
Functiones et Approximatio
65.1 (2021), 33–45
doi: 10.7169/facm/1853

ACCURATE COMPUTATIONS OF EULER PRODUCTS OVER
PRIMES IN ARITHMETIC PROGRESSIONS

Olivier Ramaré

Abstract: This note provides accurate truncated formulae with explicit error terms to compute
Euler products over primes in arithmetic progressions of rational fractions. It further provides
such a formula for the product of terms of the shape F (1/p, 1/ps) when F is a two-variable
polynomial with coefficients in C and satisfying some restrictive conditions.
Keywords: Euler products.

1. Introduction and results

Our primary concern in this paper is to evaluate Euler products of the shape∏
p≡a[q]

(
1− 1

ps

)
when s is a complex parameter satisfying <s > 1. Such computations have at-
tracted some attention as these values occur when s is a real number as densities
in number theory. D. Shanks in [11] (resp. [12], resp. [13]) has already computed
accurately an Euler product over primes congruent to 1 modulo 8 (resp. to 1 mod-
ulo 4, resp. 1 modulo 8). His method has been extended by S. Ettahri, L. Surel
and the present author in [6] in an algorithm that converges very fast (double ex-
ponential convergence) but this extension covers only some special values for the
residue class a, or some special bundle of them; it is further limited to real values
of s.

We will use logarithms, and since the logarithm of a product is not a priori
the sum of the logarithms, we need to clarify things before embarking in this
project. First, in this paper the log-function always corresponds to what is called
the principal branch of the logarithm. We recognize it because its argument vanishes
when we restrict it to the real line and we consider it undefined on the non-positive
real numbers. The second point is contained in the next elementary proposition.
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Proposition 1. Associate to each prime p a complex number ap such that |ap| < p
and ap �ε p

ε for every ε > 0. We consider the Euler product defined when <s > 1
by:

D(s) =
∏
p>2

(
1− ap

ps

)−1
. (1)

In this same domain we have

logD(s) =
∑
p>2

∑
k>1

akp
kpks

. (2)

This is simply because, by using the expansion of the principal branch of the
logarithm in Taylor series, namely − log(1 − z) =

∑
k>1 z

k/k valid for any com-
plex z inside the unit circle, we find that C(s) = −

∑
p>2 log(1 − ap/ps) verifies

expC(s) = D(s), so that C(s) is indeed a candidate for logD(s). The second
remark is that D(s) approaches 1 when <s goes to infinity while our choice for
logD(s) indeed approaches 0 and no other multiple of 2iπ. These two remarks are
enough justification of this proposition.

Remark 1.1. To be axiomatically correct, we should specify that our definition
of logD(s) depends a priori on the chosen product representation, and thus on
the choice of the coefficients (ap)p>2. However, since the development in Dirichlet
series is unique, we find that the coefficients in (2) are uniquely defined; this
implies in particular that our definition does nor depend on the chosen product
representation (as it is unique!).

We assume here that the values of the Dirichlet L-series L(s, χ) may be com-
puted with arbitrary precision when <s > 1. Our aim is thus to reduce our com-
putations to these ones. Here is an identity to do so.

Theorem 2. Let a be prime to the modulus q > 1 and let Ĝq be the group of
Dirichlet characters modulo q. We have

−
∑

p≡a[q],
p>P

log(1− 1/ps) =
∑
`>1

−1

`ϕ(q)

∑
d|`

µ(d)
∑
χ∈Ĝq

χ(a) logLP (`s, χd)

where
LP (s, χ) =

∏
p>P

(1− χ(p)/ps)−1. (3)

If finding this identity has not been immediate, checking it is only a matter
of calculations that we reproduce in Section 2. A partial identity of this sort has
already been used by K. Williams in [14] and more recently by A. Languasco and
A. Zaccagnini in [9, 7], and [8, (2-5)] is a related formula. It is worth noticing that,
with our conventions, we have the obvious

logLP (s, χ) = logL(s, χ)−
∑
p<P

log(1− χ(p)/ps).
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This leads to the next immediate corollary.

Corollary 3. Let a be prime to the modulus q > 1 and let Ĝq be the group
of Dirichlet characters modulo q. Let further two integer parameters P > 2 and
L > 2 be chosen. We have∏

p>P,
p≡a[q]

(
1− 1

ps

)
= exp

(
YP (s; q, a|L) +O∗

(
1

PL<s

))

where
YP (s; q, a|L) =

∑
`6L

1

`

∑
d|`

µ(d)
∑
χ∈Ĝq

χ(a)

ϕ(q)
logLP (`s, χd) (4)

and where f = O∗(g) means |f | 6 g.

Extension to one variable rational fractions

Once we have such an approximation, we can reuse the machinery of [6] to reach
Euler products of the shape ∏

p>P,
p≡a[q]

(1 +R(ps))

where R is a rational fraction.

Theorem 4. Let F and G be two polynomials of C[t]. We assume that G(0) = 1
and that F (0) = F ′(0) = 0. Let β > 2 be larger than the inverse of the roots
of G and of G − F . Let P > 2β be an integer parameter. Then, for any integer
parameter L > 2, we have∏

p>P,
p≡a[q]

(
1− F (1/p)

G(1/p)

)
= exp

( ∑
26j6J

(
bG−F (j)− bG(j)

)
YP (j; q, a|L) + I

)

where the integers bG−F (j) and bG(j) are defined in Lemma 6,

|I| 6 8 max(deg(G− F ),degG)β2(β/P )2L

and Y (s; q, a|L) is defined by (4).

We obtained in [6] an approximation that is much better but only valid for
rational fractions with real coefficients and some residue classes.

One can write a similar theorem for the Euler product∏
p>P,
p∈A

(
1− F (1/ps)

G(1/ps)

)
.



36 Olivier Ramaré

Extension to two variables rational fractions

The general form of Euler products that one has to treat in practice is of the shape∏
p>P,
p≡a[q]

(1 +R(p, ps))

where R is a rational fraction of two variables. When s takes a specific rational
value, typically 2, 3/2 or 4/3, this question reduces to the above one though each
of the values of s requires a new rational fraction; this covers most of the cases
when we have to compute a single special constant. In the general case however,
for instance when s = 2+i, such a trick fails. The theoretical understanding of this
situation is also limited even for q = 1. For instance, if the case of a rational fraction
of one variable is covered by the theorem of T. Esterman in [5] and extended
by G. Dalhquist in [1], no such result is known in the general situation. This
question has been addressed in the context of enumerative algebra, for instance by
M. du Sautoy and F. Grünewald in [4]. The lecture notes [3] by M. du Sautoy and
L. Woodward contain material in this direction. There are several continuations
of Esterman’s work; for instance, one may consider Euler products of the shape
R(ps1 , ps2) (with the hope of being able to specify s1), see for instance [2] by
L. Delabarre, but these results do not apply to our case.

We are able to handle some rational fractions by reducing them to the case
treated in the next theorem.

Theorem 5. Let s be a complex number with <s = σ > 1. Let (a`)`6k be a se-
quence of complex numbers and (u`)`6k and (v`)`6k be two sequences of real num-
bers. We assume that u`σ + v` > 0 and we define A = max(1,max(|a`|)). Let q be
a modulus, a be an invertible residue class modulo q and P > 2kA and L > k be
two integer parameters. We have

∏
p>P,
p≡a[q]

(
1−

∑
16`6k

a`
pu`s+v`

)
= exp−(Z + I)

where

Z =
∑

m1,...,mk>0,
16m1+...+mk6L

M(m1, . . . ,mk)
∑
f6F

κf (
∏
`6k a

m`
` )

f
YP

(∑
`6k

m`(u`s+ v`); q, a|L
)

(5)

where M(m1,m2, . . . ,mk) is defined at (18), κf is defined at (23), Y (s; q, a|L) is
defined by (4) and finally where

|I| 6 2k ·AL

k!PL

(
(L+ k)k + 1 + logL+

3kA

L

)
. (6)
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Hence this theorem provides us with an exponentially decreasing error term.
More complicated terms may be handled through this theorem by writing

1 +
F (p, ps)

G(p, ps)
=

(F +G)(p, ps)

pAs+B
pAs+B

G(p, ps)

=

(
1 +

(F +G)(p, ps)− pAs+B

pAs+B

)(
1 +

G(p, ps)− pAs+B

pAs+B

)−1
.

This would function when G has a clearly dominant monomial. It typically works
for G(p, ps) = p2s(p2 + 1) but fails for G(p, ps) = p2s(p+ 1). Our most important
additional tool, namely Lemma 11, may be used to obtain results on analytic
continuation, but since we use logarithms elsewhere, the general effect is unclear.
We however provide the next example:

D(s) =
∏
p>2

(
1 +

1

ps
− 1

p2s−1

)
. (7)

Lemma 11 gives us the decomposition

D(s) =
∏

m1,m2>0,
m1+m2>1

∏
p>2

(
1− (−1)m1

p(m1+2m2)s−m2

)M(m1,m2)

.

We check that M(1, 0) = M(0, 1) = 1 and that M(m, 0) = M(0,m) = 0 when
m > 2, whence

D(s) = ζ(2s− 1)
ζ(2s)

ζ(s)

∏
m1,m2>1

∏
p>2

(
1− (−1)m1

p(m1+2m2)s−m2

)M(m1,m2)

. (8)

This writing offers an analytic continuation of D(s) to the domain defined by <s >
1/2. This analysis can be extended to∏

p>2

(
1− C1

ps
− C2

p2s−1

)
when C1 and C2 are integers. In general, Lemma 11 transfers to problem to the
analytic continuation of

∏
p(1 − c/ps) for some c but even the case c =

√
2 is

difficult.

2. Proof of Theorem 2 and its corollary

Proof of Theorem 2. We have to simplify the expression

S =
∑
`>1

1

`ϕ(q)

∑
d|`

µ(d)
∑
χ∈Ĝq

χ(a)
∑
p>P

∑
k>1

χ(p)dk

kpk`s
. (9)
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We readily check that, when h > 1 and p are fixed, we have∑
k`=h

∑
d|`

µ(d)
∑
χ∈Ĝq

χ(a)χ(p)dk =
∑
k|h

∑
dk|h

µ(d)
∑
χ∈Ĝq

χ(a)χ(p)dk

=
∑
g|h

∑
d|g

µ(d)
∑
χ∈Ĝq

χ(a)χ(p)g

=
∑
χ∈Ĝq

χ(a)χ(p) = ϕ(q)11p≡a[q]

and the theorem follows directly. �

Proof of Corollary 3. A moment thought discloses that

| logLP (s, χ)| 6 log ζP (σ)

where σ = <s. We have furthermore

log ζP (σ) 6
∑
n>P

1

nσ
6
∫ ∞
P

dt

tσ
=

1

(σ − 1)Pσ−1
.

by our assumptions. We next check that∣∣∣∣∑
`>L

1

`ϕ(q)

∑
d|`

µ(d)
∑
χ∈Ĝq

χ(a) logLP (`s, χd)

∣∣∣∣ 6∑
`>L

2ω(`)

`

P

(`σ − 1)P `σ
.

Here ω(`) denotes the number of prime factors of ` (without multiplicity). We
use the simplistic bounds 2ω(`) 6 ` and `σ − 1 > 2. This yields the upper bound

P
2PLσ(Pσ−1) which is no more than 1/PLσ. We finally recall that ex−1 6 8

7x when
x ∈ [0, 1/4] as the function (ex − 1)/x is non-decreasing (its expansion in power
series has non-negative coefficients). �

3. Proof of Theorem 4

We first need to extend [6, Lemma 16] to cover the case of polynomials with
complex coefficients. The ancestor of this Lemma is [10, Lemma 1].

Lemma 6. Let H(t) = 1 + a1t + . . . + aδt
δ ∈ C[t] be a polynomial of degree δ.

Let α1, . . . , αδ be the inverses of its roots. Put sH(k) = αk1 + . . .+ αkδ . The sH(k)
satisfy the Newton-Girard recursion

sF (k) + a1sF (k − 1) + . . .+ ak−1sF (1) + kak = 0, (10)

where we have defined aδ+1 = aδ+2 = . . . = 0. We define

bH(k) =
1

k

∑
d|k

µ(k/d)sH(d). (11)
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Lemma 7. Let F and G be two polynomials of C[t]. We assume that G(0) = 1
and that F (0) = 0. Let β > 1 be larger than the inverse of the roots of G and of
G − F . When z is a complex number such that |z| < β and |1 − (F/G)(z)| < 1.
We have

log

(
1− F (z)

G(z)

)
=
∑
j>1

(
bG−F (j)− bG(j)

)
log(1− zj). (12)

Proof. We adapt the proof of [10, Lemma 1]. We write (G−F )(t) =
∏
i(1−αit).

We have
(G− F )′(t)

(G− F )(t)
=
∑
i

αit

1− αit
=
∑
k>1

sG−F (k)tk−1.

This series is absolutely convergent in any disc |t| 6 b < 1/β where β = maxj(1/|αj |).
We may also decompose (G− F )′(t)/(G− F )(t) in Lambert series as

(G− F )′(t)

(G− F )(t)
=
∑
j>1

bG−F (j)
jtj−1

1− tj

as some series shuffling in any disc of radius b < min(1, 1/β) shows. The comparison
of the coefficients justifies the formula (11). We may do the same for G instead of
G− F (or use the case F = 0). We find that

G′ − F ′

G− F
− G′

G
=
−(F ′G− FG′)
G(G− F )

=
−(F ′G− FG′)

G2

∑
k>0

(
F

G

)k
and by formal integration, this gives us the identity

−
∑
k>1

(F/G)(t)k

k
= −

∑
j>1

(
bG−F (j)− bG(j)

)
log(1− tj).

This readily extends into an equality between analytic function in the domain
where |(F/G)(z)− 1| < 1 and |z| < β. The lemma follows readily. �

Here is now [6, Lemma 17], though for polynomials with complex coefficients.

Lemma 8. We use the hypotheses and notation of Lemma 6. Let β > 2 be larger
than the inverse of the modulus of all the roots of H(t). We have

|bH(k)| 6 2 degH · βk/k.

And we finally recall [6, Lemma 18] that yields easy upper estimates for the
inverse of the modulus of all the roots of F (t) in terms of its coefficients.

Lemma 9. Let H(X) = 1 + a1X + . . .+ aδX
δ be a polynomial of degree δ. Let ρ

be one of its roots. Then either |ρ| > 1 or 1/|ρ| 6 |a1|+ |a2|+ . . .+ |aδ|.
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Proof of Theorem 4. The proof requires several steps. We start from Lemma 7,
i.e. from the identity

log

(
1− F (z)

G(z)

)
=
∑
j>2

(
bG−F (j)− bG(j)

)
log(1− zj), (13)

in the domain |z| < β and |1− (F/G)(z)| < 1. The fact that the term with j = 1
vanishes comes from our assumption that F (0) = F ′(0) = 0. To control the rate
of convergence, we notice that, by Lemma 8, we know that |bG−F (j) − bG(j)| 6
4 max(deg(G− F ),degG)βj/j. Therefore, for any bound J , we have

∑
j>J+1

|tj ||bG−F (j)− bG(j)| 6 4 max(deg(G− F ),degG)
|tβ|J+1

(1− |tβ|)(J + 1)
, (14)

if |t| < 1/β. Furthermore, we deduce that | log(1−z)/z| 6 log(1−1/2)/(1/2) 6 3/2
when |z| 6 1/2 by looking at the Taylor expansion. Thus we have

log

(
1− F (z)

G(z)

)
=

∑
26j6J

(
bG−F (j)− bG(j)

)
log(1− zj) + I1 (15)

where |I1| 6 6 max(deg(G − F ),degG)|zβ|J+1/(1 − |zβ|). Now that we have the
expansion (15) at our disposal for each prime p, we may combine them. We readily
get

∑
p>P,
p≡a[q]

log

(
1− F (1/p)

G(1/p)

)
=

∑
26j6J

(
bG−F (j)− bG(j)

) ∑
p>P,
p≡a[q]

log(1− 1/pj) + I2,

where I2 satisfies

|I2| 6 6 max(deg(G− F ),degG)
∑
p>P

βJ+1

(1− β/P )(J + 1)

1

pJ+1

6
6 max(deg(G− F ),degG)βJ+1

(1− β/P )(J + 1)

(
1

P J+1
+

∫ ∞
P

dt

tJ+1

)
6

6 max(deg(G− F ),degG)(β/P )Jβ

(1− β/P )(J + 1)

(
1

P
+

1

J

)
,

since P > 2 and J > 3. We now approximate each sum over p by using Corollary 3
and obtain∑

p>P,
p≡a[q]

log

(
1− F (1/p)

G(1/p)

)
=

∑
26j6J

(
bG−F (j)− bG(j)

)
YP (j; q, a|L) + I3
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where I3 satisfies

|I3| 6
∑

26j6J

|bG−F (j)− bG(j)| 1

PLj
+ |I2|

6
∑

26j6J

4 max(degF,degG)
βj

j

1

PLj
+ |I2|.

Therefore (and since r > 2)

|I3|
2 max(degF,degG)

6
β2(β/P )2L

1− β/P
+

3(β/P )Jβ

(1− β/P )(J + 1)

(
1

P
+

1

J

)
, (16)

and the choice J = 2L ends the proof. �

4. Proof of Theorem 5

Lemma 10. We have
(

dN ′

dm′
1,··· ,dm′

k

)
>
(

N ′

m′
1,··· ,m′

k

)d
.

Proof. The coefficient
(

dN ′

dm′
1,··· ,dm′

k

)
is the number of partitions of a set of dN ′

elements in parts of dm′1, · · · , dm′k elements. The product partitions are partitions.
�

In [15] Witt proved a generalization of the Necklace Identity which we present
in the next lemma.

Lemma 11. For k > 1, we have

1−
k∑
i=1

zi =
∏

m1,...,mk>0,
m1+...+mk>1

(1− zm1
1 · · · zmkk )M(m1,...,mk), (17)

where the integer M(m1, . . . ,mk) is defined by

M(m1, . . . ,mk) =
1

N

∑
d| gcd(m1,m2,...,mk)

µ(d)
(N/d)!

(m1/d)! · · · (mk/d)!
(18)

with N = m1 + . . .+mk. We have M(m1, . . . ,mk) 6 kN/N .

Proof. Only the bound needs to be proved as the identity may be found in [15].
Each occuring multinomial is not more than

(
N

m1,··· ,mk

)
by Lemma 10. The multi-

nomial Theorem concludes. �

Proof of Theorem 5. Let Π be the product to be computed. By employing
Lemma 11, we find that

1−
∑

16`6k

a`
pu`s+v`

=
∏

m1,...,mk>0,
m1+...+mk>1

(
1− c(m1,m2, . . . ,mk)

p
∑
`6km`(u`s+v`)

)M(m1,...,mk)

,
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with c(m1, . . . ,mk) given by

c(m1,m2, . . . ,mk) =
∏
`6k

am`` . (19)

Each coefficient c(m1, . . . ,mk) is not more, in absolute value, than AN , where
m1 + . . . + mk = N . Note that, for each `, we have <(u`s + v`) > 1, so that
<
∑
`6km`(u`s + v`) > m1 + . . . + mk = N . It thus seems like a good idea to

truncate the infinite product in (20) whether m1 + · · · + mk = N 6 N0 or not
for some parameter N0 > k that we will choose later. We readily find that, when
p > 2A,∣∣∣∣log

∏
m1,...,mk>0,

m1+...+mk>N0

(
1− c(m1,m2, . . . ,mk)

p
∑
`6km`(u`s+v`)

)M(m1,...,mk)
∣∣∣∣

6
3

2

∑
m1,...,mk>0,

m1+...+mk>N0

M(m1, . . . ,mk)
AN

pN

6
3

2

∑
N>N0

(
N + k

k

)
(kA)N

NpN

as the number of solutions to m1 + . . . + mk = N is the N -th coefficient of the
power series 1/(1− z)k which happens to be equal to (1/k!) d

dzk
1/(1− z). We next

check that, with N = N0 + n+ 1, we have (n+ 1 +N0 + k) 6 (N0 + n+ 1)2 since
N0 > k, and thus(

N+k
k

)
N
(
n+k
k

) =
(n+ 1 +N0 + k)(n+N0 + k) · · · (n+N0 + 2)

(n+ k)(n+ k − 1) · · · (n+ 1) · (N0 + n+ 1)
6

(
N0 + k

k

)
.

Hence, when p > 2kA, we have∑
N>N0

(
N + k

k

)
(kA)N

NpN
=

(kA)N0+1

pN0+1

(
N0 + k

k

)∑
n>0

(
n+ k

k

)
(kA)n

pn

6

(
N0 + k

k

)
(kA)N0+1

pN0+1

1

(1− 1/2)k
.

On summing over p, this yields

Π = I1
∏

m1,...,mk>0,
16m1+...+mk6N0

∏
p>P,
p≡a[q]

(
1− c(m1,m2, . . . ,mk)

p
∑
`6km`(u`s+v`)

)M(m1,...,mk)

, (20)

where

| log I1| 6 2k
3

2

(
N0 + k

k

)
(kA)N0+1

PN0

(
1

P
+

1

N0

)
. (21)
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We next note the following identity

∑
k>1

dk

kpkw
=
∑
f>1

κf (d)

f

∑
g>1

1

gpfgw
(22)

where

κf (d) =

{
c when f = 1,

cf − cf−1 when f > 1.
(23)

We truncate identity (22) at f 6 F where F is an integer, getting

∑
k>1

dk

kpkw
=
∑
f6F

κf (d)

f

∑
g>1

1

gpfgw
+O∗

(
−
∑
f>F

max(1, |d|)f

f
log
(

1− p−f<w
))

.

We next use − log(1 − x) 6 3x/2 when 0 6 x 6 1/2. We assume that p<w 6 1/2
and p<w > 2 max(1, |d|) to get

−
∑
f>F

max(1, |d|)f

f
log
(

1− p−f<w
)
6

3

2

∑
f>F

max(1, |d|)f

fpf<w
6

3 max(1, |d|)F+1

(F + 1)p(F+1)<w .

We have reached

∏
p>P,
p≡a[q]

(
1− c(m1,m2, . . . ,mk)

p
∑
`6km`(u`s+v`)

)

= exp−
{∑
f6F

κf (c(m1,m2, . . . ,mk))

f

∑
p>P,
p≡a[q]

log
(

1− p−f
∑
`6km`(u`s+v`)

)

+O∗
(

3 max(1, |c(m1,m2, . . . ,mk)|)F+1

(F + 1)P (F+1)
∑
`6km`(u`σ+v`)

(
1 +

P

F
∑
`6km`(u`σ + v`)

))}
which simplifies info

∏
p>P,
p≡a[q]

(
1− c(m1,m2, . . . ,mk)

p
∑
`6km`(u`s+v`)

)

= exp−
{∑
f6F

κf (c(m1,m2, . . . ,mk))

f

∑
p>P,
p≡a[q]

log
(

1− p−f
∑
`6km`(u`s+v`)

)

+
3AN(F+1)

(F + 1)P (F+1)N

(
1 +

P

FN

)}
.
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We approximate the sum of the logs by Corollary 3 and get∏
p>P,
p≡a[q]

(
1− c(m1,m2, . . . ,mk)

p
∑
`6km`(u`s+v`)

)

= exp−
{∑
f6F

κf (c(m1,m2, . . . ,mk))

f
YP

(∑
`6k

m`(u`s+ v`); q, a|L
)

+O∗
(
ANF (1 + logF )

PLN
+

3AN(F+1)

(F + 1)P (F+1)N

(
1 +

P

FN

))}
.

We then raise that to the powerM(m1,m2, . . . ,mk) and sum over themi’s, getting,
on recalling (5),

Π/I1 = exp−Z +O∗
( ∑

m1,...,mk>0,
16m1+...+mk6N0

M(m1, . . . ,mk)ANF (1 + logF )

PLN

+
∑

m1,...,mk>0,
16m1+...+mk6N0

3M(m1, . . . ,mk)AN(F+1)

(F + 1)P (F+1)N

(
1 +

P

FN

))
.

We now take F = L. The error term is bounded above by (since P > 2kA)

kAL

PL

(
2k

k!
(1 + logL) +

3 · 2kA
k!(L+ 1)P

(
1 +

P

L

))
.

We select N0 = L and we gather our estimates to end the proof. �
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