‖

+
∑

m,m′≤M,
q∤m,q∤m′

|bm||bm′ |
∑

amod ∗q

1/
(

‖am/q‖‖am′/q‖
)

)



20.4 An appli
ation 167where we handle the error term as in the proof of Theorem 20.3. ⋄ ⋄ ⋄Summing over q, we infer the following Theorem.Theorem 20.4. Let Q be a set of moduli, all ≤ Q. For every sequen
eof 
omplex numbers (bm)m≤M , we have
∑

q∈Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
m≤M,
ℓm≤N

bme(aℓm/q)

∣

∣

∣

∣

2

=
∑

m,m′≤M

bmbm′

∑

q∈Q,
q|(m,m′)

φ(q)
[N

m

][N

m′

]

+O
(

NB‖b‖2 Log(MQ) + ‖b‖22(MQ2 +Q3) Log2Q
)with ‖b‖22 =

∑

m |bm|2 and B =
∑

m |bm|.Proof. We note that
∑

q≤Q

∑

m≤M,
q|m

|bm|
m

√
q ≤

∑

m≤M

|bm|
m

∑

q|m

√
q

≤ ‖b‖2
(

∑

m≤M

1

m2

(

∑

q|m

√
q
)2
)1/2

.and end the proof by noti
ing that
∑

m≤M

1

m2

(

∑

q|m

√
q
)2
≪ LogMby appealing for instan
e to Theorem 21.1. ⋄ ⋄ ⋄When the main term in the above Theorem is of size about N2 and

‖b‖22 is of size aboutM , the formula stated yields an asymptoti
 provided
Q,M = o(N2/3) and QM = o(N).Lemma 20.2. For every sequen
e of bounded 
omplex numbers (cd)d≤D,we have

∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
d>D,

ℓd2≤N

cde(aℓd
2/q)

∣

∣

∣

∣

2

≪ NQ2D−2 +N3D−4 LogN.



168 20 On a large sieve equalityProof. We simply expand the range of the inner summation over a toall of Z/qZ. Calling Σ the sum we want to estimate, this leads to
Σ≪

∑

D<d1,d2≤
√

N

|cd1cd2 |
∑

n1,n2≤N,
d2
1|n1,

d2
2|n2

∑

q≤Q,
q|n1−n2

q.The diagonal terms n1 = n2 give rise to a 
ontribution at most
NQ2

∑

D<d1,d2≤
√

N

1/[d2
1, d

2
2]≪ NQ2

∑

D<d1,d2≤
√

N

(d2
1, d

2
2)/(d

2
1d

2
2)

≪ NQ2
∑

δ

φ(δ)

(

∑

D<d≤
√

N,
δ|d

1/d2

)2by using yet again Selberg's diagonalization pro
ess. When δ ≤ D,we bound the inner sum by O(1/(Dδ)), while we bound it by O(1/δ2)otherwise. The total 
ontribution of the diagonal terms is thus seen tobe not more than O(NQ2D−2). Con
erning the non-diagonal ones, weuse
∑

q|m
q = m

∏

p|m
(1 + 1/p) ≤ m · exp

(

∑

p≤m

1/p
)

≪ mLogmto get a 
ontribution of order at most:
∑

D<d1≤d2≤
√

N

∑

n1,n2≤N,
d2
1|n1,

d2
2|n2

N

d2
1

LogN ≪ N3 LogN
∑

D<d1≤d2≤
√

N

d−4
1 d−2

2

≪ N3 LogN
∑

D<d1≤d2≤
√

N

d−5
1 ≪ N3D−4 LogN

⋄ ⋄ ⋄Theorem 20.5. For every Q ≤ N7/12−2ǫ with ǫ being positive and ≤
1/6, we have

∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

n≤N

µ2(n)e(an/q)

∣

∣

∣

∣

2

= (6/π2)N2 +O(N2−ǫ).We have not tried to get the best exponent instead of 7/12, but haverestrained our argument to remain somewhat general. This Theorem isof spe
ial interest: �rst, it o�ers a large sieve equality and se
ond, we
an even allow Q to be stri
tly larger than N1/2. The reader will �nd



20.4 An appli
ation 169in (Brüdern & Perelli, 1999) more information on the exponential sumover the squarefree numbers. It seems that the above Theorem is novel.Proof. We denote in this proof the 
onstant 6/π2 by C to simplifythe typographi
al work . We start as in se
tion 19.2 with the formula
µ2(n) =

∑

d2|n µ(d) from whi
h we infer(20.8) µ2(n) =
∑

d≤D,
d2|n

µ(d) +
∑

d>D,
d2|n

µ(d)for some parameter D ≤ min(N1/3, Q). We then apply Theorem 20.4with m = d2, M = D2 and bm = µ(d) when m = d2 and bm = 0otherwise. The main term reads
H =

∑

q≤Q

φ(q)

(

∑

d≤D,
q|d2

µ(d)[N/d2]

)2

.When q is not 
ubefree, the inner summation vanishes, so we may write
q = q1q

2
2 with q1 and q2 being squarefree and 
oprime. We set q′ = q1q2.The 
ondition q|d2 translates into q′|d. We have
∑

d≤D,
q|d2

∣

∣µ(d)[N/d2]
∣

∣≪ N/q′2 ,
∑

d≤D,
q|d2

∣

∣µ(d)
∣

∣≪ D/q′,so that
H = N2

∑

q1q2
2≤D2

µ2(q1q2)φ(q1)q2φ(q2)

(

∑

d≤D,
q1q2|d

µ(d)/d2

)2

+O(ND LogD)

= C2N2
∑

q1q2
2≤D2

µ2(q1q2)φ(q1)φ(q2)

q41q
3
2

∏

p|q1q2

(

1− 1

p2

)−2
+O(N2D−1)

= CN2 +O(N2D−1)where the last 
onstant is a bit messy to 
ompute: we �rst extend thesummation to all q1q2 with negligible error term and then pro
eed bymultipli
ativity. We �rst note that
∑

q1,q2≥1

µ2(q1q2)φ(q1)φ(q2)

q41q
3
2

∏

p|q1q2

(

1− 1

p2

)−2

=
∑

q1≥1

µ2(q1)
∏

p|q1

p− 1

(p2 − 1)2

∑

q2≥1,
(q1,q1)=1

µ2(q2)
∏

p|q1

p(p− 1)

(p2 − 1)2
= C ′



170 20 On a large sieve equalitysay, and from then onward, 
ontinue routinely. We get
C ′ =

∑

q1≥1

µ2(q1)
∏

p|q1

p− 1

(p2 − 1)2 + p(p− 1)

∏

p≥2

(

1 +
p(p− 1)

(p2 − 1)2

)

=
∏

p≥2

(

1 +
p− 1

(p2 − 1)2 + p(p− 1)

)

∏

p≥2

(

1 +
p(p − 1)

(p2 − 1)2

)

=
∏

p≥2

p2

p2 − 1
= 1/Cas 
laimed. The error term in Theorem 20.4 is O((ND3/2 + D3Q2 +

DQ3) Log2(MQ)
). Let us de�ne
Σ1 =

∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
d≤D,

ℓd2≤N

µ(d)e(aℓd2/q)

∣

∣

∣

∣

2

and Σ2 with the size 
ondition on d being reversed. We have just shownthat Σ1 = CN2+O(N2D−1+(ND3/2+D3Q2+DQ3) Log2(MQ)) whileLemma 20.2 yields the bound
Σ2 ≪ NQ2D−2 +N3D−4 LogN.Let us sele
t D = N1/4+ǫ and Q = N7/12−2ǫ. We readily get

Σ2 ≪ N2−2ǫ, Σ1 −CN2 ≪ N11/8+2ǫ +N23/12−ǫ/2 +N2−4ǫ ≪ N2−ǫsin
e ǫ ≤ 1/6. We use
∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓ≥1,
d≤D,

ℓd2≤N

µ(d)e(aℓd2/q) +
∑

ℓ≥1,
d>D,

ℓd2≤N

µ(d)e(aℓd2/q)

∣

∣

∣

∣

2

≤ Σ1− 2ℜ
∑

q≤Q

∑

amod ∗q

∑

ℓ≥1,
d≤D

ℓd2≤N

µ(d)e(aℓd2/q)
∑

ℓ≥1,
d>D

ℓd2≤N

µ(d)e(−aℓd2/q)+ Σ2and we invoke Cau
hy inequality for the middle term to prove it is notmore than √Σ1Σ2 ≪ N2−ǫ; the Theorem is proved. ⋄ ⋄ ⋄



20.5 A large sieve equality: using more advan
ed te
hnology 17120.5. A large sieve equality: using more advan
edte
hnologyWe get here an equality in the large sieve inequality in a wider range of
M , in fa
t for M up to L. This time the range for Q will be restri
tedto be not more than the squareroot of the length of summation.(Friedlander & Iwanie
, 1992) already 
onsidered the 
ase of f beingthe 
onvolution of 1 with a shortly supported arithmeti
al fun
tion andproved more re�ned estimates than ours. The proof below is essentiallya simpli�ed extra
t of theirs. Note however that in the Theorem below,we do not use the spe
ial set of moduli {q ≤ Q}.We take(20.9) f(n) =

∑

ℓm=n
m≤M

bmg(ℓ)where g is smooth. More pre
isely, we assume that g is C∞ and that(20.10) |g(j)(t)| ≪j (ξL)−jfor all j ≥ 0 for some parameter ξ ∈]1/L, 1] and L ≥ 1. We furtherassume that g(t) = 0 if t ≥ 2L. For simpli
ity, the reader may only
onsider the 
ase ξ = 1 whi
h will 
onvey the main ideas and di�
ulties.The hypothesis on g is patterned on the following examples: take a C∞
ompa
tly supported fun
tion G on [1, 2] and set g(t) = G(t/L). Su
h afun
tion will verify our assumptions with ξ = 1. In this way we 
an forinstan
e approximate the 
hara
teristi
 fun
tion of the interval [L, 2L].The parameter ξ is here to handle the pre
ision of this approximation,and the smaller it is, the better the approximation. There are severalexamples to understand this point: �rst, we may simply take a fun
tion
G en [1, 2/ξ] and set g(n) = G(n/(ξL)). Of 
ourse, ξ = 1/L 
orrespondsto the maximum pre
ision. The example we took in se
tion 1.2.1 does not
on
ern a C∞ fun
tion but is very 
losely related. Fun
tion bν de�nedin (15.6) has |b(j)ν (t)| ≪j δ

j for j < 2ν + 2 (see (15.11)) and falls againin this 
ategory but for the assumption that it should vanish for t ≥ 2L.Theorem 20.6. Let f be as above and Q be a set of moduli, all ≤ Q.We have
∑

q∈Q

∑

amod ∗q

∣

∣

∣

∑

n

f(n)e(na/q)
∣

∣

∣

2
=

(∫ ∞

−∞
g(w)dw

)2
∑

m,m′

bmbm′(m,m′)Q

+Oε,j

(

L‖b‖22Q
(

Q+ LM2(M/(ξL))j
)

(LM)ε
)for any j ≥ 2 and any ε > 0. Notation (m,m′)Q is de�ned in (20.7).



172 20 On a large sieve equalityIn appli
ations, ξL/M is at least a small power of LM , so, by taking jlarge enough, the term LM2(M/(ξL))j be
omes not more than (LM)ε.This is usually less than Q.Proof. We only 
onsider the 
aseQ = {q ≤ Q} for notational simpli
ity.We have
Σ(f,Q) =

∑

q≤Q

∑

amod ∗q

∣

∣

∣

∣

∑

ℓm=n
m≤M

bmg(ℓ)e(ℓma/q)

∣

∣

∣

∣

2

=
∑

m,m′≤M

∑

ℓ,ℓ′

g(ℓ)g(ℓ′)bmbm′

∑

q≤Q

cq(ℓm− ℓ′m′)

=
∑

d≤Q

dM(Q/d)
∑

m,m′,ℓ,ℓ′

mℓ≡m′ℓ′[d]

bmbm′g(ℓ)g(ℓ′)

=
∑

d≤Q

dM(Q/d)
∑

|r|≤N/d

∑

m,m′,ℓ,ℓ′

mℓ−m′ℓ′=dr

bmbm′g(ℓ)g(ℓ′)where M(X) =
∑

q≤X µ(q) is the summatory fun
tion of the Moebiusfun
tion.Next, we have mℓ−m′ℓ′ = dr and thus ℓm ≡ dr[m′]. Let (m,m′) = δ,a divisor of dr. We set m = δn, m′ = δn′ and k = dr/δ. We de�ne(20.11) Sdr =
∑

δ|dr

∑

(m,m′)=δ

bmbm′

∑

ℓ≡nk[n′]

g(ℓ)g
(nℓ− k

n′

)and get
Sdr =

∑

δ|dr

∑

(m,m′)=δ

bmbm′

n′
∑

h∈Z e(−nkhn′ )∫ ∞−∞ g(u)g(nu− kn′

)

e
(uh

n′

)

du

=
∑

δ|dr

∑

(m,m′)=δ

bmbm′

nn′
∑

h∈Z e(−nkhn′ )∫ ∞−∞ g(un)g(u− kn′

)

e
( uh

nn′

)

duby Poisson summation formula. In this expression, we shall separate
h into three ranges: h = 0 gives the main term, 0 < |h| < H 
ould betreated in a non trivial way, something we do not wish to dwelve on here,while the 
ontribution with |h| ≥ H will be dis
arded simply be
auseFourier 
oe�
ients tend to zero when the argument tends to in�nity.



20.5 A large sieve equality: using more advan
ed te
hnology 17320.5.1. h = 0. The 
orresponding part of Σ(f,Q) reads
Σ0(f,Q) =

∑

d≤Q

dM
(Q

d

)

∑

|r|≤N/d,
δ|dr

∑

(m,m′)=δ

bmbm′

nn′

∫ ∞

−∞
g
(u

n

)

g
(u− k

n′

)

duHere, δ being �xed, we want to sum over r. We need to have δ/(δ, d)|rso that with r = sδ/(δ, d)

∑

|s|≤N
(d,δ)

dδ

g
(u− ds/(δ, d)

n′

)

=

∫ ∞

−∞
g
(u− vd/(δ, d)

n′

)

dv +O(1)

=
(δ, d)n′

d

∫ ∞

−∞
g(w)dw +O(1),from whi
h we infer(20.12) ∑

|r|≤N/d
δ|dr

1

nn′

∫ ∞

−∞
g
(u

n

)

g
(u− k

n′

)

du

=
(δ, d)

d

(∫ ∞

−∞
g(w)dw

)2

+O(L/n′).The 
hange of variable u− k = v enables us to ex
hange roles of n and
n′, resulting in an error term of O(L/(n + n′)).Treatment of the main term when h = 0. Plugging su
h an estimateba
k into Σ0(f,Q), we get, for the main term

(∫ ∞

−∞
g(w)dw

)2
∑

m,m′

bmbm′

∑

d≤Q

((m,m′), d)M(Q/d).Separate (m,m′) and d by appealing to ℓ =
∑

t|ℓ φ(t) and get that theabove is
(
∫ ∞

−∞
g(w)dw

)2
∑

m,m′

bmbm′

∑

t|(m,m′)

φ(t)
∑

d≤Q
t|d

M(Q/d).We 
he
k that∑t|d≤QM(Q/d) = 1 if t ≤ Q, and 0 otherwise. The mainterm now reads
(
∫ ∞

−∞
g(w)dw

)2
∑

m,m′

bmbm′(m,m′).



174 20 On a large sieve equalityTreatment of the error term when h = 0. Plugging (20.12) into thede�nition of Σ0(f,Q), we get the error term
QL

∑

d≤Q

∑

(m,m′)=δ

bmbm′

n+ n′
≪ Q2L

∑

m,m′

(m,m′)
|bmbm′ |
m+m′We separate m and m′ in two steps by using ℓ =
∑

t|ℓ φ(t) and thennoting 2|bmbm′ | ≤ |bm|2 + |bm′ |2. We get the above to be not more than
Q2L

∑

t

φ(t)
∑

t|m
|bm|2

∑

t|m′

1

m+m′
≪ε Q

2LMε‖b‖22.20.5.2. |h| ≥ H. We simply use a bound for the Fourier 
oe�
ient thatis obtained by integrating j ≥ 2 times.
∣

∣

∣

∣

∫ ∞

−∞
g(v/n)g

(v − k
n′

)

e
( vh

nn′

)

dv

∣

∣

∣

∣

≪
(nn′

h

)j( 1

n
+

1

n′

)j
(ξL)−jL

≪
(n+ n′

hξL

)j
L≪

( M

hξLδ

)j
Lso the 
ontribution to Σ(f,Q) is at most

∑

d≤Q

d(Q/d)
∑

|r|≤N/d

∑

|h|≥H

∑

(m,m′)=δ|dr

|bmbm′ |
( M

hξLδ

)j
L

≪ Q
M2L

ξ
‖b‖22

( M

ξLH

)j−1
Log(LM)be
ause the summation over h 
onverges by the assumption j ≥ 2 andsin
e N ≪ LM . As it turns out, our statement 
orresponds to H = 1.20.5.3. 0 < |h| < H. This subpart has no reasons to be, sin
e we take

H = 1. It would have be
ome ne
essary to handle this 
ase if we wereto take ξL < M .
⋄ ⋄ ⋄20.6. Equality in the large sieve inequality, IIWe should 
ompare the main term in Theorems 20.3 and 20.6 to N‖f‖22where N is supposedly the length, a notion that is not 
learly de�nedhere. In the large sieve inequality, N is an upper bound for the length.What is 
lear is that N should be of order LM . We 
onsider only the



20.6 Equality in the large sieve inequality, II 175simpler 
ase of Theorem 20.3. Let us express ‖f‖22 in another manner:
‖f‖22 =

∑

m,m′≤M

bmbm′

∑

ℓ,ℓ′≤L,
ℓm=ℓ′m′

1In the inner sum, we write δ = (m,m′) and m = δn as well as m′ = δn′.We should have ℓ = nh and ℓ′ = n′h and we get
‖f‖22 = L

∑

m,m′≤M

bmbm′

max(m,m′)
(m,m′) +O(M‖b‖22).This is to be 
ompared with the main term we got on taking Q = {q ≤

Q} and Q ≥M , namely:
(L/M)

∑

m,m′≤M

bmbm′(m,m′).Both expressions are 
lose but not 
lose enough and it is likely thatthe latter should be a fra
tion of the former. The 
ase bm = 1 when
m ∈]M/2,M ], and 0 otherwise is enlightening. We see dire
tly that

∑

M/2<m,m′≤M

(m,m′)
max(m,m′)

=
∑

d≤M

φ(d) 2
∑

M/2<m≤m′≤M,
d|m,d|m′

1

m′
+O(M)whi
h we readily evaluate. It is

2
∑

d≤M

φ(d)

d

∑

M/2<m≤M,
d|m

(

Log
M

m
+O

( d

m

)

)

+O(M)

= (1− Log 2)M
∑

d≤M

φ(d)

d2
+O(M)

= (1− Log 2)M · C LogM +O(M)for a positive 
onstant C while one readily 
he
ks that
(1/M)

∑

M/2<m,m′≤M

(m,m′) =
M

4
· C LogM +O(M).This example shows that a loss of a multipli
ative 
onstant is to beexpe
ted. We are really interested in what happens when one takessieve weights, in whi
h 
ase bm varies in sign while ℓ is not 
onstrainedas in Theorem 20.1, but I expe
t a similar phenomenom to happen. Itis however out of the s
ope of this monograph.



176 20 On a large sieve equality20.7. The large sieve inequality reversed(Duke & Iwanie
, 1992) proved a very interesting reversed large sieveinequality that we only state here. We are somehow o� topi
.Theorem 20.7. Let (bn)n≥1 be a sequen
e of 
omplex numbers. For
M ≥ 2N ≥ 4, there exist Q ≤ √N and a smooth fun
tion f supportedon a subinterval of [M − N,M + 2N ] of length Y = Q

√
N and whosederivatives verify |f (j)| ≪j (Log Y )/Y j for any j ≥ 0, su
h that

∑

M<n≤M+N

|bn|2 ≤
∑

q≤Q

(qQ)−1
∑

amod q

∣

∣

∣

∣

∑

n

bnf(n)e(na/q)

∣

∣

∣

∣

2

.The reader should be wary of the apparently small 
hanges in thequantities 
onsidered: �rst, the summation runs over all a's modulo qand not only over the invertible residue 
lasses ans se
ondly, we divideby 1/q and not by 1/Q. This last 
hange has momentous 
onsequen
eswhi
h are better des
ribed by looking at the 
ase bn = 1. The right-handside of the above equation is then of order NQLogQ while the left-handside is only of size N ! We gather by inspe
ting this example that theabove inequality should be used only when ∑n bne(na/q) is expe
ted tobe negligible for all small q's.



21 An appendix21.1. A general mean value estimateHere is a theorem inspired by (Halberstam & Ri
hert, 1971) but wherewe take 
are of the values of our multipli
ative fun
tion on powers ofprimes as well. The reader will �nd in (Martin, 2002) an appendix witha similar result. Moreover, we present a 
ompletely expli
it estimate,whi
h 
ompli
ates the proof somewhat. In (Cazaran & Moree, 1999),the reader will �nd, inter alia, a presentation of many results in thearea, a somewhat di�erent exposition as well as a modi�ed proof: theauthors a
hieve there a better treatment of the error term by appealingto a preliminary sieving.Theorem 21.1. Let g be a non-negative multipli
ative fun
tion. Let κ,
L and A be three non-negative real parameters su
h that























∑

p≥2,ν≥1
w<pν≤Q

g
(

pν
)

Log
(

pν
)

= κLog
Q

w
+O∗(L) (Q > w ≥ 1),

∑

p≥2

∑

ν,k≥1

g
(

pk
)

g
(

pν
)

Log
(

pν
)

≤ A.Then, when D ≥ exp(2(L+A)), we have
∑

d≤D

g(d) = C (LogD)κ (1 +O∗(B/LogD))with










C =
1

Γ(κ+ 1)

∏

p≥2

{(

1− 1

p

)κ
∑

ν≥0

g
(

pν
)

}

,

B = 2(L+A)
(

1 + 2(κ+ 1)eκ+1
)

.If in many appli
ations the dependen
e in L is important, the one in
A is most often irrelevant. In the 
ontext of the sieve, κ is 
alled thedimension of the sieve: it is the parameter that determines the size ofthe average we are to 
ompute and is, of 
ourse, of foremost importan
e.Let us mention in this dire
tion that (Rawsthorne, 1982) obtains a one-sided result from one-sided hypothesis, following a path already threadin (Iwanie
, 1980).



178 21 An appendixProof. Let us start with the idea of (Levin & Fainleib, 1967):
G(D) LogD =

∑

d≤D

g(d) Log
D

d
+
∑

d≤D

g(d) Log d

=
∑

d≤D

g(d) Log
D

d
+

∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

g(ℓ).Next we set(21.1) 





















Gp(X) =
∑

ℓ≤X
(ℓ,p)=1

g(ℓ)

T (D) =
∑

d≤D

g(d) Log
D

d
=

∫ D

1
G(t)

dt

t
,so that we 
an rewrite the above as

G(D) Log(D) = T (D) +
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

Gp(D/p
ν).Moreover

Gp(X) = G(X) −
∑

k≥1

g
(

pk
)

Gp(X/p
k)whi
h, when 
ombined with our hypothesis, yields

G(D) Log(D) = T (D) +
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

G(D/pν) +O∗(AG(D))

= T (D) +
∑

d≤D

g(d)
∑

p≥2,ν≥1
pν≤D/d

g
(

pν
)

Log
(

pν
)

+O∗(AG(D))

= T (D)(κ+ 1) +O∗((L+A)G(D))whi
h we rewrite as
(κ+ 1)T (D) = G(D) LogD (1 + r(D))with r(D) = O∗

(

L+A

LogD

)

.We see the previous equation as a di�erential equation. We set
expE(D) =

(κ+ 1)T (D)

(LogD)κ+1
=

G(D)

(LogD)κ
(1 + r(D))



21.1 A general mean value estimate 179getting for D ≥ D0 = exp(2(L+A))

E′(D) =
T ′(D)

T (D)
− (κ+ 1)

D LogD
=

−r(D)(κ+ 1)

(1 + r(D))D LogD

= O∗
(

2(L+A)(κ+ 1)

D(LogD)2

)sin
e |r(D)| ≤ 1/2 whenD ≥ D0 and on 
omputing T ′(D) through (21.1).Now, still for D ≥ D0, we have
E(∞)− E(D) =

∫ ∞

D
E′(t)dt = O∗

(

2(L+A)(κ + 1)

LogD

)

.Gathering our results, and using exp(x) ≤ 1 + x exp(x) valid for x ≥ 0,we infer that
G(D)

(LogD)κ
=

expE(D)

1 + r(D)
=

eE(∞)

1 + r(D)

(

1 +O∗
(

2(L+A)

LogD
(κ+ 1)eκ+1

))

.We next use 1/(1+x) ≤ 1+2x valid when 0 ≤ x ≤ 1
2 and (1+x)(1+y) ≤

(1 + 2x+ y) valid for x, y ≥ 0 and y ≤ 1 to infer
G(D)

(LogD)κ
= eE(∞)

(

1 +O∗
(

2(L+A)

LogD

(

1 + 2(κ+ 1)eκ+1
)

))

.This ends the main part of the proof. We are to identify eE(∞) = C.Note that the above proof is apriori wrong sin
e T ′(D) 6= G(D)/D at thedis
ontinuity points of G, but we simply have to restri
t our attentionto non integer D's and then pro
eed by 
ontinuity.An expression for C. We de�ne, for s a positive real number,
D(g, s) =

∑

d≥1

g(d)

ds
= s

∫ ∞

1
G(D)

dD

Ds+1

= sC

∫ ∞

1
(LogD)κ

dD

Ds+1
+O

(

sC

∫ ∞

1
(LogD)κ−1 dD

Ds+1

)

= C
(

s−κΓ(κ+ 1) +O(s1−κΓ(κ))
)and 
onsequently

C = lim
s→0+

D(g, s)sκΓ(κ+ 1)−1

= lim
s→0+

D(g, s)ζ(s+ 1)−κΓ(κ+ 1)−1.It is then fairly easy to 
he
k that the Eulerian produ
t
∏

p≥2

{(

1− 1

p

)κ
∑

ν≥0

g
(

pν
)

}is 
onvergent with value CΓ(κ+ 1) as required. ⋄ ⋄ ⋄



180 21 An appendix21.2. A �rst 
onsequen
eIt is not di�
ult by following (Wirsing, 1961) to derive a stronger meanvalue result from Theorem 21.1. Sin
e it will be required in one of theappli
ations below, and sin
e all the ne
essary material has been alreadyexposed, we in
lude one su
h result.Theorem 21.2. Let f be a non-negative multipli
ative fun
tion and κbe non-negative real parameter su
h that


























∑

p≥2,ν≥1
pν≤Q

f
(

pν
)

Log
(

pν
)

= κQ+O(Q/Log(2Q)) (Q ≥ 1),

∑

p≥2

∑

ν,k≥1,
pν+k≤Q

f
(

pk
)

f
(

pν
)

Log
(

pν
)

≪
√

Q,then we have
∑

d≤D

f(d) = κC ·D (LogD)κ−1 (1 + o(1))where C is as in Theorem 21.1.Proof. We pro
eed as in Theorem 21.1. Write
S(D) =

∑

d≤D

f(d).By using Theorem 9.2 followed by an appli
ation of Theorem 21.1, wereadily obtain the following apriori bound(21.2) S(D)≪ D(Log(2D))κ−1.Consider now S∗(D) =
∑

d≤D f(d) Log d. Pro
eeding as in the proof ofTheorem 21.1, we get
S∗(D) =

∑

p≥2,ν≥1
pν≤D

f
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

f(ℓ)

=
∑

ℓ≤D

f(ℓ)
∑

p≥2,ν≥1
pν≤D/ℓ,
(p,ℓ)=1

f
(

pν
)

Log
(

pν
)so that S∗(D) equals

∑

ℓ≤D

f(ℓ)
∑

p≥2,ν≥1
pν≤D/ℓ

f
(

pν
)

Log
(

pν
)

−
∑

ℓ≤D

f(ℓ)
∑

p≥2,ν,k≥1
pν+k≤D/ℓ,

(p,ℓ)=1

f
(

pν
)

f
(

pk
)

Log
(

pν
)



21.3 Some 
lassi
al sieve bounds 181We use our hypothesis on this expression and 
on
lude that
S∗(D) = κD

∑

ℓ≤D

f(ℓ)/ℓ+O
(

Q
∑

ℓ≤D

f(ℓ)

ℓLog(2Q/ℓ)

)

+O
(

√

Q
∑

ℓ≤D

f(ℓ)√
ℓ

)

.Both error terms are shown to beO(QLog(2Q)κ−1) by appealing to (21.2)while the main term is evaluated via Theorem 21.1. We �nally use anintegration by parts:
S(D) = 1 +

∫ D

2
S∗(t)

dt

tLog2 t
+
S∗(D)

LogDto get the 
laimed asymptoti
. ⋄ ⋄ ⋄21.3. Some 
lassi
al sieve boundsUsing Corollary 2.1 with Theorem 21.1 yields some 
lassi
al sieve bounds.Sums of two squares. Let us re
all that a positive integer is a sumof two 
oprime squares if and only if its prime fa
tor de
omposition
ontains only powers of 2 or of primes 
ongruent to 1 modulo 4. Let us
all B the set of su
h numbers.We 
onsider the 
ompa
t set K built as follows: if p is = 2 or a prime
≡ 1[4], Kp is Z/pZ, and if p ≡ 3[4], Kp = Up. We then build Kd forsquarefree d by split multipli
ativity and, in general, Kd by lifting Kℓ ina trivial way through σd→ℓ (see (2.1)), where ℓ is the squarefree kernelof d. The resulting 
ompa
t set is multipli
atively split and squarefree.We readily 
he
k that

{

h(2ν) = h(pν) = 0 when p ≡ 1[4] and ν ≥ 1,
h(p) = 1/(p − 1) and h(pν) = 0 when p ≡ 3[4] and ν ≥ 2.Let b(q) be the 
hara
teristi
 fun
tion of the integers whose prime fa
torsare all ≡ 3[4]. We �nd that(21.3) G1(Q) =

∑

q≤Q

µ2(q)b(q)

φ(q)to whi
h we apply Theorem 21.1 with κ = 1/2. We get(21.4) G1(Q) ∼ B
√

LogQwith B the produ
t over all primes of √1− p−1 when p ≡ 1[4] and
1/
√

1− p−1 when p ≡ 3[4], whi
h produ
t we multiply by √2/π (the
ontribution of the fa
tor 2 and of the Γ-fa
tor, sin
e Γ(1/2) =
√
π). On



182 21 An appendixtaking Q =
√
N/LogN , we �nd that the number of elements in B in aninterval of length N is not more than(21.5) (1 + o(1))

√
2

B N/
√

LogN.This is to be 
ompared to the number of elements of this sequen
e in theinitial interval [1, N ]. Using Theorem 21.2, we �nd that this 
ardinalityis(21.6) ∣

∣

{

b ∈ B, b ≤ N
}∣

∣ = (1 + o(1))

√
2

π
×
√

2

B
N/
√

LogN.so that our upper bound is about π/√2 = 2.22 . . . times o� the exa
tanswer in this 
ase. The 
ombinatorial sieve is able to get the asymptoti
here, or even in the 
ase of an interval [M + 1,M +N ], when N is nottoo large with respe
t to M .On the number of prime twins. We will give an upper bound for thenumber of prime twins up to N , as N goes to in�nity, by applyingSelberg sieve. We already gave su
h a bound in 
hapter 9 by using ourlo
al models. The 
ompa
t set we take is simply K = U ∩ (U − 2) as wasthe 
ase then. It is multipli
atively split as well as squarefree. For theasso
iated fun
tion h, we readily �nd that
{

h(2) = 1 and h(2ν) = 0 if ν ≥ 2,
h(p) = 2/(p − 2) and h(pν) = 0 if p ≥ 3 and ν ≥ 2.This gives us(21.7) G1(Q) =

∑

q≤Q

µ2(q)
∏

p|q
p 6=2

2

p− 2to whi
h we apply Theorem 21.1 with κ = 2 to get(21.8) G1(Q) ∼ 1

4

∏

p≥3

(p − 1)2

p(p− 2)
(LogQ)2.We again 
hoose Q =

√
N/LogN to �nd that

∣

∣

{

p ≤ N /p+ 2 is prime}∣∣ ≤ 16(1 + o(1))
∏

p≥3

p(p− 2)

(p − 1)2
N/(LogN)2a bound that is 8 times larger than its 
onje
tured value. (Siebert, 1976)establishes the above inequality for all N > 1 with no o(1) term. If wewere to use the Bombieri-Vinogradov Theorem as in se
tion 13.5, wewould get a bound only 4 times o� the expe
ted one. Note that (Wu,2004) redu
es this 
onstant to 3.3996; that su
h an improvement holdsonly when we look at prime twins lo
ated on the initial segment [1, N ],
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ial primes in a progression 183
ontrarily to the above bound whi
h remains valid for any interval oflength N .21.4. Produ
ts of four spe
ial primes in arithmeti
progressionsLet us start by roughly re
alling the notion of su�
iently sifted sequen
eas has been developed by (Ramaré & Ruzsa, 2001). Essentially, su
h asequen
e A is in�nite and of fairly large density: the number of itselements ≥ X is ≫ X/(LogX)κ for X large enough and a given κ; andfor ea
h large parameter X, we 
an �nd a YX ≤ X, so that the �nitesubsequen
e A∩[YX,X] 
an be sifted by a multipli
atively split 
ompa
tset K satisfying the Johnsen-Gallagher 
ondition, up to a level Q, insu
h a way that the asso
iated G1-fun
tion satis�es G1(Q)≫ (LogX)κ.Alternatively, we may say that the 
hara
teristi
 fun
tion of A∩ [YX ,X]is 
arried by K up to level Q. Su
h 
onditions ensure that the numberof elements ≤ X in A is of order X/(LogX)κ but also that we haveat our disposal a surrounding 
ompa
t. This latter 
ondition providesus with good arithmeti
al properties: in (Ramaré & Ruzsa, 2001), weinvestigated its impli
ations on additive properties; it is also a mainingredient in (Green & Tao, 2004) and (Green & Tao, 2006) 
on
erningarithmeti
 progressions within su
h sets. We rapidly present here a thirdkind of use, namely to prove the existen
e of produ
ts of elements ofthis sequen
e in some arithmeti
 progressions to large moduli. This is,of 
ourse, a generalization of se
tion 5.1.But let us �rst 
omment some more on the de�nition of a su�
ientlysifted sequen
e and provide the reader with some examples. The se-quen
e of primes is a good 
andidate, with κ = 1. We see in this examplethat the introdu
tion of YX is ne
essary: we 
annot say that the primesup to X are the integers 
oprime with every integers ≤ Q =
√
X . . . ifwe want to keep some elements in our sequen
e! Note that Q also hasto depend on X, all of them 
onditions that gives a te
hni
al �avour toour de�nition but are required if we want it to be �exible enough forappli
ations. A trivial example is also given by the sequen
e of positiveintegers, with κ = 0, or by the sequen
e of squarefree integers, also withdimension κ = 0. More exoti
 is the sequen
e of integers n that are sumsof two 
oprime squares and su
h that n + 1 also shares this property.Its dimension is κ = 1, as shown in (Indlekofer, 1974/75). The sequen
eof those prime numbers p that 
an be written as p = 1 +m2 + n2 with

(m,n) = 1 yields another un
ommon example, with dimension κ = 3
2thanks to (Iwanie
, 1972).



184 21 An appendixInstead of going for a general result whi
h would be very intri
ate, weuse this latter sequen
e as an example: let A be the sequen
e of thoseprime numbers p that 
an be written as p = 1+m2+n2 with (m,n) = 1.Theorem 21.3. There exists X0 ≥ 1 and h ≥ 2 with the followingproperty. Let X ≥ X0 be an integer and q1,. . . , qh be pairwise 
oprimemoduli, all not more than X1/3 and all prime to 3. Then modulo oneof the qi's, all invertible residue 
lasses 
ontain a produ
t of four primesfrom A, the four of them being not more than X.The bound X1/3 may be repla
ed by X 1
2−ε for any ε > 0 but then hmay depend on ε. As a se
ond remark, note that we dete
t a produ
t oftwo primes, but in fa
t we 
an equally guarantee that ea
h 
lass modulothe same qi 
ontains also a produ
t of �ve (or any number as well) primesfrom A. Finally, we should mention that the modulus 3 is a spe
ial 
asesin
e elements of A are 
ongruent to 2 modulo 3 and in parti
ular noprodu
t of a �xed number of them 
an 
over all of U3.The reader may try to get a similar result by taking forA the sequen
eof integers n and n+1 that are sums of two 
oprime squares. Note �nallythat (Pomeran
e et al., 1988) somewhat draws on similar lines.Proof. We split this proof in several steps.General setting: We 
all AX the sequen
e of elements of A that be-long to [

√
X,X], a sequen
e we 
an sieve up to level Q =

√
X. The
ardinality of AX is denoted by AX .The 
ompa
t set K 
an be de�ned by multipli
ativity: when p ≡ 1[4],then Kp is simply the set of invertibles Up, while when p ≡ 3[4], then Kpis the set of invertibles modulo p from whi
h we remove the 
lass 1. Asfor p = 2, we simply take K2 = {1}, without further ado. We then lift

Kp trivially to de�ne Kpν for ν > 1.Applying Theorem 21.1, we �nd that κ = 3/2, from whi
h we infer
G1(Q)≫ (LogQ)3/2 while an appeal to Lemma 2.3 yields(21.9) Gq(Q) ≥ G1(Q/q)≫ (Log(Q/q))3/2,the implied 
onstant being of 
ourse independent of q ≤ Q.First step: By using (5.5), we get an analog of (5.2), namely that

G1(Q)A2
X +

∑

1≤i≤h

Gqi(Q)3/2|Kqi |
∑

b∈Kqi

∣

∣

∣

∣

∑

a∈AX
a≡b[qi]

1−AX/|Kqi |
∣

∣

∣

∣

2
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ial primes in a progression 185is bounded from above by AX(X+Q2). We then appeal to (21.9), re
allthat Q =
√
X and get

∑

1≤i≤h

(

1− 2Log qi
LogQ

)3/2

|Kqi |
∑

b∈Kqi

∣

∣

∣

∣

1

AX

∑

a∈AX
a≡b[qi]

1− 1/|Kqi |
∣

∣

∣

∣

2

≤ cfor some 
onstant c > 0 and all X ≥ X0. The introdu
tion of this X0 isne
essary sin
e we do not have AX ≫ X/(LogX)3/2 whenX is too small.We use the same optimization pro
ess as in the proof of Theorem 5.1.First de�ne
AX(qi) = {a ∈ Z/qiZ/ ∃p ∈ AX , p ≡ a[qi]}.Then there holds for X ≥ X0:
∑

1≤i≤h

(

1− 2Log qi
LogX

)3/2( |Kqi |
|AX(qi)|

− 1

)

≤ c.From this inequality, we get, for one qi we 
all q:
h · (1/3)3/2

( |Kq|
|AX(q)| − 1

)

≤ ci.e. |AX(q)|/|Kq | ≥ 1/(1 + 3c
√

3/h) whi
h 
an be arbitrarily 
lose to 1when h is large enough.Se
ond step: We have just shown that the 
ardinality of |AX(q)| 
ouldbe almost |Kq| but this latter 
an be very small with respe
t to φ(q) when
q has lots of prime fa
tors ≡ 3[4]. However, we show here that the set
B(q) of produ
ts of two elements is large with respe
t to φ(q). Thepro
ess we use to a
hieve this is rather 
lassi
al. Let r(n) (resp. r̃(n))be the number of ways the integer n 
an be written as a produ
t (resp.quotient) of two elements of AX(q) modulo q. Using Cau
hy's inequalityyields

|AX(q)|4 =

(

∑

nmod∗q

r(n)

)2

≤ |B(q)|
∑

nmod∗q

r(n)2.We are to �nd an upper bound for ∑n r(n)2, but �rst we note that
∑

nmod∗q

r(n)2 =
∑

a,b,c,d∈AX(q)
ab=cd[q]

1 =
∑

a,b,c,d∈AX(q)
a/c=d/b[q]

1 =
∑

nmod∗q

r̃(n)2.Next, we 
ompute an upper bound for r̃(n) simply by extending in n =
a/b the range of a and b to all of Kq. This way, the new r̃(n), say r̃0(q, n),is multipli
ative. Furthermore, r̃0(pν , n) = (|Kpν |/|Kp|)r̃0(p, n) for any
ν ≥ 1. If p ≡ 1[4], then r0(p, n) = |Kp| = p − 1. Of 
ourse r̃0(2, n) = 1.To 
over the 
ase p ≡ 3[4], we note that in a = nb, all values of b are
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epted when n ≡ 1[p] and only p − 3 of them otherwise. From theseremarks, and denoting by q♯ the squarefree kernel of q, we get
∑

nmod∗q

r̃0(q, n)2 =
|Kq|2
|Kq♯ |2

∏

p|q,
p≡1[4]

(

(p− 1)|Kp|2
)

×
∏

p|q,
p≡3[4]

(

(p − 2)(p − 3)2 + (p− 2)2
)

=
|Kq|4
φ(q)

∏

p|q,p≡3[4]

(p− 3)2(p− 1) + (p− 2)(p − 1)

(p− 2)3

=
|Kq|4
φ(q)

∏

p|q,p≡3[4]

(

1 +
1

(p− 2)3

)

≤ 1.01|Kq |4/φ(q)this latter inequality being true sin
e the primes p intervening in theEuler produ
t are ≥ 7. Gathering our estimates, we rea
h
(|AX(q)|/|Kq |)4 ≤ 1.01|B(q)|/φ(q)and thus for h large enough, we have |B(q)|/φ(q) ≥ 2/3.Third step. : We 
on
lude as in the proof of Corollary 5.1: sin
e

B(q) 
ontains more than φ(q)/2 elements of Uq, ea
h 
lass of Uq 
an berea
hed by a produ
t of two elements from B(q). ⋄ ⋄ ⋄



NotationsNotations used throughout these notes are standard ... in one way orthe other! Here is a guideline:� The use of the letter p for a variable always implies this variableis a prime number.� e(y) = exp(2iπy).� Γ(z) is the usual Euler Γ-fun
tion. In parti
ular, Γ(1/2) =
√
π.� ‖a‖2 stands for the norm, a

ording to the ambient hermitianstru
ture, or the L2-norm when no su
h stru
ture has been spe
-i�ed. This is to be distinguished from ‖u‖ whi
h stands for thedistan
e to the nearest integer. In 
hapters 4 and 19, the normswill be denoted with another subs
ript, usually d or q, and itwill still be hermitian norms and will not be linked in any wayto Lq-spa
es.� [d, d′] stands for the l
m and (d, d′) for the g
d of d and d′. Wedenote as usual the 
losed interval with endpoints M and N as

[M,N ]. Hermitian produ
ts will be denoted by [f |g] with orwithout any subs
ript. And in 
hapter 20, we will denote by
[N/m] the integer part of N/m.� |A| stands for the 
ardinality of the set A while 1A stands forits 
hara
teristi
 fun
tion.� 1 denotes a 
hara
teristi
 fun
tion in one way or another. Forinstan
e, 1Kd

is 1 if n ∈ Kd and 0 otherwise, but we 
ouldalso write it as 1n∈Kd
, 
loser to what is often 
alled the Dira


δ-symbol. We shall also use 1(n,d)=1 and 1q=q′ .� q‖d means that q divides d in su
h a way that q and d/q are
oprime. In words we shall say that q divides d exa
tly.� The squarefree kernel of the integer d =
∏

i p
αi
i is ∏i pi, theprodu
t of all prime fa
tors of d.� ω(d) is the number of prime fa
tors of d, 
ounted without mul-tipli
ity.� φ(d) is the Euler totient, i.e. the 
ardinality of the multipli
ativegroup of Z/dZ.� σ(d) is the number of positive divisors of d, ex
ept in se
tion 13.1where it will denote a density.� µ(d) is the Moebius fun
tion, that is 0 when d is divisible bya square > 1 and otherwise (−1)r otherwise, where r is thenumber of prime fa
tors of d.



188 21 Notations� cq(n) is the Ramanujan sum. It is the sum of e(an/q) over all amodulo q that are prime to q. See also (8.12).� Λ(n) is van Mangoldt fun
tion: whi
h is Log p is n is a powerof the prime p and 0 otherwise.� The notation f = OA(g) means that there exists a 
onstant
B su
h that |f | ≤ Bg but that this 
onstant may depend on
A. When we put in several parameters as subs
ripts, it simplymeans the implied 
onstant depends on all of them.� The notation f = O∗(g) means that |f | ≤ g, that is a O-likenotation, but with an implied 
onstant equal to 1.� The notation f ⋆ g denotes the arithmeti
 
onvolution of f and
g, that is to say the fun
tion h on positive integers su
h that
h(d) =

∑

q|d f(q)g(d/q).� The notation F ∗G denotes the real fun
tions 
onvolution, thatis to say the fun
tion H on the real line de�ned by H(x) =
∫∞
−∞ F (x − y)G(y)dy provided the latter expression exists forevery real number x.� U is the 
ompa
t set (Ud)d where, for ea
h d, Ud is the set ofinvertible elements modulo d.� π is ... the usual real number about 3.141 5 . . . ! But also identi-�es the 
ounting fun
tion of the primes: π(6) = 3 for instan
e.We tried to avoid this notation when not too awkward, justas we did not use the Chebyshev ϑ and ψ fun
tions ex
ept in
hapter 6.



Referen
esAbramowitz, M., & Stegun, I.A. 1964. Handbook of mathemati
al fun
-tions. Applied Mathemati
s Series, vol. 55. National Bureau of Stan-dards. mintaka.sdsu.edu/fa
ulty/wfw/ABRAMOWITZ-STEGUN.Baier, S. 2006. On the large sieve with sparse sets of moduli. J. Ramanu-jan Math. So
., 21(3), 279�295. Available at arxiv under referen
emath.NT/0512228.Baier, S., & Zhao, L. 2005. Large sieve inequality with 
hara
ters forpowerful moduli. Int. J. Number Theory, 1(2), 265�279.Baier, S., & Zhao, L. 2006a. Bombieri-Vinogradov type theorems forsparse sets of moduli. A
ta Arith., 125(2), 187�201. Available atarxiv under referen
e math.NT/0602116.Baier, S., & Zhao, L. 2006b. Primes in Quadrati
 Progressions on Aver-age. 13p. Available at arxiv under referen
e math.NT/0605563.Barban, M.B. 1963. Über Analoga des Teilerproblems von Tit
hmarsh.Vestn. Leningr. Univ., 18(19 (Ser. Mat. Mekh. Astron. No.4)), 5�13.Barban, M.B. 1964. Über die Verteilung der Primzahlen in arithmetis-
hen Progressionen 'im Mittel'. Dokl. Akad. Nauk UzSSR, 5, 5�7.Barban, M.B. 1966. The 'large sieve' method and its appli
ation tonumber theory. Uspehi-Math.-Naut, 21, 51�102. See also RussianMath. Surveys, 21 (1966), no 1, 49-103.Basquin, J. 2006. Mémoire de DEA. Université Lille 1, 1�37.Bateman, P.T. 1972. The distribution of values of the Euler fun
tion.A
ta Arith., 21, 329�345.Bertrandias, J.-P. 1966. Espa
es de fon
tions bornées et 
ontinues enmoyenne asymptotique d'ordre p. Mémoires de la So
iété Mathé-matique de Fran
e, 3�106.Boas, R.P.jun. 1941. A general moment problem. Am. J. Math., 63,361�370.Bombieri, E. 1965. On the large sieve method. Mathematika, 12, 201�225.Bombieri, E. 1971. A note on the large sieve method. A
ta Arith., 18,401�404.Bombieri, E. 1976. The asymptoti
 sieve. Rend., A

ad. Naz. XL, V.Ser. 1-2, 243�269.Bombieri, E. 1987. Le grand 
rible dans la théorie analytique des nom-bres. Astérisque, 18, 103pp.



190 REFERENCESBombieri, E., & Davenport, H. 1966. Small di�eren
es between primenumbers. Pro
. Roy. So
. Ser. A, 293, 1�18.Bombieri, E., & Davenport, H. 1968. On the large sieve method. Abh.aus Zahlentheorie und Analysis zur Erinnerung an Edmund Landau,Deut. Verlag Wiss., Berlin, 11�22.Bombieri, E., & Iwanie
, H. 1986. On the order of ζ(1
2 + it). Ann. S
uolaNorm. Sup. Pisa Cl. S
i. (4), 13(3), 449�472.Bombieri, E., Friedlander, J.B., & Iwanie
, H. 1986. Primes in arithmeti
progressions to large moduli. A
ta Math., 156, 203�251.Brüdern, J. 2000-2004. An elementary harmoni
 analysis of arithmeti
alfun
tions.Brüdern, J., & Perelli, A. 1999. Exponential Sums and Additive Prob-lems Involving Square-free Numbers. Ann. S
uola Norm. Sup. PisaCl. S
i., 591�613.Cai, Ying
hun, & Lu, Minggao. 2003. On the upper bound for π2(x).A
ta Arith., 110(3), 275�298.Cazaran, J., & Moree, P. 1999. On a 
laim of Ramanujan in his �rstletter to Hardy. Expositiones Mathemati
ae, 17, 289�312. based ona le
ture given 01-12-1997 by J. Cazaran at the Hardy symposiumin Sydney.Chen, Jing-run. 1978. On the Goldba
h's problem and the sieve methods.S
i. Sin., 21, 701�739.Cook, R.J. 1984. An e�e
tive seven 
ube theorem. Bull. Aust. Math.So
., 30, 381�385.Coppola, G., & Salerno, S. 2004. On the symmetry of the divisor fun
tionin almost all short intervals. A
ta Arith., 113(2).Coquet, J., Kamae, T., & Mendès Fran
e, M. 1977. Sur la mesurespe
trale de 
ertaines suites arithmétiques. Bull. S.M.F., 105, 369�384.Croot III, E.S., & Elsholtz, C. 2004. On variants of the larger sieve. A
taMath. Hung., 103(3), 243�254.Davenport, H. 1937a. On some in�nite series involving arithmeti
al fun
-tions. Quart. J. Math., Oxf. Ser., 8, 8�13.Davenport, H. 1937b. On some in�nite series involving arithmeti
alfun
tions. II. Quart. J. Math., Oxf. Ser., 8, 313�320.Davenport, H., & Halberstam, H. 1966a. Primes in arithmeti
 progres-sions. Mi
higan Math. J., 13, 485�489.Davenport, H., & Halberstam, H. 1966b. The values of a trigonometri
alpolynomial at well spa
ed points. Mathematika, 13, 91�96.Davenport, H., & Halberstam, H. 1968. Corrigendum: "Primes in arith-meti
 progressions". Mi
higan Math. J., 15, 505.



REFERENCES 191Duke, W., & Iwanie
, H. 1992. Estimates for 
oe�
ients of L-fun
tions.II. Pages 71�82 of: E., Bombieri (ed), Pro
eedings of the Amal�
onferen
e on analyti
 number theory.Dusart, P. 1998. Autour de la fon
tion qui 
ompte lenombre de nombres premiers. Ph.D. thesis, Limoges,http://www.unilim.fr/la
o/theses/1998/T1998_01.pdf. 173 pp.Elliott, P.D.T.A. 1971. Some remarks 
on
erning the large sieve. A
taArith., 18, 405�422.Elliott, P.D.T.A. 1977. On the di�eren
es of additive arithmeti
 fun
-tions. Mathematika, 24(2), 153�165.Elliott, P.D.T.A. 1983. Subsequen
es of primes in residue 
lasses to primemoduli. Pages 507�515 of: Erdös, P. (ed), Studies in pure mathe-mati
s, Mem. of P. Turan. Akadémia Kiadó, Budapest: Birkhäuser,Basel.Elliott, P.D.T.A. 1985. Additive arithmeti
 fun
tions on arithmeti
 pro-gressions. Pro
. London Math. So
., 54(3), 15�37.Elliott, P.D.T.A. 1985. Arithmeti
 Fun
tions and Integer Prod-u
ts. Grundlehren der mathematis
hen Wissens
haften, vol. 272.Springer-Verlag New-York, Berlin, Heidelberg, Tokyo.Elliott, P.D.T.A. 1991. On maximal variants of the Large Sieve. J. Fa
.S
i. Univ. Tokyo, Se
t. IA, 38, 149�164.Elliott, P.D.T.A. 1992. On maximal versions of the large sieve. II. J.Fa
. S
i. Univ. Tokyo, Se
t. IA, 39(2), 379�383.Elsholtz, C. 2001. The inverse Goldba
h problem. Mathematika, 48(1-2),151�158.Elsholtz, C. 2002. The distribution of sequen
es in residue 
lasses. Pro
.Am. Math. So
., 130(8), 2247�2250.Elsholtz, C. 2004. Upper bounds for prime k-tuples of size logN andos
illations. Ar
h. Math., 82(1), 33�39.Erdös, P. 1937. On the sum and the di�eren
e of squares of primes. J.Lond. Math. So
., 12, 133�136 and 168�171.Erdös, P. 1940. The di�eren
e between 
onse
utive primes. Duke Math.J., 156, 438�441.Erdös, P. 1949. On a new method in elementary number theory whi
hleads to an elementary proof of the prime number theorem. Pro
.Natl. A
ad. S
i. USA, 35, 374�384.Estermann, T. 1931. On the representations of a number as the sum oftwo numbers not divisible by a k-th power. J. London Math. So
.,37�40.Estermann, T. 1938. On Goldba
h's problem: Proof that almost all evenpositive integers are sums of two primes. Pro
. Lond. Math. So
.,II. Ser., 44, 307�314.



192 REFERENCESEvelyn, C.J.A, & Linfoot, E.H. 1931. On a Problem in the additiveTheory of Number (Third paper). Mathematis
he Zeits
hrift, 637�644.Forbes, T. Prime k-tuplets. http://www.ltkz.demon.
o.uk/ktuplets.htm.From 1996.Friedlander, J., & Iwanie
, H. 1992. A mean-value theorem for 
hara
tersums. Mi
h. Math. J., 39(1), 153�159.Friedlander, J., & Iwanie
, H. 1993. Estimates for 
hara
ter sums. Pro
.Am. Math. So
., 119(2), 365�372.Friedlander, J.B., & Goldston, D.A. 1995. Some singular series averagesand the distribution of Goldba
h numbers in short intervals. IllinoisJ. Math., 39(1).Gallagher, P.X. 1967. The large sieve. Mathematika, 14, 14�20.Gallagher, P.X. 1970. A large sieve density estimate near σ = 1. Invent.Math., 11, 329�339.Gallagher, P.X. 1974. Sieving by prime powers. A
ta Arith., 24, 491�497.Goldfeld, D. 1985. Gauss's 
lass number problem for imaginary quadrati
�elds. Bull. Amer. Math. So
. (1), 13, 23�3?Goldfeld, D.M., & S
hinzel, A. 1975. On Siegel's zero. Ann. S
uolaNorm. Sup. Pisa Cl. S
i., 4, 571�575.Goldston, D.A. 1992. On Bombieri and Davenport's theorem 
on
erningsmall gaps between primes. Mathematika, 1.Goldston, D.A. 1995. A lower bound for the se
ond moment of primesin short intervals. Expo. Math., 13(4), 366�376.Goldston, D.A., Pintz, J., & Y�ld�r�m, C.Y. 2005. Primes in Tuples I.36p. Available at arxiv under referen
e math.NT/0508185.Graham, S.W., & Vaaler, J.D. 1981. A 
lass of extremal fun
tions forthe Fourier transform. Trans. Amer. Math. So
., 265(1), 283�302.Granville, A., & Ramaré, O. 1996. Expli
it bounds on exponential sumsand the s
ar
ity of squarefree binomial 
oe�
ients. Mathematika,43(1), 73�107.Granville, A., & Soundararajan, K. 2003. De
ay of mean values of mul-tipli
ative fun
tions. Can. J. Math., 55(6), 1191�1230.Greaves, G. 1974. An appli
ation of a theorem of Barban, Davenportand Halberstam. Bull. London Math. So
., 6, 1�9.Greaves, G. 2001. Sieves in number theory. Ergebnisse der Mathematikund ihrer Grenzgebiete, vol. 43. Springer-Verlag, Berlin. xii+304pp.Green, B., & Tao, T. 2004. The primes 
ontain arbitrar-ily long arithmeti
 progressions. Preprint. Available athttp://fr.arxiv.org/pdf/math.NT/0404188.



REFERENCES 193Green, B., & Tao, T. 2006. Restri
tion theory of the Selberg sieve, withappli
ations. J. Théor. Nombres Bordeaux, 18(1).Gross, B., & Zagier, D. 1983. Points de Heegner et derivées de fon
tionsL. C. R. A
ad. S
i, Paris, Ser. I, 297, 85�87.Gyan Prakash, & Ramana, D.S. 2008. Large inequality for integer poly-nomial amplitude. J. Number Theory. arXiv:0707.0671v1.Halász, G. 1971/72. On the distribution of additive and the mean valuesof multipli
ative arithmeti
 fun
tions. Studia S
i. Math. Hung., 6,211�233.Halberstam, H., & Ri
hert, H.E. 1971. Mean value theorems for a 
lassof arithmeti
 fun
tions. A
ta Arith., 43, 243�256.Halberstam, H., & Ri
hert, H.E. 1974. Sieve methods. A
ademi
 Press(London), 364pp.Halberstam, H., & Ri
hert, H.E. 1979. On a result of R. R. Hall. J.Number Theory, 11, 76�89.Hall, R.R. 1974. Halving an estimate obtained from Selberg's upperbound method. A
ta Arith., 25, 347�351.Hardy, G.H., & Littlewood, J.E. 1922. Some problems of �Partitio Nu-merorum� III. On the expression of a number as a sum of primes.A
ta Math., 44, 1�70.Heath-Brown, D.R. 1985. The ternary Goldba
h problem. Rev. Mat.Iberoameri
ana, 1(1), 45�59.Heath-Brown, D.R. 1995. A mean value estimate for real 
hara
ter sums.A
ta Arith., 72(3), 235�275.Hensley, D., & Ri
hards, I. 1974. Primes in intervals. A
ta Arith., 4(25),375�391.Hildebrand, A. 1984. Über die punktweise Konvergenz von Ramanujan-Entwi
klungen zahlentheoretis
her Funktionen. A
ta Arith., 44(2),109�140.Ho�stein, J. 1980. On the Siegel-Tatuzawa theorem. A
ta Arith., 38,167�174.Holt, J.J., & Vaaler, J.D. 1996. The Beurling-Selberg extremal fun
tionsfor a ball in eu
lidean spa
e. Duke Math. J., 83(1), 202�248.Huxley, M.N. 1968. The large sieve inequality for algebrai
 number �elds.Mathematika, Lond., 15, 178�187.Huxley, M.N. 1970. The large sieve inequality for algebrai
 number �elds.II: Mean of moments of He
ke zeta-fun
tions. J. Lond. Math. So
.,III Ser., 21, 108�128.Huxley, M.N. 1971. The large sieve inequality for algebrai
 number �elds.III: Zero-density results. J. Lond. Math. So
., II Ser., 3, 233�240.



194 REFERENCESHuxley, M.N. 1972a. The distribution of prime numbers. Large sieves andzero-density theorems. Oxford Mathemati
al Monographs, Claren-don Press, Oxford. x+128 pp.Huxley, M.N. 1972b. Irregularity in sifted sequen
es. J. Number Theory,4, 437�454.Huxley, M.N. 1973. Small di�eren
es between 
onse
utive primes. Math-ematika, 20, 229�232.Indlekofer, K.H. 1974/75. S
harfe Abs
hät
hung für die Anzahlfun
tionder B-Zwillinge. A
ta Arith., 26, 207�212.Iwanie
, H. 1972. Primes of the type ϕ(x, y) +A where ϕ is a quadrati
form. A
ta Arith., 21, 203�234.Iwanie
, H. 1980. Rosser's sieve. A
ta Arith., 36, 171�202.Iwanie
, H. 1994. Analyti
 Number Theory. Rutgers University. Le
turenotes.Iwanie
, H., & Kowalski, E. 2004. Analyti
 number theory. Ameri
anMathemati
al So
iety Colloquium Publi
ations. Ameri
an Mathe-mati
al So
iety, Providen
e, RI. xii+615 pp.Ji, Chun-Gang, & Lu, Hong-Wen. 2004. Lower bound of real primitive
L-fun
tion at s = 1. A
ta Arith., 111(4), 405�409.Johnsen, J. 1971. On the large sieve method in GF [q, x]. Mathematika,18, 172�184.Kadiri, H. 2002. Une région expli
ite sans zéros pour les fon
-tions L de Diri
hlet. Ph.D. thesis, Université Lille 1.tel.

sd.
nrs.fr/do
uments/ar
hives0/00/00/26/95/index_fr.html.Kadiri, H. 2007. An expli
it zero-free region for the Diri
hlet L-fun
tions.To appear in J. Number Theory.Kobayashi, I. 1973. A note on the Selberg sieve and the large sieve. Pro
.Japan A
ad., 49(1), 1�5.Konyagin, S.V. 2003. Problems of the set of square-free numbers. Izv.Math., 68(3), 493�520.Landau, E. 1918. Über die Klassenzahl imaginär-quadratis
her Zahlkör-per. Gött. Na
hr., 1918, 285�295.Landau, E. 1935. Bemerkungen zum Heilbronns
hen Satz. A
ta Arith.,1, 1�18.Levin, B.V., & Fainleib, A.S. 1967. Appli
ation of some integral equa-tions to problems of number theory. Russian Math. Surveys, 22,119�204.Linnik, Yu.V. 1941. The large sieve. Doklady Akad. Nauk SSSR, 30,292�294.Linnik, Yu.V. 1942. A remark on the least quadrati
 non-residue. Dok-lady Akad. Nauk SSSR, 36, 119�120.



REFERENCES 195Linnik, Yu.V. 1944a. On the least prime in an arithmeti
 progression. I:the basi
 theorem. Mat. Sb., N. Ser., 15(57), 139�178.Linnik, Yu.V. 1944b. On the least prime in an arithmeti
 progression.II: the Deuring- Heilbronn theorem. Mat. Sb., N. Ser., 15(57), 139�178.Linnik, Yu.V. 1961. The dispersion method in binary additive problems.Leningrad, 208pp.Maier, H. 1988. Small di�eren
es between prime numbers. Mi
h. Math.J., 35(3), 323�344.Martin, G. 2002. An asymptoti
 formula for the number of smooth valuesof a polynomial. J. Number Theory, 93(2), 108�182.M
Curley, K.S. 1984. An e�e
tive seven 
ube theorem. J. NumberTheory, 19(2), 176�183.Montgomery, H.L. 1968. A note on the large sieve. J. London Math.So
., 43, 93�98.Montgomery, H.L. 1971. Topi
s in Multipli
ative Number Theory. Le
-ture Notes in Mathemati
s (Berlin), 227, 178pp.Montgomery, H.L. 1978. The analyti
 prin
iple of the large sieve. Bull.Amer. Math. So
., 84(4), 547�567.Montgomery, H.L. 1981. Maximal variants of the large sieve. J. Fa
.S
i., Univ. Tokyo, Se
t. I A, 805�812.Montgomery, H.L., & Vaughan, R.C. 1973. The large sieve. Mathe-matika, 20(2), 119�133.Montgomery, H.L., & Vaughan, R.C. 2001. Mean values of multipli
ativefun
tions. Period. Math. Hung., 43(1-2), 199�214.Motohashi, Y. 1977. A note on the large sieve. II. Pro
. Japan A
ad.Ser. A Math. S
i., 53(4), 122�124.Motohashi, Y. 1978. Primes in arithmeti
 progressions. Invent. Math.,44(2), 163�178.Motohashi, Y. 1979. A note on Siegel's zeros. Pro
. Jap. A
ad., Ser. A,55, 190�192.Motohashi, Y. 1983. Sieve Methods and Prime Number Theory. TataLe
tures Notes, 205.Oesterlé, J. 1985. Nombres de 
lasses des 
orps quadratiques imaginaires.Astérisque, 121/122, 309�323.Pintz, J. 1976. Elementary methods in the theory of L-fun
tions, II.A
ta Arith., 31, 273�289.Pomeran
e, C., Sárközy, A., & Stewart, C.L. 1988. On divisors of sumsof integers. III. Pa
i�
 J. Math., 133(2), 363�379.Preissmann, E. 1984. Sur une inégalité de Montgomery et Vaughan.Enseign. Math., 30, 95�113.



196 REFERENCESPu
hta, J.-C. 2002. An additive property of almost periodi
 sets. A
taMath. Hung., 97(4), 323�331.Pu
hta, J.-C. 2003. Primes in short arithmeti
 progressions. A
ta Arith.,106(2), 143�149.Rama
handra, K., Sankaranarayanan, A., & Srinivas, K. 1996. Ramanu-jan's latti
e point problem, prime number theory and other remarks.Hardy and ramanujan journal, 19.Ramaré, O. 1995. On Snirel'man's 
onstant. Ann. S
u. Norm. Pisa, 21,645�706.Ramaré, O. 2005. Le théorème de Brun-Tit
hmarsh : une appro
he mod-erne. 1�10. http://math.univ-lille1.fr/�ramare/Maths/Nantes.pdf.Ramaré, O. 2007a. Eigenvalues in the large sieve inequality. Fun
t.Approximatio, Comment. Math., 37, 7�35.Ramaré, O. 2007b. An expli
it result of the sum of seven 
ubes.Manus
ripta Math., 124(1), 59�75.Ramaré, O., & Ruzsa, I.M. 2001. Additive properties of dense subsetsof sifted sequen
es. J. Théorie N. Bordeaux, 13, 559�581.Ramaré, O., & S
hlage-Pu
hta, J.-C. 2008. Improving on the Brun-Tit
hmarsh Theorem. A
ta Arith., 131, 351�366.Rankin, R.A. 1947. The di�eren
e between 
onse
utive prime numbers.III. J. Lond. Math. So
., 22, 226�230.Rankin, R.A. 1950. The di�eren
e between 
onse
utive prime numbers.IV. Pro
. Am. Math. So
., 1, 143�150.Rawsthorne, D.A. 1982. Selberg's sieve estimate with a one-sided hy-pothesis. A
ta Arith., 49, 281�289.Rényi, A. 1949. Un nouveau théorème 
on
ernant les fon
tions indepen-dantes et ses appli
ations à la théorie des nombres. J. Math. PuresAppl., IX Sér. 28, 137�149.Rényi, A. 1950. On the large sieve of Ju. V. Linnik. Compos. Math., 8,68�75.Rényi, A. 1958. On the probabilisti
 generalization of the large sieve ofLinnik. Magyar Tud. Akad. Mat. Kutatò Int. Közl., 3, 199�206.Rényi, A. 1959. New version of the probabilisti
 generalization of thelarge sieve. A
ta Math. A
ad. S
i. Hungar., 10, 217�226.Ri

i, G. 1954. Sull'andamento della di�erenza di numeri primi 
onse
-utivi. Riv. Mat. Univ. Parma, 5, 1�54.Rosser, J.B., & S
hoenfeld, L. 1962. Approximate formulas for somefun
tions of prime numbers. Illinois J. Math., 6, 64�94.Roth, K.F. 1964. Remark 
on
erning integer sequen
es. A
ta Arith., 9,257�260.Roth, K.F. 1965. On the large sieve of Linnik and Rényi. Mathematika,12, 1�9.



REFERENCES 197S
hwartz, W., & Spilker, J. 1994. Arithmeti
al fun
tions, an introdu
tionto elementary and analyti
 properties of arithmeti
 fun
tions and tosome of their almost-periodi
 properties. Le
tures Notes Series, vol.184. Cambridge: London Math. So
.Selberg, A. 1942. On the zeros of the zeta-fun
tion of Riemann. NorskeVid. Selsk. Forh., Trondhjem, 15(16), 59�62.Selberg, A. 1943. On the zeros of Riemann's zeta-fun
tion. Skr. NorskeVid.-Akad. Oslo, 10, 59 p.Selberg, A. 1949a. An elementary proof of Diri
hlet's theorem aboutprimes in an arithmeti
 progression. Ann. Math., 50(2), 297�304.Selberg, A. 1949b. An elementary proof of the prime-number theorem.Ann. Math., 50(2), 305�313.Selberg, A. 1949. On elementary problems in prime number-theory andtheir limitations. C.R. Onzième Congrès Math. S
andinaves, Trond-heim, Johan Grundt Tanums Forlag, 13�22.Selberg, A. 1972 (August 14�18). Remarks on sieves. Pages 205�216of: Colle
ted Works. Number Theory Conferen
e, University ofColorado, Boulder, Colorado.Selberg, A. 1976. Remarks on multipli
ative fun
tions. Le
tures Notesin Mathemati
s (Berlin), 626, 232�241.Selberg, A. 1991. Colle
ted papers. Springer-Verlag, II, 251pp.Siebert, H. 1976. Montgomery's weighted sieve for dimension two.Monatsh. Math., 82, 327�336.Siegel, C.L. 1935. Über die Klassenzahl quadratis
her Zahlkörper. A
taArith., 1, 83�86.Tatuzawa, T. 1951. On a theorem of Siegel. Jap. J. of Math., 21, 163�178.T
hudakov, N.G. 1938. On the density of the set of even integers whi
hare not representable as a sum of two odd primes. Izv. Akad. NaukSSSR, Ser. Mat. 1, 25�40.U
hiyama, Sabur�. 1972. The maximal large sieve. Hokkaido Math. J.,1, 117�126.Vaaler, J.D. 1985. Some Extremal Fun
tions in Fourier Analysis. Bull.A. M. S., 12, 183�216.van der Corput, J.G. 1937. Sur l'hypothèse de Goldba
h pour presquetous les nombres pairs. A
ta Arith., 2, 266�290.van Lint, J.E., & Ri
hert, H.E. 1965. On primes in arithmeti
 progres-sions. A
ta Arith., 11, 209�216.Vaughan, R.C. 1973. Some appli
ations of Montgomery's sieve. J. Num-ber Theory, 5, 64�79.Vaughan, R.C. 2003. Moments for primes in arithmeti
 progressions.Duke Math. J., 371�383.



198 REFERENCESVinogradov, A.I. 1965. The density hypothesis for Diri
het L-series. Izv.Akad. Nauk SSSR Ser. Mat., 29.Vinogradov, I.M. 1937. Representation of an odd number as a sum ofthree primes. Dokl. Akad. Nauk SSSR, 15, 291�294.Wirsing, E. 1961. Das asymptotis
he Verhalten von Summen über mul-tiplikative Funktionen. Math. Ann., 143, 75�102.Wu, Jie. 1990. Sur la suite des nombres premiers jumeaux. A
ta Arith.,55(4), 365�384.Wu, Jie. 2004. Chen's double sieve, Goldba
h's 
onje
ture and the twinprime problem. A
ta Arith., 114(3), 215�273.Zhao, L. 2004a. Large sieve inequalities for spe
ial 
hara
ters to primesquare moduli. Fun
t. Approximatio, Comment. Math., 32, 99�106.Zhao, L. 2004b. Large sieve inequality with 
hara
ters to square moduli.A
ta Arith., 112(3), 297�308.



Index
Gd(Q), 19
Gd(D), 143
Gd(K, Q), 19
Gd(K,D), 143
Gd(f,Q), 28
H(K, ℓ, q), 141
H(ℓ, q), 99
J q̃

d̃
, 32

Ld̃
q̃ , 31

Lm, 126
Q♭, 124
SQ(α), 125
Sf (a/q), 159
U(q̃ → d), 33
U(q̃ → d̃), 321Kd

, 951Ld
, 951d·N, 27

∆, 11
∆q, 36
Λ♭(n), 87
Λ♯(n), 87, 103
ΛQ(n), 102, 119
Ud, 69
βK, 96, 105, 108, 109
δd, 27
ℓν , 122
M(q̃ → d), 34
M(d), 34, 149
⌈x⌉, 13
A (X), 27
∇q, 150
ρz, 106
ρ♭

ν , 124
σq→d, 17
ε(ℓ, ℓ′), 100
b(n), 131
bν , 123, 127
fν , 123
h(d), 18
kν , 121
w(a/q), 106
w(q, L), 86, 103

w♯
q, 106Admissible shift, 80, 81Almost orthogonal system, 7

B2-almost periodi
, 162Almost periodi
 in the sense ofBesi
ovit
h, 162Baier S., 143, 144Barban M.B., 1, 2Basquin J., 55Bateman P.T., 67Besi
ovit
h A.S., 162Boas R.P.jun., 9Bombieri E., 1�4, 8, 14, 20, 22, 24,47, 51, 53, 63, 116, 129, 144Bombieri E. & Davenport H., 1, 2,20, 22, 24, 129Bombieri-Davenport Theorem, 24, 41Bombieri E., Friedlander J. &Iwanie
 H., 47, 144Bombieri E. & Iwanie
 H., 14Bombieri-Vinogradov Theorem, 115,116, 145, 182Brüdern J., 3, 147, 162, 163, 169Brüdern J. & Perelli A., 147, 169Brun-Tit
hmarsh Theorem, 23, 39, 63Cai Y., 75Cai Y. & Lu M., 75Cazaran J., 177Cazaran J. & Moree P., 177Chen J.-R., 75Compa
t set, 17Johnsen-Gallagher 
ondition, 18multipli
atively split, 17squarefree, 18Convolution method, 42, 77Coppola G., 127Coppola G. & Salerno S., 127Croot E.S. III, 4Davenport H., 1�3, 20, 22, 24, 129Davenport H. & Halberstam H., 1, 2Davenport H., 88199



200 21 IndexDimension of the sieve, 2, 105, 177,183Diri
hlet G., 51Divisor 
losed set, 21, 27, 143Double large sieve inequality, 14Dual form of the large sieveinequality, 14Duke B., 176Duke B. & Iwanie
 H., 176Dusart P., 81Elliott P.D.T.A., 2, 8, 25, 44, 60, 100Elsholtz C., 4, 81Erdös P., 39, 55, 129Estermann T., 83, 147Evelyn C.J.A., 147Evelyn C.J.A. & Linfoot E.H., 147Exponential type, 123Fainleib A.S., 4, 19, 57, 77, 178Forbes T., 81Friedlander J., 3, 47, 102, 144, 171Friedlander J. & Goldston D.A., 102Friedlander J. & Iwanie
 H., 3, 171Gallagher P.X., 18, 22, 26, 49, 53, 98,105, 112Goldfeld D.M., 52, 53Goldfeld Q. & S
hinzel A., 52Goldston D.A., 3, 102, 130Goldston D.A., Pintz J. &Y�ld�r�m C.Y., 130Graham S.W., 100, 121Graham S.W. & Vaaler J.D., 100, 121Granville A., 5, 144Granville A. & Ramaré O., 144Granville A. & Soundararajan K., 5Greaves G., 48Green B., 105, 183Green B. & Tao T., 105, 183Gross B., 53Gross B. & Zagier D., 53Gyan Prakash, 44Halász .G., 5Halberstam H., 1, 2, 4, 19, 77, 105,177Halberstam H. & Ri
hert H.E., 4, 19,77, 105, 177Hall R.R., 77Hardy G.H., 80, 144

Hardy G.H. & Littlewood J.E., 80,144Heath-Brown D.R., 3, 60, 83, 102He
ke E., 52Hensley D., 81Hensley D. & Ri
hards I., 81Hildebrand H., 102Ho�stein J., 53Holt J.J., 3, 121Holt J.J. & Vaaler J.D., 3, 121Host sequen
e, 95, 100, 112Huxley M.N., 2, 4, 26, 104, 119, 129Indlekopfer K.H., 183Iwanie
 H., 3, 14, 47, 83, 105, 144,171, 176, 177, 183Iwanie
 H. & Kowalski E., 83Ji Chun-Gang, 53Ji Chun-Gang & Lu Hong-Wen, 53Johnsen-Gallagher 
ondition, 18Kadiri H., 51, 52Kobayashi I., 2, 3, 103Konyagin S.V., 143, 144Kowalski E., 83Landau E., 52Large sieve extension, 2, 22Large sieve inequality, 9Legendre polynomials, 126Leikauf P., 81Levin B.V., 4, 19, 57, 77, 178Levin B.V. & Fainleib A.S., 4, 19, 57,77, 178Limit periodi
 fun
tion, 160, 161Limit periodi
 set, 160, 161Linfoot E.H., 147Linnik Yu.V., 1, 23, 53, 57, 96Littlewood J.E., 80, 144Lu M., 75Lu Hong-Wen, 53Maier H., 129Martin G., 177Mixed almost orthogonal system, 61,73Montgomery H.L., 1, 5, 10, 20, 22,23, 63, 73Montgomery H.L. & Vaughan R.C.,1, 5, 10, 23, 63, 73



21 Index 201Moree P., 177Motohashi Y., 2�4, 53, 98, 99, 102,104Oesterle J., 53Parity prin
iple, 51, 55Perelli A., 147, 169Pintz J., 52, 130Pomeran
e C., 184Pomeran
e C., Sárközy A. &Stewart C.L., 184Preissmann E., 73Prime k-tuples 
onje
ture, 80Pseudo-
hara
ter, 99Pu
hta J.-C., 26, 60, 63, 163Rama
handra K., 54Ramana D.S., 44Ramaré O., 17, 39, 42, 63, 83, 85,105, 144, 159, 183Ramaré O. & Ruzsa I., 17, 42Ramaré O. & S
hlage-Pu
hta J.-C.,63Rankin R.A., 129Rawsthorne D.A., 105, 177Rényi A., 1, 9, 20, 22Ri

i G., 129Ri
hards I., 81Ri
hert H.E., 4, 19, 77, 105, 177Rosser J.B., 47Rosser J.B. & S
hoenfeld L., 47Roth K.F., 1, 26Ruzsa I., 17, 42, 105, 183Salerno S., 127Sankaranarayanan A., 54Sárközy A., 184S
hinzel A., 52S
hlage-Pu
hta J.-C., 26, 60, 63, 163S
hoenfeld L., 47S
hwartz W., 162S
hwartz W. & Spilker J., 162Selberg A., 1, 3, 14, 18, 22, 23, 51,55, 63, 67, 95, 98�100, 102, 120Siebert H., 73, 182Siegel C.L., 53Sieve dimension, 2, 105, 177, 183Sifted sequen
e, 2, 26, 183Soundararajan K., 5Spe
trum, 161

Spilker J., 162Squarefree, 143Squarefree kernel, 18Srinivas K., 54Stewart C.L., 184Su�
iently sifted sequen
e, 183Tao T., 105, 183Tatuzawa T., 53T
hudakov N.G., 83U
hiyama S., 14Vaaler J.D., 3, 100, 121van der Corput J.G., 83van Lint J.E. & Ri
hert H.E., 4, 20,63Vaughan R.C., 1, 5, 10, 23, 63, 73,102, 105Vinogradov A.I., 116Vinogradov I.M., 83Waldvogel J., 81Waldvogel J. & Leikauf P., 81Wirsing E., 5, 180Wu Jie, 75, 182Y�ld�r�m C.Y., 130Zagier D., 53Zhao L., 143, 144





Abstra
t. This book is an elaboration of a series of le
tures givenat the Harish-Chandra Resear
h Institute in February 2005. Thereader will be taken through a journey on the arithmeti
al sidesof the large sieve inequality when applied to the Farey disse
tion.This will reveal 
onne
tions between this inequality, the Selbergsieve and other less used notions like pseudo-
hara
ters and the ΛQ-fun
tion, as well as extend these theories. One of the leading themeof these notes is the notion of so-
alled lo
al models that throws aunifying light on the subje
t. As examples and appli
ations, wepresent, among other things, an extension of the Brun-Ti
hmarshTheorem, a new proof of Linnik's Theorem on quadrati
 residuesand an equally novel one of the Vinogradov three primes Theorem;we also 
onsider the problem of small prime gaps, of sums of twosquarefree numbers and several other ones, some of them being new,like a sharp upper bound for the number of twin primes p that aresu
h that p+1 is squarefree. We end our journey by 
onsidering theproblem of equality in the large sieve inequality and prove severalresults in this area.


