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The number of rational numbers determined by large
sets of integers

J. Cilleruelo, D. S. Ramana and O. Ramaré

Abstract

When A and B are subsets of the integers in [1, X] and [1, Y ], respectively, with |A| �
αX and |B| � βY , we show that the number of rational numbers expressible as a/b with
(a, b) in A × B is � (αβ)1+εXY for any ε > 0, where the implied constant depends on
ε alone. We then construct examples that show that this bound cannot, in general, be improved
to � αβXY . We also resolve the natural generalization of our problem to arbitrary subsets
C of the integer points in [1, X] × [1, Y ]. Finally, we apply our results to answer a question
of Sárközy concerning the differences of consecutive terms of the product sequence of a given
integer sequence.

1. Introduction

When A and B are subsets of the positive integers let A/B be the set of all rational numbers
expressible as a/b with (a, b) in A × B. Suppose now that A and B are intervals in the integers
in [1,X] and [1, Y ] respectively, satisfying |A| � αX and |B| � βY , where X, Y real numbers
at least 1, α, β are real numbers in (0, 1]. A standard application of the Möbius inversion
formula then shows that |A/B| � αβXY .

Our purpose is to investigate what might be deduced when in place of intervals we consider
arbitrary subsets A and B of the integers in [1,X] and [1, Y ] respectively with |A| � αX
and |B| � βY . In this general situation, the main difficulty arises from the fact that certain
integers d may have an abnormally large number of multiples in the sets A and B. Further,
these integers d are not determined by the conditions on A and B, which are only in terms of
their cardinalities. Nevertheless, since the sets under consideration are large, popular heuristics
suggest that a non-trivial conclusion should still be accessible. What is pleasing is that we in
fact have the following theorem, which is our principal conclusion.

Theorem 1.1. Let α and β be real numbers in (0, 1] and let X and Y be real numbers at
least 1. When A and B are subsets of the integers in [1,X] and [1, Y ], respectively, with |A| �
αX and |B| � βY , we have |A/B| � (αβ)1+εXY for any ε > 0, where the implied constant
depends on ε alone.

Deferring the detailed proof of Theorem 1.1 to Section 2, let us summarize our argument
for it with the aid of the following notation. For any integer d � 1, A and B subsets of
the integers, we write M(A,B, d) to denote the subset of A × B consisting of all (a, b) in
A × B with gcd(a, b) = d. We show in Proposition 2.1 that for A and B as in Theorem
1.1, we have supd�1 |M(A,B, d)| � (1/8)(αβ)2XY . Starting from this initial bound, we then
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obtain supd�1 |M(A,B, d)| � (αβ)1+εXY by a bootstrapping argument. Theorem 1.1 follows
immediately from this last bound, since, for any integer d � 1, we have a/b �= a1/b1 for any
two elements (a, b) and (a1, b1) of M(A,B, d), and therefore |A/B| � supd�1 |M(A,B, d)|.

We supplement Theorem 1.1 with the following result which shows that the bound provided
by Theorem 1.1 cannot be replaced with |A/B| � αβXY , which bound, as we have already
remarked, holds when A and B are intervals.

Theorem 1.2. For any ε > 0, there exists α > 0 such that, for all sufficiently large X,
there exists a subset A of the integers in [1,X] satisfying |A| � αX and |A/A| < εα2X2.

We prove Theorem 1.2 in Section 3. Our method depends on the observation that, for any
ε > 0 and any set of prime numbers P with |P| sufficiently large, we have |S(P)/S(P)| �
ε|S(P)|2 , where S(P) is the set of square-free integers formed from the primes in the subsets
of P containing about half the primes in P. By means of this observation we deduce that,
for suitable P, the set of multiples of the elements of S(P) in [1,X] meets the conditions of
Theorem 1.2.

The questions answered by the above theorems may be viewed as particular cases of a more
general problem, namely, for X and Y real numbers at least 1 and γ in (0, 1], given a subset
C of the integer points in [1,X] × [1, Y ] satisfying |C| � γXY , to determine in terms of γ, X
and Y an optimal lower bound for Frac(C), the number of rational numbers a/b with (a, b) in
C. Plainly, the above theorems take up the special case when C is of the form A × B, that is,
when C is equal to the product of its projections onto the co-ordinate axes.

It turns out, however, that the aforementioned general problem is somewhat easily resolved.
In effect, the method of Proposition 2.1 generalizes without additional effort to give the bound
|Frac(C)| � (1/8)γ2XY and, interestingly, this bound is in fact optimal up to the constant 1

8 .
More precisely, we have the following theorem.

Theorem 1.3. For any γ in (0, 1] and all sufficiently large X and Y , there exists a subset
C of the integer points in [1,X] × [1, Y ] satisfying |C| � (γ/8)XY and |Frac(C)| � (γ2/2)XY .

We prove Theorem 1.3 at the end of Section 3 by explicitly describing sets C that satisfy the
conditions of this theorem. Such sets are, in general, far from being of the form A × B, which
is only natural on account of Theorem 1.1. Indeed, our bootstrapping argument for Theorem
1.1 depends crucially on the fact that this theorem is, from the more general viewpoint, about
sets C that are of the form A × B.

We conclude this note with Section 4 where we apply Theorem 1.1 to obtain a near-optimal
answer to the following question of A. Sárközy. When A and B are sequences of integers, let
A.B be the sequence of integers of the form that are the integers of the form ab, for some
a ∈ A and b ∈ B. Then Sárközy (see [5, Problem 22]) asks if it is true that, for any α > 0
and A such that the lower asymptotic density d(A) > α, there is a c(α) such that there are
infinitely many pairs of consecutive terms of A.A the difference between which is bounded
by c(α).

Berczi [1] responded to the aforementioned question of Sárközy by showing that Gap(A.A),
which denotes the minimum of the differences between consecutive terms of A.A, satisfies
Gap(A.A) � 1

α4 , where α = d(A). Sandor [4] subsequently improved this bound by showing
that Gap(A.A) � 1

α3 , with α now the upper asymptotic density d(A) of A. Cilleruelo and Le
[3] obtained the same bound when α is the upper Banach density of A and showed that this
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is the best possible bound for this density. The following result improves upon and generalizes
Sandor’s conclusion.

Theorem 1.4. Let α and β be real numbers in (0, 1] and let ε > 0. When A and B are
infinite sequences of integers with upper asymptotic densities α and β, respectively, there are
infinitely many pairs of consecutive terms of the product sequence A.B the difference between
which is � 1/(αβ)1+ε, where the implied constant depends on ε alone.

When A and B are the sequences of multiples of the integers h and k, respectively, the
difference between any two consecutive terms of the sequence A.B is at least hk. Since we have
d(A) = 1/h and d(B) = 1/k, we see that the conclusion of Theorem 1.4 is optimal up to a
factor 1/(αβ)ε.

We bring this introduction to a close by mentioning a recent result of Bourgain, Konyagin
and Shparlinski [2] that is closely related to our Theorem 1.1. We are grateful to Professor
Shparlinski for drawing our attention to this work. In [2] the reader will find a lower bound for
the size of the product set A.B of sets of rational numbers A and B together with a number
of applications. We state the relevant lower bound from [2] as the following theorem.

Theorem 1.5. Let X be a real number at least 1 and let A and B be sets of rational
numbers r/s with 1 � r, s � X. When X is sufficiently large, we have that

|A.B| > exp
( −9 log X√

log log X

)
|A||B| .

Although stronger than Theorem 1.1 in general, the conclusion of the above theorem, for the
reason that it depends on X, is weaker than that of Theorem 1.1 for sets of large cardinality.
For the same reason it does not appear to be possible to deduce Theorem 1.1 from the above
theorem.

Throughout this note, X and Y shall denote real numbers at least 1, and α, β and γ real
numbers in (0, 1]. Also, the letter p shall denote a prime number. When I and J are subsets
of a given set, I \ J shall denote the set of elements of I that are not in J . In addition to
the notation introduced so far, we shall write Ad to denote the subset of a set of integers A
consisting of all multiples of d in A for any integer d. Finally, if B = {b} with b � 1, we simply
write A/b in place of A/B, by an abuse of notation.

2. Proof of the bound

Let A and B be finite subsets of the positive integers. Then the family of subsets M(A,B, d)
of A × B, with d varying over the positive integers, is a partition of A × B and we have

|A × B| =
∑
d�1

|M(A,B, d)|. (1)

When A and B are contained in [1,X] and [1, Y ], respectively, we have |Ad| � X/d and |Bd| �
Y/d, for any d � 1. Since M(A,B, d) is contained in Ad × Bd, we then obtain |M(A,B, d)| �
|Ad||Bd| � XY /d2 for all d � 1.

Proposition 2.1. When A and B are subsets of the integers in the intervals [1,X] and
[1, Y ], respectively, with |A| � αX and |B| � βY , we have supd�1 |M(A,B, d)| � (αβ)2XY /8.
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Proof. We adapt an argument from [3]. From (1), for any integer T � 1, we have that

|A × B| =
∑

1�d�T

|M(A,B, d)| +
∑
T<d

|M(A,B, d)|

�
∑

1�d�T

|M(A,B, d)| + XY

T
, (2)

where the last inequality follows from
∑

T<d |M(A,B, d)| �
∑

T<d XY /d2 � XY /T . On
noting that |A × B| � αβXY , from (2) we conclude that

sup
d�1

|M(A,B, d)| � 1
T

∑
1�d�T

|M(A,B, d)| �
(

αβ − 1/T

T

)
XY (3)

for any integer T � 1. Since 2 > αβ, the interval [2/αβ, 4/αβ] contains an integer k � 1. The
proposition now follows on setting T = k in (3).

Definition 1. We call a real number δ an admissible exponent if there exists a real number
C > 0 such that for any α, β real numbers in (0, 1], any X, Y real numbers at least 1 and
any subsets A and B of the integers in [1,X] and [1, Y ] with |A| � αX and |B| � βY , we
have supd�1 |M(A,B, d)| � C(αβ)δXY . We call a C satisfying these conditions a constant
associated to the admissible exponent δ.

Proposition 2.1 says that δ = 2 is an admissible exponent. Proposition 2.3 below will allow
us to conclude that every δ > 1 is an admissible exponent. The following lemma prepares us
for an application of Hölder’s inequality within the proof of Proposition 2.3.

For any integer n � 1 let τ(n) denote, as usual, the number of positive integers that divide n.
When D � 1 is an integer, we write τD(n) to denote the number of divisors d of n satisfying
the condition p|d ⇒ p � D for any prime number p.

Lemma 2.2. For each integer q � 0 there is a real number c(q) > 0 such that, for all real
numbers X � 1 and integers D � 1, we have∑

1�n�X

τD(n)q � c(q)DX. (4)

Proof. In effect, we have∑
1�n�X

τD(n)q � X(log 2D)2
q � (2q!)DX, (5)

where the implied constants are absolute. Plainly, the second inequality results from the
elementary inequality (log t)n � n! t for t � 1. We now prove the first inequality in (5). Let
us write D for the set of integers m satisfying the condition p|m ⇒ p � D. For any integer
n � 1, let k(n) be the largest of the divisors of n lying in D. Then τD(n) is the same as τ(k(n))
for all integers n � 1 and we have that∑

1�n�X

τD(n)q =
∑

1�m�X,

m∈D

τ(m)q
∑

1�n�X,

k(n)=m

1 � X
∑
m∈D

τ(m)q

m
, (6)

where we have used the upper bound X/m for the number of integers n in [1,X] with k(n) = m.
Let us write S(q) for any integer q � 0 to denote the last sum in (6). Since Merten’s formula
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gives
∏

1�p�D(1 − 1/p) ∼ e−γ/log D, with γ here being Euler’s constant, we have

S(0) =
∑

m∈D

1
m

=
∏

1�p�D

(
1 +

1
p

+
1
p2

+ . . .

)
=

∏
1�p�D

(
1 − 1

p

)−1

� log 2D, (7)

where the implied constant is absolute. On noting that every divisor of an integer in D is again
in D and using τ(dk) � τ(d)τ(k), valid for any integers d and k � 1, we obtain

∑
m∈D

τ(m)q

m
=
∑

m∈D

τ(m)q−1

m

∑
d|m

1 =
∑

(d,k)∈D×D

τ(dk)q−1

dk
�
(∑

d∈D

τ(d)q−1

d

)2

. (8)

In other words, S(q) � S(q − 1)2 for any integer q � 1. An induction on q then shows that, for
any integer q � 0, we have S(q) � S(0)2

q � (log D)2
q

, where the implied constant is absolute.
On combining this bound with (6), we obtain the first inequality in (5).

Proposition 2.3. If δ > 1 is an admissible exponent, then so is (3δ(1 + 1/q) − 2)/(2δ − 1)
for every integer q � 1.

Proof. Given an integer q � 1, for the sake of conciseness, we write δ′ to denote
(3δ(1 + 1/q) − 2)/(2δ − 1). Since we have δ > 1, we also have δ′ > 1.

For a constant C associated to δ let us set C ′ to be the unique positive real number satisfying

1
8C ′ =

(
C ′

C

)1/(2(δ−1))

8δ/(δ−1)(4c(q))δ/(q(δ−1)), (9)

where c(q) is the implied constant in (4) of Lemma 2.2. It is easily seen from (9) that by
replacing C with a smaller constant associated to δ, if necessary, we may assume that 1

4 � C ′.
We shall show that δ′ is an admissible exponent with C ′ a constant associated to δ′. Thus

let α and β be real numbers in (0, 1] and let X and Y be real numbers at least 1. Also, let
A and B be any subsets of the integers in [1,X] and [1, Y ] satisfying |A| � αX and |B| � βY ,
respectively. We shall show that

sup
d�1

|M(A,B, d)| � C ′(αβ)δ′
XY. (10)

On replacing, if necessary, α and β with α′ � α and β′ � β satisfying α′X � |A| � 2α′X
and β′Y � |B| � 2β′Y , respectively, we reduce to the case when |A| � 2αX and |B| � 2βY .

Let us first dispose of the possibility that an abnormally large number of the integers in A
and B are multiples of a given integer. Thus let αd = |Ad|/X and βd = |Bd|/Y , for any integer
d � 1. Suppose that there exists an integer d � 1 such that

αdβd �
(

C ′

C

)1/δ

(αβ)δ′/δd(2/δ)−2. (11)

Then Ad and Bd are both non-empty and therefore X and Y are both at least d. Further,
the sets Ad/d and Bd/d are subsets of the integers in [1,X/d] and [1, Y/d], respectively. Since
δ is an admissible exponent, C is a constant associated to δ and we have |Ad/d| = (dαd)|X/d|
and |Bd/d| = (dβd)|X/d|, there exists an integer d′ � 1 such that

|M(Ad/d,Bd/d, d′)| � C(d2αdβd)δ XY

d2
� C ′(αβ)δ′

XY, (12)
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where the last inequality follows from (11). Since |M(Ad/d,Bd/d, d′)| does not exceed
|M(A,B, dd′)|, we obtain (10) from (12). We may therefore verify (10) assuming that, for
every integer d � 1, we have

αdβd <

(
C ′

C

)1/δ

(αβ)δ′/δd(2/δ)−2. (13)

With the aid of (13) we shall in fact obtain a more precise conclusion than (10). Let us set
K = (αβ)1−δ′

/8C ′ and L = 1 + [K]. We shall show that

1
L

∑
1�d�L

|M(A,B, d)| � C ′(αβ)δ′
XY, (14)

which of course implies (10). Note that since L is roughly about (αβ)1−δ′
/C ′, the inequality

(14) is what one might expect from (1).
Let D be an integer in [2/αβ, 4/αβ]. Thus, in particular D > 1. When L � D, we obtain

(14) even without assuming (13). In effect, we then have K � 1 and hence that L � 2K or,
what is the same thing, that L < (αβ)1−δ′

/4C ′ from which (14) follows on noting that, for any
integer T � D, and in particular for T = L, from (3) we have that

1
T

∑
1�d�T

|M(A,B, d)| �
(

αβ − 1/T

T

)
XY �

(
αβ − 1/D

T

)
XY � αβXY

2T
. (15)

Suppose now that 1 � L < D. Let us first verify that, for any integer T such that 1 � T < D,
we have the following inequality on account of (13):∑

T<d�D

|M(A,B, d)|

�
(

C ′

C

)1/2δ

(αβ)δ′/2δT (1/δ)−1 (XY )1/2

⎛
⎝ ∑

T<d�D

|Ad|
⎞
⎠

1/2⎛
⎝ ∑

T<d�D

|Bd|
⎞
⎠

1/2

. (16)

Indeed, for any integer d satisfying T < d � D we have that

|Ad||Bd| = (αdXβdY )1/2|Ad|1/2|Bd|1/2 �
(

C ′

C

)1/2δ

(αβ)δ′/2δT (1/δ)−1 (XY )1/2|Ad|1/2|Bd|1/2,

(17)
where the last inequality follows from (13) on noting that d(1/δ)−1 � T (1/δ)−1 for d > T , since
δ � 1. On combining the bound |M(A,B, d)| � |Ad||Bd| with (17) and an application of the
Cauchy–Schwarz inequality we obtain (16).

We now estimate the sums on the right-hand side of (16). An application of Hölder’s
inequality gives

∑
T<d�D

|Ad| =
∑

T<d�D

∑
n∈A,

d|n

1 �
∑
n∈A

τD(n) � |A|1−1/q

⎛
⎝ ∑

1�n�X

τD(n)q

⎞
⎠

1/q

. (18)

From Lemma 2.2 we have the upper bound c(q)DX for the last sum in (18). Since |A| � 2αX
and D � 4/αβ, from (18) we deduce that∑

T<d�D

|Ad| � (2α)1−(2/q)β−1/q(4c(q))1/qX. (19)
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Arguing similarly, we obtain the bound∑
T<d�D

|Bd| � (2β)1−(2/q)α−1/q(4c(q))1/qY. (20)

With these estimates we conclude from (16) that, for any integer T satisfying 1 � T < D,
we have

∑
T<d�D

|M(A,B, d)| � 2
(

C ′

C

)1/2δ

(αβ)δ′/2δ+1/2−3/2qT (1/δ)−1(4c(q))1/qXY. (21)

A modest calculation using the expressions defining C ′ and δ′ in terms of C and δ,
respectively, now shows that K satisfies the relation

2
(

C ′

C

)1/2δ

(αβ)δ′/2δ+1/2−3/2qK(1/δ)−1(4c(q))1/q =
αβ

4
. (22)

Consequently, on using (21) with T = L and recalling that K < L and δ > 1, we obtain that

∑
L<d�D

|M(A,B, d)| � αβ

4
XY. (23)

Since (15) applied with T = D gives us
∑

1�d�D |M(A,B, d)| � (αβ/2)XY , we conclude
from (23) that, when 1 � L < D, we have

1
L

∑
1�d�L

|M(A,B, d)| � αβ

4L
XY. (24)

If L = 1 we obtain (14) from (24) on noting that αβ/4 � C ′(αβ)δ′
, since 1/4 � C ′ and 1 � δ′.

When 1 < L < D, we have 1 � K and hence L < (αβ)1−δ′
/4C ′ so that (14) results from (24)

in this final case as well.

Corollary 2.4. Every δ > 1 is an admissible exponent.

Proof. Let q be any integer at least 4 and let {δn(q)}n�1 be the sequence of real numbers
determined by the relations δ1(q) = 2 and

δn+1(q) =
3δn(q) (1 + 1/q) − 2

2δn(q) − 1
(25)

for n � 1. Then each δn(q) is an admissible exponent by Propositions 2.1 and 2.3. It is easily
verified that the sequence δn(q) is decreasing and has a limit δ(q) given by the relation

δ(q) = 1 +
3
4q

+
1
2

√
6
q

+
9

4q2
. (26)

Plainly, any δ > δ(q) is an admissible exponent. The corollary now follows on taking q
arbitrarily large in (26).

Theorem 1.1 follows from the above corollary and the definition of admissible exponents on
recalling that |A/B| � supd�1 |M(A,B, d)|.
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3. Examples

Let us first prove Theorem 1.2. To this end, given an integer m � 1, let P denote any set of
2m prime numbers and, for any subset I of P, let d(I) =

∏
p∈I p. If S(P) denotes the set of all

d(I), with |I| = m, we have the following lemma.

Lemma 3.1. For any ε > 0 we have |S(P)/S(P)| � ε|S(P)|2 for all sufficiently large m.

Proof. Plainly, we have |S(P)| =
(
2m
m

)
. Let Q be the set of ordered pairs of disjoint subsets

of P. For any I and J subsets of P, we have

d(I)
d(J)

=
d(I \ J)
d(J \ I)

, (27)

and since I \ J and J \ I are disjoint, it follows that (I \ J, J \ I) is in Q. Thus |S(P)/S(P)| �
|Q|. Let us associate any (U, V ) in Q to the map from P to the three-element set {1, 2, 3}
that takes U to 1, V to 2 and the complement of U ∪ V in P to 3. It is easily seen that this
association in fact gives a bijection from Q onto the set of maps from P to {1, 2, 3} and hence
that |Q| = 32m. In summary, we have that

|S(P)/S(P)| � |Q| = 32m =
32m(
2m
m

)2 |S(P)|2 � (2m + 1)2
(

3
4

)2m

|S(P)|2, (28)

where we have used the inequality
(
2m
m

)
� 22m/(2m + 1). The lemma follows from (28) on

noting that (2m + 1)2 (3/4)2m → 0 as m → +∞.

Proof of Theorem 1.2. Given an integer m � 1, it is easily deduced from the prime number
theorem that the interval [T, T + T/m] contains at least 2m prime numbers when T is
sufficiently large. For such a T , let P be a subset of 2m prime numbers in [T, T + T/m].
If A(P) is the sequence of integers at least 1 that are divisible by at least one of the integers
d(I) in S(P), then a simple application of the principle of inclusion and exclusion implies that
A(P) has an asymptotic density α(P) that is given by the relation

α(P) =
∑

1�r�(2m
m )

(−1)r+1
∑

1�i1<i2<...<ir�(2m
m )

1
d(Ii1 ∪ Ii2 ∪ . . . ∪ Iir

)
, (29)

where I1, I2, . . . , I(2m
m ) are the subsets of cardinality m in P.

For any i we have Tm � d(Ii) � (1 + 1/m)mTm < eTm. Consequently, for the term r = 1 in
(29) we obtain

∑
1�i�(2m

m )

1
d(Ii)

�
(
2m
m

)
eTm

. (30)

When r � 2, we have that d(Ii1 ∪ Ii2 ∪ . . . ∪ Iir
), for any distinct indices i1, i2, . . . , ir, has

at least k + 1 prime factors in P and hence is at least Tm+1. It follows, from (29) and these
bounds, that we have

α(P) �
(
2m
m

)
eTm

− 2(2m
m )

Tm+1
�
(
2m
m

)
3Tm

(31)
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when T is sufficiently large. In particular, on recalling that |S(P)| =
(
2m
m

)
, we obtain that, for

any integer m � 1, we have

α(P) � |S(P)|
3Tm

(32)

for all sufficiently large T and P any set of 2m prime numbers in [T, T + T/m].
Finally, for P as above and any X � 1, let us set A = A(P) ∩ [1,X]. Since α(P) is the

asymptotic density of A(P), we have from (32) that |A| � (|S(P)|/4Tm)X, for all large enough
X and T . Clearly, each integer in A is of the form d(I)n, for some d(I) in S(P) and an integer
n, which must necessarily be � X/Tm, since A is in [1,X] and d(I) � Tm. Consequently, we
have |A/A| � (|S(P)/S(P)|/T 2m)X2, for all large enough X and T . On comparing |A| and
|A/A| by means of Lemma 3.1, we see that A meets the conditions of Theorem 1.2 when m, T
and X are all sufficiently large.

Proof of Theorem 1.3. The number of primitive integer points, that is, integer points with
coprime co-ordinates, in [1, γX] × [1, γY ] is ∼ (6/π2)γ2XY as X, Y → ∞. Thus for any γ in
(0, 1] and all sufficiently large X and Y , there is a subset S of the primitive integer points in
[1, γX] × [1, γY ] satisfying (γ2/4)XY � |S| � (γ2/2)XY . Let us take for C the union of the
sets d.S with d varying over the integers in the interval [1, 1/γ], where each d.S is the set of
(da, db) with (a, b) varying over S. Then C is contained in [1,X] × [1, Y ]. Moreover, the sets
d.S are disjoint but Frac(d.S) = Frac(S), for each d, and |Frac(S)| = |S|. We therefore have
|C| = [1/γ]|S| � (γ/8)XY but |Frac(C)| = |Frac(S)| = |S| � (γ2/2)XY .

4. Gaps in product sequences

We now deduce Theorem 1.4 from Theorem 1.1. Let A and B be sequences with upper
asymptotic densities α and β. Then there exist infinitely many real numbers X and Y at
least 1 such that |A ∩ (X/2,X]| � αX/4 and |B ∩ (Y/2, Y ]| � βY /4. For such X and Y let us
apply Theorem 1.1 to the sets A = A ∩ (X/2,X] and B = B ∩ (Y/2, Y ]. We then have that
|A/B| � (αβ)1+εXY , where the implied constant depends on ε alone. Since A/B is a subset
of the interval [X/2Y , 2X/Y ], which is of length 3X/2Y , we deduce that there are distinct a/b
and a′/b′ in A/B such that

0 <

∣∣∣∣ab − a′

b′

∣∣∣∣� X/Y

(αβ)1+εXY
=

1
(αβ)1+εY 2

. (33)

Since |bb′| � Y 2, it follows from (33) that ab′ and a′b are distinct terms of the product
sequence A.B and that ab′ − a′b � 1

(αβ)1+ε . Since there are infinitely many distinct X and Y
satisfying the required conditions, there are infinitely many such pairs of terms in the product
sequence A.B.
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