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Abstract. We improve on all the results of the paper “From explicit
estimates for the primes to explicit estimates for the Möbius function”
[16] by the first author by incorporating the finite range computations
performed since then by several authors. Thus we have∣∣∣∣∣ ∑

n≤X

µ(n)

∣∣∣∣∣ ≤ 0.006688X

logX
, for X ≥ 1 798 118,∣∣∣∣∣ ∑

n≤X

µ(n)

n

∣∣∣∣∣ ≤ 0.010032

logX
, for X ≥ 617 990.

We also improve on the method described in [16] by a simple remark.

1. Introduction and results

Let µ denotes the Möbius function and Λ the von Mangoldt function. In
[16], the first author exploited the identity

(1) 2γ +
∑
n≤X

µ(n) log2 n =
∑
k`≤X

µ(`)
(
Λ ? Λ(k)− Λ(k) log k + 2γ

)
,

valid for any X ≥ 1, to derive explicit estimates for the summatory function
M of the Möbius function µ. In this article, we propose to update those
estimates by taking into account [13] by G. Hurst, [4] by J. Büthe, [14]
by R. Vanlalnagaia and [15] by the first author. We also improve on their
corresponding proofs by essentially taking a closer look at them, see for
instance Lemma 6.1. Moreover, we hope to have improved on the exposition
with respect to [16]. In order to do so, we shall reproduce some lemmas
whose proofs can still be found in [16], so that the reader may follow the
argument more easily. By the same reason, more on the history of this
problem and on the philosophy of the method we use can be found in the
original work [16].

The summatory function of the Moebius function is a fundamental ob-
ject to study averages of multiplicative functions, and the later are used for
instance in sieve theory and related matters as in [22] by the second au-
thor or in [5] by E. Carneiro, A. Chirre, H. Helfgott & J. Mej́ıa-Cordero,
and in diverse subjects, as for instance in [11] by F. Götze, D. Kaliada &
D. Zaporozhets.
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Below we state our results, which should be directly compared to those
presented in [16] in their corresponding ranges.

Theorem 1.1. For X ≥ 1 798 118, we have∣∣∣∣∣ ∑
n≤X

µ(n)

∣∣∣∣∣ ≤ (0.006688 logX − 0.039)X

log2X
.

This improves by almost a factor of 2 on [16, Thm. 1.1], which we recover
as the next corollary by adding some simple computations to lower the range
of X.

Corollary 1.1. For X ≥ 1 078 853, we have∣∣∣∣∣ ∑
n≤X

µ(n)

∣∣∣∣∣ ≤ (0.0130 logX − 0.118)X

log2X
.

On the other hand, by the method outlined in §3, we also derive a bound
on the logarithmic average of the Möbius function.

Corollary 1.2. For X ≥ 617 990, we have∣∣∣∣∣ ∑
n≤X

µ(n)

n

∣∣∣∣∣ ≤ 0.010032 logX − 0.0568

log2X
.

As a consequence, we correctly obtain [17, Thm. 1.2].

Corollary 1.3. For X ≥ 463 421, we have∣∣∣∣∣ ∑
n≤X

µ(n)

n

∣∣∣∣∣ ≤ 0.0144 logX − 0.1

log2X
.

Notation. We set

(2) R(X) = ψ(X)−X, r(X) = ψ̃(X)− logX + γ,

where, by denoting Λ the von Mangoldt function,

(3) ψ(X) =
∑
n≤X

Λ(n), ψ̃(X) =
∑
n≤X

Λ(n)

n
.

On the other hand, we consider the following summatory functions related
to the Möbius function

(4) M(X) =
∑
n≤X

µ(n), m(X) =
∑
n≤X

µ(n)

n
.

Acknowledgement. The referee should be warmly thanked for his/her very
careful reading of a first version of this paper and for providing useful hints
as to how to improve the exposition.

2. New estimates and consequences

We recall and gather here several explicit estimates that we shall require
later.
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Bounds on the summatory functions of the Möbius function M
and m. Let us first turn our attention to the summatory function of the
Möbius function M defined in (4). The main novelty comes from the paper
[13] by G. Hurst where it is proved that

(5) |M(X)| ≤
√
X, X ≤ 1016.

Let us complete this by recalling previous estimates. In [9] by F. Dress, we
find the bound

(6) |M(X)| ≤ 0.571
√
X, 33 ≤ X ≤ 1012

In [10] by F. Dress & M. El Marraki, we find the bound

(7) |M(X)| ≤ X

2360
, X ≥ 617 973,

(see also [8] by N. Costa-Pereira) which [6] by H. Cohen, F. Dress & M. El
Marraki, (also published in [7, Thm. 5 bis]) improves as

(8) |M(X)| ≤ X

4345
, X ≥ 2 160 535.

The second novelty concerns the summatory function m, defined in (4), we
find in [12, Lemma 5.10] the following result

(9) |m(X)| ≤
√

2√
X

when X ≤ 1014.

Bounds on the summatory function of the squarefree numbers. We
now turn towards two bounds concerning the squarefree numbers. The first
one comes from [7, Thm. 3 bis].

Lemma 2.1. For X ≥ 438 653, we have∑
n≤X

µ2(n) =
6

π2
X +O∗(0.02767

√
X).

If X ≥ 1, we can replace 0.02767 by 0.7.

The second bound is a consequence of the more recent paper [18].

Lemma 2.2. We have for X ≥ 106

∑
n≤X

µ2(n)

n
=

6

π2
logX +O∗(1.044).

If X ≥ 1, we can replace 1.044 by 1.48.

Proof. [18, Cor. 1.2] says in particular that, for X ≥ 438 653, we have∑
n≤X

µ2(n)

n
=

6

π2
(logX + b) +O∗

(
3× 0.02767√

X

)
,

where b = 1.7171 · · · . The lemma follows immediately. �
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Bounds on the usual and harmonic summatory function of Λ. Let
us recall the definitions of R(X) and r(X) in (2). We have the following set
of estimations for the function R in different ranges.

|R(X)| ≤ 0.8
√
X when 1500 < X ≤ 1010,(10)

|R(X)| ≤ 0.94
√
X when 11 < X ≤ 1019,(11)

|R(X)| ≤ 8 · 10−5 ·X when 108 ≤ X,(12)

|R(X)| ≤ 2.58843 · 10−5 ·X when 21 ≤ logX,(13)

|R(X)| ≤ 1.93378 · 10−8 ·X when 40 ≤ logX,(14)

|R(X)| ≤ 0.0065
X

logX
when X ≥ 1 514 928(15)

|R(X)| ≤ 9 · 10−7 X

logX
when 1019 ≤ X,(16)

Estimate (10) comes from [19, p. 423]. Estimate (11) comes from [4, Thm.
2]. (13) and (14) are derived from [2, Table 8] by S. Broadbent, H. Kadiri,
A. Lumley, N. Ng & K. Wilk together with [3, Table 1] by J. Büthe. For
(12), the same [2, Table 8] gives the bound 4.27 · 10−5 provided X ≥ e20,
and we extend it using (10). (15) can be found in [16, Lemma 4.2] and the
last estimate (16) comes from [2, Table 15] extended to ψ via [21, Thm. 6
(5.3)-(5.4)] by J. Rosser & L. Schoenfeld.

Let us complete this series with a readily established bound

(17) max
24 200≤X≤3·107

|R(X)|√
X
≤ 0.71.

Let us further recall the second part of [14, Theorem 9] by R. Mawia (who
used earlier the family name Vanlalngaia).

(18)

∣∣∣∣r(X)− R(X)

X

∣∣∣∣ ≤ 0.05√
X

+ 1.75 · 10−12 when X ≥ 394 385.

We also recall the wide-ranging estimate proved in [20, Thm. 12] by
J. Rosser & L. Schoenfeld.

Lemma 2.3. The quotient ψ(X)/X takes its maximum at X = 113; for
any X > 0, we have

ψ(X) < 1.03883X.

Finally, we quote [16, Lemma 5.1].

Lemma 2.4. When X ≥ 1, and
√
X ≥ T ≥ 1, we have∑

n≤T

Λ(n)

n log(X/n)
≤ 1.04 log

(
logX

log(X/T )

)
+

1.04

logX
.

3. Strategy of proof

Call L the function t > 0 7→ log t and ? the convolution of any two
arithmetic functions. By observing that (1/ζ)′′ = −ζ ′′/ζ2 + (ζ ′)2/ζ3, where
ζ corresponds to the Riemann zeta function, we deduce the equality

µ · L2 = µ ? Λ ? Λ− µ ? Λ · L,
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whence identity (1).
We define the remainder quantity R∗2 as follows

(19) R∗2(X) =
∑
n≤X

(Λ ? Λ(n)− Λ(n) log n+ 2γ) .

Now, for any K ∈ (0, X]∩Z, we may derive from (1) the following expression∑
n≤X

µ(n) log2 n = −2γ +
∑

`≤X/K

µ(`)R∗2

(
X

`

)
(20)

+
∑
k<K

R∗2(k)
∑

X/(k+1)<`≤X/k

µ(`).

Observe that the range in the outermost sum of the above second expression
is in fact max{X/K,X/(k + 1)} < ` ≤ X/k. Nonetheless, if X/(k + 1) <
X/K, since k < K, we have k < K < k + 1, giving an empty sum as K is
integer.

Moreover, by rearranging terms, we may express∑
k≤K−1

R∗2(k)
∑

X/(k+1)<`≤X/k

µ(`) =
∑

k≤K−1

R∗2(k)

[
M

(
X

k

)
−M

(
X

k + 1

)]

=
∑
k≤K

(Λ ? Λ(k)− Λ(k) log k + 2γ)M

(
X

k

)
−R∗2(K)M

(
X

K

)
.(21)

Thus, by combining (20) and (21) together, we arrive at∑
n≤X

µ(n) log2 n = −2γ +
∑

`≤X/K

µ(`)R∗2

(
X

`

)
(22)

+
∑
k≤K

(Λ ? Λ(k)− Λ(k) log k + 2γ)M

(
X

k

)
−R∗2(K)M

(
X

K

)
.

Identity (22) will be used to evaluate the average of µ(n) log2 n in Lemma 7.3.
In order to do so, we shall require estimates for R∗2(X) when X ≥ 1.8 · 109

as well as Lemma 7.1 to bound the summation over k ≤ K.
The estimation ofR∗2 further splits in two parts, as will be shown in Lemma

6.1: we have to estimate the two auxiliary functions R3 and R4 that we now
define. First, R3 is defined as
(23)

R3(X) = 2
√
X|
√
Xr(
√
X)−R(

√
X)|+R(

√
X)2+|R(X)| logX+

∣∣∣∣∫ X

1
R(t)

dt

t

∣∣∣∣ ,
with the functions r and R as defined in (2). The function R3 will be studied
in Section 4. And finally, we will require the function R4 defined by

(24) R4(X) =
∑

n≤
√
X

Λ(n)R

(
X

n

)
,

and which will be studied in Section 5.
Thus, upon estimating the right-hand side of (22), we will have an estima-

tion for the sum
∑

n≤X µ(n) log2 n within some specific range. This main
bound is expressed in Lemma 7.3 and from it, we may deduce estimates
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for M via Lemma 3.1. Indeed, let (f(n))n∈Z>0 be a sequence of complex
numbers and, for any integer k ≥ 0 and X ≥ 1, consider the weighted
summatory function

(25) Mk(f,X) =
∑
n≤X

f(n) logk n.

Then, by summation by parts or quoting [16, Lemma 8.1], we have the
following result.

Lemma 3.1. For any X0 > 1 and any X ≥ X0, we have

M0(f,X)−M0(f,X0) =
Mk(f,X)

logkX
− Mk(f,X0)

logkX0

+ k

∫ X

X0

Mk(f, t)

t logk+1(t)
dt.

Finally, upon having an estimation for M(X) within some range, we are
able to derive bounds for m(X) by using the following result due to M. Bal-
azard in [1, Eq. (8)]. It is much more efficient than [16, Lemma 9.1] which
was used in the previous version of this work.

Lemma 3.2. For any X ≥ 1, we have

|m(X)| ≤ |M(X)|
X

+
1

X2

∫ X

1
|M(t)|dt+

8

3X
.

The question being to deduce bounds for m(X) from bounds for M(X),
the most efficient identity at the time of writing seems to be given by
F. Daval as he told us in some private communication.

4. Bounding R3

This section is devoted to bounding the function R3(X), as defined in (23).
We begin with [16, Lemma 6.4] which is a direct computation of an integral
over R(t)/t. We take advantage of the oscillating nature of R(t) in this
manner.

Lemma 4.1. ∫ 108

1
R(t)

dt

t
= −129.559 +O∗(0.01).

We can next give an estimation for R3, defined in (23).

Lemma 4.2. We have

R3(X) ≤ 0.2 ·X3/4, when 1.8 · 109 ≤ X ≤ 1019,

R3(X)

X
≤ 9 · 10−5 +

1

10 ·X1/4
, when X ≥ 1019.

Proof. We consider three cases. In what follows, K0 = 1.8·109 and K = 108.

Case 1: Suppose that 1.8 · 109 ≤ X ≤ 1010. By Lemma 4.1, we have∣∣∣∣∫ X

1
R(t)

dt

t

∣∣∣∣ ≤ 129.6 +

∫ X

108
|R(t)|dt

t
.
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On the other hand, we find that

2
√
X|
√
Xr(
√
X)−R(

√
X)| ≤ 0.1 ·X3/4 + 3.5 · 10−12X,(26)

R(
√
X)2 ≤ 0.82

√
X,(27)

|R(X)| logX ≤ 0.8
√
X logX,(28) ∫ X

108
|R(t)|dt

t
≤ 0.8

∫ X

108

dt√
t

= 2 · 0.8(
√
X − 104).(29)

Inequality (26) is obtained thanks to (18) whereas (27), (28) and (29) come
from estimation (10). Therefore, by combining the above bounds together,
we arrive at

R3(X)

X3/4
≤0.1 + 3.5 · 10−12X1/4 + 0.8

logX

X1/4
+

+
0.82 + 2 · 0.8

X1/4
+

129.7− 2 · 0.8 · 104

X3/4
≤ 0.2,(30)

where we have used that the function t 7→ log t/t1/4 is decreasing for log t ≥
4.

Case 2: Suppose that 1010 ≤ X ≤ 1019. Now the bounds (27), (28), (29)
and (30) hold with 0.8 replaced by 0.94. Thus we obtain the estimation

R3(X)

X3/4
≤ 0.18.

Case 3: Suppose that X ≥ 1019. We proceed similarly as before and obtain

R3(X)

X
≤ 3.5 · 10−12 +

0.1

X1/4
+ (2.59 · 10−5)2 + 9 · 10−7

+ 8 · 10−5 − 8 · 103 − 129.7

X

≤ 0.000081 +
0.1

X1/4
≤ 0.000083,

where we have used (13) instead of (11), since e21 ≤ 1019/2, then (16) instead
of (11) and lastly (12) instead of (11). �

5. Bounding R4

This section is devoted to bounding the function R4(X), as defined in (24).
The next lemma, which requires some days of computations on a personnal
computer, is an important step.

Lemma 5.1. When 1.8 · 109 ≤ X ≤ 5 · 1010, we have∣∣∣∣∣∣
∑

1000<n≤40 000

Λ(n)R

(
X

n

)∣∣∣∣∣∣ ≤ 0.000154 ·X.

Whereas we have run the computations up to 5 ·1010, we will only use the
above result up to 2 · 1010. Employing the larger range might improve on
our final bound, but we have opted to keep the latter shorter one to ensure
accuracy.
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Proof. Let us set, for any two integers A0 and A1:

(31) f(A0, A1, D) =
∑

A0≤a≤A1

Λ(a)ψ

(
X

a

)
.

We compute and store the values of ψ(n) for n ∈ [109/A1, · · · , 5·1010/A0]∩Z
with the actual choice A0 = 1000 and A1 = 40 000. We go from f(A0, A1, D)
to the quantity stated in the statement by removing X

∑
A0≤n≤A1

Λ(n)/n,
which we simply compute directly.

Next, as X moves from the integer N to N+1, we may get a modification
in the value of ψ(X/a) only if [N/a] < [(N + 1)/a]. This may only happen
when there exists an integer c such that N/a < c ≤ (N+1)/a; this translates
into N < ac ≤ N + 1, which may only happen when a is a divisor of N + 1,
which must further belong to the interval [A0, A]. This observation speeds
up the program we use considerably and makes the computations possible
on a home computer, using merely a couple of days. �

Recall now the definition (24) of R4(X).

Lemma 5.2. We have

|R4(X)| ≤ 0.005 ·X, X ≥ 1.8 · 109.

This improves slightly on [16, Lemma 5.2].

Proof. We consider different cases according to the range of X.

Case 1: Suppose that 1.8 · 109 ≤ X ≤ 9 · 109. We first check via a short
computation that

(32)
∑

n≤1000

Λ(n)√
n
≤ 60.51,

∑
n≤40000

Λ(n)√
n

= B = 40012.8937 · · · .

Next, observe that, when n ≤ 1000, X/n ∈ (1500, 1010) and when 40000 <

n ≤
√
X, X/n ∈ [

√
X,X/40000] ⊂ [24200, 3 · 107]. Thus, by using estima-

tions (10), (17) and also Lemma 5.1, we have the following estimation

|R4(X)| ≤ 0.8
√
X

∑
n≤1000

Λ(n)√
n

+ 0.000154 ·X + 0.71
√
X

∑
40000<n≤

√
X

Λ(n)√
n
,

which, by recalling (32), Lemma 2.3 and using summation by parts, may be
expressed as

|R4(X)| ≤ 48.408
√
X + 0.000154 ·X

+ 0.71
√
X

(∫ √X
40000

ψ(t)−B
2t3/2

dt+
ψ(
√
X)−B
X1/4

)
≤ 48.408

√
X + 0.000154 ·X

+ 0.71
√
X

(∫ √X
40000

1.04 · t
2t3/2

dt− B√
40000

+
1.04
√
X

X1/4

)
≤ 48.408

√
X + 0.000154 ·X

+ 0.71
√
X

(
1.04 ·X1/4 − 1.04 ·

√
40000− 40012.89√

40000
+

1.04
√
X

X1/4

)
.
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Therefore,

|R4(X)|
X

≤ 48.408√
X

+ 0.000154 + 0.71

(
2.08

X1/4
− 408

X1/2

)
,

which is not more than 0.0032. Here, we have used that the function t 7→
at−1/4 − bt−1/2 has a maximum at t = (2b/a)4, taking value a2/4b.

Case 2: Suppose that 9 · 109 ≤ X ≤ 2 · 1010. Let X1 = 2 · 107. Observe first
that for any U ≥

√
X, we can write

(33) |R4(X)| ≤
∑

2≤n≤X/U

Λ(n)

∣∣∣∣R(Xn
)∣∣∣∣+

∑
X/U<n≤

√
X

Λ(n)

∣∣∣∣R(Xn
)∣∣∣∣.

Select now U = X1. Thereupon, for the first sum above, we have X/n ∈
[X1, 1010], thus we may use estimation (10). Concerning the above second

sum, we have X/n ∈ [
√
X,X1] ⊂ [24200, 3 · 107] so that we may use (17).

This way, considering the definition (3) of ψ(x), using summation by parts
and then recalling Lemma 2.3, we have

|R4(X)| ≤ 0.8
√
X

∑
n≤X/X1

Λ(n)√
n

+ 0.71
√
X

∑
X/X1<n≤

√
X

Λ(n)√
n

= 0.71
√
X

(∫ √X
2

ψ(t)

2t3/2
dt+

ψ(
√
X)

X1/4

)
+ 0.09

√
X

(∫ X/X1

2

ψ(t)

2t3/2
dt+

ψ(X/X1)

(X/X1)1/2

)
≤ 2 · 0.71 · 1.04X3/4 + 2 · 0.09 · 1.04

X√
X1

,

which is not more than 0.0049 ·X.

Case 3: Suppose that 2 · 1010 ≤ X ≤ 2 · 1019. Set X2 = 1010 and let
us use expression (33) with U = X2. For the arising first sum, we have
X/n ∈ [X2, 1019], so that we may use estimation (11). As for the second

one, we have X/n ∈ [
√
X,X2] ⊂ [1500, 1010] and we may use estimation

(10). Thus, by using summation by parts and recalling Lemma 2.3, we
derive

|R4(X)| ≤ 0.94X
∑

n≤X/X2

Λ(n)√
n

+ 0.8
√
X

∑
X/X2<n≤

√
X

Λ(n)√
n

= 0.8
√
X

(∫ √X
2

ψ(t)

2t3/2
dt+

ψ(
√
X)

X1/4

)
+ 0.14

√
X

(∫ X/X2

2

ψ(t)

2t3/2
dt+

ψ(X/X2)

(X/X2)1/2

)
≤ 2 · 0.8 · 1.04 ·X3/4 + 2 · 0.14 · 1.04

X√
X2

,

which is not more than 0.0045 ·X.



10 OLIVIER RAMARÉ AND SEBASTIAN ZUNIGA-ALTERMAN

Case 4: Suppose that X ≥ 2 · 1019. Since 1019 > 1 514 9282, by estimation
(15) and Lemma 2.4 with T =

√
X, we have

|R4(X)|
X

≤ 0.0065
∑

n≤
√
X

Λ(n)

n log(X/n)
≤ 0.0065 ·

(
0.73 +

1.04

logX

)
.

which implies that |R4(X)| ≤ 0.0049 ·X.
Finally, on combining cases 1, 2, 3, 4 together, we derive the result. �

6. Bounding R∗2

Recall the definition (19) of R2(X).

Lemma 6.1. For any X > 0, we have

|R∗2(X)| ≤ 1 + 2γ +R3(X) + 2R4(X),

where R3 and R4 are respectively defined in (23) and (24).

The reader should compare the above lemma with [16, Lemma 6.2]. The

novelty here is that |
√
Xr(
√
X)−R(

√
X)| appears instead of |r(

√
X)|; this

latter quantity is well controlled by (18).

Proof. By summation by parts, and recalling the definition (2) of R(X), we
have ∑

n≤X
Λ(n) log n = ψ(X) logX −

∫ X

1

ψ(t)

t
dt

= X logX −X + 1 +R(X) logX −
∫ X

1

R(t)

t
dt.

On the other hand, the Dirichlet hyperbola formula yields∑
d1d2≤X

Λ(d1)Λ(d2) = 2
∑

d1≤
√
X

Λ(d1)ψ

(
X

d1

)
− ψ(

√
X)2

=2X
∑

d1≤
√
X

Λ(d1)

d1
−X − 2

√
XR(

√
X)−R(

√
X)2 + 2

∑
d1≤
√
X

Λ(d1)R

(
X

d1

)
=X logX − 2Xγ −X + 2Xr(

√
X)− 2

√
XR(

√
X)−R(

√
X)2 + 2R4(X).

Hence, by recalling the definition (19) of R2(X) and combining the above
two expressions, we obtain

R∗2(X) =
∑
n≤X

(Λ ? Λ(n)− Λ(n) log n) + 2[X]γ = −1− 2{X}γ + 2R4(X)

+

[
2
√
X(
√
Xr(
√
X)−R(

√
X))−R(

√
X)2 −R(X) logX +

∫ X

1

R(t)

t
dt

]
,

whence, by recalling the definition (23) of R3(X), we obtain the result. �

Let us recall [16, Lemma 6.3].

Lemma 6.2. Let X be a real number such that 3 ≤ X ≤ 2.1 · 1010. Then

|R∗2(X)| ≤ 1.93
√
X logX.
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Furthermore, the study carried out in §4, §5 and §6 allows us to derive
the following result.

Lemma 6.3. When X ≥ 1.8 · 109, we have

|R∗2(X)| ≤ 0.011 ·X.
Proof. Combine Lemma 6.1 together with Lemma 4.2 and Lemma 5.2. �

7. Proof of Theorem 1.1

We now proceed to the proof of Theorem 1.1. We start with two very
specialized lemmas. The most important part of the proof lies in Lemma 7.3.

Lemma 7.1. Let X ≥ 1016 and K > 0 such that 2 160 535 ·K ≤ 1016. Then
we have

1

X

∣∣∣∣∣∣
∑
k≤K

(Λ ? Λ(k)− Λ(k) log k + 2γ)M

(
X

k

)
−R∗2(K)M

(
X

K

)∣∣∣∣∣∣
≤


0.0374 when K = 462 848,

0.0422 when K = 106,

0.0579 when K = 107,

0.0762 when K = 108.

Proof. In order to bound the above quantity, we have X/k ≥ X/K ≥
2 160 535, so that estimation (8) may be applied. Thereupon, it is enough
to compute numerically the following bounds

∑
k≤K

|Λ ? Λ(k)− Λ(k) log k + 2γ|
k

+
|R∗2(K)|
K

≤ 4345·


0.0374, if K = 462 848,

0.0422, if K = 106,

0.0579, if K = 107,

0.0762, if K = 108.

�

Lemma 7.2. Let X,K,K0 be real numbers such that 0 < K < K0 ≤ X.
When X/K0 ≥ 5 · 106 and log(K0/K) ≤ 19 000, we have∑

X/K0<n≤X/K

µ2(n)√
n
≤ 12

π2

√
X

K
.

Proof. With the help of summation by parts, we find that∑
X/K0<n≤X/K

µ2(n)√
n

=

∫ X/K

X/K0

∑
X/K0<n≤t

µ2(n)
dt

2t3/2
+

∑
X/K0<n≤X/K

µ2(n)√
X/K

=

∫ X/K

X/K0

∑
n≤t

µ2(n)
dt

2t3/2
+

∑
n≤X/K

µ2(n)√
X/K

−
∑

n≤X/K0

µ2(n)√
X/K0

≤
∫ X/K

X/K0

(
6

π2
t+ 0.02767

√
t

)
dt

2t3/2
+

6

π2

√
X

K
− 6

π2

√
X

K0
+ 2 · 0.02767

≤ 12

π2

√
X

K
− 12

π2

√
X

K0
+

0.02767

2
log

(
K0

K

)
+ 2 · 0.02767,
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where, since X/K0 ≥ 5 ·106 > 438 653, we have used Lemma 2.1. The result
is concluded by noticing that the total contribution of the above second,
third and fourth terms is negative. �

Lemma 7.3. For X ≥ 4 · 107, we have∣∣∣∣∑
n≤X

µ(n) log2 n

∣∣∣∣ ≤ (0.006688 logX − 0.0504)X.

In the above range, Lemma 7.3 improves on [16, Lemma 7.2] by almost a
factor of 2.

Proof. We consider different cases.

Case 1: Suppose that X ≥ 1016. Let K0 = 2 · 109 and K = 108. We deduce
from (22) that

∑
n≤X

µ(n) log2 n = −2γ +
∑

`≤X/K0

µ(`)R∗2

(
X

`

)
+

∑
X/K0<`≤X/K

µ(`)R∗2

(
X

`

)(34)

+
∑
k≤K

(Λ ? Λ(k)− Λ(k) log k + 2γ)M

(
X

k

)
−R∗2(K)M

(
X

K

)
.

for any K ≤ K0.
Now, by Lemma 6.2, we have |R∗2(k)| ≤ 1.93

√
k log k when 3 ≤ k ≤ K0.

Moreover, as X/K0 ≥ 5 · 106 and log(K0/K) < 19 000, we can estimate the
third term in (34) with the help of Lemma 7.2 as∣∣∣∣∣∣

∑
X/K0<`≤X/K

µ(`)R∗2

(
X

`

)∣∣∣∣∣∣ ≤ 1.93
√
X log(K0)

∑
X/K0<`≤X/K

µ2(`)√
`

≤ 1.93
√
X log(K0)

12

π2

√
X

K
≤ 2.35√

K
X logK0.

Furthermore, by combining Lemma 6.3 and Lemma 2.2, we have∣∣∣∣∣∣
∑

`≤X/K0

µ(`)R∗2

(
X

`

)∣∣∣∣∣∣ ≤ 0.011 ·X
∑

`≤X/K0

µ2(`)

`

≤ 0.011 ·X
(

6

π2
log

(
X

K0

)
+ 1.044

)
,

since X/K0 ≥ 106.
Finally, by Lemma 7.1, we may bound the last two terms of (34). All in

all, we have

1

X

∣∣∣∣∑
n≤X

µ(n) log2 n

∣∣∣∣ ≤ 2γ

X
+ 0.011

(
6

π2
log

(
X

K0

)
+ 1.044

)
+

2.35√
K

log(K0) + 0.0762

≤ 0.006688 · logX − 0.0504

Case 2: Suppose that X ∈ [4 · 107, 1016). By summation by parts, we write
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∑
n≤X

µ(n) log2 n = M(X) log2X −
∫ X

1
M(t)

2 log t

t
dt,

so that estimation (5) gives∣∣∣∣∑
n≤X

µ(n) log2 n

∣∣∣∣ ≤ √X log2X +

∫ X

1

2 log t√
t
dt

=
√
X log2X + 4

√
X logX − 8

√
X + 8

≤ (logX + 4)
√
X logX.

We readily check that 0.006688 logX − 0.0504 ≥ (logX)(logX + 4)/
√
X

when X ≥ 4 · 107. �

Proof of Theorem 1.1. We consider different cases.

Case 1: Suppose that X ≥ X1 = 1016. We use Lemma 3.1 with f = µ and
k = 2 and X0 = 4 · 107. Thus, M(·) = M0(µ, ·) and, by Lemma 7.3, we
derive

|M(X)| ≤ 0.006688 logX − 0.0504

log2X
X +

∣∣∣∣M(X0)− M2(µ,X0)

log2X0

∣∣∣∣
+ 2

∫ X

X0

0.006688 log t− 0.0504

log3 t
dt.(35)

A computer calculation may handle the above second term. Subsequently,
by the use Pari/Gp, we obtain

(36)

∣∣∣∣M(X0)− M2(µ,X0)

log2X0

∣∣∣∣ ≤ 7.01.

Hence, on combining (35) and (36), we derive

|M(X)| ≤0.006688 logX − 0.0504

log2X
X + 7.01 +

∫ X

X0

(
0.013376

log2 t
− 0.1008

log3 t

)
dt

≤0.006688 logX − 0.0504

log2X
X + 7.01

+ 0.013376

(
X

log2X
− X0

log2X0

)
− (0.1008− 0.026752)

∫ X

X0

dt

log3 t
(37)

where we have used the identity (Id/ log2)′ = 1/ log2 ·(1 − 2/ log). Further,
the bound

X

log3X
− X0

log3X0

=

∫ X

X0

(
t

log3 t

)′
dt ≤

∫ X

X0

dt

log3 t
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leads to a simplification on (35) as

|M(X)| ≤ 0.006688 logX − 0.0504

log2X
X +

(
7.01− 0.013376X0

log2X0

+
0.074048X0

log3X0

)
+

0.013376X

log2X
− 0.074048X

log3X

≤ 0.006688

logX
X +

X

log2X

(
− 0.0504 + 0.013376− 0.074048

logX1
− 1186.93 log2X1

X1

)
≤ 0.006688 logX − 0.039

log2X
X.(38)

Case 2: Suppose that X ∈ [X2, 1016], where X2 = 1.5 · 107. Then

1√
X

0.006688 logX − 0.039

log2X
X ≥

(
0.006688− 0.039

log(X2)

) √
X

logX

≥
(

0.006688− 0.039

logX2

) √
X2

logX2
≥ 1.

Therefore, by using (5), the bound (38) is valid in the range [1.5 · 107, 1016].

Case 3: Suppose that X ≤ 1.5 · 107. We conclude by computer verification
by relying on Pari/Gp that the bound (38) holds in the range [T, 1.5 · 107),
where T = 1 798 118. �

8. Corollaries

Proof of Corollary 1.2. We consider three cases.

Case 1: Suppose that X ≥ 1014. Let T = 1 798 118 and X0 = 1014. By a
numerical calculation, we obtain

(39)

∫ T

1
|M(t)|dt ≤ 216378740

Let A = 216378740. Now, by Theorem 1.1, Lemma 3.2 and (39), we
derive

|m(X)| ≤ 0.006688 logX − 0.039

log2X
+

1

X2

∫ X

T

(0.006688 log t− 0.039)t

log2 t
dt

+
1

X2

∫ T

1
|M(t)|dt+

8

3X
,

≤ 0.006688 logX − 0.039

log2X
+

1

X2

∫ X

T

0.006688 tdt

log t

− 1

X2

∫ X

T

0.039 tdt

log2 t
+

A

X2
+

8

3X
.

Moreover, by using (Id2/ log)′ = Id/ log ·(2− 1/ log) and then the bound

X2

2 log2X
− T 2

2 log2 T
=

1

2

∫ X

T

(
t2

log2 t

)′
dt ≤

∫ X

T

tdt

log2 t
,
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we derive

|m(X)| ≤ 0.010032 logX − 0.039

log2X
− 0.003344

X2

T 2

log T

− 1

X2

∫ X

T

0.035656 tdt

log2 t
+

A

X2
+

8

3X

≤ 0.010032 logX − 0.039

log2X
− 0.003344

X2

T 2

log T

− 0.017828

X2

(
X2

log2X
− T 2

log2 T

)
+

A

X2
+

8

3X
.

Now, by rearranging terms, we obtain

|m(X)| ≤0.010032

logX
+

1

log2X

(
− 0.039− 0.017828 +

A log2X0

X2
0

+
8 log2X0

3X0

)
− 1

X2

(
0.003344

T 2

log T
− 0.017828

T 2

log2 T

)
(40)

≤0.010032 logX − 0.0568

log2X
,(41)

where we have used that the expression (40) in the above estimation is
negative.

Case 2: Suppose thatX ∈ [X1, 1014), whereX1 = 1.5·107. By (9), we extend
the simplified bound |m(X)| log2X ≤ 0.01 logX − 0.057 to any X ≥ X1.

Case 3: Suppose that X < 1.5 · 107. We verify numerically that the bound
(41) is valid for any X ≥ 617 990, whence the result. �

Proof of Corollary 1.3. Recall Corollary 1.2. We note that 0.01004 logX−
0.056 ≤ 0.0144 logX−0.1 when X ≥ 617 990. Then, we inspect numerically
that the result also holds for X ∈ [463 421, 617 990). �
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