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Eigenvalues in the large sieve inequality, II

par Olivier RAMARÉ

Résumé. Nous explorons numériquement les valeurs de la forme
hermitienne ∑

q≤Q

∑
a mod ∗q

∣∣∣∑
n≤N

ϕne(na/q)
∣∣∣2

lorsque N =
∑

q≤Q φ(q). Nous améliorons la majoration actuelle
et exhibons un graphique conjectural de la distribution asympto-
tique de ses valeurs propres en exploitant des résultats de calculs
intensifs. L’une des conséquences est que la distribution asympto-
tique existe probablement mais n’est pas absolument continue par
rapport à la mesure de Lebesgue.

Abstract. We explore numerically the eigenvalues of the her-
mitian form ∑

q≤Q

∑
a mod ∗q

∣∣∣∑
n≤N

ϕne(na/q)
∣∣∣2

when N =
∑

q≤Q φ(q). We improve on the existing upper bound,
and produce a (conjectural) plot of the asymptotic distribution
of its eigenvalues by exploiting fairly extensive computations. The
main outcome is that this asymptotic density most probably exists
but is not continuous with respect to the Lebesgue measure.

1. Introduction
In [9], we explored numerically as well as theoretically the distribution

of the eigenvalues of the hermitian form

(1.1)
∑
q≤Q

∑
a mod ∗q

∣∣∣∑
n≤N

ϕne(na/q)
∣∣∣2

when Q2 is close to N . Bounds for this hermitian form are of utmost im-
portance for arithmetical uses and are the core of what is loosely refered to

Manuscrit reçu le 4 octobre 2008.
Mots clefs. Large sieve inequality, circle method, Jackson polynomials, Hausdorff moment

problem.
Classification math. 11L03, 11L07, 11L26, 30E05, secondary : 41A10, 41A17.



182 Olivier Ramaré

as "the large sieve" and we refer the reader to [7] and [1] for more details
on this subject. Let us assume that

(1.2) N = Φ(Q) =
∑
q≤Q

φ(q)

and let us denote by (λi)1≤i≤N be its eigenvalues. We produced graphics
in [9] showing that the sequence of functions of λ defined by
(1.3) D(N,Q, λ) = #{i/λi ≤ λN}/N
seems to converge. The question has been asked as to the shape of the
density involved and whether one could produce a graphical candidate for
this density. The underlying idea is also that one may hope to guess what
this density should be from its shape. Note that the large sieve inequality
tells us that these eigenvalues are not more than N + Q2, so that λ is
constrained to lie in [0, L], with practically L = 3.5. See also section 2 on
this paper for the upper bound L ≤ 3.548 and section 3 for a hint as to
what the actual value can be.

Producing such a diagram is however more difficult than its seems. In-
deed, assuming this density to be continuous, we can approximate it by
the number of eigenvalues (renormalized by being divided by N) lying in
a given interval. However, when this interval is too small, this number will
only be 0 or 1. We thus should guess what is the proper length to be used. It
is tempting to select intervals of length about 1/

√
N , but N being between

100 and 500, this means having only 10 to 20 intervals at our disposal.
This also means computing all the eigenvalues while only using very partial
information concerning them.

We decided to follow a more direct approach: since the computation of
the eigenvalues in fact relied on computing powers of our matrix, say M ,
in order to build its characteristic polynomial, we set to compute the trace
of these powers but only to a limited power h ≤ H = 100. This also means
that we have been able to increase noticeably the size of our matrices: the
largest Q for which we have computed all the eigenvalues is Q = 40, and
this means 490 eigenvalues, while we computed the 100th first moments
for Q = 70, using a precision of 110 digits. This means handling matrices
of size 1 494 × 1 494. These computations are somewhat more detailed in
section 3. We then try to guess the form of the density. We have thus access
to the quantities ∫ L

0
thdD(t) (0 ≤ h ≤ H)

and we aim at recovering
∫
I dD(t)/|I| for intervals I as small as possible.

We approximate in fact dD(x)/dx by

(1.4)
∫ L

0
P (x, t)dD(t)/

∫ L

0
P (x, t)dt



Eigenvalues in the large sieve inequality, II 183

where P (x, t) is a polynomial of degree ≤ n and which has a sharp peak
at x. We take n = H. Deciding of which polynomials to take is again a
problem. We opted for a solution involving Jackson polynomials (recalled
thereafter). A similar problem, but with fairly smooth densities, has already
been considered in [3] where the author resorts to Bernstein polynomials.
Jackson polynomials provide a better polynomial approximation, in partic-
ular with densities that have a low level of regularity. These polynomials
have the advantage of being non-negative, while having a sharp peak at
fairly well-spaced points (this is false close to the edge of the range, but
our distribution is very small there). To produce a diagram, we proceeded
as follows

(1) we took the n/2 points xk = 2kL/n for k from 0 to n/2.
(2) The points x∗k = 2(xk/L)− 1 are now well-spaced over [−1, 1].
(3) For each k, select ` such that

cos
2π`
n+ 1

≥ x∗k > cos
2π(`+ 1)
n+ 1

and take a linear interpolation of the relevant Jackson polynomials:

P ∗(x∗k, t) = λK̃`,n(t) + (1− λ)K̃`+1,n(t)

where

λ =
x∗k − cos 2π(`+1)

n+1

cos 2π`
n+1 − cos 2π(`+1)

n+1

.

(4) We finally choose P (xk, t) = P ∗(x∗k, 2t− 1).
Since we have all these moments at our disposal, we decided to investi-

gate them as well. The reader will see in section 3 that they behave very
regularly. We thus decided to produce a numerical fit. If a distribution can
be written as dD(t) = δ(t)dt with a smooth enough function δ, then these
moments should behave like A+B(Log h)/h+O((Log2 h)/h2). This is not
what we obtained, see section 3 for more details.

2. On the largest eigenvalue when N = Φ(Q)

In his lectures on sieve [10], Selberg announced that the largest eigenvalue
of (1.1) is indeed ≤ (1− ε)(N +Q2) for some ε > 0 and when N = Φ(Q),
see (1.2). However, he provided no numerical values for ε and this is the aim
of this section. We recall the path proposed by Selberg. Let F1 be a smooth
function on the real line that majorizes the characteristic function of the
interval [1, N ] and such that its Fourier transform F̂1 vanishes when the
argument is ≥ Q−2 in absolute value. We also assume that this function
decreases fast enough at both infinities to ensure the convergence of the



184 Olivier Ramaré

quantities appearing in the Poisson summation formula. We write

∑
q≤Q

∑
a mod ∗q

∣∣∣S(a/q)
∣∣∣2 =

∑
n≤N

ϕn
∑
q≤Q

∑
a mod ∗q

S(a/q)e(na/q)

with S(a/q) =
∑
n ϕne(na/q), and we apply Cauchy’s inequality. This leads

to∑
q≤Q

∑
a mod ∗q

∣∣∣S(a/q)
∣∣∣2
2

≤
∑
n≤N
|ϕn|2

∑
1≤n≤N

∣∣∣ ∑
q≤Q,

a mod ∗q

S(a/q)e(na/q)
∣∣∣2

≤
∑
n≤N
|ϕn|2

∑
n∈Z

F1(n)
∣∣∣ ∑

q≤Q,
a mod ∗q

S(a/q)e(na/q)
∣∣∣2.

We expand the last square:

∑
n≤N
|ϕn|2

∑
q≤Q,

a mod ∗q

∑
q′≤Q,

a′ mod ∗q′

S(a/q)S(a′/q′)
∑
n∈Z

F1(n)e(n(a/q − a′/q′))

≤
∑
n≤N
|ϕn|2

∑
q≤Q,

a mod ∗q

∑
q′≤Q,

a′ mod ∗q′

S(a/q)S(a′/q′)
∑
m∈Z

F̂1(m− (a/q− a′/q′))

by Poisson summation formula. By our assumption, only m = 0 and a/q =
a′/q′ survive in the inner summation. This gives us

∑
q≤Q

∑
a mod ∗q

∣∣∣S(a/q)
∣∣∣2 ≤ F̂1(0)

∑
n≤N
|ϕn|2.

Our problem is thus to minimize the value of F̂1(0). Note that the function
F (u) = F1(Q2u+N/2) verifies F̂ (x) = Q2F̂1(x/Q2)e(xN/2). We translate
our conditions on F :

(1) F̂ (x) = 0 when |x| ≥ 1;
(2) F (u) ≥ 0 for all u ∈ R;
(3) F (u) ≥ 1 when 2|u| ≤ N/Q2.

We take F of the shape

(2.1) F (u) =
∫ ∞
−∞

∫ 1

0
G(v)G(v − x)dv e(−xu)dx
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for some real-valued function G with support on [0, 1]. As a consequence,
the function x 7→

∫ 1
0 G(v)G(v − x)dv has support on [−1, 1], so that

F (u) =
∫ 1

−1

∫ 1

0
G(v)G(v − x)dv e(−xu)dx

=
∫ 1

0
G(v)e(−vu)dv

∫ 1

−1
G(v − x)e((v − x)u)dx

=
∣∣∣∫ 1

0
G(v)e(−vu)dv

∣∣∣2.
This representation thus ensures us that F̂ (x) = 0 when |x| ≥ 1 and that
F (u) ≥ 0 for all u ∈ R. Our problem reduces to minimizing

F̂ (0) =
∫ 1

0
G(v)2dv =

∫ ∞
−∞
|Ĝ(u)|2du

when ∣∣∣∫ 1

0
G(v)e(−vu)dv

∣∣∣ ≥ 1 (|u| ≤ δ)

where δ = N/(2Q2). In our case, δ is asymptotic to 3/(2π2) which is pretty
small! We want |Ĝ(u)| to be as close to the characteristic function of the
interval [−δ, δ] as is possible and this tells us that F̂ (0) ≥ 2δ. We have not
been able to solve this extremal problem, so we decided to run experiments
by taking G to be a polynomial. First note the formula

(2.2) Ek(u) =
∫ 1

0
vke(−vu)dv =

k!e(−u)
(2iπu)k+1

e(u)−
∑

0≤`≤k

(2iπu)`

`!

 .
Proof: The formula is valid for k = 0. Assume it has been proved for k.
An integration by parts yields∫ 1

0
vk+1e(−vu)dv =

e(−u)
−2iπu

+
(k + 1)
2iπu

Ek(u)

=
e(−u)
−2iπu

+
(k + 1)!e(−u)

(2iπu)k+2

e(u)−
∑

0≤`≤k

(2iπu)`

`!


=

(k + 1)!e(−u)
(2iπu)k+2

e(u)−
∑

0≤`≤k

(2iπu)`

`!
− (2iπu)k+1

(k + 1)!


as required. � � �

On taking simply G0(v) = 1, we already get an improvement on the usual
large sieve inequality: the largest eigenvalues is less than 3.552 · N if Q is
large enough, instead of (1 +π2/3)N ≤ 4.290 ·N . The choice 1 + v(1− v)/2
yields the bound 3.548 ·N . Note that its L2-norm is

√
47/40 and not 1; we

set G1(v) = (1 + v(1 − v)/2)/
√

47/40. As a matter of fact, we tried every
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polynomial 1 + a1v+ a2v
2 + a3v

3 + a4v
4 with the ai’s ranging {2 k

20 − 1, k ∈
{0, . . . , 20}}.

We explored the situation further, but on restricting our attention to
polynomials of shape 1+b1v(1−v)+b2v2(1−v)2+b3v3(1−v)3+b4v4(1−v)4

with the bi’s ranging {2 k
20 − 1, k ∈ {0, . . . , 20}}. We found the polynomial

1+ 1
2v(1−v)+ 3

10v
4(1−v)4 (of L2-norm

√
8577013/7293000) which leads to a

very marginal improvement: 3.547 411 612·N instead of the 3.547 411 644·N
obtained with G1(v). We further set

(2.3) G2(v) =
(
1 + 1

2v(1− v) + 3
10v

4(1− v)4
)
/
√

8577013/7293000.

We record some more formulae in case they be of use to the reader. With
p = 2πu, we have

47
40
|Ĝ1(u)|2 =

4(1 + p4)(1− cos p)− 4p3 sin p+ p2(9− 7 cos p)− 4p sin p
2p6

with |Ĝ1(0)|2 = 845/846 = 0.998 817 . . . . Concerning G2, we get

8577013
7293000

50p18|Ĝ2(u)|2

= p(p6 − 288p2 + 12096)(5p8 + 5p6 + 36p4 − 6480p2 + 60480) sin p

+ (10p8 − 5p7 + 10p6 + 72p4 + 1440p3 − 12960p2 − 60480p+ 120960)

(10p8 + 5p7 + 10p6 + 72p4 − 1440p3 − 12960p2 + 60480p+ 120960) cos p

+ 100p16 + 225p14 + 1540p12 − 272160p10 + 2769984p8 + 2626560p6

+ 11197440p4 + 522547200p2 + 14631321600

and |Ĝ2(0)|2 = 6296503928/6304104555 = 0.998 794 · · · .
The plot corresponding to G0 starts above the ones of G1 and G2, and

dips slightly below around 0.1.the one of G1 while the one of G2 is indis-
tinguishable from the one of G1.

The above proof can easily be generalized to get the following Theorem:

Theorem 2.1. When X be a subset of R/Z such that min ‖x − x′‖ ≥ δ
where ‖y‖ is the distance on the unit circle. Let us assume that Nδ ≤ 9/10.
We have ∑

x

∣∣∣∑
n≤N

ϕne(nx)
∣∣∣2 ≤∑

n

|ϕn|2(1 + |Ĝ2(Nδ)|−2)δ−1

where (ϕn) is any complex sequence.

In fact, when Nδ is small, at least when Nδ ≤ 1/10, it is better to use
G0 instead of G2.
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1

1.1389e-53

0.001 1

Figure 1. Plot of the modulus square of the Fourier trans-
form of G0, G1 and G2.

In particular, when N = Φ(Q) and Q is large enough, we have∑
q≤Q

∑
a mod ∗q

∣∣∣∑
n≤N

ϕne(na/q)
∣∣∣2 ≤ 3.547 411 612 ·N ·

∑
n

|ϕn|2.

3. On the moments
Our first datas are the first H (with H = 100) moments. We com-

puted them by computing the successive powers of the matrix M , on using
100 digits. We recomputed the first 15 moments for Q = 62 with 150 digits
to check the accuracy and got an optimal result. We further used 110 digits
for Q = 66 and Q = 70. More precisely, we precomputedM2k for 0 ≤ k ≤ 6,
as well as M3. We then computed each Mh for h a multiple of 4, and ob-
tained this way the trace of Mh, Mh ×M , Mh ×M2 and Mh ×M3. This
turned out to be a good compromise between storage problems and speed.
The computation have been run GP/PARI with compiled scripts via GP2C.
The scripts are available on request.

We show below a plot of

h 7→ Log
(
trMh/Nh+1).(h ≥ 1)

A strong regularity appears.
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5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

1.016204734

Figure 2. The moments on a logarithmic scale for Q = 40, 46, 50, 54, 58

Let us first recall some known facts of these moments, see (3.1) below
for their definition. Hausdorff determined in [4], [5] and [6] necessary and
sufficient conditions for the sequence (mh

h) to be associated with a positive
measure on [0, 1]. The paper [8] contains a very clear survey of the situation.
This condition comes simply from the fact that∫ 1

0
tk(1− t)`dD(t) ≥ 0.

We expand the polynomial, replace each
∫ 1
0 t

hdD(t) by mh
h and get the

condition that these should verify.
Seeing this regularity, it is tempting to try to modelize it; Let us first

examine what to expect. On dividing by the largest eigenvalue, our asymp-
totical moment has the shape

∫ 1
0 t

hdD0(t). If we assume that D0 has a de-
rivative, and that is what we are trying to plot!, it has the shape

∫ 1
0 t

hδ(t)dt.

Theorem 3.1. Assume δ is in L1([0, 1]). Assume there is a ∈ [0, 1[, two
positive constant C and B, and an integer q ≥ 1 such that∣∣δ(t)− C(1− t)q

∣∣ ≤ B(1− t)q+1 ∀t ∈ [a, 1].
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Then (∫ 1

0
thδ(t)dt

)1/h
= 1− qLog h

h
+

Log(Cq!)
h

+O((Log h)2/h2).

Proof: Indeed, an integration by parts yields readily∫ 1

0
th(1− t)`dt =

`!h!
(h+ `+ 1)!

and thus∫ 1

0
thδ(t)dt =

∫ 1

a
thδ(t)dt+

∫ a

0
thδ(t)dt

= C

∫ 1

0
th(1− t)qdt

+O∗
(
B

∫ 1

0
th(1− t)q+1dt+ ah(C +B + ‖δ‖1)

)
=

Cq!h!
(h+ q + 1)!

+O∗
(B(q + 1)!h!

(h+ q + 2)!
ah(C +B + ‖δ‖1)

)
.

We deduce from this that the moment to the power 1/h equals

( Cq!h!
(h+ q + 1)!

)1/h
(

1 +O
(B(q + 1)
h+ q + 2

+ (h+ q + 1)q+1ah
))1/h

.

The logarithm of the main term is(
Log(Cq!)− q Log h−

∑
1≤`≤q+1

Log
(
1 +

`

h

))
/h

which is (Log(Cq!) − q Log h + O(1/h))/h while the error term is simply
1 +O(1/h2). The theorem follows readily.

� � �

This theorem says in essence that having a mild regularity throughout
the interval and a somewhat stronger one near to the largest point of the
support of our distribution are enough to ensure a convergence of the mo-
ments in (Log h)/h. Having this in mind, we tried to fit the real curve with
a regular one of equation h 7→ A + B(Log h)/h. Let us first recall rapidly
how this can be achieved via a least squares estimate. We set

(3.1) mh(N) =

 ∑
1≤k≤N

λhi /N
h+1

1/h

.
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We should minimize∑
1≤h≤H

(
mh(N)−

∑
i

Aifi(h)
)2 =

∑
1≤h≤H

mh(N)2

− 2
∑
i

Ai
∑

1≤h≤H
mh(N)fi(h) +

∑
1≤h≤H

(∑
i

Aifi(h)

)2

for some chosen functions fi. In our main example, we take only the two
functions f1(h) = 1 and f2(h) = Log(h)/h. The vanishing of the partial
derivatives in Ai of the above quadratic form leads to a linear system:

∀i,
∑
j

Aj
∑

1≤h≤H
fi(h)fj(h) =

∑
1≤h≤H

mh(N)fi(h).

This is readily solved. The surprise was that the fit was not very good,
even when starting the fit only for the moments of order ≥ 5. In turn, we
obtained very good results with fits of the shape

A1 +A2
Log h
h

+A3
Log2 h

h
+A4

Log3 h

h
.

Theorem 3.2. For N ∈ {40, 46, 50, 54, 58, 62, 66, 70} and h ranging
{5, 6, . . . , 100}, we have

∣∣∣mh(N)−A1 −A2
Log h
h
−A3

Log2 h

h
−A4

Log3 h

h

∣∣∣ ≤ B
where the coefficients are given by the following table:

N A1 A2 A3 A4 B
40 2.7 −0.788 −2.865 0.674 0.0126
46 2.727 −0.823 −2.876 0.661 0.0136
50 2.743 −0.848 −2.871 0.648 0.0167
54 2.758 −0.839 −2.901 0.646 0.0188
58 2.778 −0.878 −2.903 0.639 0.0444
62 2.792 −0.917 −2.883 0.625 0.0160
66 2.808 −0.932 −2.900 0.623 0.0573
70 2.822 −0.952 −2.889 0.620 0.0571

Average [40− 70] 2.766 −0.872 −2.889 0.642 0.0837
Average [58− 70] 2.870 −1.058 −2.893 0.596 0.0340

Here is a plot of the moments (to the power 1/h), which the average plot
included.

The top curve corresponds to Q = 58.
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5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

2.790369037

Figure 3. The moments for Q = 40, 46, 50, 54, 58 and the
average fit

The maximum of the average fit is obtained close to h = 500 and has
value 2.833 · · · . As a consequence, one may ask whether it is true that∑

q≤Q

∑
a mod ∗q

∣∣∣∑
n≤N

ϕne(na/q)
∣∣∣2 ?
≤ 3.2N

∑
n

|ϕn|2 (N = Φ(Q)).

The graph we produce in the last section goes in favor of this guess. The
numerical datas are however too flimsy to term that a conjecture, or to
even guess the optimal constant.

4. On Jackson’s polynomials
Approximation and interpolation of the circle. We essentially follow
the notations of [11] and define for any non-negative integer n

(4.1) Kn(v) =
2

n+ 1

(
sin n+1

2 v

2 sin(v/2)

)2

=
1
2

+
1

n+ 1

∑
1≤`≤n

(n+ 1− `) cos `v
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as well as

(4.2) rk,n = r0,n +
2πk
n+ 1

where r0,n is an arbitrary real number. Note that Kn(0) = (n + 1)/2,
Kn(v) ≥ 0 and

∫ 2π
0 Kn(v)dv = 1/2. We define the Jackson polynomial of a

2π-periodic function f to be

(4.3) Jn(f, u) =
2

n+ 2

∑
0≤k≤n

f
(
rk,n

)
Kn
(
u− rk,n

)
.

These polynomials are uniquely determined by the interpolation property:

(4.4) J
(
f, rk,n

)
= f

(
rk,n

)
, J ′

(
f, rk,n

)
= 0. (0 ≤ k ≤ n)

Approximation and interpolation of the segment [−1, 1]. We are
interested in approximating a function F on [−1, 1] by polynomials. To do
so, we consider

(4.5) F (cosu) = f(u)

where f is 2π-periodical with the additionnal property that

(4.6) f(2π − u) = f(u).

We take r0,n = 0 so that f(rn+1−k,n) = f(rk,n), from which we infer that

(4.7) Jn(f, u) =
1

n+ 2

∑
0≤k≤n

f
(
rk,n

)(
Kn
(
u− rk,n

)
+Kn

(
u− rn+1−k,n

))
.

We get (with t = cosu and t∗ = sinu)

2 cos
(
`u− `rk,n

)
= ei`u−irk,n + e−i`u+i`rk,n

= ei`rk,n(t+ it∗)` + e−i`rk,n(t− it∗)`

=
∑

0≤m≤`

(
`

m

)
tm
(
ei`rk,n(it∗)(`−m) + e−i`rk,n(−it∗)(`−m)

)

=
∑

0≤m≤`,
m≡`[2]

(
`

m

)
tm(it∗)(`−m)(ei`rk,n + e−i`rk,n

)

+
∑

0≤m≤`,
m≡`+1[2]

(
`

m

)
tm(it∗)(`−m)(ei`rk,n − e−i`rk,n

)
.
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Since eirn+1−k,n = e−irk,n , we find that

(4.8) cos
(
`u− `rk,n

)
+ cos

(
`u− `rn+1−k,n

)
=

∑
0≤m≤`,
m≡`[2]

(
`

m

)
tm(it∗)(`−m)(ei`rk,n + e−i`rk,n

)

which is a polynomial in t, on recalling that t∗2 = 1− t2. Consequently, we
may write

(4.9) J̃n(F, t) = Jn(f, u) =
1

n+ 2

∑
0≤k≤n

F
(
cos rk,n

)
K̃k,n(t)

for the polynomials K̃k,n(t) defined by
(4.10)

K̃k,n(t) = 1 + 2
∑

1≤`≤n

(
1− `

n+ 1

) ∑
0≤m≤`,
m≡`[2]

(
`

m

)
tm(t2 − 1)(`−m)/2 cos(`rk,n).

We also have
(4.11) K̃k,n(t) = K̃n+1−k,n(t) = Kn

(
u− rk,n

)
+Kn

(
u− rn+1−k,n

)
and as a consequence, we get K̃k,n(t) ≥ 0 and:

(4.12) K̃k,n(cos rk,n) ≥ (n+ 1)/2,
∫ 1

−1
K̃k,n(t)

dt√
1− t2

= 1/2

Indeed, set t = cos(u− rk,n), so that dt = − sin(u− rk,n)du = −
√

1− t2du
on the first part and t = cos(u−rn+1−k,n) on the second one. Furthermore,
we have
(4.13) J̃n(F, cos rk,n) = F (cos rk,n), J̃ ′n(F, cos rk,n) = 0. (0 ≤ k ≤ n)

Since we want to approximate characteristic functions of intervals, these
conditions are of course exactly what we need!

5. Plotting and interpolation
We used a Bernstein interpolation of degree 2 between two of our

(guessed!) points, and here is how we proceeded; given two consecutive
points B and C, we looked at the previous point A and the next one D.
When the lines joining A and B and C and D had an intersection with an
abscissa between the one of B and the one of C (practically: everywhere
but at the beginning of the plot), we computed this intersection, say I and
plotted the arc

(1− t)2B + 2t(1− t)I + t2C, t ∈ [0, 1]

which lies in the convex hull of B, I and C.
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Let us record some (trivial) details concerning the computation of the
intersection of λA+(1−λ)B with µC+(1−µ)D. They are however necessary
to write the plotting script! We are to determine λ and µ so that

λxA + (1− λ)xB = µxC + (1− µ)xD

hence, when xA 6= xB, we have λ =
(
µ(xC − xD) + xD − xB

)
/(xA − xB)

and similarly with y’s intead of x’s. After some manipulations, we reach

µ
(
(xC − xD)(yA − yB)− (xA − xB)(yC − yD)

)
= (yD − yB)(xA − xB)− (xD − xB)(yA − yB).

This can also be written as µdet( ~DC, ~BA) = det( ~AB, ~BD). The determi-
nant vanishes when the two lines are parallel.

1 2 3

4/5

Q = 58, N = 1028

1 2 3

4/5

Q = 62, N = 1192

1 2 3

4/5

Q = 66, N = 1328

1 2 3

4/5

Q = 70, N = 1494

Figure 4. Estimated density of eigenvalues/N for Q =
58, 62, 66 and 70

A shape indeed emerges from these drawings, but the convergence ap-
pears to be very slow. The problem concerning what these drawings can
represent is well treated in [2]. The authors show there that a sequence of
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measures, say (µn)n≥1, each of them satisfying

∀k ≤ n,
∫
tkdµn =

∫
tkdµ,

converges weakly towards µ. However, they also exhibit a sequence of func-
tions (and a measure µ) such that

∀k ≤ n,
∫
tkfn(t)dµ =

∫
tkf(t)dµ

while (fn)n≥1 does not converge towards f . This is most probably a patho-
logical case, but it is worth mentionning it, especially in the light of sec-
tion 3.
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