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Abstract. When restricted to some non-negative multiplicative function, say f , boun-
ded on primes and that vanishes on non square-free integers, our result provides us with
an asymptotic for

∑
n≤X f (n)/n with error term O((log X)κ−h−1+ε) (for any positive

ε > 0) as soon as we have
∑

p≤Q f (p)(log p)/p = κ log Q +η+O(1/(log 2Q)h) for
a non-negative κ and some non-negative integer h. The method generalizes the 1967-
approach of Levin and Faı̆nleı̆b and uses a differential equation.
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1. Introduction

In 1908, Landau [8] was the first to obtain an asymptotic formula for the number of integers
up to a given number that are sum of two coprime squares. He used analytical method,
which involves considering the square root of some analytical function and avoiding its
pole through Hankel contour. Later, this procedure was further developed by H. Delange
and A. Selberg allowing them to obtain asymptotic for partial sums of arithmetic functions
whose Dirichlet series can be written in terms of complex powers of the Riemann ζ -
function. This is now often referred to as the Selberg–Delange method. In [9], Levin and
Faı̆nleı̆b established the logarithmic density of the same set by an elementary argument
under more general conditions. When combined with the earlier method of Wirsing [19],
as was done in [13], this leads to the determination of the natural density as well.

In [18], Serre used Landau’s method to examine several other cases and deployed it to
encompass not only the main term but also an asymptotic development, leading to a better
error term. Extending the Levin and Faı̆nleı̆b approach in a similar fashion would allow
for a more general hypotheses as well. This is the aim of the present paper. To express
our results, we take a non-negative multiplicative function f and, following Levin and
Faı̆nleı̆b, we associate to it the function � f (n) which is 0 when n is not a prime power
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and which is otherwise defined by the formal power expansion:

∑

k≥0

� f (pk)

pks
=

(∑

k≥1

f (pk) log p

pks

)/ ∑

k≥0

f (pk)

pks
. (1)

We recall some of its properties in Section 2. To handle the uniformity in our result, we
recall that we use f = O∗(g) to mean that | f | ≤ g and f = OA,h,κ (g) to mean that
| f | ≤ C(A, κ, h)g, where the constant C(A, h, κ) depends only on the stated parameters.
Here is our main theorem.

Theorem 1. Let f be a non-negative multiplicative function. Assume that, for some integer
h ≥ 0, one has

∀Q ≥ 1,
∑

m≤Q

� f (m)

m
= κ log Q + η0 + O∗(A/ logh(2Q)) (Hh)

for some constants κ ≥ 0, A and η0. We further assume that |η0| ≤ A. Then there exist
constants C and (ak)1≤k≤h such that, when X ≥ 3, we have

∑

n≤X

f (n)

n
(log n)h+1 = C(log X)κ+h+1

(

1 + a1

log X
+ · · · + ah

(log X)h

)

+ OA,κ,h
(
(log X)κ(log log(3X))

(h+2)(h+1)
2

)
,

where

C = 1

�(κ + 1)

∏

p≥2

((

1 − 1

p

)κ ∑

ν≥0

f (pν)

pν

)

.

We have the same error term for the sum
∑

n≤X

f (n)

n

(

log
X

n

)h+1

.

We can also obtain
∑

n≤X
f (n)

n (log n)k for any k ∈ {0, . . . , h} with an error term

O((log log X)
(h+2)(h+1)

2 /(log X)h+1−k), by summation by parts, but some additional
log log X term may appear in the development when κ is an integer, which is why we
state our result in this manner. The non-negative assumption is not essential in our method,
nor is the fact that f is real-valued (but κ has to be a real number). We may instead assume
that

∑

n≤X

| f (n)| � (log X)κ
∗

(2)

for some parameter κ∗ and modify our error term O((log X)κ(log log X)c) to O((log X)κ
∗

(log log X)c). This is for instance the path chosen, when h = 0 in Theorem 1.1 of the book
by Iwaniec and Kowalski [6]. We did not try to optimize the power of log log(3X) that
appears. It is likely that no such term should be present in fact, but in practice, when our
assumption holds for h ≥ 1, it holds for any h. Using the result for h + 1 removes this
parasitic factor.
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To measure the relative strength of our theorem, let us consider h = 1 and f (n) =
−μ(n), where μ(n) is the Moebius function, hence � f (pk) = (−1)k−1 log p, k ≥ 1.
Then the estimate

∑
p≤X (log p)/p = log X + c + O(1/ log X) verifies (Hh) with κ = 1

and implies that
∑

n≤X μ(n)/n � (log log X)3/ log X . The case h > 1 yields another
proof of the results of Kienast in [7].

We started this project several years back, and got sidetracked by several events. In
between Granville and Koukoulopoulos in [5] considered a similar question which they
attacked via the Landau–Selberg–Delange method. Their work has been improved upon
by de la Bretêche and Tenenbaum in [2]. The results obtained by this mean are more
extensive than the ones we present here. However the main difference truly comes at the
methodological level: our proof stays in the realm of real analysis and is rather ‘elementary’.
The readers may also consult [16, pp. 183–185], [15] and [10] on related issues.

The proof relies on a recursion on h. It is however easier to assume a more complete
hypothesis.

Recursion Hypothesis (for h). For each 	 ∈ [0, h], there exists a polynomial P	 of degree
	 such that

∑

n≤X

f (n)

n
(log n)	 = (

P	(log X) + O(
(log log X)

(h+1)(h+2)
2

))
(log X)κ . (3)

We show during the proof that we may as well assume a similar hypothesis with
(log(X/n))	 rather than (log n)	: this is a consequence of the functional relation we prove
at the beginning of our proof, see (11). The Levin–Faı̆nleı̆b theorem gives a proof of this
claim when h = 0 (and even better as the log log(3X) is absent in this theorem). We
provide in Section 8 a survey of the proof.
Notation. We set for typographical simplicity g(n) = f (n)/n. Next, for a non-negative
integer j define

G j (X) =
∑

n≤X

g(n) log j (X/n), G0(X) = G(X). (4)

For k ≥ 0, we define Hk(log X) = Gk(X).

2. On the function � f

Let F denote the formal Dirichlet series of f , namely

F(s) =
∑

n≥1

f (n)

ns
.

Note that Euler product formula gives

F(s) =
∏

p≥2

(

1 +
∑

k≥1

f (pk)

pks

)

.

On taking the logarithmic derivative of F(s), we find that

− F ′(s)
F(s)

=
∑

p≥2

⎛

⎝
∑

k≥1

f (pk)

pks
log(pk)

⎞

⎠

⎛

⎝1 +
∑

k≥1

f (pk)

pks

⎞

⎠

−1

=
∑

p≥2

Z p(s) log p.
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Further, expanding the second product in Z p(s) and changing the order of summation, we
find that

Z p(s) =
∑

k≥1

k f (pk)

pks

∑

r≥0

(−1)r
∑

	≥0

∑

k1+k2+···+kr =	

f (pk1) · · · f (pkr )

p	s

=
∑

m≥1

1

pms

⎛

⎝
∑

k+k1+···+kr =m

(−1)r k f (pk) f (pk1) · · · f (pkr )

⎞

⎠ .

Thus

− F ′(s)
F(s)

=
∑

n≥1

� f (n)

ns
, (5)

where

� f (pm) =
∑

k+k1+···+kr =m

(−1)r k f (pk) f (pk1) · · · f (pkr ) log p (6)

and � f (n) = 0 when n is not a prime power. Note that � f (pm) depends only on the local
factor of F(s) at prime p. In particular, �1(pm) = �(pm). Moreover, when f (pm) =
1p∈P , we have � f (pm) = �(pm) · f (pm) (here 1X = 1 if X is true and 0 otherwise).
For example, let us select P = {p ≡ 1 (mod 4)}. As mentioned above, the definition of
� f (pm) depends only on the local factor at prime p, hence we readily see that � f (pm) =
�(pm) for p ≡ 1 (mod 4) and 0 otherwise. Note that when f is supported on square-free
integers, we get � f (pm) = (−1)m−1 f (p)m log p.

Lemma 1. Let h be a non-negative real number. Then for any k ≤ h, there exists a constant
ηk , such that, under the assumption (Hh), we have

∑

n≤Q

� f (n) logk n

n
= κ

k + 1
logk+1 Q + ηk + Ek,h(Q), (A)

where Ek,h(Q) � 1/ logh−k(2Q) for k < h and Eh,h(Q) � log log(3Q).

Proof. Denote the sum on the left-hand side of (A) by Sk(Q). Then using partial summa-
tion, we have

Sk(Q) = S0(Q) logk Q − k
∫ Q

1
S0(t) logk−1 t

dt

t
.

Further, when k < h, we may apply (Hh) to get

Sk(Q) = κ

k + 1
logk+1 Q + η0 logk Q − η0k

∫ Q

1

logk−1 tdt

t

− k
∫ ∞

1

(
S0(t) − κ log t − η0

) logk−1 tdt

t

+ O
(

1

logh−k Q
+

∫ ∞

Q

d log t

logh−k+1 t

)

,
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whence

Sk(Q) = κ

k + 1
logk+1 Q + ηk + O(1/ logh−k(2Q))

as announced. Analogous argument gives the result for k = h. �

3. Generalizations of � f

We will use the next formula several times.

Lemma 2 (Faà di Bruno formula). We have

dn f (g(x))

dxn
=

∑

m1,m2,...,mn≥0,
m1+2m2+···+nmn=n

n!
m1!m2! · · · mn ! f (m1+m2+···+mn)(g(x))

n∏

j=1

(
g( j)(x)

j !
)m j

.

Here is a combinatorial identity, which is an immediate corollary of [14, Theorem 2.1],
itself being a straightforward consequence of the Faà di Bruno formula.

Lemma 3. Let F be a function and denote Z F = −F ′/F. We have

F (h+1) = F
∑

∑
i≥1 iki =h+1

(h + 1)!(−1)
∑

i ki

k1!k2! · · · (1!)k1(2!)k2 · · ·
∏

ki

Z (i−1)ki
F .

Notation Z (i−1)ki
F denotes the (i − 1)-th derivative multiplied ki times by itself.

Proof. This is an immediate corollary of [14, Theorem 2.1] with F = 1/G and hence
Z F = −ZG . �

When h = 1, this gives F ′′ = F(Z2
F − Z ′

F ). We thus define

∑

n≥1

� f,h(n)

ns
= (−1)h

∑

∑
i≥1 iki =h

h!(−1)
∑

i ki

k1!k2! · · · (1!)k1(2!)k2 · · ·
∏

ki

Z (i−1)ki
F (7)

so that

f logh = f 
 � f,h .

When f = 11, these functions have their origin in the work of Selberg [17] around an
elementary proof of the Prime Number Theorem. They have been generalized as above
by Bombieri in [1], see also the papers [3] and [4]. Incidentally, Lemma 3 gives a non-
recursive description of the functions �h = �11,h , something that is missing from the
aforementioned works.
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Lemma 4. Let θ1 and θ2 be two functions on the integers that satisfy, for i ∈ {1, 2},
∑

n≤X

θi (n) = Ci (log X)di + Qi (log X) + O(1/(log 2X)h−di ),

where di ≥ 1, Qi is a polynomial of degree at most di − 1 and h is some fixed parameter.
Then

∑

mn≤X

θ1(m)θ2(n) = C1C2
d1!d2!

(d1 + d2)! (log X)d1+d2

+Q(log X) + O
(

1

(log 2X)h−d1−d2

)

,

where Q is a polynomial of degree at most d1 + d2 − 1.

Proof. We use the Dirichlet Hyperbola formula. We split the variables at
√

X to get the
announced error term. In order to compute the main term, it is enough to consider

S =
∑

n≤X

θ1(n)C2

(

log
X

n

)d2

.

An integration by parts gives us

S = C2

∑

n≤X

θ1(n)d2

∫ X/n

1
(log t)d2−1 dt

t

= C2d2

∫ X

1

∑

n≤X/t

θ1(n)(log t)d2−1 dt

t
,

so that the principal part of the main term is given by

M = C1C2d2

∫ X

1

(

log
X

t

)d1

(log t)d2−1 dt

t

= C1C2d2(log X)d1+d2

∫ 1

0
(1 − u)d1ud2−1du

= C1C2
d1!d2!

(d1 + d2)! (log X)d1+d2

by the classical evaluation of the Euler beta-function. �

On iterating the previous lemma, we get the next one.

Lemma 5. Let (θi )i≤r be r functions on the integers that satisfy, for i ∈ {1, . . . , r},
∑

n≤X

θi (n) = Ci (log X)di + Qi (log X) + O(1/(log 2X)h−di ),
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where di ≥ 1, Qi is a polynomial of degree at most di − 1 and h is some fixed parameter.
Then

∑

m1···mr ≤X

∏

i≤r

θi (mi ) =
∏

i≤r

Ci
d1! · · · dr !

(d1 + · · · + dr )! (log X)d1+···+dr

+Q(log X) + O
(

1

(log 2X)h−d1−···−dr

)

,

where Q is a polynomial of degree at most d1 + d2 + · · · + dr − 1.

Lemma 6. Under (Hh), we have

∑

n≤X

� f,k(n)

n
= κ(κ + 1) · · · (κ + k − 1)

k! (log X)k

+Q(log X) + O
(

log log(3X)

(log 2X)h+1−k

)

,

where Q is polynomial of degree at most k − 1.

Proof. Lemma 5 tells us that the sum reads

∑

n≤X

� f,k(n)

n
=

∑

∑
i≥1 iki =k

k!
k1!k2! · · · (1!)k1(2!)k2 · · ·

∏

i

κki i !ki

i ki

(log X)k

k! + Q(log X) + O
(

log log(3X)

(log 2X)h+1−k

)

. (8)

The main term simplifies into

∑

∑
i≥1 iki =k

1

k1!k2! · · ·
∏

i

κki

i ki
(log X)k .

The i-th derivative of g(x) = −κ log(1 − x) is (i − 1)!κ/(1 − x)i so that κ/ i is also
g(i)(0)/ i !. The Faà di Bruno formula for the k-th derivative of exp(g(x)) = (1 − x)−κ

tells us that

∑

∑
i≥1 iki =k

k!
k1!k2! · · ·

∏

i

κki

(i(1 − x)i )ki
= κ(κ + 1) · · · (κ + k − 1)

(1 − x)κ+k
.

We evaluate this equality at x = 0. �

4. Auxiliary results

Lemma 7. For k ≥ 1, we have

Gk(X) = k
∫ X

1
Gk−1(t)

dt

t
.
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Proof. Notice that by a simple change of variable t = log(u/n), we have

1

k

(

log
X

n

)k

=
∫ log(X/n)

0
tk−1dt =

∫ X

n

(

log
u

n

)k−1 du

u
.

Using the above together with the definition of Gk , we directly compute

∫ X

1
Gk−1(t)

dt

t
=

∑

n≤X

g(n)

∫ X

n

(

log
t

n

)k−1 dt

t

= 1

k

∑

n≤X

g(n)

(

log
X

n

)k

= Gk(X)

k

as claimed in the lemma. �

Here is a direct consequence of the previous lemma, on recalling that Hk(log X) = Gk(X).

Lemma 8. When 	 ∈ {0, . . . , k}, we have

H (	)
k (u) = k!

(k − 	)!Gk−	(e
u).

Lemma 9. When k ≥ 0, we have

∑

n≤eu

g(n)(log n)k = uk+1

k! (Hk(u)/u)(k).

Proof. This lemma is true for k = 0. For k = 1, we find that

u2(H1(u)/u)(1) = u H ′
1(u) − H1(u) =

∑

n≤eu

g(n)
(
u − (u − log n)

)

as required. For general k, write

∑

n≤eu

g(n)(log n)k =
∑

n≤eu

g(n)
(

u − log
eu

n

)k

=
∑

0≤ j≤k

(
k

j

)

u j (−1)k− j Gk− j (e
u)

=
∑

0≤ j≤k

(
k

j

)

u j (−1)k− j (k − j)!
k! H ( j)

k (u).

We next notice that

d	

du	

1

u
= (−1)		!

u	+1
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so that

∑

n≤eu

g(n)(log n)k = uk+1

k!
∑

0≤ j≤k

(
k

j

)

(−1)k− j (k − j)!
uk− j+1 H ( j)

k (u)

= uk+1

k! (Hk(u)/u)(k)

as announced. �

5. Approximate solutions of an Euler differential equation

Popa and Pugna in [11], and building on [12] studied perturbation of an Euler differential
equation, say

ur y(r)(u) +
∑

0≤i≤r−1

bi u
i y(i)(u) (9)

for a function y that is in Cr (I ) for some interval I ⊂ [0,∞). On looking more closely
at their work which goes by iteration, one sees that the last derivative does not need to be
continuous provided one may integrate, and so may be simply absolutely continuous on
every subinterval of I . We denote this class by Cr−(I ).

We next need a second modification of their work. For any c ∈ I , any complex number
α and any suitable function ϕ, they consider

�∗
α,c(ϕ)(x) = xRα

∣
∣
∣
∣

∫ x

c
u−Rαϕ(u)

du

u

∣
∣
∣
∣.

Notice that Popa and Pugna [11] forgot this change of variable that is necessary between
their Theorems 2.1 and 2.3. This explains our notation �∗ rather than the � that they got.
We have added the index c to their notation and we may in fact take c = ∞ (and reverse
the order of integration as usual). We select r parameters c1, . . . , cr , some of them maybe
be infinite.

Following [11], we consider the roots λ1, . . . , λr of the equation

b0 +
∑

1≤s≤r

λ(λ − 1) · · · (λ − s + 1)bs = 0, br = 1. (10)

We also select a function S in Cr (I ). With these notations, here is the version of [11,
Theorem 2.3] that we shall use.

Lemma 10. Let ϕ : I → [0,∞) be such that �∗
λr ,cr

◦ · · · ◦ �∗
λ1,c1

(ϕ) exists and is finite.
Then for every y ∈ Cr−(I ) satisfying

∀u ∈ I,

∣
∣
∣
∣u

r y(r)(u) +
∑

0≤i≤r−1

bi u
i y(i)(u) − S(u)

∣
∣
∣
∣ ≤ ϕ(u),

there exists a solution y0 of

ur y(r)(u) +
∑

0≤i≤r−1

bi u
i y(i)(u) = 0
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with the property

∀u ∈ I, |y(u) − y0(u)| ≤ �∗
λr ,cr

◦ · · · ◦ �∗
λ1,c1

(ϕ)(u).

6. A differential equation

On using Lemmas 3 and 6, we get

∑

n≤X

g(n)(log n)h+1 =
∑

n≤X

g(n)

(
κ(κ + 1) · · · (κ + h)

(h + 1)!
(

log
X

n

)h+1

+ Q(log(X/n)) + O(log log(3X))

)

. (11)

Hence, by our recursion hypothesis in h, we get

∑

n≤X

g(n)(log n)h+1 = κ(κ + 1) · · · (κ + h)

(h + 1)! Gh+1(X)

+P(log X)(log X)κ

+O((log X)κ(log log X)
(h−1)h

2 ) (12)

for some polynomial P of degree at most h. Here we have used the recursion hypothesis
with (log X/n)k . It is precisely Equation (12) that allows us to switch easily from one form
of our hypothesis to the other. When h = 1, then h − 1 = 0, and we do not have the power
of log log X .

We may express the left-hand side by Lemma 9, getting our first fundamental formula:

uh+1
(

Hh+1(u)

u

)(h+1)

= (κ + h)!
(κ − 1)!

Hh+1(u)

u
+ (h + 1)!P(u)uκ−1

+O(uκ−1(log u)
h(h−1)

2 ), (13)

where we use the shortcut

(κ + h)!
(κ + h − j)! = (κ + h) · · · (κ + h − j + 1).

This is an Euler differential equation. As mentioned before, it may be reduced to a linear
differential equation with constant coefficients with the change of variables u = ev , but
we shall skip this step and use an already formed result. It is technically clearer to first
extract a ’simplifying term’ and this is our first step.
Simplifying the equation. Since we may assume that the polynomial P has no constant
coefficient, we set

(h + 1)!P(u) =
∑

1≤s≤h

qsus .

We define, for 0 ≤ s ≤ h − 1, the real number as by
(

(κ + s)!
(κ − 1)! − (κ + h)!

(κ − 1)!
)

as = qs−1.
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We then check that K (u) = ∑
0≤s≤s−1 asus+κ satisfies

uh+1 K (h+1)(u) = (κ + h)!
(κ − 1)! K (u) + (h + 1)!P(u)uκ−1.

Note that we could have added any monomial ahuh+κ to K (u).

From the approximate differential equation to the exact one. We define W (u) =
Hh+1(u)u−1 − K (u). This function satisfies

uh+1W (h+1)(u) = (κ + h)!
(κ − 1)! W (u) + O(uκ−1(log u)

h(h−1)
2 ).

We can now use Lemma 10. At the beginning, we should consider the roots λ1 = κ +
h, . . . , λr of the equation

λ(λ − 1) · · · (λ − h) = κ(κ + 1) · · · (κ + h)

that are such that λi > κ − 1. Set ϕ(u) = Cuκ−1(log 2u)
h(h−1)

2 for a large enough con-
stant C , so that

∣
∣
∣
∣u

h+1W (h+1)(u) − (κ + h)!
(κ − 1)! W (u)

∣
∣
∣
∣ ≤ ϕ(u).

We find that

�∗
λi ,ci

(ϕ)(u) = CuRλi

∣
∣
∣
∣

∫ u

ci

t (κ−1−Rλi )u log(2t)
h(h−1)

2 dt

∣
∣
∣
∣.

When κ − Rλi > 0, we select ci = 1 and get that �∗
λi ,ci

(ϕ)(u) � uκ−1 log(2u). When
κ −Rλi < 0, we select ci = ∞ and get the same result. There remains the case κ = Rλi

where we select ci = 1 and get a further power of log u. By Lemma 10, there exist
parameters C1, . . . , Cr such that

∣
∣
∣W (u) −

∑

1≤s≤r

Csuλs

∣
∣
∣ ≤ uκ−1(log 2u)

h(h+1)
2 .

At this level, we still have not proved that the relevant roots λs that have a non-zero
coefficient Cs are of the form κ + h − 	.

From W to Hh+1. The determination of W via (14) goes to H (h+1)
h+1 by (14) and the definition

W (u) = Hh+1(u)u−1 − K (u). We thus obtain that
∑

n≤X

g(n)(log n)h+1 =
∑

i

Ci (log X)θi + O((log X)κ(log log(3X))
h(h+1)

2 ),

where the sequence (θi ) is the union of the one of λs and of κ + h, κ + h − 1, . . . , κ ,
coming from K (u). By our functional equation (12), we have a similar development when
we replace (log n)h+1 by (log X/n)h+1.

7. Ruling out the parasiting solutions

When h = 1, the two roots are κ + 1 and −κ . Lemma 10 then implies that we can find a
and b such that

|W (u) − auκ+1 − bu−κ | � uκ−1 log(2u).
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This reduces to |W (u)− auκ+h | � uκ−1 log(2u) when κ ≥ 1/2. But what happens when
κ < 1/2?

A stability remark. Assume we have a non-negative multiplicative function f that satisfies
the assumptions of our Theorem 1. Assume further we have distinct exponents κ0 =
κ, κ1, . . . , κr ≥ κ such that

∑

n≤X

f (n)

n

(

log
X

n

)h+1

=
∑

0≤s≤r

Cs(log X)h+1+κs

+O((log X)κ(log log(3X))C )

for some non-zero constants C0, . . . , Cr and C ≥ 0. Select a positive integer K and
consider the function τK that counts the number of K -tuples of divisors, so that τ2 is the
usual divisor function. Next, we consider the multiplicative function f 
 τK that equally
satisfies the assumptions of Theorem 1, with κ+K instead of κ . By the Dirichlet Hyperbola
formula, we find that

∑

n≤X

( f 
 τK )(n)

n

(

log
X

n

)h+1

=
∑

0≤s≤r

∑

	≥0,
h+1+K+κs−	>κ−1

C ′
s,	(log X)h+1+K+κs−	

+O((log X)K+κ (log log(3X))C )

for some constants C ′
0, . . . , C ′

r . This tells us that the set of exponents for f 
 τK is κ0 +
K , . . . , κr + K . Let κs denote the largest, if it exists, of the κi ’s that is not of the form
κ + h minus some integer. Then the coefficient C ′

s,0 comes from the main term of

Cs

∑

n≤X

τK (n)

n

(

log
X

n

)h+1+K+κs

and is thus a non-zero multiple of Cs .

General case. In general, the discussion of the previous subsection applies. We only need
to consider the roots of λ of

Rh(λ, κ) = λ(λ − 1) · · · (λ − h) − κ(κ + 1) · · · (κ + h)

that are such that Rh(λ + K , κ + K ) = 0 when K is a positive integer. This leads to a
polynomial in K of degree h + 1 that vanishes at these points (λ, κ). The coefficient of
K h is

(h + 1)λ − (1 + 2 + · · · + h − 1) − (h + 1)(κ + h) + (1 + 2 + · · · + h − 1)

and since it vanishes, we must have λ = κ + h. In short, only integer translates of κ may
appear, and this concludes the proof of Theorem 1.

8. Technical remarks

The Levin–Faı̆nleı̆b’s beginning, namely the link between
∑

n≤x g(n) log n and
∑

n≤x g(n)

where g(n) = f (n)/n, has had many application, so it is worth providing a sketch of the
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present method. When h = 1 and f is restricted to square-free integers, our method relies
on the identity (as noticed immediately after Lemma 3)

∑

n≤X

f (n)

n
(log n)2

=
∑

m≤X

f (m)

m

( ∑

p1 p2≤X/m

f (p1) f (p2)(log p1)(log p2)

p1 p2

+
∑

p≤X/m

f (p)(log p)2

p

)

+ error.

A similar equation could be reached by noticing that, by the Selberg formula, log2 =
11 
 (� log +� 
 �), we have

∑

n≤X

f (n)

n
(log n)2

=
∑

m≤X

f (m)

m

( ∑

p1 p2≤X/m,
(p1 p2,m)=1

f (p1 p2)(log p1)(log p2)

p1 p2

+
∑

p≤X/m,
(p,m)=1

f (p)(log p)2

p

)

.

Our usage of � f thus avoids the coprimality conditions that soon become a true combina-
torial hurdle. Then by Lemma 5 (or Lemma 6), we approximate the sum of the two sums
over primes above by κ(κ + 1)(log Y )2 + c(log Y ) + O(log log 3Y ) and we notice that

(log n)2 =
(

log X − log
X

n

)2

= (log X)2 − 2(log X) log
X

n
+

(

log
X

n

)2

.

This gives us

(log X)2G0(X) − 2(log X)G1(X) + G2(X)

= κ(κ + 1)G2(X) + O(G0(X) log log 3X).

We then convert this in an approximate differential equation in H2 of Euler’s type, i.e. it
can be reduced to an approximate linear differential equation, for which one can prove
deformation results.
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