DISCREPANCY ESTIMATES FOR GENERALIZED
POLYNOMIALS
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ABSTRACT. We obtain an upper bound for the discrepancy of the sequence ([p(n)a]8)n>0
generated by the generalized polynomial [p(x)a]s3, where p(x) is a polynomial with

real coefficients, a and (8 are irrational numbers satisfying certain conditions.

1. INTRODUCTION

A sequence (z,),>0 of real numbers is said to be uniformly distributed modulo 1
if
< :
1) lim #{n < N :{z,} € a,b)}

N—oo N = b-a

holds for all real numbers a, b satisfying 0 < a < b < 1. Here and in what follows,
{z} denotes the fractional part of x. H. Weyl [§] proved that if P(x) € R[z] is any
polynomial in which at least one of the coefficients other than the constant term is

irrational, then the sequence (P(n)),>o is uniformly distributed modulo 1.

A natural extension of the family of real valued polynomials arises by adding the
operation integral part, denoted by [-], to the arithmetic operations addition and
multiplication. Polynomials which can be obtained in this way are called generalized

polynomials. For example [ag + a12], ag+ [a1x + [aox?]] are generalized polynomials.

In the spirit of Weyl’s result it is natural to consider the uniform distribution of
generalized polynomials. The case ([nalf8),>o is treated in [6] (see Theorem 1.8,
page 310) and it follows from a result of W.A. Veech (see Theorem 1, [7]) that
the sequence ([p(n)]B)n>0, p(x)is a polynomial with real coefficients, is uniformly
distributed under certain conditions on the coefficients of p(z) and 5. 1.J. Haland
[3, 4] showed that if the coefficients of a generalized polynomial ¢(x) are sufficiently

independent then the sequence (¢(n)),>o is uniformly distributed.

In order to quantify the convergence in the notion of discrepancy has been
introduced. Let (x,),>0 be a sequence of real numbers and N be any positive
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integer. The discrepancy of this sequence, denoted by Dy(x,), is defined by

Dy(z,) = sup #ins N: ]{\?371} €la.b)} (b—a)

0<a<b<1

Now we have the following definition.

Definition 1. Lett > 1 be a real number. We say that a pair («, 8) of real numbers
is of finite type t if for each € > 0 there is a positive constant ¢ = c(e,«, 8) such

that for any pair of rational integers (m,n) # (0,0), we have

(max(L, [m|))""(max(1, n[))""[ma + np| > c.

The corresponding definition for a single real number « is the one of irrationality

measure. The precise definition is the following.

Definition 2. Let t > 1 be a real number. We say that an irrational number v has

irrationality measure t + 1 if for any integer n and € > 0, we have
max (1, [n])" [y >, 1.

It is well known that when ~ has irrationality measure ¢+ 1, the discrepancy Dy (n7y)

of the sequence (n7y),>o satisfies
Dy(n7y) < N7 +e

for each € > 0.
The discrepancy of non-trivial generalized polynomials was first considered by R.
Hofer and O. Ramaré [5]. More precisely, they consider the discrepancy of the

sequence ([na]f),>o and proved that for each € > 0

Dy ([nalB) <eaps N5zt

when (o, af3) and (S, é) are of finite type t.

Let p(z) = 2% + ag_12¢7 1 + -+ + a1z + ap € R[] be a polynomial of degree d > 2
with real coefficients and with leading coefficient 1. In this paper we consider the

discrepancy of the sequence ([p(n)a]f5),>0. We prove the following theorem.

Theorem 1. Let «, § and N > 1 be non-zero real numbers. Suppose that the pair

(o, aB) is of finite type t for a real number t > 1. Then for any e > 0,

9_o—d+2

DN([]?<TL)04]5) <<e,a,6,d N 29-T@t+1)+7e42 +E.

We follow the method of R. Hofer and O. Ramaré [5] for the proof of the above

theorem.
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2. PRELIMINARIES

For any real number 7, let f,(x) = e(7{z}). Let § > 0 be a real number. We are

going to approximate f, by a function g.s. Here g, s is defined by

1

(2) Grs(x) = Wl[—w] *oex Lg% fr(2),

where we have r copies of 1|_55 each denoting the indicator function of the interval
[—9, d].
We have the following analog of a lemma of R. Hofer and O. Ramaré (see Lemma
10, [5]).

Lemma 1. For any sequence {u,}n>o of real numbers, and any positive integer N

we have
N—-1

(3) > 1fr(un) = grs(un)| < Nvd+ Ni?d|r| + NDy(uy).
n=0

Using Fourier inversion formula, we have

with

i s(k) = sin27kd\" e(r + k) — 1
grelf) = 27kd 2mi(k +7)
Since [#272|" < min (1, I#)’ and for any irrational 7, |e(7) — 1| < ||7||, we have

the following lemma which holds trivially.

Lemma 2. For any irrational number 7, we have

. T+ k| . 1
1976(K)| < min | 1, :
(|k|o)r

|7+ k|

We will state Lemma [3] and Lemma [4] for arbitrary real number 7 but we keep in
mind that we will use these lemmas with 7 = —h/3, for some positive integer h. The

next lemma gives an upper bound for the tail of the Fourier series of g, 5.

Lemma 3. Let K be sufficiently large real number such that |7 + k| > g for all
k € Z with |k| > K. Then we have

> Grslk) < (0K) 7.

The following lemma shows that for any p > 1 the LP-estimate of g, s is bounded.
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Lemma 4. Let 7 be a real number and 0 < 6 < min (ﬁ, 1). Then for any real

D lgrsb)P < 1,

keZ
where the implied constant depends only on p.

number p > 1, we have

Proof. We can assume the sum is running over £ > 1. Using Lemma [2, we get

X T+ k[P 1
S Py
lg-s(E)[P < TR min | 1, oy

k>1 k>1

_ [+ FP s

B Z |T+k:|P Z |T+k’|7’k:?”" '
Note that k > §~! > 2|7| implies |7 + k;| > k/2, hence

2 |7+ k[pker k‘|pkjp7‘ <«

E>6-1
Hence we have || K
T+
)P + 1.
Sy < 3 IEh
E>1 k<51

When 7 is a non-negative real number, sum on the right hand side is clearly < 1.
Hence we can assume that 7 is a negative real number. The contributions for the

sum above from the terms with k = [—7] and k = [—7] + 1 are < 1. Hence we have

D grsk)P < S+ S+ 1,

k>1
where
_7-}_1 1 51 1
S = d Sy, = )
D D D D ey
k=1 k=[—7]+2

Now the summand in S; is monotonically increasing, hence

s= [ wrm o (ermw) o (m)

It is easy to see that
[ e
[
1 (T +x)P

as p > 1. Thus we conclude
S; < 1.
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In a similar way, with only difference being the summand is monotonically decreas-
ing, one can show that
Sy < 1

which finishes the proof. U

Now we need a variant of a lemma of Weyl-van der Corput (see Lemma 2.7, [1]) as

given by A. Granville and O. Ramaré ( see Lemma 8.3 of [2]).

Lemma 5. Suppose that A1, X, ..., Ax is a sequence of complex numbers, each with
INi| <1, and define AN, = Ay DA = Amgr A and

An,...,rk,s)\m = (Arl,...,rk )\m+s) (Arl,‘..,rk)\m)-

Then for any given k > 1, and real number @ € [1, N|,

2k 1 Q2 M
N QR Q 1 —Tk
Z <55+ g 2.0 Zl ¥ Z Areen Ao
T1 T2 Tk m=

For any real number z, let e(x) denote e*™@. The following lemma, often called
as Erdos-Turan inequality, is very useful to estimate the discrepancy of a given
sequence (see Theorem 2.5, page.112 of [6]).

Lemma 6 (Erd6s - Turdn). Let (x,,)n>0 be any sequence of real numbers and N > 1.
The discrepancy Dy(z,) of the sequence (z,)n>0 satisfies the following:

N-1

=0

Y

() Dy(an) < Z%

where H 1s any arbitrary positive integer.

The above lemma shows that the exponential sums play an important role not
only in showing the uniform distribution of a sequence, but also in estimating the

discrepancy of a given sequence.

The following lemma is an easy application of Lemma [6]

Lemma 7 (Lemma 3.2, page 122, [06]). Let 0 be an irrational number. Then the
discrepancy Dy (£8) of the sequence {€0 : 1 < ¢ < L} satisfies the following upper

bound. .
1 1 1
Do) <C| =+ — —_—
(86) (H Lj1JHJ9||>

for any H > 1 and for some absolute constant C' > 0.



6 A. MUKHOPADHYAY, O. RAMARE, AND G.K. VISWANADHAM

To estimate the discrepancy of ([p(n)a]f)n>0, we need to get an upper bound for

the discrepancy of the sequence (p(n)a),>o. The next lemma provides this.

Lemma 8. Let a be a non-zero real number of wrrationality measure t +1 for a real
t > 1. Then the discrepancy Dn(p(n)a) of the sequence (p(n)a)n>o satisfies

22d+2

Dy(p(n)a )<<edtN 21

for any € > 0.

Proof. Let x, = p(n)a in Lemma [6] Then

H

(5) Dy (p(n)a) <<—+ . Z%

N-1
e(p(n)ha
n=0

To estimate the exponential sum on the right hand side we use Lemma[p| with @ = N
and k£ = d — 1. Hence we get that

(6)

20!71

N-1 N2 Ny gy

Z e(p(n)ha) < de 1 1+N2d 1,9-d+2_3 Z Z Z (d!hrl . -rd,lna)
n=0 ri=1 rqg_1=1 n=0
Using the bound | Y- " e(n)\)| < min(N, m) gives

N-1 207! Nz ]

h N? 11 N2d lpg—d+2_3 N
e(p(n)ha) < T Z > min ’”d!hrl"‘rdfla”
n=0 r1=1 rqg—1=1
22742 ]

7 N2d71_1 N2d71+27d+2_3 T . N
") < " mzz:l (min | - [dhmal )’

where in the second line of the above inequality
T(m) = |{(r1,...,7az1) € 1, N] X -+ X [L,N> ) i ry o orgey = m}] .

When ry---rq_1 = m, each r;(1 < i < d—1) is a divisor of m. Hence T'(m) <
d(m)?=1, where d(m) is the number of positive divisors of m. Let ¢; =
Using the fact that d(m) <, m® we get that

(8)

@ie-z)-

N_ 2d—1 N272—d+2
_ 1o 1
n)ha) <L d NI N2 g min (N, —) .
Zo ‘ mZ:I |d!hma||
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Let L = N22°" We have

1 1
E =NEy+ Y 5
mm( ||d'mha||) 0t = [ldtmhal]
mé&FEy

where
E. =

1
{m <L: %< |d!mha| < %}’ .

With this notation we have

1 =N
min <K NEy + —F
i (V. g ) < V5 X

Observe that o

Hence we have

1
9) me( dimha ”) < Llog N + NLDy(d'mha)log N .

Since « has irrationality measure t+1, Hd!mhoc” > (d!'mh)~(+9. Then by Lemma

DL d'thé <<e
( Zylld'hyall
1 (AR S~ e
<<5,d,t ﬁ + I ;J

1 — € €
Ledt 77 + L H'eptte

Choose H = L#1h™#1 to get
(10) Dr(dimha) gy L™ F1tHeprTte

Using this estimate in @D gives us

1 ¢
(11) me( dimha H) Ledt NL - mrtepmate

The above estimate when L = N2-27""

2d71

together with gives

N—

,_.

272—(1-&-2

d—1__ d—1__
<<e,d,t N2 1 4 N2 P . )

(12) e(p(n)ha)

n=0
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In the above estimate clearly the second term dominates. Hence we get

N—-1 |_2-2" d+2
(13) > e(p(n)ha)| Keqe N2 TE0 T
n=0

Putting and together gives
9 2—d+2

1 .
Dy (p(n)a )<<eth+N 2T e

9_g—d+2

Finally we choose H = N2 'et+1) . With this choice we get

9 2—d+2

Dy(p(n)a) Keap N2 1Gw0 "

3. PROOF OF THE THEOREM

Let H be any positive real number which will be chosen later. By Lemma [0, we

have

(14) D([p(n)alf) < o+ = >

H
H+1 h:l

Recall that f,(x) = e(r{z}) and g, is defined as in with 6 := 6(h) = h"IN~?
for some 0 < 0 < 1. Writing [z] =  — {z} we have

N-1 N-1

> e(hp(n)alp) = Z e(hp(n)ap) f-ns(p(n)a)
(15) = Z (hp(n)aB)g-nss(p +O<Z|f na(p — 9-nps(p(n)a )\) :

By Lemma [1f for the O-term on the right hand side of (| and substituting it in
the inequality we have

N—

[aary

1

Dy([p(n)e)f) < — + e(hp(n)aB)g-np.s(p(n)a)

1

=| -
> =

n=

H

H
r; . + 18| ;(5+DN(p(n)a) log H .

| &>,
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The Fourier inversion formula for g, s gives us

1 N-1
Ezgfhﬁé Ze hﬁ /f))

Da(lpmalf) <

h=1 kEZ n=0
s
(16) + TZEnL!B]rZ(SJrDN n)a)log H.
h=1 h=1
Let
1 H 1 N-1
(17) Sy = NZE > Gonse(k) Y e(p(n)a(hB — k)| .
h=1 kEZ n=0

Let p be a real number such that p € [1,2], which will be chosen later. We also
suppose NY > 2|3|. Splitting the first sum inside the modulus into |k| > h*NY and
|k| < h*NY gives us

H N-1 H
1 1 1 .
=5 > 7 Y Gonss(k) Y elpn)a(h —k)[+O [ Y 7 D 19-nssk)
h=1 |k|<hr N n=0 h=1 " |k|>hrN?

Using Lemma [3| with K = h?N? shows that the O-term on the right hand side is
< Hr(-p),

Hence we have

(18) Sy a(hfB — k)| + OH"=P))

I
=
M=
==
| M
M

N—1
Z G-nss(k) > e(p(n)a(hp —k))
|k|<hrN? n=0
d—1_, .
gd—1 2071 N-1 2d=1\ 5d-1
< D 1g-nsalk)[F T e(p(n)a(hB — k))
|k|<hPN? k| <he N | n=0
(19)
N-1 20-1\ 30T

< >

|k|<he N°

> elp(n)a(hB — k)

n=0

Here we have used Lemma [4| to get the last inequality.
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Let £ = a(hf — k). Using Lemmalf], with k = d — 1 and A, = e(p(m)§) we get that
the following inequalities hold for any @ € [1, N|:

Q ot Q2 T IN—1—ri——rg_y

N2d—1 N2d—1_1
< 0 + grr e Z Z . Z e(dlry -+ - rg_1né)

r1=1rqo=1 Td_1:1 n=0

Q @ @7

N2d1 N2dl 1 1
< min | V,
oo X i (Vo)

r1=1ro=1 rg_1=1

where we have used 3" e(n)) < min(N, W) to get the last inequality.
Let T(m) = [{(r1,...,7a-1) € [1,Q] X --- % [1,Q* “*] : ry-- 14—y = m}|. With this

notation the above inequality will be

= - N2 N2 Q@ 1
e(p(n)& < + — T(m ( )
s ( ( ) ) Q Q2_2 d+2 n;l ( ) Hd'é H

When ry---rq_1 = m, each r;(1 < i < d—1) is a divisor of m. Hence T'(m) <
d(m)?=1, where d(m) is the number of positive divisors of m. Let € > 0 be any real

number. Let e = . Using d(m) <., m®, we get

N—-1 2471 N2d71 N2d71_1 Q2_27d+2 1
2 pn)e)| <. 2 <N, _) |
( ) nZ:; ( ( ) ) d Q Q272 d+ —€ an::l ||d'€m||

Now we prove the following lemma which will be used to estimate the right hand

side of the above equation.

Lemma 9. Let £ = a(hf — k). Then for any € > 0 we have

1 ¢
me ( |]d'€§|]) Lo ped Llog N + NLl—ﬁ+6(h|k‘|)T+1+e log N .

Proof. For 0 < m < N — 1, define

m m+ 1
E,=[de<r: T <) < .
{rs2: 5 <paeer <™

We have

1
me( I\d'€€|\> - NE”Zudwfu

1¢E,
N-1

< NE+) %Em
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Observe that

B, = % + O(LDy ().

Thus
(21) Z min ( |dw§||) < Llog N + NLDy(d!0€¢)log N.

Using Lemma m and the fact that

B C(Of7676)
el = llebalhs = B = g

for any positive integer £ > 1, we get
1 1
D (dM€) Kap.c — + 7 (RIk|(dlm)*)"*
for any positive integer m. Now we choose m = L@+ (h|k|)~1/ (D to get

(22) Dy (V) Ko pea (R|k|f)Zmte Lzt

Substituting the above estimate in gives us

1 1 ¢
Zmln ( |d'€§||) Laped Llog N + NL' = ww1¢(h|k|) 5 log N.

Apply Lemma |§| in (20) with L = Q>2" and let Q = N to get

N-1 27! —d+2

_ 2d—1__ 2-2 +e
> epn)E)|  <apea N*TUTIHN (=) hETH | T log NV
n=0

Summing both sides of the above inequality over k£ we get that

(24)
2d—1
N-1
T ST e)e)] e N N 0 g st ot
|k|<hPN? | n=0

Clearly the first term on the right hand side is dominated by the second term.
Putting this inequality in (19 we get that

ST Gonsk) S elpm)a(hs - k)

k| <he N? n=0

9_g—d+2

Lo Be,d N GE G G G e

3t+1
2d—1(2¢41) )+

t
h 23— 1(2t+1) +o( 2d—T1(2¢41)
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Hence we have

LS k) Y elptmaths — k)

9_o—d+2

Laped ]\717(2‘1*1(27%1))+

3t41 t 3t41
(Zd*1(2t+1) )+€H 2d—1(2¢41) Jrp(zd*1(2z+1) )+

From and above inequality we have

[ 2-2—d+2 3t41 t 3t41
Sy Laped NV Gty TG T g a=Tanm et )t

‘it O(Hr(lfp)) _

Hence we have from with =1 = hN? that

3t+1 _ 2-27d+2
( )+€N (Qd*1(2t+1)

3t41
2d—1(2¢41) )+6(

2d—1(2t41) )+e + Hr(l—l’)

Dy ([p(n)alB) <<a,g,e,dH2d*1<2t+1>+p
1
+ Vi + N+ N~log H+ Dy(p(n)a)log H .

We choose p = 1+¢; with €; = €;(¢,t) > 0 sufficiently small real number, and r is an
integer satisfying r > i Hence the second term on the right hand side is < H .

. _9—d+2 . .
Now we choose H = N? with 6 = 2d—1(2t+12)+%4t+1)+p(3t+1)' With these choices we

have
 9-_gd+2 .
(25) Dy([p(n)a]f) <apea N i rrerz 4 Dy (p(n)a)log N.
By Lemma [§, we have
22— d+2

Dy(p(n)a) <eay N~ 2T

Putting this in (25]), we get

9_o—d+2

Dn([p(n)alf) apea N 2 Crensmez
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