
Eigenvalues in the large sieve inequality∗†

O. Ramaré
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Abstract

D’un spécialiste des nombres moyens à un spécialiste des nombres

. . . et des moyens.

We provide some evidence that the eigenvalues of the hermitian
form

∑

a/q |
∑

n≤N ϕne(na/q)|2 tend to have a limit distribution when

N and Q go simultaneously to infinity in such a way that N/Q2 tends
to a constant. We also present some background material, as well as
a large sieve equality, when N Log7 N = o(Q), that follows from our
results.

1 Introduction

The additive arithmetical form of the large sieve inequality relies on a bound
for

∑

q≤Q

∑

a mod ∗q

∣

∣

∣

∑

n≤N

ϕne(na/q)
∣

∣

∣

2

usually when Q2 and N are of comparable size – in a vague sense. In this con-
text, the result comes from forgetting the arithmetical nature and bounding
the hermitian form

∑

θ∈Θ(Q),
m,n≤N

ϕnϕme((n−m)θ) (1)

where Θ(Q) = {a/q, q ≤ Q, a mod ∗q} is the beginning of the Farey series.
The information we use is that the largest of its eigenvalues is ≤ N + Q2,
and it comes from the sole fact that any two points of Θ(Q) are at least Q−2

apart. See [23]. For such an approach to hold, every point a/q has to appear
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with an identical weight and deviating from this line costs a high price in
understanding, as shown for instance by the weigheted version of [24], or of
[27]. The quantity we evaluate can also be thought of as a version of the cir-
cle method, and Gallagher in [15] indeed derived a good bound for the above

inequality by comparing it to the integral
∫ 1

0
|
∑

n ϕne(nθ)|2dθ. The same
path is taken in [12]. However, this comparison is not the key point in many
applications, and this line of thoughts leads to Iwaniec’δ-symbol method as
it appears for instance in [8]. Examining this generalization/modification, it
transpires that the circle method situation corresponds more to the above
inequality weighted with a 1/(qQ) and that is also what appears in the form
of a reversed large sieve inequality that Duke & Iwaniec proved in [9]. Con-
versely, it is not obvious that the important points in the circle method
should be the rationals, and [6] shows that the quadratic Harcos sequence
may be equally regular. Our first idea was simply to try to understand the
bilinear form in (1) as it stands.

When Q2 is small with respect to N , most (non-zero) eigenvalues are
expected to be close to N . The reason is as follows: the matrix B of the
above hermitian form has (m,n)-entry

∑

θ e((n −m)θ) and can be written
as A∗A where A = (e(nθ)) has lines indexed by the integers between 1 and
N and columns by points of Θ. Its non-zero eigenvalues are the same as the
ones of AA∗, whose entries are now

∑

1≤n≤N

e(n(θ − θ′)).

Such an expression divided by N is 1 if θ = θ′ and small otherwise, explaining
our claim. See [10] for more on this aspect.

The situation when Q2 is of size N is much less satisfactorily understood
(in arithmetical situations, Q2 is most often ≪ N but, ideally, of its size)
and we can look at the large sieve inequality as a comparison between our
hermitian form and (N+Q2) Id. Another comparison pertaining to the same
area is due to Franel [13] and consists in measuring the discrepancy between
Θ(Q) and a set of uniformly spaced points, but there does not seem to have
been any use of this idea in the large sieve area despite the fairly large amount
of work it induces (see e.g. [20], [3], [7], [18], [16], [14]).

The large sieve inequality being so efficient, one can believe it to be nearly
an equality, meaning that most eigenvalues are indeed close to the largest one.
With such a belief, we started to compute the distribution function of the
eigenvalues, namely

D(N,Q, λ) = #{i/λi ≤ λN}/N (2)
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where (λi) are the eigenvalues associated with N and Q. A particularly
interesting case is when |Θ(Q)| = N , and is the one we chose for the compu-
tations, but it is clear that we are most generally interested in the situation
when |Θ(Q)| is around N . Recall that (see (16) and the discussion therein)

|Θ(Q)| =
∑

q≤Q

φ(q) =
3

π2
Q2(1 + o(1)). (3)

As a consequence, in the plot below, we have N ∼ 3Q2/π2; note that the
large sieve inequality ensures us that D(N,Q, 1 +Q2N−1) = 1. As a further
consequence D(N,Q, u) equals 1 when u is just larger than 1 + π2/3, where
the ”just” is a o(1) when N goes to infinity.

1 2

1

Q = 20, N = 128

1 2

1

Q = 25, N = 200

Figure 1: Densities of eigenvalues/N for Q = 20 and Q = 25

We see on this plot that only a fraction of the eigenvalues are indeed
close to the maximal value! Furthermore, an extremely strong asymptotic
behaviour arises, for which we do not have the slightest proof. In fact we are
not able to relate in any way the eigenvalues corresponding to Q to the ones
corresponding to another Q′, and surely not able to relate them when they
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are rescaled. We note here that Selberg’s proof of the large sieve inequality
in the “lectures on sieve” published in [29] provides a refinement of the upper
bound N + Q2 when Q2 is comparable to N (see discussion around (20.22)
there).

We are however able to provide some support to the existence of an
asymptotical distribution. To do so, we introduce the moments

M(ℓ) =
∑

i

λℓ
i . (4)

One easily discovers that M(1) = N |Θ(Q)| and the main result of this paper
is an evaluation of M(2). Our statement requires the bounded function G of
the real variable u defined by

G (u) =

∫ ∞

1

sin(uξ)

ξ5
(1 − 4 Log ξ) dξ. (5)

With it we form C2 -function f by

f(x) =
1

9π2ζ(3)x2
+

3

π4x3

∑

n≥1

φ(n)

n4
G (2πxn). (6)

We prove here

Theorem 1.1 For N,Q ≥ 2, we have

M(2) = N2|Θ(Q)| +N2Q2f(N/Q2) + O
(

NQ3 Log7Q
)

.

It is likely that the Log7 Q is too large, but any further improvement on the
exponent of Q would be highly valuable. Note that using M(1), we get

|Θ(Q)|−1
∑

1≤i≤|Θ(Q)|

(N−1λi−1)2 = Q2|Θ(Q)|−1f(N/Q2)+O
(

QN−1 Log7Q
)

(7)

which shows that deviation to the mean is measured by f. The reader should
see that we are able to save a power which is not obvious when noticing that
the summatory function of the Moebius function intervenes. Since it is shown
that x2f(x) is asymptotic to a positive constant when x goes to infinity, we
see that the N−1λi differs noticeably from 1 at least when Q8/3 ≫ N , and
this corresponds to a Q appreciably smaller than

√
N . When x nears 0, we

show in the next section that f(x) = 9
π4x

+ o(1).
Theorem 1.1 is robust in three ways: the interval in [1, N ] may be replaced

by any interval of length N ; further the method shows that we can even
replace the characteristic function of [1, N ] by a smoothed version, say g,
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provided
∑

n |g(n) − 1| = o(
√
N) ; and it gives an asymptotic for Q and N

in a fairly wide range.
Lemma 10.1 below enables us to compute π2

3
f(3/π2) = 0.447 7 · · · which

is in excellent agreement with the numerical data we compiled

Q N M(2)/N3 M(3)/N4 M(4)/N5 M(5)/N6

4 6 1.37037 2.11111 3.46091 5.89712
7 18 1.41118 2.20165 3.63594 6.22759
9 28 1.41308 2.20770 3.68719 6.46904
11 42 1.42782 2.26342 3.84129 6.84514
14 64 1.41824 2.24114 3.82707 6.94221
16 80 1.44517 2.34570 4.13771 7.79376
22 150 1.44206 2.33303 4.10684 7.74225
24 180 1.44144 2.32558 4.07203 7.61456
27 230 1.44469 2.34246 4.12686 7.76518
30 278 1.44488 2.33670 4.10450 7.71174
35 384 1.44388 2.33885 4.12364 7.78983
37 432 1.44459 2.33884 4.11674 7.75043

For Q ≥ 30, the precision used for the computations was beginning to show
its weakness and some marginally negative eigenvalues showed up. This
means that any further computations will require more precision and a more
sturdy algorithm than the simplistic use of charpoly followed by a polroots

in PARI/GP.
Theorem 1.1 is difficult to prove It holds for N and Q varying indepen-

dently. For N = |Θ(Q)|, we can add the following estimate:

Theorem 1.2 When N = |Θ(Q)| and for any c ≥ 1, we have

N−1
∑

1≤i≤N

Log(N−1λi) = −1
2
LogN − c + Oc((LogQ)−c)

where

c =
1

2
+

6ζ ′(2)

π2
+ 1

2
Log(π2/3) = 0.525 538 . . .

It shows that one eigenvalue at least is not more than
√
N if N is large

enough, but the whole average could be dominated by a single eigenvalue
of size exp(−1

2
(1 + o(1))N LogN), which is the sole lower bound for λi that

stems from this Theorem (and the large sieve inequality).
This theorem is much less flexible than the previous one but it should be

noted that the error term depends on the one in the prime number Theorem.
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Even in case |Θ(Q)| = N , we do not have an expression of f(N/Q2) in
terms of more usual constants. Chasing for an understanding of this apparent
asymptotic distribution (in order to phrase a conjecture), we tried different
random processi. The only model that looks promising gives that:

We have plotted the previous distribution as well as the new arising one
(which starts above and ends below). We generated N = |Θ(Q)| random in-
teger points between 1 and 100N and divided them by 100N to get points θ in
[0, 1]. In this model, the generation imposes the spacement condition: start-
ing from all points being 0, each of them is successively changed randomly
so as to be at distance at least 1/Q2 of all the others. We then considered
the eigenvalues of A∗A with A = (e(nθ)).

2 Change of viewpoint and perspectives

We put in this section material linked with our main matter but slightly off
focus. The exposition is pedestrian and this walk will be much less painful
by setting

r = Log7Q. (8)
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(This is a lower case gothic r). We initiate our journey by noticing that

∑

θ,θ′∈Θ(Q)

∣

∣

∣
N−1

∑

n

e(n(θ − θ′)) − δθ=θ′

∣

∣

∣

2

= Q2f(N/Q2) + O
(

N−1Q3r
)

(9)

which is surprising enough in that we do not reach a o(Q2) when Q2 is
about N . The main term we have removed, namely δθ=θ′ , corresponds to
the comparison of the initial hermitian form with N Id; And it would be
interesting to find a main term to remove that would lead to a smaller right
hand side. Note that f(x) ≪ 1/x2 so that (9) is fairly good when x is large
enough.

The statement of Theorem 1.1 is dissymetrical in N and |Θ(Q)|; we ex-
change their roles by writing

N2Q2
(

3
π2 + f(N/Q2)

)

= N2Q2
(

9
π4Q

2N−1 + g(Q2/N)
)

(10)

where g(y) + 9
π4 y = 3

π2 + f(1/y). This leads to

M(2) = |Θ(Q)|2N +N2Q2g(Q2/N) + O
(

N2QLogQ+NQ3r
)

(11)

and thus to

∑

m,n

∣

∣

∣
|Θ(Q)|−1

∑

θ∈Θ(Q)

e((m− n)θ) − δm=n

∣

∣

∣

2

= N2Q−2g(Q2/N) + O
(

N2Q−3 LogQ+NQ−1r
)

. (12)

This inequality has of course the same weakness when Q2 is about N , but is
also rather good when Q2 is much larger than N since g(y) = 3

π2 + o(1) as y
goes to infinity.

Proof: We start from (50)

g(y) = −9y

π4
+

3

π2
+

24/π2

2iπ

∫

9
8
+i∞

9
8
−i∞

ζ(s)

ζ(1 + s)

(y/(2π))s cos(πs/2)Γ(s)ds

(1 − s)(2 − s)(1 + s)2

and we shift the line of integration to the curve L of equation

σ = −c(Log t)−2/3(Log Log t)−1/3 (13)

for a suitable c (see chapter 8 of [19]) chosen so that ζ(1+ s) does not vanish
on the right hand side of L . We encounter a single simple pole at s = 1 with
residue 9y/π4. No further pole arising, and especially none at s = 0, we see
that the term 3/π2 remains uncancelled! Ending the proof is then a matter
of routine. ⋄ ⋄ ⋄
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As a consequence, we note that when
∑

n |ϕn|2 = 1 we have

∑

θ∈Θ(Q)

∣

∣

∣

∣

∑

n

ϕne(nθ)

∣

∣

∣

∣

2

=
∑

m,n

ϕmϕn

∑

θ∈Θ(Q)

e((n−m)θ)

= |Θ(Q)| +
∑

m,n

ϕmϕn

(

∑

θ∈Θ(Q)

e((n−m)θ) − |Θ(Q)|δm=n

)

= |Θ(Q)| + O
(

NQ
√

g(Q2/N) +N
√

QLogQ+
√

NQ3r
)

thus getting equality in the large sieve, but only when N Log7N = o(Q).
This is a drastic condition that is never met in any example I could think
of. At best, the above proof could yield equality when Q = N but any
further reduction seems hopeless with the material presented here. We state
formally:

Theorem 2.1 We have when Q ≥ N :

∑

θ∈Θ(Q)

∣

∣

∣

∣

∑

n

ϕne(nθ)

∣

∣

∣

∣

2

= |Θ(Q)|
∑

n

|ϕn|2
(

1 + O
(

√

NQ−1 Log7/2 Q
))

.

The corresponding ”dual” statement we can get is, when Q ≤ N1/3,

∑

n

∣

∣

∣

∣

∑

θ

ψθe(nθ)

∣

∣

∣

∣

2

= N
∑

θ

|ψθ|2
(

1 + O
(

√

Q3N−1 Log7/2 Q
))

. (14)

We restrained the statements to the cases Q ≥ N and Q3 ≤ N respectively
because otherwise, the bound we got is superseded by the one steming from
the large sieve inequality. Furthermore Kobayashi in Theorem 2.1 of [21]
proves in a general framework that

∑

n

∣

∣

∣

∣

∑

θ

ψθe(nθ)

∣

∣

∣

∣

2

= N
∑

θ

|ψθ|2
(

1 + O(N−1Q2)
)

(15)

which is much better. An equality as the one of our Theorem 2.1 for slightly
smaller Q’s would provide a general approach to the Barban-Davenport-
Halbertam Theorem (see [1], [4] and [5]) in the version of [22] and [17] (more
recent developments appear in the sequel of papers of Hooley with the same
title and also in [31]).

The equalities above tell us that all eigenvalues are at least as large
as |Θ(Q)| − C1

√
NQLog7/2Q for some constant C1 and provided Q ≥ N .
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Kobayashi’s equality yields that these eigenvalues are ≥ N − C2Q
2. In both

cases, these eigenvalues are as large as possible. But Theorem 1.2 tells us
that this is not the case when |Θ(Q)| = N .

We use this last paragraph to show where a usual approach fails to work.
One of the main problem is to prove the existence of an asymptotic distribu-
tion for these eigenvalues. A first idea would be to consider the step function
on [0, 1] that at t equals the number of points in Θ(Q) that are not more
than t, number that we divide by |Θ(Q)|. By Helly’s selection principle (see
for instance Theorems 2.2/2.3 of chapter 2 of [2]), this collection admits a
subsequence that converges towards a function, say H, and in such a way
that, for any continuous function on [0, 1], we have

|Θ(Q)|−1
∑

a,q

f(a/q) →
∫ 1

0

f(t)dH(t)

when Q runs through this special sequence. We may thus think that we have
found an invariant ”at infinity”. However the fact that the Farey quotients
are well-distributed implies that H(t) is ... t! This equi-distribution follows
from Theorem 2.1 in an interesting manner: approximate uniformly the char-
acteristic function of an interval [α, β] by a finite trigonometric polynomial
and use our Theorem to deduce that the number of points of Θ(Q) in this
interval is asympotically (β − α)|Θ(Q)|. The reader may want to consult
[18] for shapenings of this equi-distribution. Several different constructions
of an asymptotic limit in various spaces and relying on the Banach-Alaoglu
Theorem ended in this very same way. Kargaev & Zhigljavsky got in [20]
an extremely interesting result that partially relies on this type of argument
and that indeed pertains to the local distribution of the Farey quotients.
It should be pointed out that such an understanding arose from Klooster-
mann’s memoir on representation by quaternary diagonal quadratic forms;
this is made most clear in Iwaniec’s presentation of it, as can be for instance
seen in chapter 20 of [19] (see in particular proposition 20.7 therein). Any
link with our present work is left for a future paper.

The proof we presented shows exactly where the catch lies: we needed
only a trigonometric polynomial of fixed length, while we should consider
also polynomials of length up to Q2.

3 General store

We open this section to store some general comments, facts and other kind
of notes. The first of these concerns the quantity |Θ(Q)| for which we shall
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often use the estimate

|Θ(Q)| =
3

π2
Q2 + O(QLogQ) (Q ≥ 2). (16)

The reader may use (33) for s = 0, but the remainder term there is larger
than the above by a Log factor. A direct use of the convolution method using

φ(q)/q =
∑

d|q

µ(d)/d (17)

would suffice. As a matter of fact, obtaining the proper power of V in (33)
is more difficult than it seems, when one imposes the use of the Mellin trans-
form. Using this transform indeed allows for some flexibility than the convo-
lution misses. That is why we devoted an entire section to the problem. We
shall also use the estimate

|ζ(s)| ≪ (2 + |t|)
1
2
−ℜs (ℜs ≤ 0, t = ℑs) (18)

which is classical. In the critical strip |ζ(s)| is surely not more than (2 +
|t|)(1−ℜs)/2 Log(2 + |t|) which is enough to ensure the various convergences
conditions we shall meet.

We need numerous notations. We decided to use many variations of the
letters f and g for the functions. The reader will thus meet f , F , F and f.

{u} denotes the fractionnal part of u and the parenthesis are used with
no other meaning. When numerical approximations are involved, we will use
the O-like notation defined by f = O∗(g) if |f | ≤ g.

4 Access to the moments

We now proceed to compute an expression of M(ℓ) in terms of the coefficients
of the hermitian form only. We first note that the matrix of the hermitian
form in (1) has (n1, n2)-coefficient:

∑

θ1

e((n1 − n2)θ1). (19)

We readily compute that the (n1, nℓ+1)-coefficient of its ℓ-th power is

∑

θ1,...,θℓ,
n2,...,nℓ

e((n1 − n2)θ1 + · · ·+ (nℓ − nℓ+1)θℓ). (20)
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The trace of the ℓ-th power is thus

M(ℓ) =
∑

θ1,...,θℓ,
n1,n2,...,nℓ

e((n1 − n2)θ1 + · · ·+ (nℓ − n1)θℓ). (21)

According to (4), its size is at most N(N + Q2)ℓ. Since the length of sum-
mation is N2ℓ, this means tremendous cancellation when ℓ is large. Note the
easy

M(1) = N |Θ(Q)|. (22)

Expression (21) has another interest: it is possible to introduce therein a
smoothing on the variables ni. This smoothing would not alter significantly
the main term if it would differ from the characteristic function of the interval
[1, N ] only on a finite number of intervals of length o(N1/ℓ). So, the larger the
ℓ, the more difficult it would be to smoothen our summation. In case ℓ = 2,
the next paragraph offers an unusual approach that asks for the variables
to be non-smoothed but let us first provide a sketch of our claim on the
smoothing part. We consider functions gi over [1, N ] such that

∑

n≤N

∣

∣gi(n) − 1
∣

∣≪ L

for some L ≥ 1. As a direct consequence, we get
∣

∣

∣

∑

n≤N

gi(n)e(nθ)
∣

∣

∣
≪ min(N, ‖θ‖−1) + L.

We consider

M(ℓ, (gi)) =
∑

θ1,...,θℓ,
n1,n2,...,nℓ

g1(n1) . . . gℓ(nℓ)e((n1 − n2)θ1 + · · ·+ (nℓ − n1)θℓ)

=
∑

θ1,...,θℓ,
n1,n2,...,nℓ

g1(n1) . . . gℓ(nℓ)e(n1(θ1 − θℓ) + · · ·+ nℓ(θℓ − θℓ−1))

which we are to compare to M(ℓ). It is enough to compare any two such
expressions with same g2, ... , gℓ and different g1 since the variables n1, ... , nℓ

have an identical role. The difference between the corresponding smoothed
moments is

≪
∑

n1

|g1(n1) − g′1(n1)|
∑

θ1,...,θℓ

(

min(N, ‖θ2 − θ1‖−1) + L
)

×
(

min(N, ‖θ3 − θ2‖−1) + L
)

. . .
(

min(N, ‖θℓ − θℓ−1‖−1) + L
)
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in which we evaluate the summation in θℓ with θℓ−1 being fixed. It is not
more up to a multiplicative constant than

N +Q2 LogQ+Q2L.

Next we proceed similarly with the summation over θℓ−1 and so on until we
reach the variable θ2. The variable θ1 yields the contribution |Θ(Q)| ≪ Q2

so that our difference is

O
(

L
(

N +Q2(L+ LogQ)
)ℓ−1

Q2
)

.

Since we are interested in the case when N ≃ Q2, the introduction of a
smoothing would not alter the main term if Lℓ = o(N) since our moment is
of size N ℓ+1. In fact the following inequalities hold for ℓ > 1/2

(

N/
√

N +Q2
)2ℓ

≤ M(ℓ)/|Θ(Q)| ≤ (N +Q2)ℓ. (23)

Proof: We simply apply Hölder inequality:

∑

1≤i≤|Θ(Q)|

λi ≤
(

∑

1≤i≤|Θ(Q)|

√

λi

2ℓ
)1/(2ℓ)(

∑

1≤i≤|Θ(Q)|

√

λi

2ℓ
2ℓ−1

)(2ℓ−1)/(2ℓ)

and conclude by using (22) for the first summation and λi ≤ N +Q2 in the
last one. ⋄ ⋄ ⋄

Variations of this proof involving M(2) instead of M(1) would slightly
improve the bounds of (23).

5 Exact expression for the dispersion

Lemma 5.1 For integer N ≥ 1 and d ≥ 1, we have

(1/d)
∑

n,m≤N
d|n−m

1 =
N2

d2
+
{

N/d
}

−
{

N/d
}2
.

This lemma tells us that we can compute the left-hand side by only using
N/d and its fractional part. The most straightforward path yields only

∑

n,m≤N
d|n−m

1 =
∑

a mod d

(

N

d
+ O(1)

)2

=
N2

d
+ O(d+Nd−1)

but such an approximation is valid for N any real number while the one of
the lemma is not.
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Proof: Case N < d is most readily handled so we assume N ≥ d. We find
that

S =
∑

n,m≤N
d|n−m

1 =
∑

1≤a≤d

(

N − a

d
−
{

N − a

d

}

+ 1

)2

.

Let b be the integer in [1, d] that is congruent to N modulo d. We have

S =
∑

1≤a≤b

(

N − a

d
− b− a

d
+ 1

)2

+
∑

b+1≤a≤d

(

N − a

d
− b− a

d

)2

=
∑

1≤a≤b

(

N − b

d
+ 1

)2

+
∑

b+1≤a≤d

(

N − b

d

)2

= d

(

N − b

d

)2

+ 2b
N − b

d
+ b =

N2

d
− b2/d+ b.

If d does not divide N , then b = d{N/d}, while b = d if d|N . In both cases
we get

∑

n,m≤N
d|n−m

1 =
N2

d
+ d
({N

d

}

−
{N

d

}2)

. (24)

⋄ ⋄ ⋄

6 A Mellin transform

We introduce a Mellin transform that transforms the expression of lemma 5.1
into something multiplicative in d.

Lemma 6.1 For any positive real number X of fractionnal part ξ, we have

1

2iπ

∫ −
1
4
+i∞

−
1
4
−i∞

ζ(s)
Xs+1

s(s+ 1)
ds = 1

2
(ξ − ξ2).

Proof: Let us first note that

1

2iπ

∫ 2+i∞

2−i∞

ts+1

s(s+ 1)
ds =

{

t− 1 if t ≥ 1,

0 if 1 > t > 0,
(25)
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which we prove by shifting the line of integration to the far right if t < 1 and
to the far left otherwise. We thus get for X a positive real number

∑

n≤X

n

(

X

n
− 1

)

=
∑

n≥1

n

2iπ

∫ 2+i∞

2−i∞

(X/n)s+1

s(s+ 1)
ds

=
1

2iπ

∫ 2+i∞

2−i∞

ζ(s)
Xs+1

s(s+ 1)
ds. (26)

We next modify both sides of this equation. Write X = N + ξ, with N ∈ N

and ξ ∈ [0, 1[. We get

∑

n≤X

n

(

X

n
− 1

)

= XN − 1
2
(N2 +N) = 1

2
(N2 −N) + ξN. (27)

We now transform the RHS of (26)

1

2iπ

∫ 2+i∞

2−i∞

ζ(s)
Xs+1

s(s+ 1)
ds = 1

2
X2 + ζ(0)X +

1

2iπ

∫ −
1
4
+i∞

−
1
4
−i∞

ζ(s)
Xs+1

s(s+ 1)
ds

and recall that ζ(0) = −1/2. The last integral converges since ζ(−1
4

+ it) =
O((1 + |t|)3/4). By comparing what we just obtained with (27), we infer

1

2iπ

∫ −
1
4
+i∞

−
1
4
−i∞

ζ(s)
Xs+1

s(s+ 1)
ds = 1

2
(N2 −N) + ξN − 1

2
X2 + 1

2
X = 1

2
(ξ − ξ2)

as claimed. ⋄ ⋄ ⋄

7 A truncated Perron summation formula

The easiest way to deal with the evaluation of the next paragraph goes
through some standard techniques that were already well-known in the be-
ginning of the twentieth century. We present in this preliminary paragraph
our own version, which we find more convenient.

Let Y be the function that is 0 on ]0, 1[, then 1/2 in 1 and 1 afterwards.

Lemma 7.1 For κ > 0 and x > 0, we have
∣

∣

∣

∣

Y (x) − 1

2iπ

∫ κ+iT

κ−iT

xzdz

z

∣

∣

∣

∣

≤ xκ

π
min

(

7
2
,

1

T |Log x|

)

.

The proof will show that we could have taken any value for Y (1), provided
it lies in [0, 1].
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Proof: When x < 1, we write for K > κ going to infinity :

(
∫ κ+iT

κ−iT

+

∫ K+iT

κ+iT

+

∫ K−iT

K+iT

+

∫ κ−iT

K−iT

)

xzdz

z
= 0.

The third integral dwindles to zero when K increases. Both integral on the
horizontal segments are bounded by xκ/(T |Logx|). This implies

∣

∣

∣

∣

Y (x) − 1

2iπ

∫ κ+iT

κ−iT

xzdz

z

∣

∣

∣

∣

≤ xκ

πT |Logx| (0 < x < 1).

The same bound holds for x > 1: the proof goes as above except that we
shift the line of integration towards the left hand side. These bounds are
efficients when T |Logx| is large enough; else we write

∫ κ+iT

κ−iT

xzdz

z
= xκ

∫ κ+iT

κ−iT

dz

z
+ xκ

∫ T

−T

(xit − 1)idt

κ + it
.

The first integral is 2 arctan(T/κ) ≤ π while we deal with the second one by
using

∣

∣

∣

∣

xit − 1

itLog x

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

eiut Log xdu

∣

∣

∣

∣

≤ 1.

This leads to the upper bound 2T |Log x| (even if x = 1), and thus

∣

∣

∣

∣

1

2iπ

∫ κ+iT

κ−iT

xzdz

z

∣

∣

∣

∣

≤ xκ

π

(π

2
+ T |Log x|

)

.

This is enough if x < 1. If x > 1, we note that

1 − xκ

2iπ

∫ κ+iT

κ−iT

dz

z
= 1 − xκ

π
arctan(T/κ)

which is bounded below by −xκ/2 and above by 1 ≤ xκ. As a consequence ,
we reach

∣

∣

∣

∣

Y (x) − 1

2iπ

∫ κ+iT

κ−iT

xzdz

z

∣

∣

∣

∣

≤ xκ

π
min

(

π + T |Log x|, 1

T |Logx|

)

.

We simplify this upper bound by noticing that

min(π + u, 1/u) ≤ min(α, 1/u)

with α = 1/u0 = π+u0. This entails α ≤ 7/2, and the lemma follows readily.
⋄ ⋄ ⋄
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This lemma leads to the aforementioned Theorem.

Theorem 7.1 (Truncated Perron’s formula) Let F (z) =
∑

n an/n
z be

a Dirichlet series that converges absolutely for ℜz > κa, and let κ > 0 be
strictly larger than κa. For x ≥ 1 and T ≥ 1, we have

∑

n≤x

an =
1

2iπ

∫ κ+iT

κ−iT

F (z)
xzdz

z
+ O∗





∫ ∞

1/T

∑

|Log(x/n)|≤u

|an|
nκ

2xκdu

Tu2



 .

In this Theorem, the error term is essentially raw. There appear the sums

∑

|Log(x/n)|≤u

|an|/nκ

where the conditions on n may be rewritten as e−ux ≤ n ≤ eux. When
u ≥ 1, the majorant

∑

n≥1 |an|/nκ is usually enough. When u is smaller, we
appeal most of the times to an upper bound of the shape uxκaB/xκ for some
sensible B (a constant times Log x for instance), which leads to the error
term

O
(

Bxκa LogT

T
+
xκ

T

∑

n≥1

|an|/nκ

)

.

Note that the shorter sums we are to consider are of length ≃ x/T .

Proof: Following Lemma 7.1, we first write

∑

n≤x

an =
∑

n≥1

anY (x/n) =
∑

n≥1

an
1

2iπ

∫ κ+iT

κ−iT

(x/n)zdz

z

+ O∗

(

∑

n≥1

|an|xκ

πnκ
min

(

7
2
,

1

T |Log(x/n)| .
)

)

Let us set ε = 1/T . Integers n such that |Log(x/n)| ≤ ε give a contribution
to the error term that we keep as it is. Else we write

∑

ε≤|Log(x/n)|

|an|xκ

nκ|Log(x/n)| =
∑

ε≤|Log(x/n)|

|an|xκ

nκ

∫ ∞

|Log(x/n)|

du

u2

=

∫ ∞

ε

∑

|Log(x/n)|≤u

|an|xκ

nκ

du

u2
−
∫ ∞

ε

∑

|Log(x/n)|≤ε

|an|xκ

nκ

du

u2

which is enough. ⋄ ⋄ ⋄
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8 An arithmetical sum

This part is of independant interest. Analytic number theorists know that
Theorem 7.1 does not lead to a proof of

∑

n≤X 1 = X + O(1); indeed the

natural error term that arises is at least of size O(X1/3) (by shifting the line
of integration to ℜs = 1/LogX). One can reach Oε(X

ε) for any positive ε by
shifting the line of integration far to the left hand side, but not to ℜs = −∞.
However we do not have this scheme at our disposal when looking at a simple
arithmetical modification of 1, like for summing φ(n)/n and ℜs = 0 seems
the limit as to where we can shift ℜs. We propose a method that still
uses Theorem 7.1, relies only on shifting the line of integration essentially
to ℜs = 0 and that gives

∑

n≤X 1 = X + O(Log3X). The main outcome
is the flexibility of the method which we can thus apply to arithmetical
modifications of 1, like in the example we treat here.

The leading idea of the method is to use the dependance if ℑs and not
to work only on ℜs as usually. The main lemma reads as follows.

Lemma 8.1 There exists a constant For 0 < a ≤ 1/2, D ≥ 2 and any real
number b, we have

∣

∣

∣

∣

∫ b

0

ζ(a+ it)Da+itdt

∣

∣

∣

∣

≤ 4Da(1 + |b|)
(

|Log LogD| + Log(1 + |b|) +
3

a

)

.

The term 2/a is most probably not required but is harmless in our subsequent
proof while allowing for the simplistic proof that follows.

Proof: For |b| ≤ 1, we simply introduce the absolute values inside the

integral and are left with bounding
∫ 1

0
|ζ(a+ it)|dt. This is a constant and its

value has no impact whatsoever on our result. However, we ran the following
simpleminded GP-script (with 28 digits precision):

maximum = 0;

auxiliary = 0;

forstep(a = 0, 1/2, 0.01,

auxiliary = intnum(t=0,1,abs(zeta(a+I*t)));

if(auxiliary > maximum, print(a," -> ",auxiliary);

maximum = auxiliary, ));

which told us the maximum to be at a = 0 with value 0.465 · · · . This is by
no means a rigorous proof for this maximum, and especially not of the fact
that it is indeed reached at a = 0, but tells us that we will be able to prove
this maximum to be not more than 1. This is the value we use. We handle
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only the case b > 0. The expression we use for ζ on the critical line is simple
enough:

ζ(s) = 1 +
1

s− 1
− s

∫ ∞

1

{u} du

us+1
. (28)

We start with an integration by parts

∫ a+ib

a

s (D/u)sds =
(a+ ib)(D/u)a+ib − a(D/u)a

Log(D/u)
−
∫ a+ib

a

(D/u)s ds

Log(D/u)

from which we readily infer the bound for u > 0

∣

∣

∣

∣

∫ a+ib

a

s(D/u)sds

∣

∣

∣

∣

≤ min

(

2(a+ b)

|Log(D/u)| , (a+ b)b

)

(D/u)a. (29)

This gives us that

∣

∣

∣

∣

∫ a+ib

a

s

∫ ∞

1

{u} du

us+1

Dsds

(a+ b)Da

∣

∣

∣

∣

≤
∫ ∞

1

min

(

2

|Log(D/u)| , b
) {u}du

u1+a

≤
∫ De2/b

De−2/b

b du

Dae−2a/bu
+

∫ De−2/b

1

2du

uLog(D/u)
+

∫ ∞

De2/b

2du

u1+a Log(u/D)

≤ 4D−ae2a/b +

∫ D

e2/b

2dv

v Log v
+D−a

∫ ∞

e2/b

2dv

v1+a Log v

≤ 4D−ae2a/b + 2 Log LogD − 2 Log(2/b)

+ 2D−a

(

Log Log e− Log(2/b)

e2a/b
+

1

aea Log e

)

.

We simplify our bound further by noticing that 2e2a/b ≤ 12 ≤ 6/a.
⋄ ⋄ ⋄

We are to study

W (s, V ) =
∑

v≤V

∏

pk‖v

(

pk(1−s) − p(k−1)(1−s)
)

(30)

for ℜs < 0. In our application ℜs will be larger than −1/Log V , which
means that the dependance in this parameter will be nominal only. The
dependance in t = ℑs will also not be very important but has to be carried
out. We proceed via a here properly tuned but otherwise standard method
and introduce

W(s, z) = ζ(z − 1 + s)MV/2(z) =
∑

v≥1

f ♯(v, 1 − s)v−z (31)
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with

MV/2(z) =
∑

ℓ≤V/2

µ(ℓ)/ℓz.

The coefficients f ♯(v, 1 − s) are indeed f(v, 1 − s) when v ≤ V/2. The cut
at V/2 will be important later on. For v such that V/2 < v ≤ V , the only
missing divisor is v and then f ♯(v, 1− s) + µ(v) = f(v, 1− s). The fact that
µ(v) is bounded in absolute value will be enough to ensure that it does not
change our final result.

We invoke Theorem 7.1 to write with a = 1/Log(2+V ) and κ = 2−ℜs+a
that W (s, V ) equals

1

2iπ

∫ κ+iT

κ−iT

W(s, z)
V zdz

z
+O∗





∫ ∞

1/T

∑

|Log(V/v)|≤u

|f ♯(v, 1 − s)|
vκ

2V κdu

Tu2



 . (32)

Note that f ♯(v, 1 − s) =
∑

w|v,2w≤V µ(w)(v/w)1−s so that

|f ♯(v, 1 − s)| ≤ v1−ℜs
∑

w|v

µ2(w)/w.

As a consequence, this yields for 0 < u < 1

∑

|Log(V/v)|≤u

|f ♯(v, 1 − s)|/vκ ≤ (euV )1−ℜs−κ
∑

e−uV ≤v≤euV

∑

w|v

µ2(w)/w

≤ (euV )1−ℜs−κ
∑

w≤euV

µ2(w)

w

(

(eu − e−u)V

w
+ 1

)

≪ (euV )1−ℜs−κ (uV + u+ Log V ) .

By considering separately the cases 1/T < u ≤ 1/V , 1/V < u ≤ 1 and u > 1
of the error term of (32), we find it is O of

V 2−ℜsT−1
(

LogT + Log(2 + V )
)

+ V Log V.

We then shift κ to κ′ = 1−ℜs+ a; we encounter a pole at z = 2− s, getting

W (s, V ) =
V 2−sMV/2(2 − s)

(2 − s)
+

1

2iπ

∫ κ′+iT

κ′−iT

MV/2(z)ζ(z − 1 + s)
V zdz

z

+ O
(
∫ 2−ℜs

1

(|t| + T + 1)(1−w)/2V w dw

T

)

+ O
(

V 2−ℜsT−1 Log(T (2 + V ))
)

.
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This last integral asks for a refined treatment and is the reason why we
introduced MV/2(z) instead of 1/ζ(z). We expand MV/2(z) and get

∑

ℓ≤V/2

µ(ℓ)V 1−s

ℓ1−s

1

2iπ

∫ κ′+iT

κ′−iT

ζ(z − 1 + s)
(V/ℓ)z−1+sdz

z
.

At this level, we recall Lemma 8.1. It has been patterned to handle the above
integral via an integration by parts while the restriction ℓ ≤ V/2 has been
introduced to be able to use this lemma. We thus get that the above is not
more, up to a multiplicative constant, than
∑

ℓ≤V/2

(V/ℓ)1−ℜs(V/ℓ)a×

(Log Log(V + 3) + Log(T + |t| + 3) + Log(2 + V )) Log(2 + T )

which is O(V 1−ℜs Log3(2 + V + T + |t|)). We take T = (2 + V ). We can
replace MV/2(2 − s) by 1/ζ(2− s) with a cost of O(1/V ) and conclude that

W (s, V ) =
V 2−s

ζ(2 − s)(2 − s)
+ O

(

V 1−ℜs Log3(2 + V + |t|)
)

. (33)

Note as a mean of verification that we recover the classical result on the Euler
φ-function for s = 0, upto the power of logarithm.

9 An undergraduate divertimento

We continue our preparation by studying the special function

F (u) =
1

2iπ

∫

9
8
+i∞

9
8
−i∞

u−s cos(πs/2)Γ(s)ds

(1 − s)(2 − s)(1 + s)2
. (34)

that will appear in the subsequent study. This function clearly does not carry
any arithmetic anymore and we should be able to grasp its behaviour quite
fully. It turns out that achieving such an understanding is more difficult
expected and we prefer to spend a full section on this task. The study will
have two distinct parts : one for small u’s, and one for large ones.

Bounded values

Recall that the Stirling formula tells us that Γ(s) ∼ |t|σ−
1
2 e−π|t|/2 when σ is

fixed and |t| goes to infinity. By writing

Γ(z −m) =
Γ(z)

(z −m)(z −m+ 1) . . . (z − 1)
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we see that we can send the line of integration to the far left provided we
compute the contribution of the poles. The first three candidates, namely
s = 1, s = 0 and s = −1, are singular because of the denominator. In s = 1
there is in fact no pole due to the cos(πs/2). In s = 0 the pole is simple with
residue 1/2.

In s = −1, the pole is double, so we have access to the residue via the
computation of the derivative at s = −1 of

u−s
(

cos(πs/2)/(s+ 1)
)

Γ(s+ 2)

s(1 − s)(2 − s)
=
u−s
(

sin(π(s+ 1)/2)/(s+ 1)
)

Γ(s+ 2)

s(1 − s)(2 − s)

which is π
12
uLog u+ (6γ−11)π

72
u. Next we are to take care of the contribution

of the poles at −m for m ≥ 2. To do so we use the complement formula and
write

u−s cos(πs/2)Γ(s)

(1 − s)(2 − s)(1 + s)2
=

πu−s cos(πs/2)

sin(πs)(1 − s)(2 − s)(1 + s)2Γ(1 − s)

=
πu−s

2 sin(πs/2)(1 + s)2Γ(3 − s)

which shows we have a pole only if m = 2ℓ and that its residue is then

(−1)ℓu2ℓ

(2ℓ− 1)2(2ℓ+ 2)!
.

Since this gives rise to an entire series of infinite radius of convergence, we
conclude:

Lemma 9.1 For u > 0, we have

F (u) =
1

2
+

π

12
uLog u+

(6γ − 11)π

72
u+

∑

ℓ≥1

(−1)ℓu2ℓ

(2ℓ− 1)2(2ℓ+ 2)!
.

Larges values

Note first that the Stirling formula tells us that Γ(s) ∼ |t|σ−
1
2 e−π|t|/2 when

σ is fixed and |t| goes to infinity. By sending the line of integration to the
right hand side, one can then easily prove that |F (u)−1/(9u2)| ≪ε |u|−7/2+ε

for any ε > 0. Our aim here is to find expressions that will lead to a better
understanding to F , and in particular will enable a fast computation. Here
is our Theorem.
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Theorem 9.1 We have

F (u) =
1

9u2
+

∫ ∞

u

sin y

y4

(

u

y
+ 4

u

y
Log

u

y

)

dy

Furthermore, |F (u) − 1/(9u2)| ≤ 12/u4.

Our first lemma runs as follows.

Lemma 9.2 For any real number c verifying 1 > c > 0, we have

1

2iπ

∫ c+i∞

c−i∞

x−sds

(1 − s)(2 − s)(s+ 1)2
=

{

5
36
x− 1

6
xLog x if 0 < x ≤ 1,

1
4x

− 1
9x2 if x ≥ 1.

Proof: When x > 1, we send the line of integration to the far right. When
x ≤ 1 we send it to the far left. We compute the residues by using

1

(1 − s)(2 − s)(1 + s)2
= − 1

4(s− 1)
+

1

9(s− 2)
+

5

36(s+ 1)
+

1

6(s+ 1)2
.

⋄ ⋄ ⋄
We next transform the initial expression for F into a real variable integral,

i.e. perform an explicit Mellin inversion. The main tool is the following
formula

cos
πs

2
Γ(s) =

∫ ∞

0

cos(y)ys−1dy =

∫ ∞

0

cos(y)ysdy/y (35)

for 0 < ℜs < 1. An integration by parts easily gives the following approxi-
mation of the above:

u−s cos
πs

2
Γ(s) =

∫ Y

0

cos(y)(u/y)−sdy/y + O(u−ℜsY ℜs−1). (36)

We first note that

F (u) =
1

2iπ

∫

1
2
+i∞

1
2
−i∞

u−s cos(πs/2)Γ(s)ds

(1 − s)(2 − s)(1 + s)2
(37)

and we use the above representation of the integrand. We get

F (u) =
1

2iπ

∫

1
2
+i∞

1
2
−i∞

∫ Y

0

cos(y)(u/y)−sdy

y

ds

(1 − s)(2 − s)(1 + s)2
+O(u−1/2Y −1/2)
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and using our lemma, we find that

F (u) =

∫ ∞

u

cos y
(5u

6y
− u

y
Log(u/y)

)dy

6y
+

∫ u

0

cos y
( 1

4u
− y

9u2

)

dy. (38)

We integrate by parts the first term to get

F (u) = −5 sin u

36u
+

∫ ∞

u

sin y
( u

3y
− u

y
Log(u/y)

) dy

3y2
+

5 sin u

36u
− cosu− 1

9u2
.

We integrate by parts one more time and get

F (u) =
1

9u2
+

∫ ∞

u

u cos y

y4
Log

u

y
dy. (39)

And yet another integration yields

F (u) =
1

9u2
+

∫ ∞

u

sin y

y4

(

u

y
+ 4

u

y
Log

u

y

)

dy

and we carry a last one to reach

F (u) =
1

9u2
+

cosu

u4
−
∫ ∞

u

cos y

y5

(

9u

y
+ 20

u

y
Log

u

y

)

dy

Noticing that the maximum of t 7→ |9t−20tLog t| over [0, 1] is at exp(−11/20),
we get

|F (u) − 1/(9u2)| ≤ 12/u4.

We set

GX(u) =

∫ X

1

sin(uξ)

ξ5
(1 − 4 Log ξ) dξ (40)

and G (u) = G∞(u), which is (5), so that

F (u) =
1

9u2
+

GX(u)

u3
+ O∗((5 + 4 LogX)/(u3X4)). (41)

10 The moment of order 2

From section 4, we infer

M(2) =
∑

θ,θ′∈Θ(Q)
n,m≤N

e((m− n)(θ − θ′)). (42)
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Introducing therein the value of the Ramanujan sum, we find

M(2) =
∑

1≤n,m≤N

∑

u,v
u,v|m−n

uvM(Q/u)M(Q/v) (43)

with M(z) =
∑

d≤z µ(d). We use Lemma 5.1 with Lemma 6.1 to modify (43).
There comes

M(2) = N2
∑

u,v

(u, v)M(Q/u)M(Q/v)

+
∑

u,v

uvM(Q/u)M(Q/v)
[u, v]

iπ

∫ −
1
4
+i∞

−
1
4
−i∞

ζ(s)
N s+1

[u, v]s+1s(s+ 1)
ds.

We note that (using (45) below with s = 1)

∑

u,v≤Q

(u, v)M(Q/u)M(Q/v) =
∑

q≤Q

φ(q) = |Θ(Q)|

so that

M(2) = N2|Θ(Q)| + 1

iπ

∫ −
1
4
+i∞

−
1
4
−i∞

ζ(s)
∑

u,v

uvM(Q/u)M(Q/v)

[u, v]s
N s+1

s(s+ 1)
ds.

We shift the line of integration to −ǫ = −1/Log(QN) so that |ζ(s)| ≪
(1 + |t|)

1
2
+ǫ Log(QN). Concerning the sum over u and v, we get

F (s) =
∑

u,v

uvM(Q/u)M(Q/v)

[u, v]s
=
∑

u,v

(u, s)suvM(Q/u)M(Q/v)

usvs
.

We use at this level the so called Selberg diagonalization process which most
commonly appears in the study of Selberg sieve. See also [25] and [26]. It
consists in introducing the multiplicative function defined by

f(pk, s) = pks − p(k−1)s (k ≥ 1) (44)

when p is a prime. This function enables us to write

(u, v)s =
∑

d|(u,v)

f(d, s) =
∑

d|u
d|v

f(d, s) (45)
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with the neat effect of separating the contribution of u and v. This leads us
to

F (s) =
∑

d≤Q

f(d, s)
(

∑

u/d|u≤Q

u1−sM(Q/u)
)2

.

Further recall (30) and note that

∑

u/d|u≤Q

u1−sM(Q/u) =
∑

v≤Q

∑

u/d|u|v

u1−sµ(v/u)

= d1−s
∑

v≤Q/d

f(v, 1 − s) = d1−sW (s,Q/d).

Let us start with a wide range upper bound for the inner sum:
∣

∣

∣

∣

∑

u/d|u≤Q

u1−sM(Q/u)

∣

∣

∣

∣

≤ Q
∑

u/d|u≤Q

uǫ ≪ Q2/d.

This enables us to truncate on ℜs = −ǫ the series defining F :

F (s) =
∑

d≤D

f(d, s)

d2s−2
W (s,Q/d)2 + O(Q4D−1 LogQ).

For D = 1/2 this also yields an upper bound for F (s) that will enables us to
restrict the integral in height. We get

M(2) = N2|Θ(Q)| + 1

iπ

∫ −ǫ+iT0

−ǫ−iT0

ζ(s)
∑

d≤D

f(d, s)

d2s−2
W (s,Q/d)2 N s+1

s(s+ 1)
ds

+ O
(NQ4 LogQ

D

)

+ O
(NQ4 LogQ√

T0

)

.

We use (33) to replace W (s,Q/d)2 by (Q/d)4−2s/(ζ(2− s)(2− s))2 with cost
(since D ≤ Q and T0 ≤ N2)

≪
∫ T0

0

(1 + t)
1
2
+ǫ
∑

d≤D

|f(d, s)|
d2ℜs−2

(

(Q/d)3−2ℜs

1 + t
Log3(Q+ |t|)

+ (Q/d)2−2ℜs Log6(Q+ |t|)
)

N

(1 + t)2
dt.

The above is

≪
∫ T0

0

∑

d≤D

|f(d, s)|d2

(

(Q/d)3

1 + t
+ (Q/d)2 Log3(Q+ t)

)

N Log3(Q+ t) dt

(1 + t)3/2
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or
≪
(

Q3 Log2D +Q2D LogD Log3Q
)

N Log3Q.

We select
D = Q, T0 = N2. (46)

We reach

M(2) = N2|Θ(Q)| + NQ4

iπ

∫ −ǫ+iT0

−ǫ−iT0

∑

d≤D

f(d, s)

d2

ζ(s)(N/Q2)sds

ζ(2 − s)2s(s+ 1)(2 − s)2

+ O(NQ3 Log7Q).

We replace the sum over d by a complete sum with loss at most O(NQ4T
−5/2
0 )

and note that
∑

d≥1

f(d, s)

d2
= ζ(2 − s)/ζ(2). (47)

We then replace T0 by ∞ and ǫ by −1/8. We have thus reached an expression
of the shape M(2) = N2|Θ(Q)| +N2Q2f(N/Q2) + error but we still have to
modify the expression defining f to recognize (6).

A different expression for f

Using the change of variables s 7→ 1 − s, we reach

f(x) =
6/π2

iπ

∫

9
8
+i∞

9
8
−i∞

ζ(1 − s)x−sds

ζ(1 + s)(1 − s)(2 − s)(1 + s)2
(48)

The functionnal equation of the Riemann ζ-funtion (see [30] or [19]) may be
written as

ζ(1 − s) = 21−sπ−s cos(πs/2)Γ(s)ζ(s). (49)

so that

f(x) =
24/π2

2iπ

∫

9
8
+i∞

9
8
−i∞

ζ(s)

ζ(1 + s)

(2πx)−s cos(πs/2)Γ(s)ds

(1 − s)(2 − s)(1 + s)2
. (50)

Note that
ζ(s)

ζ(s+ 1)
=
∑

n≥1

φ(n)

n1+s
. (51)

Recalling (34) we get

f(x) =
24

π2

∑

n≥1

φ(n)

n
F (2πxn). (52)
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We approximate f as follows:

f(x) =
24

π2

∑

n≥1

φ(n)

n

(

F (2πxn) − 1

36π2x2n2

)

+
2

3π4x2

∑

n≥1

φ(n)

n3

and this is Theorem 1.1. We continue by appealing to Theorem 9.1:

f(x) =
1

9π2ζ(3)x2
+

3

π5x3

∑

1≤n≤N

φ(n)

n4
G (2πxn) + O∗

( 18

π6x4

∑

n≥N

φ(n)n−5
)

.

A more thorough numerical study of the remainder term would use a sum-
mation by parts together with Lemma 3.2 of [28], but we contend ourselves
with a simple appeal to the inequality φ(n) ≤ n.

Lemma 10.1 For N ≥ 2, we have

f(x) =
1

9π2ζ(3)x2
+

3

π5x3

∑

1≤n≤N

φ(n)

n4
G (2πxn) + O∗

( 6

π6x4(N − 1)3

)

.

We are now in a position to compute values of f: we simply use (40) via (41)
to restrict the domain of integration for G . The reader should keep in mind
that f is most probably a non-negative function, simply because of (7). This
is a highly non trivial property when looking at the expression given by the
lemma!

11 Another information

Using the notations of the introduction, we note B = AA∗ and remark that
A is a Vandermonde matrix. This last statement is true only if A is square,
namely if |Θ(Q)| = N . As a consequence, and when |Θ(Q)| = N , the
determinant of B is

detB =
∏

0<θ 6=θ′≤1,
θ,θ′∈Θ(Q)

|e(θ) − e(θ′)|.
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This is valid for any set Θ and we now utilize more specific informations:

Log detB = −
∑

θ 6=θ′∈Θ(Q)

Log(1 − e(θ − θ′)) = −
∑

θ 6=θ′∈Θ(Q)

∑

k≥1

e(k(θ − θ′))

k

= −
∑

k≥1

∑

θ 6=θ′∈Θ(Q) e(k(θ − θ′))

k

= −
∑

k≥1

∣

∣

∑

θ∈Θ(Q) e(kθ)
∣

∣

2 − |Θ(Q)|
k

= −
∑

k≥1

(

∑

d|k dM(Q/d)
)2

− |Θ(Q)|
k

= − lim
K→∞

∑

1≤k≤K

(

∑

d|k dM(Q/d)
)2

− |Θ(Q)|
k

.

The development of −Log(1−z) is valid of course for any |z| < 1, but also for
all z 6= 1 on the unit circle, the limit being this time definitely not absolute.
The next step consists in expanding the square to find that our quantity is

∑

d1,d2≤Q

d1d2

[d1, d2]
M(Q/d1)M(Q/d2)

(

Log
K

[d1, d2]
+ γ + O([d1, d2]/K)

)

− |Θ(Q)|
(

LogK + γ + O(1/K)
)

which gives us our first expression of Log detB:

Log detB =
∑

d1,d2≤Q

d1d2

[d1, d2]
M(Q/d1)M(Q/d2) Log [d1, d2].

Estimation of this sum is easy enough, appealing to [d1, d2] = d1d2/(d1, d2).
We first note that

∑

d1,d2≤Q

d1d2

[d1, d2]
M(Q/d1)M(Q/d2) Log d1

=
∑

δ≤Q

φ(δ)
∑

δ|d1≤Q

M(Q/d1) Log d1

∑

δ|d2≤Q

M(Q/d2).
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The sum over d2 is 1, and the one over d1 is

∑

δ|d1≤Q

M(Q/d1) Log d1 =
∑

d1≤Q/δ

M((Q/δ)/d1)(Log δ + Log d1)

= Log δ +
∑

d1≤Q/δ

M((Q/δ)/d1)
∑

ℓ|d1

Λ(ℓ)

= Log δ + ψ(Q/δ).

We proceed similarly to get

∑

d1,d2≤Q

(d1, d2) Log(d1, d2)M(Q/d1)M(Q/d2)

=
∑

ℓ≤Q

Λ(ℓ)
∑

ℓ|d1,d2≤Q

(d1, d2)M(Q/d1)M(Q/d2) =
∑

ℓ≤Q

Λ(ℓ)ℓ
∑

d≤Q/ℓ

φ(d)

so that we reach a second and much more tractable expression for Log detB:

Log detB =
∑

δ≤Q

φ(δ)
(

2 Log δ + 2ψ(Q/δ) −
∑

ℓ≤Q/δ

ℓΛ(ℓ)
)

. (53)

At this level, it is better to recall two simple results.

Lemma 11.1 For any c > 0, we have

∑

ℓ≤L

Λ(ℓ)/ℓ = LogL− γ + Oc((LogL)−c).

We have

∑

ℓ≤L

φ(ℓ)

ℓ2
=

6

π2

(

LogL− 6ζ ′(2)

π2
+ γ + O(L−1/3)

)

.

The first estimate is a form classically equivalent to the prime number The-
orem. The error term therein could be O(r(L)) with

r(L) = exp
(

−c(LogL)3/5(Log LogL)−1/5
)

(54)

for some positive constant c (and c = 0.2 is a possible choice thanks to [11])
or even r(L) = (LogL)/

√
L if the Riemann hypothesis holds. The second

estimate is equally classical and can for instance be obtained by applying
Lemma 3.2 of [28], the relevant Dirichlet series being the one from (51),
though shifted by s 7→ s + 1 (in rough details: g(n) = φ(n)/n2, H(s) =
1/ζ(s+ 2) and kn = 1/n).
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Evaluating the last sum in (53), say S2, requires Dirichlet hyperbola prin-
ciple. We write

S2 =
∑

ℓ≤L

Λ(ℓ)ℓ
∑

d≤Q/ℓ

φ(d) +
∑

d≤Q/L

φ(d)
∑

L<ℓ≤Q/d

Λ(ℓ)ℓ

=
∑

ℓ≤L

Λ(ℓ)ℓ

(

3Q2

π2ℓ2
+ O((Q/ℓ) LogQ)

)

+
∑

d≤Q/L

φ(d)
(

1
2

(

(Q/d)2 − L2
)

+ Oc((Q/d)
2(LogL)−c)

)

=
3Q2

π2
(LogL− γ) + O(QLLog2Q) + Oc(Q

2(LogL)−c)

+
Q2

2

∑

d≤Q/L

φ(d)

d2
− L2 3Q2

π2L2

which ends in

S2 =
3Q2

π2
LogQ− 18ζ ′(2)

π4
Q2 − 3

2π2
Q2 + O(Q2(LogQ)−c) (55)

by taking L = Q1/4. On another side we have

S1,1 =
∑

δ≤Q

φ(δ) Log δ =
∑

δ≤Q

φ(δ) LogQ−
∑

δ≤Q

φ(δ)

∫ Q

δ

dt

t

= LogQ

(

3

π2
Q2 + O(QLogQ)

)

−
∫ Q

1

(

3

π2
t2 + O(tLogQ)

)

dt

t

=
3

π2
Q2 LogQ− 3

2π2
Q2 + O

(

QLog2Q
)

while another use of Dirichlet hyperbola principle yields

S1,2 =
∑

δ≤Q

φ(δ)ψ(Q/δ) =
∑

δ≤∆

φ(δ)ψ(Q/δ) +
∑

ℓ≤Q/∆

Λ(ℓ)
(

∑

∆<δ≤Q/ℓ

φ(δ)
)

= Q
∑

δ≤∆

φ(δ)

δ
+ O(Q2(Log(Q/∆))−c) +

3Q2

π2

∑

ℓ≤Q/∆

Λ(ℓ)

ℓ2

= −18ζ ′(2)

π4
Q2 + O(Q2(LogQ)−c)
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on taking ∆ = Q1/2. Finally

Log detB = 2S1,1 + 2S1,2 − S2

=
6

π2
Q2 LogQ− 3

π2
Q2 − 36ζ ′(2)

π4
Q2

−3Q2

π2
LogQ+

18ζ ′(2)

π4
Q2 +

3

2π2
Q2 + O(Q2(LogQ)−c)

=
3

π2
Q2 LogQ−

(

1

2
+

6ζ ′(2)

π2

)

3

π2
Q2 + Oc(Q

2(LogQ)−c)

Gathering our results yields (remember (16) and that N = |Θ(Q)|)

N−1 Log detB = 1
2
LogN − 1

2
− 6ζ ′(2)

π2
+ 1

2
Log(π2/3)+Oc((LogQ)−c). (56)
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