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1. Introduction and Results

Our main result is the following theorem.

Theorem 1.1. For all ¢ > 2 and for all invertible residue classes a modulo q, there
exists a natural number n < (650q)? that is congruent to a modulo q and that is the
product of exactly three primes, all of which are below (650q)3.
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We follow and improve on the approach initiated in [22] where the authors
obtained a similar statement, though with ¢'%/3 instead of (650¢)%. These two
authors had sought the simplest argument, and we stay close to this idea. An
appendix by Oriol Serra furthermore provides the reader with a simple proof of the
special case of Kneser’s Theorem that we need, namely with equal summands.

We recall that Xylouris’ version of Linnik’s Theorem [28] tells us that, for every
modulus ¢ and every invertible residue class a modulo ¢, one can find a prime
congruent to @ modulo ¢ that is below ¢°'® provided q is large enough. The proof
relies on intricate techniques, and though the result is indeed effective, no one has
been able to give any explicit version of it. One could hope to relax the condition
from being a prime to being a product of two primes, a problem for which our
method fails, but again, explicit results seem to be (very) difficult to obtain. A
conjecture of Erdos, Odlyzko and Sérkozy in [B] predicts that we can find two
primes p; and pa both less than ¢ and such that p1ps = alg].

In order to prove Theorem [Tl we need a (smoothed) version of the Brun-
Titchmarsh Theorem for cosets, and this is the main novelty of this paper. This
result is of independent interest and here is the theoretical core of our approach.

Theorem 1.2. Let x >0 and y > 0. Let ¢ > 1200 be an integer and Y be another
positive integer such that Y < y/(\/qlogq). Let G = (Z/qZ)* and H C G be a
subgroup of index Y. Then

(1o (1 o)
1<——(14+40(1/log———
Z Y log y Y\/ﬁlogq

TS Y, /glogq

for any class v in G.

When z is arbitrary and y < ¢, this result does not have any ancestors as far as
we know. When « is arbitrary and y > ¢, we can sum the point-wise bound given
by the Brun—Titchmarsh inequality (recalled as LemmalA3]) over the relevant coset:
our result is better than the final estimate when Y < /g/logq. When x = 0, several
authors among which we cite Motohashi in [I4], Iwaniec in [10], or with Friedlander
in [6] and Maynard in [I2] improved on the classical Brun—Titchmarsh inequality,
and summing over the classes, these estimates improve on our result provided ¢ and
Y are small enough. For instance, when Y is fixed and ¢ = y? (together with z = 0),
the usage of [I0, Theorem 3] results in a better bound provided that 6 < 9/20 = 0.45
while Theorem [[.2]is otherwise superior (if we have not missed any other estimate!
It is however sure that is all the previous bounds explode when ¢ gets close to y
while ours does not). Our saving comes from the additional summation over the
coset. There exists a third range between x arbitrary and = 0: when y is a small
power of z. Such a range is explored for instance in [I0, Sec. 6].

Let us now turn to the smoothed version of Theorem[[.2l we need. The smoothing
has the effect of removing the log ¢; the numerical estimates are also sharper.
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Definition 1.3. For any function 7 from R to C with compact support and any
y > 0, we define m,(y) = >_, n(p/y) where the variable p ranges over the primes.

Definition 1.4. Let ¢ > 1 be a positive integer and G = (Z/qZ)*. Let H C G be
a subgroup, and uH be a coset of H in G. We set

miguH) = Y n(p/y).

p=uH(mod q)

We select a smoothing 7 since we need precise numerics and, with our choice,
we have Lemma [Z.]] at our disposal, in the usage of which we will need Lemma 2.3
We did not investigate from a numerical viewpoint any other smoothings; such an
optimization would at most modify the constant 650 in Theorem [[.6 and not modify
the exponent 1/3 in Theorem [Tl From now on, the symbol 1 shall be kept for the
function defined by

2t, 0<t<1/2,
nt)=4¢21—-1), 1/2<t<1, (1)
0, otherwise.

This function 7 is supported on [0, 1]. Here is the general form of the estimate we
prove.

Theorem 1.5. Let y* > ¢ > 2 and 1 be as in [@0)). LetY <y/\/q and G = (Z/qZ)*.
Let H C G be a subgroup of index Y. Then

o (y; 4, uH) < #yy/%(—] (1 Ho (1/10g Y%/a))

for any class u in G.

Remark. It may be noted that with this smoothing 7, one has

m(y) =Y _n(p/y) ~ 122;27;'

By following the same proof, we derive a version of the above result that is
numerically well tuned for our usage.

Theorem 1.6. Let y > 650'%/2 and 1 be as in ([@). Let ¢ < y'/3/650 and G =
(Z/qZ)*. Let Y < (logy)/(310og650). Let H C G be a subgroup of index Y. Then

2.497y/2

i uld) < —————
ﬂ—n(y?q?u ) — Y]Ogy
for any class v in G.

When (logq)/logy = 1/3 — o(1), and say Y is fixed, a usage of (a smoothed
form of) the Brun-Titchmarsh inequality, recalled in Lemma below (see for
instance [3, Theorem 4.2] for a smoothed form), would give a constant 3 rather
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than our 2.497. As a comparison, we mention that:

e The result of Motohashi from [I4] Theorem 2(iii)] would yield the (asymptotic)
constant 12/5 = 2.4 instead of our 5/2. It is also proved in [I4] Theorem 4] that
a constant 2 is achievable under the extended Lindel6f hypothesis.

e The result of Iwaniec from [10, Theorem 3] would yield the (asymptotic) constant
16/7 =2.285---.

Both methods use analytical means and are hard to make explicit.

Notation. Our notation is rather conventional. Let us however specify that we use
f = O*(g) to say that |f| < ¢ and that 7(n) represents the number of (positive)
divisors of n.

2. Preliminary Results

We start with [25] Lemma 3.1].

Lemma 2.1. Let n be as before and y > 0. Then

o= 2]

where ||ul| is the distance from u to the nearest integer.

Lemma 2.2. We have
T T

— < <

logx —1 — mw) < logz —1.1°
where the lower bound holds for x > 5393 and the upper bound for x > 4.
Consequently, when 1 < q < x, then

T
Z 12 logx’

p<z
(p,q)=1

for all x > 5393.

Proof. The first part is a consequence of [4, Corollary 5.3]. For the second part, just
note that v(q), the number of primes dividing ¢ is at most (log x)/log2. Therefore

T log x
Y l=a(2) i) > —
= logz —1 log2
(p.9)=1
and this latter quantity is at least x/logx when x > 137: indeed the derivative of
x log x T
f(x)

B logx — 1 B log2 B log x

1 1 log x B log? z
log? (logx — 1)2 20 )

reads
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When z > 42, we have (10;%1)2 <1/2and % < 1/4. The above derivative is
thus non-negative and we check that f(137) > 0 while f(136) < 0. This completes

the proof. O

We next recall 25, Lemma 3.4].

Lemma 2.3. We have

2 c1x? 2 cox?
+ <Y s + 2
2logz | log ; P= %1087 " logx

for all x > 2107, where ¢c1 = 0.239818 and ¢y = 0.29251.

Lemma 2.4. When y > 16, we have

4 2 N 1 n 2cq 2 ey 1
y—1 wy—log2—11 y—log2 (y—1log2)? y 4> ~y—03

where ¢y and co are taken from Lemma 23l

Proof. First note that the left-hand side minus the right-hand side is a rational
fraction whose denominator is positive when y > log2 + 1.1 and whose numerator
reads:

(—log2 + 0.80956)y° + (3(log 2)* — 4.27911210og2 — 0.4530304)y°
+ (—3(log2)* + 7.359396 (log 2) + 0.1893132 log 2 — 0.86439892)y* + ((log 2)*
—5.11984(log 2)* + 1.3739172(log 2)* + 4.12985852 log 2 + 0.22783332)y°
+(1.22996(log 2)* — 2.031252(log 2)® — 5.3316528(log 2)?
—1.00005972 log 2)y* + (0.921052(log 2)* + 2.4172052(log 2)*
+1.1583396(log2)?)y — 0.351012(log2)* — 0.3861132(log 2)*.

GP /Pari [15] tells us that the largest root of this polynomial is slightly less than 16,
hence the lemma. |

Here is the main lemma of this section.

Lemma 2.5. Let z > 4-107. Then

> w2
~ logz —0.3
Consequently, it follows for any 1 < q < x, that

S iz > L2

(p,q)=1 ~ logz

T (z)

for all z > 4-107.
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Proof. We make use of Lemmas and We have

an/:r )=23 42 Y (17—):27T(x)

p<m/2 z/2<p<z
S EEID DS
X
p<z/2 z/2<p<z
—n(a) — 2@/ + 2 (2 3 p-Tp
p<z/2 p<zx
2x T

> _
“logx—1 logxz/2—-1.1

2 <(x/2)2 N 2c1(x/2) 2* o’ )
logz/2  log®xz/2  2logz log’z)’

By Lemma 24 with y = logxz > 16, we find that

4 2 1 201 2 462 1
- + + —c- > —
y—1 y—log2—11 y—1log2 (y—1log2)? y y*> ~y—03

from which we deduce that > n(p/x) > logﬁ%m when z > 9-10°. This proves our

first inequality. For the second part of Lemma [2.5] note that n is bounded by 1, so
that

x/2 logz _ x/2
> nlp/x) =m(x) =Y nlp/x) > 7y (2) — vig) > Togo—03  Tos2 > logs
(p.q)=1 rlg
This completes the proof. O

3. Character Estimates

Here is now a corollary of a theorem from [I1].

Lemma 3.1. Let x be a primitive character modulo q. Then [y, x(n)n(n/y)| <\/q.

A somewhat improved version, when y < ¢/2"(9 and ¢(q)/q is sizeably less
than 1, can be found in [25, Theorem 2.1] (with bound ((q)/q)\/q+2" @1y /g ")
as well as in [Tl Theorem 2| (the bound is more difficult to state).

In [22] Lemma 2,4], we proved very simply a lower bound for L(1,x). We could
use the same lower bound at the cost of a worse constant in 900q, but we prefer to
present a different and more efficient way.

Lemma 3.2. When x is a primitive quadratic character of conductor q. We have

L(1,x) > 0.96//q.
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Proof. The book [26] of Washington contains a proof of the claimed inequality
at the top of p. 217 (beware that this number refers to the second edition of this
classical monograph) in the proof of Lemma 11.10. |

Numerous improvement is here possible. For instance, the same proof of Wash-
ington yields

L(1,x) > 0.96 h(—x(—1)q)//q

where h(—x(—1)q) is the cardinality of the class group of Q(y/x(—1)g). The proof
continues by using h(—x(—1)g) > 1 since it is the cardinality of a non-empty set.
However, Genus theory tells us that h(—x(—1)q) > 2¥(@). The reader will find in [I8]
a purely analytical proof of a similar lower bound when y(—1) = —1. Furthermore,
the hypothesis of Theorem [[IT] ensures us that ¢ > 1856563 (and more!). For
quadratic characters x such that y(—1) = —1 and ¢ > 1856 563, Watkins proved
in [27] that h(g) > 101. This is an appreciably better lower bound. Concerning
characters with x(—1) = 1, the fact that the regulator is > log ¢ can be employed
to derive an improved lower bound for L(1,y). We do not dwell further on these
improvements since we do not use them. Note that they are equally independant of
a proof of Linnik’s Theorem.

Lemma 3.3. Let ¢ > 3 and x be a nontrivial quadratic character modulo q. Then,
there is a prime p < 25q?%, such that x(p) = 1.

We follow the approach of Lemma 2.5 from Ramaré-Walker, which is actually
taken from Pintz [16].

Proof. Suppose that x(p) = —1 for all primes p < z and not dividing g. We write
d| ¢ to denote that all prime factors of d divide ¢. Then (1% x)(n) is nonzero only
when n = dm?, with d|¢® and (m,q) = 1. Hence

IERIUED MIDMEED IR0} )

n<z dlg>= m2<z/d d|q>
(m,q)=1

where fo(q) = [[,,(1 - 1/yP)~'. By [22, Lemma 2.1], we have the upper bound
fo(q) < 3.32,/q. We can also write the given sum as

Saenm =Y @ [4] =X X sy (2} 3)
n<x d<z d<z d<z
It can be seen that

L(1,x) = ng)+/oo S x| %= @4»0*(@)7

12 2x
d<z r<d<t d<z
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where we use the bound [} ., x(n)| < ©(¢)/2, from [22] Lemma 2.3], for any
interval I. For the second term of (B]), we use Axer’s method from [2]. We have

Zx(d){g} <> 1+ > | > X(d){g} <y+ 297 Ao,

2y
d<z d<y m<zx/y |d:|x/d]=m

by choosing y = +/p(q)x/2. Therefore, this means that xL(1,x) < afo(q) +
V2¢(q) + ¢(q)/2. Using the lower bound for L(1,x) from Lemma [3:2] we obtain

0.96 _ 3.32\/q 2¢(q) | ¢(q)
NG < N T (4)

We further substitute = = 25¢2. Our initial hypothesis thus implies that

0.96 - 3.32 " /ijLi
q — /2bq 25q  25¢q

which we simplify in

This inequality does not hold when ¢ > 4, getting a contradiction. For ¢ = 3, the
prime 7 satisfies the required conditions. This completes the proof. O

4. Sieve Auxiliaries

We define

2
()
G(z) = Z . (5)
= #)
This function is studied in detail in [I7], 20, 23]. We shall, however, need only a
simple lower bound that one may find in [§]. We also define the Selberg sieve weight
by

_ dula) w20
MUGE 2 e )
£=0(mod d)

We start with an auxiliary lemma.

Lemma 4.1. We have

o(b)  ((4)°

Furthermore, for any integer parameter P > 7, we have

_ N 2OT) 2 2p* = 3p*% — /P +2 x
Alfzb: Voo lb) =((3/2) 2§1;[9 <1+ 1) )(1+(9 (E1)),

2O)7d) _ ((2)?
zb: p(b)a(d)
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where E1 +1 € [1, exp(4/(3P3/2))]. We have A; < 7.31. Similarly, we have
2(b) _
A2((3/2)" Z KA ¢(3/2)7

4p5 _ 10p9/2 _ 6p7/2 =+ 20p3

I N +4p? — 15p3/%2 — \/p+4
pt3/2(p—1)

(1+ O (Ey)).

2<p<P

where By 4+ 1 € [1,exp(8/(3P3/2))]. We have Ay < 28.8.

Proof. In each of these three cases, we compute the local p-factor. In the first case,
we find that it is

2 p?+1 - pt—1
p -1 p2-1 (p*-1)
from which our assertion follows readily. In the second case, we find that the local

1+

p-factor is

i o) () o )

-2 2 9,3/2
1 2 3 2
P pTA(p—1)

We further check that, when p > 2,

2p% — 3p3/? — \/_+2< 2p% — 2p <2
7/2( -1) p/2(p—1) T p2

We then use log(1l + x) < x and a comparison to an integral to get

2p? —3p3/2 — \Sp+2 2 2 4
o (1422 o5 2e e s

p>P p>P n>P

0<

We expanded the sum over every integer in the above; the reader who wants to
use the fact that the variable p is indeed prime may instead use the more precise
Lemma 3.2 from [I9]. GP/Pari has an efficient and reliable manner of computing
¢(3/2) and Euler-products as well (simply with the function prodeuler). We derive
an upper bound for A; by using the parameter P = 10%. In the third case, we find
that the local p-factor is

i () () )

We proceed as before but the computations are more cumbersome and it is better
to use some software help. We asked GP /Pari to expand (here ¢ is a symbol for /p)

(L=1/¢*)** (1 +4/q/(¢* = 1)) — 1) % ¢ % (¢* — 1)
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and deduced from the answer that

(-5) ()
p3/2 VPP —1)
4p°® — 10p%/2 — 6p™/2 + 20p° + 4p? — 15p>/2 — /p+ 4
=1+ 13/2 :
p2(p—1)
We readily check that, when p > 7, we have

4p® — 10p%/% — 6p™/2 + 20p3 + 4p® — 15p>/2 — p+ 4 _ 4p° — 4pt
p¥2(p—1) ~p(p—1)

4
0< <

O

Lemma 4.2. Let z > 1 be a real number. We have G(z) > logz and |\g| < 1. We

also have
z 15 30
< — =+ —=].
zd:| o= log = <7T2 " ﬁ)

Proof. The bound |A;| < 1 may be found in many exposition of the Selberg sieve.
It originates from [9]. From (@), we find that
y o Gl e
£=0(mod d)

0

= el0)

1 1 ()a(f)
~ z) ZXS; e(0)
#ng()d)(f) =3 oes /LQ(ab)T(b)/(,O(b), so that

D B L e SN

Now, write

1<z ab<z b<z a<z/b
(a,b)=1 (a,b)=1
Note that
SNooa=>u® Y 1= <———+0 (1/2)) @jto*(z”@*l)
m<y dlq m<y dlq ¢
(m,q)=1 5lm

since the last equation is true when ¢ > 1 and the global expression holds obviously
true when ¢ = 1. We then find that

> wm= Y ad) Y 1=22D 5 M oo

n<z d<\/x d*|n<z d<f
(n,q)=1 (d,q)=1 (n,q)=1 (d,q)=

L B v()) -1y /7).
(2)0<q)+0((2+2 W)
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Therefore,
2 2
w(0)o(0) w?(0)7(b) ( z b (1 ) \/;)
el < + (=m0 +2) /2
20 2 om \k@em s b
2 2(1)+2 2
z p=(b)7(b) p=(0)7=(b) p=(b)7(b)
< 2 W) o (5 e OT0) |y 5 a2 0)70)
¢(2) 5 »(b)a(b) —~ 2Vbp(b) zb: Vop(b)
1
<2 a0z
i
The last inequality comes from Lemma [T since 28.8/2 + 2 x 7.31 = 29.02 < 30.
Using the bound G(z) > log z, we obtain the desired result. O

A “Brun—Titchmarsh Theorem” is a result that bounds the number of primes in
some residue class and in an interval. This is an important topic in the literature,
and this kind of results can be proved via the linear sieve or via the Selberg sieve,
see [9]. We now state the version we use, namely [I3] Theorem 2]. Only the case
x = 0 is required in our proof.

Lemma 4.3 (Brun—Titchmarsh Theorem). Let © > 0 and y > 0 be two real
numbers. For 1 < q <y and (a,q) =1, we have

2y
™ w+y5Qaa — T, q,a <——
( )~ ) ©(q)log(y/q)
5. Additive Combinatorics Auxiliaries

Here is the case of Kneser’s Theorem we need. We state it with the group operation
being denoted by the addition, as is customary, but we will use in the multiplicative
group of Z/qZ. We prove it in the appendix. We recall that, when A and B are two
subsets of some abelian group G, we define

A+B={a+b/ac A,bec B}.

In particular, the number of representations of a given element is not taken into
account. The stabilizer, say H, of a subset C' of G is defined by

H={geG/NceC,g+ceC}.
This stabilizer is a subgroup of G.

Corollary 1. Let A be a subset of a finite abelian group G. Let H be the stabilizer
of A+ A. Suppose that A meets \ cosets of H. Then

|A+ A > (22— 1)|H|.

While the previous result is used when the sets we add have a somewhat small
cardinality, the next one is tailored for very large sets.
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Lemma 5.1. Let A and B be two subsets of a finite abelian group G satisfying
|A| +|B| > |G|. Then A+ B =G.

Proof. Indeed, let g be some element of G. The set ¢ — A = {g — a,a € A} has
|A] > |G\B]| elements. It thus contains an element g —a = b of B and this implies
that g =a+b € A+ B. As g was arbitrary, this proves the lemma. O

6. Proof of Theorems and
Let us first define
1 —
")/(?’L) = 1nEuH(mod q) — ? Z X(TLU) (8)
x(mod G/H)

For any character x on G/H, let x* denote the primitive character inducing x.
Following Ramaré and Rumely’s trick [21, p. 414], we consider

INOEED SR} o)
x(mod G/H)

This is useful in avoiding the loss occurring due to the imprimitivity of characters

in y(n). Let g(n) be the largest divisor of ¢ that is coprime to n. For any d| ¢, let

Gq = (Z/dZ)* and H, be the projection of the subgroup H in G4. Then, we have
|G/ Hyem) |

Y (n) = #1nEqu(n)(mod q(n))- (10)

Proof. To show this, we write x*(mod* G4/Hy,), to denote that x* is primitive to
modulus d and is trivial on H;. We have

= % Z Z X" (nu) = % Z x(nu)

dlq(n) x*(mod* Ga/Ha) x(mod Gyny/Hg(n))

|Gaen) /Hom)|
= #1nEqu(n)(mod q(n))- |

It follows from (I0)) that
v(n) <~*(n), foralln>1.

Indeed, when (n,q) > 1, we have v(n) = 0 < ~v*(n), while, when (n,¢) = 1, we have
q(n) = ¢ and therefore again y(n) = v*(n). Let us start the main proof. We first
introduce a parameter z € [1,y] and define P(z) =[], p. Then

(v g uH) = Zv np/y) <> Aemp/y)+ > An)nn/y)

p<z (n,P(z))=1

<z4+ > A (mnn/y). (11)

(n,P(2))=1
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We use the Selberg device for bounding above the second sum, simply noting that
2
Lin,P(z))=1 < ZM (12)
d|n
where (\g)q is defined in ([@). We find that
2

> ymn(n/y) < Zv ) M| nn/y)

(n,P(z))=1 d|n

<D A Y, v (m)n(n/y)

dy,d n,
pe [d1,da]|n

<Y ndey Y @ Y K@y

dy,d2 x(mod G/H) (s Z;Hn

and thus our upper bound reads

> Adl)\dz% > X(@ldi,do]) Y X (m)n(mldy, da]/y) = So + 1, (13)

dy,d2 x (mod G/H) m

where Sy is the contribution of the trivial character and S; the contribution of the
rest of them.

When Yy is the trivial character, x* is just 1. A classical computation that can
be found for instance in [9, Eq. (1.7) Chap. 3], where % is defined in (1.1) therein,
shows that

Ad; A
Z ddl dd2 = G(2).
di,d2 [ b 2]
Therefore, from Lemma 2.1 we have

SOZ_ ZAdl/\dzzn dl d2 /y Z)\dl)\dz( d]+0*(1/2))

d1 ,d2 dl ,d2

2
YyG/é)Jro* %(%jw) . (14)

Next, we look at the contribution to (I3]) coming from nontrivial characters mod-
ulo ¢. Note that the characters on G/H can be identified with the set of characters
modulo ¢ that act trivially on H. Let ¢* denote the conductor of x. By Lemma [3.1]
we have

1 Y —
Si<y Do Palal DY VES

dl,dg X(mod G/H)
XF#X0

V4 (ZWI) : (15)
d
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We have used the bound ¢* < ¢ which is for instance optimal when ¢ is a prime.
Therefore, from (), (I4), (I&) and the bound G(z) > log z from Lemma [L.2] we
get

2
y/2 Y-1 1 Z
. < _

2
y/2 22 15 30
< 4 =
_Z+Y10gz+\/a]og2z<ﬂ'2+\/g ’

where we have used Lemma in the last step. To prove Theorem [[L3] we select

- \/Yzﬁ (16)

and the theorem follows readily. To prove Theorem [I.6] let us first assume that we
are given a parameter b > 500 such that

3
y > b2, Y§logbglogy, q <y'’3)b. (17)
We first deduce a more precise inequality from these assumptions:

Y log z

22Y log 2 2Yz2 (15 307
; H)<1 — 4+ —
y/2 oy g uH) <1 y +\/(_1y10gz (WQ " \/5)

2zlogylogz  y/6  222logy 15 30 2
T yB3/2)logd Vb y(log2)(3/2)logh \7* V=)

We take
— (18)

for a parameter a € [0.3,0.5] to be chosen. We readily see that the right-hand side
above is a non-increasing function of y and use GP /Pari to find that b = 650 ensures
that this right-hand side is < 2.497 (on selecting a = 0.411063) while b = 640 does
not (as shown by a crude plot). This completes the proof of Theorem

7. Proof of Theorem

The proof of Theorem follows closely to the one of Theorem Let us give a
sketch by using the notation of the previous section. We find that

o= Y Y v+ Y )

z<p<z+ty, z<p<z+y p<z z<p<z+ty,
peuH (n,P(z))=1

<zt Y. (). (19)
z<p<z+tvy,
(n,P(2))=1
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The proof then proceeds as before with the obvious changes. For instance, we get

S0 = YGy( (ZW')

The estimate of S; does not rely on the Pélya—Vinogradov inequality. We take the
explicit form due to Frolenkov and Soundararajan in [7] and which we recall in the
next lemma.

Lemma 7.1. For x a primitive character to the modulus ¢ > 1200, we have

2
ﬁ\/alogq +./q when x is even,

M+N
max > x(a)| <
a=M+1

1
2—\/610gq +./q when x is odd.
T
This latter estimates holds as soon as q > 40.

It is easy to derive from these inequalities that

M+N

> xla)

a=M+1
This is enough for our purpose. At the level of Eq. (5], we replace /g by \/qlogq.

Finally, we choose
Y
2= |— 20
\ Y /qlogq (20)

and the reader will easily complete the proof from then on.

Vg > 1200 < glogq.
q=> , max < V/qlogq

)

8. Proof of Theorem [1.7]

Let P(y) be the set of primes below y that do not divide ¢ and let A be the image
of P(y) in G = (Z/qZ)*. We seek to show that A- A- A= G. Note that

q < yt/3-ve (21)

We first obtain a lower bound for |A|. From Lemma and the Brun-
Titchmarsh Theorem, we have

2y

< Y 1= 3 ryqa) <A
logy T et (q)log(y/q)
(p,q)=1
Therefore
( ) logq 1 1
> - > S+ ).
A2 == (1 Togy vla) | 3+ 55 (22)

The combinatorial argument that follows uses in a crucial manner the fact that
|Al/¢(q) is greater than 1/3 + 1/(2d); the bound 1/3 would not be enough.
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Now, let H be the stabilizer of A-A in G. Suppose Y is the index of H in G and
that A meets A cosets of H in G. Then, clearly A > [Y (1/3 + 1/26)]. We consider

two cases:

Case I. Y = 0,1 (mod 3).
We note that, in this case A > [Y(1/3+41/20)] > Y/3+2/3. So, by Corollary[I]
and ([22)), we have
2Y/3+2/3) -1 1

1
A-A Al > hl )
| |+||_< v +3+2§)|G|>|G|

Therefore A-A-A=G(G.

Case II. Y = 2 (mod 3).
First, we consider the case Y > 26/3. We have

2Y(1/341/26)—1 1 1 3 1
|A-A|+|A|2< 4/3+1/20) +§+%)|G|2<1+——?)|G|>|G|.

Y 26

We now consider the case Y < 2§/3. We first deal with the case Y = 2.

In this case, there is a nontrivial quadratic character y(mod ¢) such that H is
the kernel of y. Note that since P(y) generates all integers below y that are coprime
to g, there is a prime p such that x(p) = —1, since otherwise x(n) =1 for alln <y
with (n,¢) = 1 and this would mean that x is trivial. Also, by Lemma [33] there is
a prime p < 25¢2 < y, such that x(p) = 1. Therefore, A meets both the cosets of H
i.e. A = 2. By Kneser’s theorem, we have A- A =G and hence A-A- A =(G.

It now remains to deal with the case 5 <Y < 2§/3. It turns out that 2§/3 =
(logy)/(310g(650)/2). This implies that y > 650'°/2. We can thus use Theorem [
together with Lemma to obtain a lower bound for A. We have

y/2 2.497y/2
logy = E_ n(p/y) > my(yiquH) < Yiogy
p,q)=1 uw€A/H

Y
A> | —— .
= [2.497}

If Y =5, then clearly A > 3 and we have |[A-A| > |G|, and so A- A- A = G. So,
assume that 8 <Y < 2§/3. By Kneser’s theorem, and ([22]), we have

Therefore,

2Y 1
|A-Al+ 4] > M+l+i le]
- Y 3 20

2 1 1 1
>4y — 2 :
= (2.497 T3t a; 8) IG1> 16

This completes the proof of Theorem [I.11
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Appendix A. Kneser for A = B by Oriol Serra

This is a self-contained proof of Kneser’s theorem in the symmetric case that relies
on the ideas developed in [24].

Theorem K. Let G be an abelian group and A C G a finite subset.
If
|[A+ Al < 2|A] -1,
then A+ A is a union of cosets of the stabilizer H(A+ A) of A+ A.

Proof. We may assume that A + A # G, otherwise the statement is trivial. We
may also assume that A generates GG. Suppose the result false and choose a coun-
terexample A with minimum cardinality.

Let U C G be a minimal subset of G which minimizes

A+ X[ - |X],

among all finite nonempty subsets X C G such that A+ X # G (A is one of these
subsets). By translation we may assume 0 € ANU.

Claim A.1. U is a proper subgroup of G.
Proof. It follows from the hypothesis that |A+U|— |U| < |[A+ A| — |A] < |4] — 1.
Therefore |U| > 2. Let us show that, for every g € G,

either U+g=U or (U+g)NU=0. (A1)

We first note that the operator 94(X) = |A + X| — |X| on the finite subsets of G
is submodular: for every pair of finite sets X,Y C G we have

6A(XUY)+8A(XQY) S@A(X)—l—aA(Y). (A2)

The inequality follows because every element counted in 94 (X UY) is also counted
in 94(X) or 94(Y), and if this element is counted in d4(X NY’) then it is counted
in both 3A(X) and 8A(Y)

Write U’ = U + g. Since d4(+) is invariant by translations, (A2) yields

AU UU) +04(UNT") <204(0). (A.3)
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If UNU’ # 0 then, by the minimality of 94(U) and U, we have d4(UNU’) > 04 (U).
Moreover, if there is equality, then U = U’ proving the claim.

Suppose on the contrary that 94 (UNU") > 94U Then ([A3) yields d4(UUU’) <
94U which, again by the minimality conditions, imply A+ (U UU’) = G. It follows
that

G = [UUU| + 94U UT") < 2|U| + 84 (V).

But then U* = G\(A + U) satisfies |[U*| = |G| — (JU| + 0a(U)) < |U| and ((—A) +
U\U* C (A+U)\U. Since G is abelian, the map x +— —z is a group automorphism
and —U™* is a smaller subset than U with no larger d4(-), a contradiction. O

Let

A=[JANU+a)=A)UA U---UA,
acA
be the decomposition of A into cosets of U. Since A generates G we have t > 1. By
translation we may assume that |Ag| = min; |4;| and 0 € Ag. We have

(t+1)|U| = Z|A +U|=|A+U|<|Al +|U|-1.

It follows that ¢t|U| < ), |A;| and therefore, by our choice of A, |A;| + [4;| > |U|
for each pair (i,j) except possibly (0,0). This means that A; + A; is a U-coset for
all pairs A;, A; except possibly for Ag + Ao C U.

Now consider the natural projection 7 : G — G/U. We have

m(A) + m(A)] = 2|w(A)| -1, (A.4)
since otherwise we would find a nontrivial subgroup 7(U’) < G/U as before with
m(A) + 7 (U)] < |x(A)] + [=(U")] - 1,
leading to a subgroup U’ < G with |[A+U’|—|U'| < |A4+U|—|U]|, which contradicts
our choice of U. By ([A4) and the fact that 2(A\ Ap) is a union of U-cosets, we have
2[A] =1 > |A+ A] > 2[(A\Ao)| + | Ao + Ao,

which implies |Ag + Ag| < 2|Ap| — 1. By the minimality of |A|, Ay + Ap is a union
of cosets of a proper subgroup Uy < U. Hence A + A is also a union of cosets of Uy.
This shows that the stabilizer of A+ A is nontrivial. Certainly A+ A=A+ A+ H
is a union of cosets of the stabilizer H = H(A + A).

Corollary A.2. Let A be a subset of a finite abelian group G. Let H be the stabilizer
subgroup of A+ A. Suppose that A meets \ cosets of H. Then

A+ Al > (21— 1)|H|.
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Proof. Let 7 : G — G/H be the canonical projection. Then 7(A)+m(A) has trivial
stabilizer (by maximality of H) and, by Theorem A,

m(A) + m(A)] > 2/m(A)| — 1= 2) — 1.

It follows that

|A+ Al = [H| - |7(A) + m(A)] = (22 - 1)|H]. O
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