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AN EXPLICIT DENSITY ESTIMATE FOR DIRICHLET L-SERIES

O. RAMARÉ

Abstract. We prove that, for T ≥ 2 000, T ≥ Q ≥ 10, and σ ≥ 0.52, we have∑
q≤Q

q

ϕ(q)

∑
χmod∗ q

N(σ, T, χ) ≤ 20
(
56Q5T 3

)1−σ
log5−2σ(Q2T )+32Q2 log2(Q2T )

where χmod∗ q denotes a sum over all primitive Dirichlet character χ to the

modulus q. Furthermore, we have

N(σ, T, 11) ≤ 2T log

(
1 +

9.8

2T
(3T )8(1−σ)/3 log5−2σ(T )

)
+ 103(log T )2.

1. Introduction

Dirichlet L-series L(s, χ) =
∑
n≥1 χ(n)n−s associated to primitive Dirichlet char-

acters χ are one of the keys to the distribution of primes. Even the simple case χ = 1
which corresponds to the Riemann zeta-function contains a lot of information on
primes and on the Farey dissection. There have been many generalizations of these
notions, and they all have arithmetical properties and/or applications, see [31] for
instance. Investigations concerning these functions range over many directions, see
[14] or [44]. We note furthermore that Dirichlet characters have been the subject
of numerous studies, see [2, 4]; Dirichlet series themselves are still mysterious, see
[3] and [6].

One of the main problem concerns the location of the zeroes of these functions
in the strip 0 < <s < 1; the Generalized Riemann Hypothesis asserts that all of
those are on the line <s = 1/2. We concentrate in this paper on estimating

N(σ, T, χ) =
∑

ρ=β+iγ,
L(ρ,χ)=0,
σ≤β,|γ|≤T

1.

Under the Generalised Riemann Hypothesis, this quantity vanishes when σ > 1/2
and we want to bound it from above. An upper bound is however often very
powerful, one of the more striking uses of such an estimate being surely Hoheisel
Theorem. In [33, Theorem 7], the authors already prove an explicit density esti-
mates for L-functions, namely∑

χ mod q

N(σ, T, χ) ≤
(

254 231

log qT
+ 17 102

)
(q3T 4)1−σ(log qT )6σ + 16 541(log T )6

under some size conditions on T and q we do not reproduce. [10] had in fact proved
most of this result, but his bound had the restriction χ 6= χ0, the principal character.
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This result is used in [34] to prove to show that every odd integer ≥ exp(3 100) is
a sum of at most three primes.

As it turns out, I proved long ago in my M. Phil. memoir a bound in case
χ = χ0 that was better than that. This was never published but several versions
circulated, at various stages of improvement. This paper will fix a version. We do
so because of a regain of interest in the field (see of course [50], [27] and [28]) and
more precisely [20] where these authors manage to use a density estimate from [30]
to improve on the numerical bounds for the Tchebyschef-ψ function. After more
than fifty years of very limited theoretical progress in this field (though there has
been work on it, see [15], [16], [17], [37]), this is quite a news and announces further
improvements. The second main news in this area is due to the doctoral thesis
of D. Platt [39] where the Riemann hypothesis has been verified for all Dirichlet
characters of conductor q ≤ Q0 = 400 000 and up to the height 108/q, improving in
a drastic fashion on the previous works [45] and [7]. This author has also checked
that the Riemann zeta function has no non-real zero off the critical line and of
height bounded in absolute value by 3 · 1010 (see also [53] and [23], though these
results have not been the subject of any academic publications).

Here is our main theorem:

Theorem 1.1. For T ≥ 2 000 and T ≥ Q ≥ 10, as well as σ ≥ 0.52, we have∑
q≤Q

q

ϕ(q)

∑
χmod∗ q

N(σ, T, χ) ≤ 20
(
56Q5T 3

)1−σ
log5−2σ(Q2T ) + 32Q2 log2(Q2T )

where χmod∗ q denotes a sum over all primitive Dirichlet character χ to the mod-
ulus q. Furthermore, we have

N(σ, T, 11) ≤ 2T log

(
1 +

9.8

2T
(3T )8(1−σ)/3 log5−2σ(T )

)
+ 103(log T )2.

Our result is asymptotically better in case Q = 1 than Ingham’s, from which we
borrow most of the proof, by almost two powers of logarithm: we get the exponent
5− 2σ instead of the classical 5. See [51, Theorem 9.19].

In case Q = 1, the form we have chosen for our density estimate is unusual but
numerically efficient. If a simpler form is required, we can degrade the above (via
log(1 + x) ≤ x) into

(1.1) N(σ, T, 11) ≤ 9.8(3T )8(1−σ)/3 log5−2σ(T ) + 103(log T )2.

However the form we have chosen also implies for instance that

N(3/4, T, 11)

(3T )2/3(log T )7/2
≤


1/4 when T ≤ 4.5 · 1010,

1/2 when T ≤ 3.3 · 1012,

1 when T ≤ 2.1 · 1014,

9.9 when T ≥ 0.

while (1.1) would only prove the last line.
For comparison, Chen/ Liu & Wang’s result does not apply here because of the

exponent of T . We should however mention that, when comparing this estimate
to the total number of zeroes, see Lemma 9.1, the above bound at σ = 3/4 is not
more than 1/2 this total number (and this is required because of the symmetry of
the zeroes with respect to ρ 7→ 1− ρ) only when at least T ≥ 1016. This is a really
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small bound in such a field. The choice 17/20 = 0.85 seems interesting. Our result
yields

(1.2) N(17/20, T, 11) ≤ 9.9 (3T )2/5(log T )33/10

which is this time always not more than 0.079 times the trivial bound.
Let us compare our result in case Q = 1 with [30].

• When σ = 17/20, [30] yields 1
2N(17/20, T, 11) ≤ 0.5561T + 0.7586 log T −

268 658 (the factor 1
2 is required: in classical notation N(σ, T ) counts the

non-trivial zeros of the Riemann zeta function with abscissa between 0 and
T and not between −T and T ). The estimate (1.2) is nearly twice better.
• However when σ = 4/5, [30] yields 1

2N(4/5, T, 11) ≤ 0.7269T+0.9566 log T−
209 795 which is better than 9.9.5(4T )2/3(log T )7/2 when T ≤ 5.3·1020. It is
even better than the more refined bound we have given when T ≤ 4.2 ·1012.
• And when σ = 7/10, [30] yields 1

2N(7/10, T, 11) ≤ 1.4934T +1.4609 log T −
136 370 which is smaller than our better bound at least on the range T ≤
3.3 · 1037.

Let us note here that some intermediate results are of independant interest:
lemma 4.3 is a complement of [42, Lemma 3.2] for evaluating averages of non-
negative multiplicative functions, corollaries 6.3 and 6.4 are sharp explicit versions
of [22, Theorem 3]. Lemma 6.5 is more straightforward but is indeed a numerical
refinement of [36, Corollary 3]. Lemma 5.4 has been quoted earlier in [5] but this
is the first published proof (as far as I know).

Acknowledgement. We take the opportunity of this paper to show how to practically
use the multiprecision interval arithmetic of Sage [49]. Let Paul Zimmermann be
thanked for this part. We also present some usage of Gp/Pari, and let Karim
Belabas be thanked for improving some of the scripts given below.

Notation and some definitions. We follow closely Ingham’s proof as given in [51],
paragraph 9.16 through 9.19. We extend it to cover the case of Dirichlet characters.

We consider a real parameter X ≥ 2000 and the following kernel that we use to
“mollify” L(s, χ) (see [13] for instance)

(1.3) MX(s, χ) =
∑
n≤X

µ(n)χ(n)/ns.

We consider

(1.4)


fX(s, χ) = MX(s, χ)L(s, χ)− 1,

hX(s, χ) = 1− fX(s, χ)2 = L(s, χ)MX(s, χ)(2− L(s, χ)MX(s, χ)),

gX(s, χ) = hX(s, χ)hX(s, χ).

We observe that zeroes of L(s, χ) are zeroes of hX(s, χ). We use here the fact
that MX(s, χ) is expected to be a partial inverse of L(s, χ), due to combinatorial
properties of the Moebius function.

We use the shorthand

(1.5)
∑?

q≤Q,
χmod∗ q

h(q, χ) =
∑
q≤Q

q

ϕ(q)

∑
χ mod q,
χ primitive

h(q, χ)
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for any arbitrary function h.
We denote by N1(σ, T, χ) the number of zeroes ρ of hX(s, χ) in the rectangle

(1.6) <ρ ≥ σ, T ≥ |=ρ|

to the exception of those with =ρ = 0. They are also the zeroes of gX(s, χ) with
T ≥ =ρ ≥ 0 and <s ≥ σ, counted according to multiplicities. We define furthermore
N1(σ, T1, T2, χ) = N1(σ, T2, χ)−N1(σ, T1, χ) as well as

N1(σ, T1, T2, Q) =
∑?

q≤Q,
χmod∗ q

N1(σ, T1, T2, χ).

In the course of the proof, we shall require

(1.7) FQ(σ, T ) =

∫ T

−T

∑?

q≤Q,
χmod∗ q

|fX(σ + it, χ)|2dt

which of course depends on the parameter X as well. The variable t ranges [−T, T ]
and we sometimes will have results where the variable t ranges [0, T ]. In such
a case we will use the notation 1

2FQ(σ, T ), thanks to the symmetry induced by

fX(σ + it, χ) = fX(σ − it, χ).
The remainder of the notation is standard, but here are some points: the arith-

metical functions are the Moebius function µ, the number of prime factors counted
without multiplicity ω, the Euler-totient function ϕ; the arithmetical convolution
product is denoted by ?. The letter ψ does not represent the Chebyschef-ψ function
but the digamma function, though ϑ is the Chebyschef ϑ-function. The letter p
represents a prime number in summations. We use f = O∗(g) to say that |f | ≤ g.

Minimal orders of magnitude. The parameters that quantify the sizes are Q and T .
Most of the time, we will only require bounds on X = Q2T . When Q = 1, we can
assume that T ≥ 3 · 1010, while in general, we can assume that either Q > Q0 =
400 000 or T > 108/Q. Since in that case (Q 6= 1) we also assume that Q ≥ 10,
this means that we can in any case assume that X ≥ 109. We also consider only
the case T ≥ 2000, which implies that X ≥ 2000Q2 (valid also when Q = 1). Note
however that a parameter T is often used in lemmas, and it is not always subject
to T ≥ 2000. The parameter X is always linked to the final choices.

Thanks. Warm thanks are due to the referee for his/her very careful reading of this
paper and for the quality of his/her comments.

2. On the size of L-functions

Lemma 2.1. Let χ be a primitive character of conductor q > 1. For − 1
2 ≤ −η ≤

σ ≤ 1 + η ≤ 3
2 , we have

|L(s, χ)| ≤
(
q|1 + s|

2π

) 1
2 (1+η−σ)

ζ(1 + η)

See [41, Theorem 3]. In the same paper, Theorem 4 treats in passing the case
q = 1, where the above bound for q = 1 simply has to be multiplied by 3| 1+s

1−s |. We
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can treat the term ζ(1 + η) by using the inequality (see also Lemma 5.4 below)

(2.1) ζ(1 + η) ≤ 1 + η

η

valid for η > 0. Our main application has σ = <s = 1
2 , for which we can invoke the

following result of [11, Corollary to Theorem 3], modified according to [52, Section
5]:

Lemma 2.2. For 0 ≤ t ≤ e, we have |ζ( 1
2 + it)| ≤ 2.657. For t ≥ e, we have

|ζ( 1
2 + it)| ≤ 2.4 t1/6 log t.

The modification in question leads to the constant 2.4 instead of the initial 3.

Lemma 2.3. Let χ be a primitive character of conductor q ≥ 1. We have (for
T ≥ 4)

max
{
|L(s, χ)|,<s ≥ 0, |=s| ≤ T

}
≤ 4.42(qT )5/8.

Proof. We use Lemma 2.1 with η = 1/4 in case q > 1 to get the upper bound(
q(1 + σ + T )

2π

) 1
2 ( 5

4−σ)

ζ(5/4)

In the quotient, the worse case is σ = 0. The quantity ζ(5/4) ≤ 4.6 is trivially an
upper bound in case <s ≥ 5/4. In case q = 1, we multiply this bound by 3.001. �

Lemma 2.4. We have, when Q ≥ 10 and T > 0,

max
{
|L( 1

2 + it, χ)|, χmod∗ q ≤ Q, |t| ≤ T
}
≤ 2 (QT )

1/4
log(QT ) + 3Q1/4 logQ.

When Q = 1, we have

max
{
|ζ( 1

2 + it)|, |t| ≤ T
}
≤ 2.4T 1/6 log(T ) + 6.8.

The lemma is, by continuity, valid at T = 0 provided one understands 01/4 log 0
and 01/6 log 0 as being 0.

Proof. We use Lemma 2.1 with η = 1/ log(QT ) in case q > 1 and get the upper
bound

e1/2

(
q( 3

2 + T )

2π

)1/4

(log(QT ) + 1) ≤ 2 (QT )
1/4

log(QT )

for QT ≥ 5. When QT ≤ 5, then we take η = 1/ logQ and numerically check that(
1 +

1

log 2

)
e1/2

( 3
2 + T

2π

) 1
4

Q1/4 logQ− 2 (QT )
1/4

logQ ≤ 1.7Q1/4 logQ

when T ≥ 0. As for the remaining case QT ≤ 5 and T ≤ 1, we add the maximum of
−2T 1/4 log T divided by log 10 (this is 8/(e log 10)) to the coefficient of Q1/4 logQ.
This readily extends to encompass case q = 1 and this concludes the first half of
the lemma.

Let us turn to the estimate concerning solely the Riemann zeta-function. We
first check that min0≤t≤3(14.4T 1/6 log(T 1/6) + 7.96) ≥ 2.657 since the minimum is

reached when T 1/6 = 1/e. One can in fact be more precise by relying on explicit
computations of ζ(1/2 + it) on the very restricted range t ∈ [0, 3]. This hints at
the property |ζ( 1

2 + it)| ≤ 2.4T 1/6 log(T ) + 6.78. The RHS is more than 2.657 if
t ≥ 0.07, so the only the range [0, 0.07] needs to be covered. It is then not necessary
to give more details. �
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3. Some arithmetical lemmas

Here is a lemma from [12]:

Lemma 3.1. We have, for D ≥ 1 004∑
d≤D

µ2(d) =
6D

π2
+O∗

(
0.1333

√
D
)
.

In particular, this is not more than 0.62D when D ≥ 1700.

We shall require explicit computations that involve sums over primes (we convert
products in sums via the logarithm). We shall truncate these sums and here is a
handy lemma to control the error term.

Lemma 3.2. Let f be a C1 non-negative, non-increasing function over [P,∞[,
where P ≥ 3 600 000 is a real number and such that limt→∞ tf(t) = 0. We have∑

p≥P

f(p) log p ≤ (1 + ε)

∫ ∞
P

f(t)dt+ εPf(P ) + Pf(P )/(5 log2 P )

with ε = 1/914. When we can only ensure P ≥ 2, then a similar inequality holds,
simply replacing the last 1/5 by a 4.

On the value of ε: we rely on [47, (5.1∗)] because it is easily accessible. However
on using [17, Proposition 5.1], one has access to ε = 1/36260. And on using [20,
Theorem 1.1] together with a finite range verification, we may expect to have access
to ε = 1/70000. These bounds are all in the process of being published (though P.
Dusart’s thesis [15] is published, it is not easily accessible).

Proof. A summation by parts tells us that∑
p≥P

f(p) log p = −
∫ ∞
P

f ′(t)ϑ(t)dt− ϑ(P )f(P )

where ϑ(x) =
∑
p≤x log p. At this level, we recall two results. One is (a weakening

of) [47, (5.1∗)] and reads

ϑ(x)− x ≤ x/914 (x > 0)

The second one is [17, Theorem 5.2], or also the third inequality of [18, page 54]
(these result may also be found in [15]):

|ϑ(x)− x| ≤ 0.2x/(log2 x) (x ≥ 3 600 000).

The lemma follows readily on applying these estimates. �

Lemma 3.3. We have∑
d≤D

µ2(d)
ϕ(d)

d2
= a logD + b+O∗(0.174)

with a =
∏
p≥2(p3 − 2p+ 1)/p3 = 0.4282 +O∗(10−4) and

b/a = γ +
∑
p≥2

3p− 2

p3 − 2p+ 1
log p = 2.046 +O∗(10−4).

Furthermore the 0.174 can be reduced to 0.0533 when D ≥ 10 and to 0.0194 when
D ≥ 48.
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Proof. We appeal to [42, Lemma 3.2]. First note that

D(s) =
∑
d≥1

µ2(d)ϕ(d)

d2+s
=
∏
p≥2

(
1 +

p− 1

p2+s

)
= ζ(s+ 1)

∏
p≥2

(
1− 1

p2+s
− 1

p2+2s
+

1

p3+2s

)
= ζ(s+ 1)H(s)

say. We thus get, for D ≥ 1:∑
d≤D

µ2(d)
ϕ(d)

d2
= H(0) logD +H ′(0) + γH(0) +O∗

(
c/D1/3

)
where the constants are given by

c =
∏
p≥2

(
1 +

1

p5/3
+

1

p4/3
+

1

p7/3

)
≤ 6,

and

a = H(0) =
∏
p≥2

p3 − 2p+ 1

p3
= 0.4282 +O∗(10−4).

Furthermore

H ′(0)

H(0)
=
∑
p≥2

3p− 2

p3 − 2p+ 1
log p = 1.4695 +O∗(10−4)

We use the following Sage program, see [49], since it implements interval arithmetic
from [21]:

# File lemma32.sage

R = RealIntervalField(64)

def g(n):

res = 1

l = factor(n)

for p in l:

if p[1] > 1:

return R(0)

else:

res *= (p[0]-1)/p[0]^2

return R(res)

P = 10000

aaa = R(1)

p = 2

while p <= P:

aaa *= R(1-2/p^2+1/p^3)

p = next_prime (p)

eps = 1/R(914)

x = 3*(1+eps)/R(P)/log(R(P))+3*eps/R(P)/log(R(P))+3/4/R(P)/log(R(P))^3

x = exp(-x)

aaa = aaa * x.union(R(1))
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P = 100000

bbb = R(0)

p = 2

while p <= P:

bbb += R((3*p-2)/(p^3-2*p+1))*log(R(p))

p = next_prime (p)

x = (log(R(P))+1)/R(P)

bbb = bbb + x.union(R(0)) + R(euler_gamma)

ccc = R(6)

def model(z):

return aaa * (log(R(z)) + bbb)

def getbounds (zmin, zmax):

zmin = max (0, floor (zmin))

zmax = ceil (zmax)

res = R(0)

for n in range (1, zmin + 1):

res += g(n)

maxi = abs(res - model (zmin)).upper()

maxiall = maxi

for n in xrange (zmin + 1, zmax + 1):

m = model (n)

maxi = max (maxi, abs(res - m).upper())

res += g(n)

maxi = max (maxi, abs(res - m).upper())

if n % 100000 == 0:

print "Upto ", n, " : ", maxi, cputime()

maxiall = max (maxiall, maxi)

maxi = R(-1000).upper()

maxi = max (maxi, abs (res - model (zmax)).upper())

maxiall = max (maxiall, maxi)

print "La borne pour z >= ", zmax, " : "

bound = ccc/R(zmax)^(1/3)

print bound.upper()

return [maxiall, maxi]

Assuming this file is called lemma32.sage, the command load(’lemma32.sage’)

within Sage indeed loads the included functions. The command getbounds(1000,

30000000) brings the output

sage: getbounds(1000, 30000000)

...

La borne pour z >= 30000000 :

0.0193097876921125952

[0.00214646012080014072, 0.000202372251756890651]
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showing that ∣∣∣∑
d≤D

µ2(d)
ϕ(d)

d2
− a logD − b

∣∣∣ ≤ 0.00215

when 1000 ≤ D ≤ 30 000 000. We then check that we can in fact start at x = 48.
The conclusion is easy. �

Lemma 3.4. Let N ≥ 1 be a real number. We have

6

π2
logN + 0.578 ≤

∑
n≤N

µ2(n)/n ≤ 6

π2
logN + 1.166.

When N ≥ 1000, the couple (0.578, 1.166) may be replaced by (1.040, 1.048)

A similar lemma occurs in [46], but with worse constants.

Proof. We proceed as above and get∑
n≤N

µ2(n)/n =
6

π2

(
logN + 2

∑
p≥2

log p

p2 − 1
+ γ) +O∗(3/N1/3).

A similar script as in the previous lemma yields∣∣∣∑
d≤D

µ2(d)

d2
− 6

π2
logD − b′

∣∣∣ ≤ 0.00340

when 1000 ≤ D ≤ 30 000 000. We present here an easier GP script, see [38], to
extend it. Though such a script is usually enough (by which we mean, its result
can in most examples be certified by Sage as in the previous lemma), only the
program using MPFR handles correctly the error term.

{g(n) =

my(res = 1.0, dec = factor(n), P = dec[,1], E = dec[,2]);

for(i = 1, #P,

my(p = P[i]);

if(E[i] != 1, return(0));

res *= 1/p);

return(res);}

aaa = 6/Pi^2;

bbb = 1.7171176851;

ccc = 3;

{model(z)=aaa*(log(z)+bbb)}

{getsidedbounds(zmin,zmax)=

my(res = 0.0, m, maxiplus, maximinus, maxiplusall, maximinusall);

zmin = max( 0, floor(zmin));

zmax = ceil(zmax);

for(n=1, zmin, res += g(n));

m = model(zmin);

maxiplus = res - m;

maxiplusall = maxiplus;

maximinus = res - m;
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maximinusall = maximinus;

for(n = zmin+1, zmax,

m = model(n);

maxiplus = max(maxiplus, res-m);

maximinus = min(maximinus, res-m);

res += g(n);

maxiplus = max(maxiplus, res-m);

maximinus = min(maximinus, res-m);

if(n%100000==0,

print("Upto ",n," : ", maximinus, " / ", maxiplus);

maxiplusall = max(maxiplusall, maxiplus);

maximinusall = min(maximinusall, maximinus);

maxiplus = -1000;

maximinus = 1000));

m = model(zmax);

maxiplus = max(maxiplus, res - m);

maxiplusall = max(maxiplusall, maxiplus);

maximinus = min(maximinus, res - m);

maximinusall = min(maximinusall, maximinus);

print("La borne pour z >= ", zmax, " : ", ccc/zmax^(1/3));

return( [maximinusall, maximinus, maxiplusall, maxiplus]);

}

The conclusion is easy. �

4. On the total weight

In this section we prove an upper bound for
∑?

q≤Q,
χmod∗ q

1.

Lemma 4.1. The number ϕ∗(q) of primitive characters modulo q is a multiplicative
function given for any prime p by

ϕ∗(p) = p− 2, ϕ∗(pk) = pk
(

1− 1

p

)2

(∀k ≥ 2).

This is [48, Theorem 8] with the notation ϕ∗ of [29, (3.7)].

Proof. Indeed, there are ϕ(q) characters modulo q, which we can split according to
their conductor: for each d|q, there are ϕ∗(d) characters modulo q of conductor d.
Hence 11 ? ϕ∗ = ϕ which is readily solved in ϕ∗ = µ ? ϕ. This expression proves the
multiplicativity as well as the values we have given. �

By using a script similar to the one used for Lemma 3.4, we prove that

Lemma 4.2. When Q ∈ [10, 100 000 000], we have∑
q≤Q

q

ϕ(q)
ϕ∗(q) ≤ 0.29Q2

where the function ϕ∗ is defined in Lemma 4.1.
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In fact, computing up toQ = 100 would have been enough for our sole application
in Lemma 4.4 below.

Here is a lemma that will lead to a proof similar to the one of [42, Lemma 3.2].

Lemma 4.3. We have, for any real number X ≥ 0 and any real number c ∈ [1, 2],∑
q≤X

q = 1
2X

2 +O∗( 1
2X

c).

Proof. When X < 1, we check that 1
2X

c ≥ 1
2X

2 for any c ∈ [1, 2]. This proves that

(4.1)
∑
q≤X

q = 1
2X

2 +O∗( 1
2X

c) (∀X ∈ [X∗, X∗ + 1))

for any c ∈ [1, 2] and X∗ = 0.
Let Q be a positive integer and N =

∑
q≤Q q = Q(Q + 1)/2. Note that Q ≤√

2N < Q+ 1. Then

• When Q ≤ X <
√

2N , we have |N − 1
2X

2| ≤ 1
2X

c for every c ∈ [1, 2].

Indeed this is equivalent to N ≤ 1
2X

2 + 1
2X

c which is implied by N ≤
1
2Q

2 + 1
2Q ≤

1
2X

2 + 1
2X

c.

• When
√

2N ≤ X < Q+1, the inequality |N − 1
2X

2| ≤ 1
2X

c is equivalent to

Xc −X2 + 2N ≥ 0. The derivative of the involved function is cXc−1 − 2X
which is non-positive (c < 2). So we have to check that (Q + 1)c − (Q +
1)2 + 2N ≥ 0 i.e. 2N ≥ Q2 +Q which is true.

This proves that (4.1) holds for X∗ = Q, for all Q. �

Lemma 4.4. When Q ≥ 1, we have∑
Q0<q≤Q

q

ϕ(q)
ϕ∗(q) ≤ 0.240Q2 + 2Q3/2

where the function ϕ∗ is defined in Lemma 4.1. Hence the sum in question is
≤ 0.29Q2 when Q ≥ 10. And, when Q ≥ Q0 = 400 000, we have∑

Q0<q≤Q

q

ϕ(q)
ϕ∗(q) ≤ 0.240

(
Q2 −Q2

0

)
+ 2

(
Q3/2 +Q

3/2
0

)
.

Proof. We denote by S the sum to be studied. We introduce the multiplicative
function

g(q) =
q

ϕ(q)
ϕ∗(q).

We have g(q)/q = (11?h)(q) where h is the multiplicative function defined on powers
of each prime p by

h(p) =
−1

p− 1
, h(p2) =

1

p(p− 1)
, h(pk) = 0 (∀k ≥ 3).

This enables us to write

(4.2) g(q) = q
∑
ab2|q,

(a,b)=1

µ(a)µ2(b)

ϕ(a)bϕ(b)
.



12 O. RAMARÉ

This expression together with Lemma 4.3 with some parameter c ∈ (1, 2) yields

S =
∑
a,b≥1,
(a,b)=1

µ(a)µ2(b)

ϕ(a)bϕ(b)

∑
ab2|q≤Q

q

=
∑
a,b≥1,
(a,b)=1

µ(a)µ2(b)ab

ϕ(a)ϕ(b)

(
Q2

2a2b4
+O∗

(
Qc

2acb2c

))

=
Q2

2

∏
p≥2

(
1− 1

p(p− 1)
+

1

p3(p− 1)

)
+O∗

Qc
2

∏
p≥2

(
1 +

1

pc−1(p− 1)

(
1 +

1

pc

)) .

We choose c = 3/2 and compute

S ≤ 0.240Q2 + 2Q3/2.

On appealing to Lemma 4.2, the second part of our lemma follows readily. The
third part is straightforward. �

5. Estimates concerning the Moebius function

Here is a handy lemma taken from [43, Theorem 1.1], generalizing [25, Lemma
10.2].

Lemma 5.1. We have uniformly for any real numbers N ≥ 1 and ε > 0, and any
integer d ∣∣∣ ∑

n≤N,
(n,d)=1

µ(n)/n1+ε
∣∣∣ ≤ 1 + ε.

Lemma 5.2. When σ ≥ 1 and q ≥ 2, we have q−σ − q−2σ ≤ q−1 − q−2.

Proof. We consider the auxiliary function f(σ) = e−σy − e−2σy, whose derivative
is f ′(σ) = −ye−σy(1− 2e−σy). When y ≥ log 2 and σ ≥ 1, we have 1− 2e−σy ≥ 0.
The proof is complete. �

Lemma 5.3. For s real satisfying |s− 1| ≤ 1/2, we have

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) +O∗(20|s− 1|2)

where γ = 0.57721 · · · and γ1 = 0.07281 · · · are the Laurent-Stieltjes constants.

See [19] for the latest bounds on the Laurent-Stieltjes constants.

Proof. We first note the inequality |e−z − 1 + z| ≤ |z|2e|z|. We then proceed as
follows:

ζ(1 + z) =
1 + z

z
− (1 + z)

∫ ∞
1

{t} dt

t2+z

=
1 + z

z
− (1 + z)

∫ ∞
1

{t}(1− z log t)
dt

t2
+O∗

(
|z2 + z3|

∫ ∞
1

(log t)2dt

t2−|z|

)
=

1

z
+ γ − γ1z +O∗

(
|z2 + z3|

∫ ∞
1

(log t+ (log t)2)
dt

t2−|z|

)
.
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Note that these lines show that the constant γ and γ1 exist. Since they are unique,
we can identify them with the usual ones. An integration by parts takes care of the
remainder term. �

Lemma 5.4. When s > 1 is real, we have ζ(s) ≤ eγ(s−1)/(s− 1).

In [5], the authors prove among other things this inequality with log 2 instead of
the optimal γ.

Proof. Since x 7→ eγx/x is increasing when γx ≥ 1, while x 7→ ζ(1+x) is decreasing,
and ζ(1 + γ−1) ≤ eγ, the inequality is proved for x ≥ 1/γ.

By splitting the interval [0, 2] in K + 1 = 10001 subintervals [k/K, (k + 1)/K]
and checking numerically that ζ(1 + 2k/K) ≤ K e2γ(k+1)/K/(2(k + 1)) we obtain
that it fails when k ≤ 632 and succeeds otherwise: we have proved the inequality
for s > 1 + 2 × 633/10000 = 1.1266. We reiterate this process, but replacing
the interval [0, 2] by the interval [0, 2 × 633/10000] and prove the inequality for
s > 1 + 2× 633/104 × 4025/104, and in particular for s > 1.06.

We should now prove the inequality in the vicinity of s = 1, for which we use
Lemma 5.3. We find that

ζ(1 + ε) ≤ 1

ε
+ γ − γ1ε+ 20ε2

and we check that this is not more than eγε/ε when ε ∈ [0, 1/10]. The lemma
follows readily. �

Lemma 5.5. For σ > 1 and X ≥ 109, we have

∑
n≥1

(∑
d|n,
d≤X

µ(d)
)2

σnσ
≤ 0.529

eγ(σ−1)σ

σ − 1
logX.

Proof. Let G(σ) be our sum. On expanding the square, we find that

G(σ) =
ζ(σ)

σ

∑
d1,d2≤X

µ(d1)µ(d2)

[d1, d2]σ
.

We define for any σ the auxiliary function

(5.1) ϕσ(d) = dσ
∏
p|d

(1− p−σ)

which verifies dσ = (11 ? ϕσ)(d); here ? denotes the usual convolution product. On
using Lemma 5.1 and Selberg diagonalisation method, we get

G(σ)/ζ(σ) =
1

σ

∑
δ≤X

ϕσ−1(δ)

( ∑
δ|d≤X

µ(d)

dσ

)2

≤ σ
∑
δ≤X

µ2(δ)ϕσ(δ)

δ2σ
.

We readily check that ϕσ(δ)/δ2σ ≤ ϕ(δ)/δ2, since Lemma 5.2 establishes this fact
on prime powers. We are now in a position to appeal to Lemma 3.3 and reach

G(σ) ≤ σζ(σ)
(
0.4283 logX + 2.047 + 0.0194

)
.

We conclude by appealing to Lemma 5.4. �
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Lemma 5.6. When X ≥ 109, we have

∑
X<n<5X

(∑
d|n,
d≤X

µ(d)
)2

n2
≤ 0.605

X

Proof. We compute separately the contributions arising from n ∈ (X, 2X] and from
n ∈ (2X, 5X). When n ∈ (X, 2X], the coefficient

∑
d|n,
d≤X

µ(d) equals −µ(n), which

means we have to bound above

S1 =
∑

X<n≤2X

µ2(n)

n2
.

We proceed by integration by parts, relying on Lemma 3.1:

S1 =

∑
X<n≤2X µ

2(n)

(2X)2
+ 2

∫ 2X

X

∑
X<n≤t

µ2(n)
dt

t3

≤
6
π2X + 0.1333(1 +

√
2)
√
X

(2X)2
+ 2

∫ 2X

X

( 6

π2
(t−X) + 0.1333(

√
X +

√
t)
)dt
t3

≤ 3

π2X
+

0.1333

X3/2

(
1 +
√

2 + 1− 1

4
+

2

3/2

(
1− 1

23/2

))
≤ 0.304/X.

When n ∈ (2X, 5X), we readily see by inspecting all the possible cases that the
coefficient

∑
d|n,
d≤X

µ(d) takes values in {−1, 0, 1}. The only non-trivial cases is when

n is divisible by 2 and 3, where the coefficient has value −µ(n)− µ(n/2)− µ(n/3).
When µ(n) 6= 0, the conclusion is straighforward, but otherwise we are left with
−µ(n/2)−µ(n/3). However, if both µ(n/2) and µ(n/3) do not vanish, then so does
µ(n). It is thus enough to bound S2 =

∑
2X<n<5X 1/n2. We write simply

S2 ≤
1

(2X)2
+

∫ 5X

2X

dt

t2
=

(
1

2
− 1

5
+

1

4X

)
1

X
≤ 0.301/X.

�

6. Large sieve estimates and the like

Here is the classical large sieve inequality for primitive characters (see [36], [22,
Lemma 1]) stated with notation (1.5):

Lemma 6.1. We have∑?

q≤Q,
χmod∗ q

∣∣∣∣ ∑
1≤n≤N

bnχ(n)

∣∣∣∣2 ≤ (N − 1 +Q2)
∑
n

|bn|2.

Theorem 6.2. Let (un)n≥1 be a sequence of complex numbers. Let k ≥ 1 be an
integer parameter, and c∗ ≥ 2/k and T ∗ > 0 be two real parameters. For any real



AN EXPLICIT DENSITY ESTIMATE FOR DIRICHLET L-SERIES 15

numbers T ≥ 0 we have

∑?

q≤Q,
χmod∗ q

∫ T

−T

∣∣∣∑
n

unχ(n)nit
∣∣∣2dt

≤ β2
k

(
π/c∗

sin 2π
c∗k

)2k ∑
n≤N

|un|2
(

4π
sinh 4π

c∗T∗

4π/(c∗T ∗)
n+ c∗Q2 max(T ∗, T )

)
where the positive constants βk are defined in (6.5).

When c∗ ≥ 5.03 and T ∗ is large enough, it is best to select k = 1. The choice
c∗ = 12.5876 leads to the following corollary:

Corollary 6.3. We have, for T ≥ 0:

∑?

q≤Q,
χmod∗ q

∫ T

−T

∣∣∣∣∑
n

anχ(n)nit
∣∣∣∣2dt ≤ 7

∑
n

|an|2(n+Q2 max(T, 3)).

It is possible to diminish the constant in front of the Q2T -term at the cost of a
higher one in front of the n-term. For instance, on selecting c∗ = 1.21 and k = 18,
we get

Corollary 6.4. We have, for T ≥ 0:

∑?

q≤Q,
χmod∗ q

∫ T

−T

∣∣∣∣∑
n

anχ(n)nit
∣∣∣∣2dt ≤∑

n

|an|2(43n+ 33
8 Q

2 max(T, 70)).

We follow the idea of [36, Corollary 3] but rely on [40] to get that

Lemma 6.5. We have∫ T

0

∣∣∣∑
n

unn
it
∣∣∣2dt ≤ ∑

n≤N

|un|2(2πc0 (n+ 1) + T ),

where c0 =

√
1 + 2

3

√
6
5 . Moreover, when un is real-valued, the constant 2πc0 may

be reduced to πc0.

Proof. As noted in [36, last paragraph], we have | log(m/n)| ≥ 1/(n + 1) when
m and n are distinct positive integers and it is thus a triviality to give explicit
constants in [36, Corollary 3]. When the sequence (un) is real-valued, we write∫ T

0

∣∣∣∑
n

unn
it
∣∣∣2dt = T

∑
n

|un|2 +
∑
m6=n

umm
iTunn

−iT

log(m/n)
−
∑
m6=n

umun
log(m/n)

.

This third summand vanishes identically when (un) is real-valued as shown by
combining the pairs (m,n) and (n,m). The conclusion is straightforward. �
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6.1. Proof of Theorem 6.2, I: a generic proof. We follow closely the proof of
a lemma due to Gallagher (this is [22, Lemma 1], as well as [9, Theorem 9]). We
first present a “generic” proof and choose the parameters later. Let F be a function
to be chosen later. We assume that F (t) = 0 as soon as |t| ≥ η for some parameter
η > 0. Let δ > 0 be a parameter that we shall also chose later. We define

Fδ(x) = F (x/δ).

Let us start from an arbitrary sequence of complex numbers (vn) such that
∑
n |vn| <

∞. We readily get∑
n

vne
2iπt(logn)/(2π)F̂δ(t) =

∑
n

vn
̂

Fδ

(
t− log n

2π

)
.

Parseval identity yields∫ ∞
−∞

∣∣∣∣∑
n

vne
2iπt(logn)/(2π)F̂δ(t)

∣∣∣∣2dt =

∫ ∞
−∞

∣∣∣∣∑
n

vnFδ

(
x− log n

2π

)∣∣∣∣2dx
=

1

2π

∫ ∞
0

∣∣∣∣∑
n

vnFδ

( log(y/n)

2π

)∣∣∣∣2dy/y.
Our hypothesis on the support of F implies that the y’s in the relevant range verify
e−ηπδ ≤ y/n ≤ eηπδ. We apply the above to vn = unχ(n), apply the large sieve
inequality recalled in Lemma 6.1 and find that∑?

q≤Q,
χmod∗ q

∫ ∞
−∞

∣∣∣∣∑
n

unn
itχ(n)F̂δ(t)

∣∣∣∣2dt
≤ 1

2π

∫ ∞
0

∑
n

|un|2
∣∣∣∣Fδ( log(y/n)

2π

)∣∣∣∣2(y(e2ηπδ − e−2ηπδ) +Q2
)
dy/y

≤ 1

2π

∑
n

|un|2
∫ ∞

0

∣∣∣∣Fδ( log u

2π

)∣∣∣∣2(n(e2ηπδ − e−2ηπδ) +Q2u−1
)
du.

We change variable by setting u = exp(2πδw) and recall that the kernel function F
is assumed to be even. The right-hand side is thus bounded above by

δ
∑
n

|un|2
∫ ∞
−∞
|F (w)|2

(
n(e2ηπδ − e−2ηπδ)e2πδw +Q2

)
dw

≤ δ
∑
n

|un|2
(
n(e2ηπδ − e−2ηπδ)(e2ηπδ + e−2ηπδ) + 2Q2

) ∫ ∞
0

|F (w)|2dw.

Since F̂δ(t) = δF̂ (δt), we have finally reached

(6.1)
∑?

q≤Q,
χmod∗ q

∫ ∞
−∞

∣∣∣∣∑
n

unn
itχ(n)

∣∣∣∣2|F̂ (δt)|2dt

≤
∑
n

|un|2
(
n

sinh(4ηπδ)

δ
+Q2δ−1

)∫ ∞
−∞
|F (w)|2dw.
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6.2. Proof of Theorem 6.2, II: searching for a good kernel. Now that we
have this generic proof at our disposal, we seek to optimise the choice of the func-
tion F . We want |F̂ (δt)| > 0 when |t| ≤ T as well as F (t) = 0 when |t| ≥ η.
The only regularity conditions are that F is even and belongs to L2[−η, η]. We

obviously have F̂ (y) =
∫ η
−η F (t)e(yt)dt and we need to maximise

m(F, c, η) = min
|y|≤1/c

|F̂ (y)|

where c = 1/(δT ). We assume further that
∫ η
−η |F (x)|2dx = 1 since

∫∞
−∞ |F̂ (y)|2dy =∫ η

−η |F (t)|2dt. This would imply, via (6.1) and provided that m(F, c, η) > 0, that

(6.2)
∑?

q≤Q,
χmod∗ q

∫ T

−T

∣∣∣∣∑
n

unn
itχ(n)

∣∣∣∣2dt ≤ ∑
n |un|2

m(F, c, η)2

(
ncT sinh

4ηπ

cT
+ cQ2T

)
.

We define G(x) =
√
ηF (ηx) ∈ L2[−1, 1], which verifies

∫ 1

−1
|G(x)|2dx = 1. Further-

more Ĝ(y) = F̂ (y/η)/
√
η, and thus the right-hand side of (6.2) becomes

1

m(G, c/η, 1)2η

∑
n

|un|2
(
ncT sinh

4ηπ

cT
+ cQ2T

)
.

On setting c∗ = c/η we get

(6.3)
∑?

q≤Q,
χmod∗ q

∫ T

−T

∣∣∣∣∑
n

unn
itχ(n)

∣∣∣∣2dt ≤ ∑
n |un|2

m(G, c∗, 1)2

(
nc∗T sinh

4π

c∗T
+ c∗Q2T

)
.

By using Cauchy’s inequality, we see that the condition
∫ 1

−1
|G(x)|2dx = 1 implies

that m(G, c∗, 1)2 ≤ 2. When c∗ tends to ∞, reducing m(G, c∗, 1) to Ĝ(0), the
bound m(G,∞, 1)2 = 2 is reached with the choice G(x) = 11|x|≤1. Let us now select
a positive integer k and consider gk(x) = 11|x|≤1/k. Its k-th convolution power

Gk = g
(?k)
k /βk verifies the condition support, is indeed even and we have

Ĝk(y) =

(
sin 2πy

k

πy

)k
/βk.

The constant βk is ‖gk‖2. We use [24, (3.836), part 2] with m = 0 to get

(6.4)

∫ ∞
0

(
sinx

x

)n
dx =

nπ

2n

∑
0≤`≤n/2

(−1)`(n− 2`)n−1

`!(n− `)!
.

We infer from this formula that

‖gk‖22 =

∫ ∞
−∞

(
sin 2πy

k

πy

)2k

dy =

(
2

k

)2k
k

2π

4kπ

22k

∑
0≤`≤k

(−1)`(2k − 2`)2k−1

`!(2k − `)!

from which we infer that

(6.5) β2
k = ‖gk‖22 =

22k

k2k−2

∑
0≤`≤k−1

(−1)`(k − `)2k−1

`!(2k − `)!
.

This gives

β2
1 = ‖g1‖22 = 2, β2

2 = ‖g2‖22 =
2

3
, β2

3 = ‖g3‖22 =
88

1215
.
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Numerically, we find that β2
k = ‖gk‖22 ≤ (2/k)2k

√
k

2 and in fact may be asymptotic
to this expression. If c∗ ≥ 2/k, which implies that 2π/(kc∗) ≤ π, we have

(6.6) m(Gk, c
∗, 1)−2 = β2

k

( π
c∗

sin 2π
c∗k

)2k

.

This together with (6.3) ends the proof of Theorem 6.2: indeed, we first check that
it is enough to prove the stated inequality for T ≥ T ∗ and the result then follows.

6.3. Proof of Corollary 6.3. Let us start by a remark. Numerically, we see that,
given c∗, the sequence (m(Gk, c

∗, 1)−2)k decreases and then increases. It has thus

most probably a limit and the guess β2
k ∼ (2/k)2k

√
k

2 implies that the limit is
infinity. As a consequence, letting k go to infinity is ruled out and we can only look
for the best value of k. It is then straighforward to compute numerical values.

Concerning Lemma 6.3, we first took c = 4π and rounding the constant in front
of the Q2T -term led to the value 7 with k = 1. Once this value 7 was set, we
deacreased the value of c so as to maintain a constant not more than 7 in front
of the Q2T -term but decrease the constant in front of the n-term. We reached
c = 12.93 is this manner. This process has been carried with T ∗ = 1000, and we
finally check that it can be reduced to T ∗ = 3.

Here is the GP-script we have used:

{norme(k) = my(res = 0, sgn = 1);

for(l = 0, k-1,res += sgn*(k-l)^(2*k-1)/l!/(2*k-l)!;

sgn = -sgn);

return(res*2^(2*k)/(k^(2*k-2)));}

{ct(k,c) = my(u = Pi/c);

return(norme(k)*(u/sin(2*u/k))^(2*k));}

{show(c, borneinf = 10, bornesup = 100, Tstar = 1000) =

my(ct0, corr = sinh(4*Pi/c/Tstar)/4/Pi*c*Tstar);

for(k = max(borneinf,ceil(2/c+0.00000000001)), bornesup,

ct0 = ct(k,c);

print(" k = ", k,

" --> ( ", ct0*4*Pi*corr, ", ", ct0*c, ")"));}

The value 33
8 is the smallest value with a denominator ≤ 10 we have been able

to get in front of the Q2T -term, with T ? = 1000. The best actual value we have
been able to reach is 4.121 · · · by taking k = 18 and c = 1.21. We then check it is
possible to take T ? = 70 (and even T ? = 62 would do).

7. Usage of Theorem 6.2

Lemma 7.1. We have, for X ≥ 109, X ≥ 2 000Q2, and Q ≥ 10, T ≥ 0,∑?

q≤Q,
χmod∗ q

∫ T

0

|MX( 1
2 + it, χ)|2dt ≤ (1.36Q2T + 0.692X) logX.

We also have ∫ T

0

|MX( 1
2 + it, 11)|2dt ≤ (0.77T + 0.126X) logX.
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Proof. From Corollary 6.4, Lemma 3.4 and 3.1, we readily get the first quantity to
be not more than (note that the integration is between 0 and T and not between
−T and T )∑

n≤X

µ2(n)

n
(21.5n+ 33

16Q
2 max(T, 70))

≤ 33
16Q

2 max(T, 70)
( 6

π2
logX + 1.048

)
+ 21.5× 0.62X.

This ensures, on taking into account the bound X ≥ 109, that we have∑?

q≤Q,
χmod∗ q

∫ T

0

|MX( 1
2 + it, χ)|2dt ≤ (1.36Q2 max(T, 70) + 0.644X) logX.

Thus, when T ≤ 70, we have∑?

q≤Q,
χmod∗ q

∫ T

0

|MX( 1
2 + it, χ)|2dt ≤ (1.36Q2 × 70 + 0.644X) logX

≤
(1.36× 70

2000
+ 0.644

)
X logX.

Hence the lemma.
When considering only the principal character modulo 1, we can rely on Lemma 6.5,

which gives us the bound∑
n≤X

µ2(n)

n
(4.2n+ T + 4.2) ≤ 0.77(T + 4.2) logX + 4.2× 0.62X.

�

Lemma 7.2. We have, for X ≥ 109, X ≥ 2 000Q2, Q ≥ 10 and T ≥ 0,

1
2FQ(1/2, T ) ≤ 1.40Q1/2(Q2T + 0.51X)(2T 1/4 log(QT ) + 3 logQ)2 logX.

When Q = 1, we get:

1
2F1(1/2, T ) ≤ 4.45(T + 0.164X)(T 1/6 log(T ) + 2.83)2 logX.

Note that it is important that this lemma should hold for small T ’s as well. The
method developped here is of course very elementary since we want to be able to
compute all the involved constants, and has nothing in common with the technology
developped for instance in [14].

Proof. On using (1.7), the Minkowski inequality together with Lemma 4.4, we
readily see that √

1
2FQ(1/2, T ) ≤

√
A+

√
0.3TQ2

where

A =
∑?

q≤Q,
χmod∗ q

∫ T

0

|MX( 1
2 + it, χ)|2dt max

q≤Q,
<s= 1

2 ,|=s|≤T

|L(s, χ)|2.

On appealing to Lemma 2.4 and 7.1, we reach the upper bound

A ≤ A0 = Q1/2(1.36Q2T + 0.692X)(2T 1/4 log(QT ) + 3 logQ)2 logX.
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We notice that 2T 1/4 log(QT )+3 logQ = 8Q−1/4x log x+3 logQ with x = (QT )1/4.
The minimum of this quantity is obtained with x = 1/e and then Q = 10 and has
value ≥ 5.25. We check that A0 ≥ 1.36Q5/2T · 5.25 logX ≥ 918 · 0.3Q2T and, as a
consequence

1
2FQ(1/2, T ) ≤ (1 +

√
1/918)21.36Q1/2×

(Q2T + 0.51X)(2T 1/4 log(QT ) + 3 logQ)2 logX.

When Q = 1, we start from
√

1
2F1(1/2, T ) ≤

√
A + 1 and use the second part of

Lemma 2.4 and 7.1 to get the bound:

A ≤ A0 = (2.4T 1/6 log(T ) + 6.8)2(0.77T + 0.126X) logX.

We check that T 7→ 2.4T 1/6 log(T ) + 6.8 stays greater than 1.5025, and then that
A0 ≥ 1.50252 · 0.126 · 109 · log(109) ≥ 109 and thus

1
2F1(1/2, T ) ≤ (1+

√
1/109)22.4032(T 1/6 log T+ 6.8

2.403 )2(0.77T+0.126X) logX.

We pulled out 2.403 and not 2.4 so that we get in front the nicely rounded coefficient
4.45 and inside the equally nicely rounded coefficient 2.83. �

Lemma 7.3. We have, when δ = 1/ logX, X ≥ 2000Q2, X ≥ 109 and T ≥ 0,

1
2FQ(1 + δ, T ) ≤

(
1.18 + 0.155

Q2T

X

)
(logX)2.

When Q = 1, we get:

1
2F1(1 + δ, T ) ≤

(
1.40 + 0.0442

T

X

)
(logX)2.

Proof. We readily get from (1.7) and Lemma 6.3 the upper bound

7

2

∑
X<n

(∑
d|n,
d≤X

µ(d)

)2

n−2−2δ(n+Q2 max(T, 3)).

We note that, by Lemma 5.5, we have∑
X<n

(∑
d|n,
d≤X

µ(d)

)2

n−1−2δ ≤ (1 + 2δ)2e2γδ

2δ
0.529 logX

≤ 0.337(logX)2

Concerning the second sum, we appeal to Lemma 5.6 together with a simple version
of Rankin’s trick1 to bound above this quantity by

Q2 max(T, 3)

(
0.605

X1+2δ
+
∑
n≥1

(∑
d|n,
d≤X

µ(d)

)2

n−2−2δ
( n

5X

)1+δ
)
.

1The reason we use the exponent 1 + δ is the following: on using 1 + kδ say, we get Q2T/X

divided by (2 − k)Xkδ. With the choice δ = 1/ logX, we check that the maximum of this
denominator is attained close to the point k = 1. Hence our choice.
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By Lemma 5.5, this is not more than

Q2 max(T, 3)

(
0.605

X1+2δ
+

(1 + δ)2eγδ

5X1+δδ
0.529 logX

)
≤ 0.0442

Q2 max(T, 3)

X
(logX)2.

All of that gives us

7

2

(
0.337 + 0.0442

Q2 max(T, 3)

X

)
(logX)2

When T ≤ 3, we find

1
2FQ(1 + δ, T ) ≤ 7

2

(
0.337 +

0.0442× 3

2000

)
(logX)2 ≤ 1.18 (logX)2

We include this contribution to our estimate by replacing 7
2 × 0.337 by 1.18. The

first part of the lemma follows readily.
When considering only the principal character modulo 1, we can rely on Lemma 6.5

and get the upper bound∑
X<n

(∑
d|n,
d≤X

µ(d)

)2

n−2−2δ(4.14n+ T + 4.14).

We proceed as above via Rankin’s trick, after some steps similar to what has been
done, we reach the bound

4.14
(1 + 2δ)2e2γδ

2δ
0.529 logX +

T + 4.14

X

(
0.605

X2δ
+

(1 + δ)2eγδ

5Xδδ
0.529 logX

)
amounting to (

1.393 + 0.0442
T + 4.14

X

)
(logX)2.

The lemma follows readily. �

8. Computing some values of Γ and its derivatives

We shall require values of Γ and Γ′ at special points. The values we require are
tabulated in [1, Section 6, pages 253–277] and the values of the Γ-function may
also be asked to GP/Pari, but some explanations are called for. We get to Γ′

via Γ′(s) = ψ(s)Γ(s), where ψ is the Digamma function which is well known. In
particular it verifies ψ(x+1) = ψ(x)+(1/x). There are ways to compute explicitely
the values of the ψ-function at rational arguments (see Gauss’s Formula), but we
will simply use the psi function of Gp/Pari.

We proceed in a similar fashion for the trigamma function ψ1(x) = ψ′(x). It
verifies ψ1(x + 1) = ψ1(x) − (1/x2). Again some values are missing and we recall
the following simplistic representation of ψ1 that we used to compute ψ1(4/3):

(8.1) ψ1(x) =
∑
n≥0

1

(x+ n)2
.

This series converges rather slowly but we can use the sumpos function of Gp/Pari
via psi1(x) = sumpos( X = 0, 1/(X + x)2 ) to get excellent results instantly.



22 O. RAMARÉ

Here are the values we will need (Γ′′ = (ψ2 + ψ1)Γ):

(8.2)

Γ(1) = 1
Γ(7/6) = 0.927 · · · Γ′(7/6) = −0.308 · · ·
Γ(4/3) = 0.892 · · · Γ′(4/3) = −0.117 · · · Γ′′(4/3) = 0.993 · · ·
Γ(3/2) = 0.886 · · · Γ′(3/2) = 0.0323 · · · Γ′′(3/2) = 0.829 · · ·
Γ(2) = 1
Γ(13/6) = 1.08 · · · Γ′(13/6) = 0.568 · · ·
Γ(9/4) = 1.14 · · · Γ′(9/4) = 1.20 · · ·
Γ(7/3) = 1.19 · · · Γ′(7/3) = 0.735 · · · Γ′′(7/3) = 1.08 · · ·
Γ(5/2) = 1.32 · · · Γ′(5/2) = 0.934 · · · Γ′′(5/2) = 1.30 · · ·

9. On the total number of zeroes

Here is a lemma we took from [35].

Lemma 9.1. If χ is a Dirichlet character of conductor k, if T ≥ 1 is a real
number, and if N(T, χ) denotes the number of zeros β+iγ of L(s, χ) in the rectangle
0 < β < 1, |γ| ≤ T , then∣∣N(T, χ)− T

π
log

(
qT

2πe

)∣∣ ≤ C2 log(qT ) + C3

with C2 = 0.9185 and C3 = 5.512.

We recall that D. Platt in his thesis [39] has shown that no Dirichlet L-series with
conductor ≤ Q0 = 400 000 has no zeros of height 108/Q0 off the critical line and
(his result is somewhat stronger). In particular N(σ, 6, χ) = 0 whenever σ > 1/2.

Platt’s result together with Lemma 9.1 imply that, on using the third part of
Lemma 4.4 and provided when Q ≥ 10 and σ > 1/2, we have∑?

q≤Q,
χmod∗ q

N(σ, 6, χ) ≤
(

0.240
(
Q2 −Q2

0

)
+ 2

(
Q3/2 +Q

3/2
0

))
(9.1)

×
(

6

2π
log

6Q

2πe
+ 1

2 (0.92 log(6Q) + 5.6)

)
≤ 0.273Q2 logQ.(9.2)

The maximal value being about 0.2729167881609 · · · reached next to Q = 4 833 287.

10. Bounding FQ(T2, σ)− FQ(T1, σ)

This part contains the heart of the argument. Here are the results we prove in
this section.

Lemma 10.1. Let T ≥ T1 ≥ 2 and Q be positive real parameters that verify
X ≥ 109, X ≥ 2 000Q2 and Q ≥ 10. When X = Q2T , we have, for any σ ∈ [1/2, 1]:

FQ(T, σ)− FQ(T1, σ) ≤ 2.7

0.367
(61Q5T 3)1−σ log4−2σ(Q2T ).

And here its counterpart concerning solely the principal character:

Lemma 10.2. Let T ≥ 3 · 1010 and σ ∈ [1/2, 1]. We have

F1(T, σ)− F1(6, σ) ≤ 2.91

0.367
(2.77T )8(1−σ)/3 log4−2σ(T ).
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Both proofs are rather easy in principle: we majorize FQ(T, σ)−FQ(T1, σ) by a
smoother quantity (replacing the cutoff at T by essentially an exponential smooth-
ing). This is done at subsection 10.5. We evaluate this smoother version by a
convexity argument which we develop at Subsection 10.1. In order to apply the
resulting bound, we need to bound the smoothed version on σ = 1/2 (this is sub-
section 10.2) and on σ = 1 + δ for some small δ (this is subsection 10.3). This last
part is where the fact that the coefficients of the Dirichlet series fX vanish at the
beginning will be used.

10.1. A convexity argument. To evaluate
∫ T2

T1

∑?

q≤Q,
χmod∗ q

|fX(σ0 + it, χ)|2dt, we use

a slight extension convexity argument due to [26]. We first are to evaluate this
integral in 1

2 and in 1 + δ. We set

(10.1) Φ(s) =
s− 1

s(cos s)1/(2τ)
<s ∈ [ 1

2 , 1 + δ]

for some parameter τ ≥ 2 000 that we will at the end take to be T2. Here δ =
1/ log(Q2T2). The function s 7→ cos s does not vanish in the strip we consider since
| cos(σ + it)|2 = (cosσ)2 + (sinh t)2. The factor s− 1 is to take care of the pole of
ζ at s = 1, and its growth is compensated by the 1/s. The (cos s)1/2τ is here so
that Φ(s)fX(s, χ) = o(1) uniformly in <s and as |=s| goes to infinity while giving
enough weight to the s with |=s| between 0 and T . Let us set

(10.2) a =
1 + δ − σ
1 + δ − 1

2

, b =
σ − 1

2

1 + δ − 1
2

.

A slight extension of the Hardy-Ingham-Pólya inequality which we prove thereafter
reads

(10.3) MQ(σ) ≤MQ(1/2)aMQ(1 + δ)b

with

(10.4) MQ(σ) =

∫ ∞
−∞

∑?

q≤Q,
χmod∗ q

|Φ(σ + it)fX(σ + it, χ)|2dt.

The extension comes from the fact that we have added a summation over characters
instead of considering a single function.

Proof of (10.3). Indeed we follow closely [51, section 7.8] and set

(10.5) φ(z, χ) =
1

2iπ

∫ σ+i∞

σ−i∞
Φ(s)fX(s, χ)z−sds (σ ≥ 1/2, | arg z| < π/2).

Setting z = ixe−iδ with 0 < δ < π/2, we readily see that

Φ(σ + it)fX(σ + it, χ)e−i(σ+it)( 1
2π−δ) and φ(ixe−iδ, χ)
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are a Mellin pair. Using Parseval’s formula and Hölder inequality, we obtain:

MQ(σ) = 2π

∫ ∞
0

∑?

q≤Q,
χmod∗ q

|φ(ixe−iδ, χ)|2x2σ−1dx

≤ 2π
(∫ ∞

0

∑?

q≤Q,
χmod∗ q

|φ(ixe−iδ, χ)|2dx
)a(∫ ∞

0

∑?

q≤Q,
χmod∗ q

|φ(ixe−iδ, χ)|2x1+2δdx
)b

≤ MQ(1/2)aMQ(1 + δ)b.

�

Lemma 10.3. We have | cos(σ + it)| ≥ | cosσ sinσ| e|t|.

Proof. We have G = e−2|t|| cos(σ+it)|2 = (cosσ)2e−2|t|+(e−|t| sinh t)2. We develop
(e−|t| sinh |t|)2 in (1− 2x+ x2)/4 with the notation x = e−2|t|. As a result we find
that 4G = 4(cosσ)2x+ 1− 2x+ x2: this is a convex quadratic polynomial in x. It
thus takes its minimum at the unique zero x = 1 − 2 cos2 σ of its derivative; this
minimum is 4 cos2 σ − 4 cos4 σ, i.e. 4| cosσ sinσ|2. Our inequality is proved. �

We now exploit inequality (10.3), still following [51, section 7.8], on appealing
to Lemma 10.3 as well as |(s− 1)/s| ≤ 1 when 1/2 ≤ <s ≤ 1 + δ ≤ 3/2. We bound
above the RHS of (10.4) via

MQ(σ) ≤
(

1

cosσ sinσ

)1/τ ∫ ∞
−∞

e−|t|/τ
∑?

q≤Q,
χmod∗ q

|fX(σ + it, χ)|2dt.

On recalling (1.7), we see that an integration by parts give us

MQ(σ) ≤
(

1

cosσ sinσ

)1/τ ∫ ∞
0

e−T/τFQ(σ, T )dT/τ

≤
(

2

sin 2σ

)1/τ ∫ ∞
0

e−tFQ(σ, tτ)dt

10.2. An upper bound for MQ(1/2).

Lemma 10.4. Let T and Q be positive real parameters that verify Q2T ≥ 109,
X ≥ 2 000Q2 and Q ≥ 10. With the choice X = Q2T and τ = T , we have

MQ(1/2) ≤ 21(Q5T 3)1/2 log3(Q2T ).

Proof. We appeal to Lemma 7.2 to infer that MQ(1/2)/(2 × 1.40
√
Q logX) is

bounded above by ∫ ∞
0

NQ(t)e−tdt

where NQ(t) is (Q2τt+ 0.51X)(2τ1/4t1/4 log(Qτ) + 2τ1/4t1/4 log t+ 3 logQ)2 i.e.

4((log t)2 + 2(logQτ) log t) + (logQτ)2)Q2τ3/2t3/2

+12(logQ)((log t) + (logQτ))Q2τ5/4t5/4 +9(logQ)2Q2τt
+2× 0.51((log t)2 + 2(logQτ)(log t) + (logQτ)2)Xτ1/2t1/2 +9× 0.51(logQ)2X
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Note that in this proof, we keep X and τ independant of T and Q until the inte-
gration has been done. On using values of Γ, Γ′ and Γ′′ (see section 8), we get the
bound

4(1.31 + 2(logQτ)0.935 + 1.33(logQτ)2)Q2τ3/2

+12(logQ)(1.21 + 1.15(logQτ))Q2τ5/4 +9(logQ)2Q2τ
+1.02(0.830 + 2× 0.0324(logQτ) + (logQτ)20.887)Xτ1/2 +4.49(logQ)2X

We now take X = Q2T and τ = T . We use the inequalities logQ ≤ log T , logQ ≤
(1/3) log(Q2T ) and log(Qτ) ≤ log(Q2T ). Here is the upper bound we get for
MQ(1/2)/(2.8Q5/2T 3/2 log3(Q2T ))

4( 1.31
log2(Q2T )

+ 2 0.935
logQ2T + 1.33)

+ 12
3 ( 1.21

logQ2T + 1.15)T−1/4 +T−1/2

+0.54( 0.830
log2(Q2T )

+ 2 0.0324
logQ2T + 0.887) + 2.43

9 T−1/2

which simplifies into the claimed quantity since log(Q2T ) ≥ 9 log(10). �

And here is the counterpart corresponding to the case Q = 1.

Lemma 10.5. Let T ≥ 3 · 1010. On selecting X = τ = T , we have

M1(1/2) ≤ 11.3T 4/3 log3(T ).

Proof. We appeal to Lemma 7.2 to infer that M1(1/2)/(2× 4.45 logX) is bounded
above by ∫ ∞

0

N1(t)e−tdt

where N1(t) is (tτ + 0.164X)((tτ)1/6 log τ + (τt)1/6 log t+ 2.83)2, i.e.

((log τ)2 + 2(log t)(log τ) + (log t)2)τ4/3t4/3

+5.66(log τ + log t)τ7/6t7/6 +8.0089τt
+0.164(X(log τ)2 + 2X(log t)(log τ) +X(log t)2)τ1/3t1/3

+0.92824(X log τ +X log t)τ1/6t1/6 +1.3134596X

Note again that in this proof, we keep X and τ independant of T until the integra-
tion has been done. On using values of Γ, Γ′ and Γ′′ (see section 8), and substituting
X = τ = T . we get the bound

(1.20(log T )2 + 1.472 log T + 1.09)T 4/3

+5.66(0.569 log T + 1.09)T 7/6 +8.0089T
+0.164(0.893(log T )2 − 0.117 log T + 0.0994)T 1/3

+0.92824(0.927 log T − 0.308)T 1/6 +1.3134596T

Here is the upper bound we get when T ≥ 3 · 1010

M1(1/2) ≤ 11.3T 4/3 log3(T ).

�
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10.3. An upper bound for MQ(1+δ). We appeal to Lemma 7.3 (and recall that
δ = 1/ logX) to infer that

MQ(1 + δ) ≤ 2

∫ ∞
0

(
1.18 + 0.155Q2tτX−1

)
e−tdt(logX)2

≤ 2
(
1.18 + 0.155Q2TX−1

)
(logX)2 ≤ 2.67 log2(Q2T ).

In case Q = 1, we get

M1(1 + δ) ≤
∫ ∞

0

2

(
1.41 + 0.0443

tτ

eX

)
e−tdt(logX)2

≤ 2.909(log T )2.

10.4. An upper bound for MQ(σ). We thus conclude via (10.3) that (note that
b = 1− a)

MQ(σ) ≤
(

21(Q5T 3)1/2 log3(Q2T )
)a (

2.7 log2(Q2T )
)b

≤ 2.7 (21/2.7)
a

(Q5T 3)a/2 log2+a(Q2T ).

We note the inequality

(21/2.7)

√
Q5T 3

log(Q2T )
= (21/2.7)

√
QT

Q2T

log(Q2T )
≥ 1.

This enables us to use monotonicity in the exponent:(
21Q5/2T 3/2 log2(Q2T )

2.7

)1−
σ− 1

2
1+δ− 1

2 ≤
(

21Q5/2T 3/2 log2(Q2T )

2.7

)1−
σ− 1

2
1− 1

2

.

Hence the bound:

MQ(σ) ≤ 2.7
(
61Q5T 3

)1−σ
log4−2σ(Q2T ).

Let us now prove the counterpart of this bound when Q = 1.

MQ(σ) ≤
(

11.3T 4/3 log3(T )
)a (

2.909 log2(T )
)b

≤ 2.91 (11.3/2.91)
a
T 4a/3 log2+a(T ).

We proceed as above to simplify this bound into

(10.6) MQ(σ) ≤ 2.91 (2.77T )
8(1−σ)/3

log4−2σ(T )

10.5. End of the proof of Lemma 10.1 and 10.2. We first notice that∣∣∣∣ s− 1

s(cos s)2

∣∣∣∣ =

∣∣∣∣1− 1

s

∣∣∣∣ 1

cos2 σ + sinh2 t
≥
(

1− 1

|t|

)
1

1 + sinh2 |t|
.

The derivative of the right-hand-side is (1 + sinh2 t − 2(t2 − t) sinh t cosh t)/(t(1 +
sinh2 t))2 which is negative when t ≥ 2. The assumption T1 ≥ 2 comes here into
play. We deduce from the above inequality that

min
T1≤|t|≤T2

|s− 1|2

|s|2| cos s|1/τ
≥

(1− 1
T2

)2

(1 + sinh2 T2)4

1√
1 + sinh2 T2

τ−1−4
.
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We continue by (with T2 = τ = T ≥ 2000)(
1− 1

T

)2
1

(1 + sinh2 T )2/T
≥
(

1− 1

T

)2
2.000011/T

e
≥ 0.367.

This leads to

(10.7) MQ(σ) ≥ 0.367

∫
T1≤|t|≤T2

∑?

q≤Q,
χmod∗ q

|fX(σ + it, χ)|2dt.

11. The Zero Detection Lemma and proof of Theorem 1.1

11.1. N1(σ1, 6, T, χ): from a pointwise version to an averaged one. We use
σ0 = σ1 − 1/(3 log(Q2T )) and write

N1(σ1, 6, T, χ) ≤
∫ σ1

σ0

N1(σ, 6, T, χ)dσ/(σ1 − σ0).

We have to note here that the condition σ ≥ 0.65 of Theorem 1.1 ensures that
σ0 > 1/2. Indeed the parameter σ from this theorem is σ1.

11.2. From the averaged version to FQ(T, σ)−FQ(6, σ): character per char-
acter. In 1914, H. Bohr and E. Landau proved in [8] for the first time that the
number of zeroes off the critial line but within the critical strip is negligible when
compared to the total number of zeroes. Their argument was qualitative and H.-E.
Littlewood made it quantitative in [32]. We follow this approch as reproduced in
[51, section 9.9]. For σ0 ∈ [ 1

2 , 1], we have

(11.1)

2π

∫ 2

σ0

N1(σ, T1, T2, χ)dσ =

∫ T2

T1

(
log |gX(σ0 + it, χ)| − log |gX(2 + it, χ)|

)
dt

+

∫ 2

σ0

(
arg gX(σ + iT2, χ)− arg gX(σ + iT1, χ)

)
dσ

where arg gX(s, χ) is taken to be 0 on the line <s = 2.
There are two ways of studying the first integral. They both start by noticing

(11.2) log |hX(s, χ)| ≤ log(1 + |fX(s, χ)|2).

The usual fashion is to continue by the inequality log(1+ |fX(s, χ)|2) ≤ |fX(s, χ)|2.
We can however also appeal to the Jensen inequality and use instead:∫ T2

T1

log |gX(σ0 + it, χ)|dt ≤
∫
T1≤|t|≤T2

∑?

q≤Q,
χmod∗ q

log(1 + |fX(s, χ)|2)dt

≤W log

(
1 +

1

W

∫
T1≤|t|≤T2

∑?

q≤Q,
χmod∗ q

|fX(s, χ)|2dt

)

with W = 2(T2 − T1)
∑?

q≤Q,
χmod∗ q

1. This inequality is increasing in W and we can

take for W and upper bound for the stated value. And in fact, when W tends to
infinity, we reach the former inequality. We will use this variation when Q = 1,
with W = 2T2.
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Concerning the other summand in (11.1), we note that

(11.3) − log |hX(2 + it, χ)| ≤ − log(1− |fX(2 + it, χ)|2) ≤ 2|fX(2 + it, χ)|2

provided |fX(2 + it, χ)|2 ≤ 1/2 which we prove now:

|fX(2 + it, χ)| ≤
∑
n≥X

|
∑
d|n µ(d)|
n2

≤
∑
n≥X

2ω(n)

n2

≤
√

8/3
∑
n≥X

1

n3/2
≤

2
√

8/3

(X − 1)1/2
≤ 1/

√
2

since X ≥ 2000 and 2ω(n) ≤
√

8/3
√
n (use multiplicativity).

Bounding the argument. Getting an upper bound for the argument is more tricky
and relies on the following lemma from [51, section 9.4]:

Lemma 11.1. Let 0 ≤ α < β ≤ 2 and F be an analytical function, real for real s,
holomorphic for σ ≥ α except maybe at s = 1. Let us assume that |<F (2 + it)| ≥
m > 0 and that |F (σ′ + it′)| ≤ M for σ′ ≥ σ and T ≥ t′ ≥ T0 − 2. Then, if
T − 2 ≥ T0 is not the ordinate of a zero of F (s), we have

| argF (σ + iT )| ≤ π

log 2−α
2−β

log
(
M/m

)
+

3π

2

valid for σ ≥ β.

The condition concerning the ordinate comes from the way we define the log-
arithm, and hence the argument. It is usually harmless since one can otherwise
argue by continuity at the level of the resulting bound.

We use this lemma with α = 0, β = 1/2 and F = gX(s, χ) which is indeed real
on the real axis. We already showed that

|<gX(2 + it, χ)| ≥ (1− |fX(2 + it, χ)2|)(1− |fX(2 + it, χ)2|) ≥ (1− 0.2142)2 ≥ 0.91.

Hence, for j = 1, 2, on using Lemma 2.3 together with Lemma 3.1 to bound |MX(s)|
by 0.62X, we find that

| arg gX(σ + iTj , χ)| ≤ 11× 2 log
(
1 + (0.62(qTj)

5/8X)2
)

+ 17.

The use of this lemma asks for T1 = 4 + 2 (the smallest value available). Since
we fix this value, we can dispense with the index in T2 and denote it by T . We
continue as follows, since X = Q2T :

| arg gX(σ + iT, χ)|+ | arg gX(σ + 6i, χ)|

≤ 22 log
(
1 + (0.62(QT )5/8Q2T )2

)
+ 22 log

(
1 + (0.62(6Q)5/8Q2T )2

)
+ 34.

We have to compare this quantity with log(Q2T ), knowing that Q2T ≥ 109 and
T ≥ 2000. We use

log
(
1 + (0.62(QT )5/8Q2T )2

)
≤ 13

4
log(Q2T ) + log

(
0.622 + 10−9×13/4

)
≤ 13

4
log(Q2T )− 0.956
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and

log
(
1 + (0.62(6Q)5/8Q2T )2

)
≤ log

(
1 + (0.62( 6

2000TQ)5/8Q2T )2
)

≤ log
(
1 + (0.62( 6

2000TQ
2)5/8Q2T )2

)
≤ 13

4
log(Q2T ) + log

(
10−9×13/4 + (0.62( 6

2000 )5/8)2
)

≤ 13

4
log(Q2T )− 8.21.

This finally amounts to

| arg gX(σ + iT, χ)|+ | arg gX(σ + 6i, χ)| ≤ 143 log(Q2T )− 167.

We will multiply this bound by 3/2 to take care of the integration over σ in [σ0, 2]
in (11.1).

Partial conclusion. Since |fX(2 + it)| ≤ 1/(X − 1), we get for σ0 ≥ 1/2

(11.4) 2π

∫ 2

σ0

N1(σ, 6, T, χ)dσ ≤
∫ T

6

(
|fX(σ0 + it, χ)|2 + |fX(σ0 + it, χ)|2

)
dt

+
4(T − 6)

X − 1
+ 215 log(Q2T )− 250.

We have been careful not to use the bound Q ≥ 10 up to now to cover the two
cases Q = 1 but T ≥ 3 · 1010, and Q ≥ 10, T ≥ 2000 and Q2T ≥ 109. We now have
to distinguish both cases as the estimate from Lemma 4.4 requires a bound on Q.

11.3. From the averaged version to FQ(T, σ) − FQ(6, σ): summing over
characters. We sum (11.4) over q, use Lemma 4.4, and join the two previous
steps. We get∑?

q≤Q,
χmod∗ q

N1(σ1, 6, T,Q) ≤
∫ T

6

∑?

q≤Q,
χmod∗ q

|fX(σ0 + it, χ)|2dt3 log(Q2T )

π

+ 31Q2 log(Q2T ).

But one should be careful: the variable t ranges positive values only while it ranges
a symmetric interval in FQ(T, σ)− FQ(6, σ).

11.4. Using Lemma 10.1. We finally use X = Q2T , Q ≥ 10 and T ≥ 2 000 and
Lemma 10.1 to get

N1(σ1, 6, T,Q) ≤ 2.7× 3

0.367× 2π

(
61Q5T 3

)1−σ0
log5−2σ0(Q2T ) + 31Q2 log(Q2T ).

We have to replace σ0 by σ1. We define δ1 = 1/(3 log(Q2T )) and note that, with
x = log(Q2T ), we have(

61Q5T 3
)δ1

log2δ1(Q2T ) ≤ 61δ1 exp

(
3x

1

3x
+ (log x)

2

3x

)
≤ 5.44.

All of that amounts to

N1(σ1, 6, T,Q) ≤ 19.2
(
61Q5T 3

)1−σ1
log5−2σ1(Q2T ) + 31Q2 log2(Q2T ).

≤ 20
(
56Q5T 3

)1−σ1
log5−2σ1(Q2T ) + 31Q2 log2(Q2T ).

We simplify and use (9.2) to get the first part of Theorem 1.1.
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11.5. Using Lemma 10.2. Here is the counterpart when Q = 1. We combine
(11.4) together with Lemma 10.2 to get

N1(σ1, 6, T, 1) ≤ 2.91× 3

0.367× 2π
(2.77T )8(1−σ0)/3 log5−2σ0(T ) + 103 (log T )2.

Hence

N1(σ1, 6, T, 1) ≤ 9.72(3T )8(1−σ1)/3 log5−2σ1(T ) + 103(log T )2.

If we are to use the variation implying the Jensen inequality, we reach

N1(σ1, 6, T, 1) ≤ 2T log

(
1 +

9.72

2T
(3T )

8
3 (1−σ1) log5−2σ1(T )

)
+ 103(log T )2.

The main theorem follows readily.

References

[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs,
and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55,

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington,
D.C., 1964, http://mintaka.sdsu.edu/faculty/wfw/ABRAMOWITZ-STEGUN.

[2] R. Bacher, Determinants related to Dirichlet characters modulo 2, 4 and 8 of binomial

coefficients and the algebra of recurrence matrices, Internat. J. Algebra Comput. 18 (2008),
no. 3, 535–566. MR MR2422072 (2009c:15006)

[3] R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet
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