AN EXPLICIT CROOT-LABA-SISASK LEMMA FREE OF
PROBABILISTIC LANGUAGE

OLIVIER RAMARE

ABSTRACT. We provide an explicit and probabilistic language-free proof of
the famous Croot-Laba-Sisask Lemma. In between, we do the same for the
Khintchine and Marcinkiewicz-Zygmund inequalities and explicitate the im-
plied constants for the upper bounds.

1. INTRODUCTION

After the fundatory papers of H. Rademacher [10] in 1922 and of A. Khint-
chine [8] in 1923, the usage of the so-called Rademacher system of functions, de-
scribed thereafter, has known deep developments in LP-space theory, then in Banach
space theory, harmonic analysis and operator theory, for instance with the intro-
duction of the Rademacher type and cotype. The n-th Rademacher function r,, is
simply the function on [0, 1] that takes the value 1 at ¢t when the integer part of 2"¢
is even and —1 otherwise. They were introduced by Rademacher in [10, Part VI]
in an L2-setting and by Khintchine in [8, Section 1] in an LP-setting. It turns out
that this alternation of the £1 values is deeply connected with sums of Bernoulli
variables and this introduces probability theory. We refer the reader to the book [1]
by S. Astashkin. As the material stated in such a fashion may be difficult to grasp
for a non probabilist, we propose here a fully elementary presentation of some part
of it, where elementary means that any generic mathematical background should
do.

Our main aim is to provide a proof of (a variant of) [3, Lemma 3.2] by E. Croot,
I. Laba & O. Sisask. We state this result in their notation and in particular, when
z is a complex number, 2° is defined to be z/|z| when z # 0, and 0 when z = 0.

Theorem 1. Let (X, u) be a probability space, let p > 2 and a function f given in

the form
F=" Mor

k<K

where (gx )k is a collection of measurable functions on X of LP(u)-norm at most 1.
Let finally ¢ > 0. There exists an L-tuple (ky,--- ,kr) € {1,--- ,K}* of length
L < 20p/e? such that

/‘f(w)
x| Al
where [[All1 = ZkgK | Akl

Thus L can be taken uniformly bounded, whatever rate of convergence (with
respect to K) of the initial representation of f. This theorem has its origin in
the paper [4] by E. Croot & O. Sisask. Since the Croot-Laba-Sisask Lemma has

P
du < &P,

1 o

(<L
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important consequences, we thought it was worth presenting an elementary and
self-contained proof of it.

We prove the upper Khintchine Inequality in Theorem 2 and the Marcinkiewicz-
Zygmund Inequality in Theorem 3. We refer to the paper [9] by L. Pierce for
more refined background on the Khintchine and Marcinkiewicz-Zygmund inequal-
ities. Our treatment is far from being comprehensive and we should mention to
the readers another important tool in this landscape: the Kahane-Salem-Zygmund
Inequality, see for instance [5] by A. Defant & M. Mastylo and [11, Section 4] by
A. Raposo, Jr. & D. Serrano-Rodriguez. The followings proofs borrow from several
authors.

Acknowledgement. The referee should be thanked for his/her precise reading and
helpful remarks that has resulted in a better version of this paper. This paper
was supported by the joint FWF-ANR project Arithrand: FWEF: I 4945-N and
ANR-~20-CE91-0006.

2. AN UPPER EXPLICIT KHINTCHINE INEQUALITY
Here is the main result of this section.
Theorem 2. We have, when p > 1,

w2 Y e

(en)e{£1}N 'n<N

p p/2
<P (Slet)

n<N

This is only half of the Khintchine Inequality and in a special context, but it is
explicit and will be enough for us. We followed [2, Chapter 10, Theorem 1, page
354] by Y.S. Show & H. Teicher. S. Astashkin in [1, Theorem 1.3] gives also a
complete proof which is furthermore valid as soon as p > 0, up to a modification of
the constant. To see the link between both results, let us mention that

p 1
@2h) >0 D cnen :/0 > earnoa(t)

(en)E{£1}N n<N n<N
where the (r,) are the Rademacher functions defined in the introduction. This
equality may be proved by considering the diadic expansion of 2/Vt, for each t €
[0, 1].

P
dt

Proof. Let us start with p = 2k > 2, so that we may open the inner sum and get

ARPHESEDY chenp

(en)e{£1}N 'n<N

- Y (W) Oe x I

$1. 8o - -
sitsatoten=2k, N 1002 1<n<N  (e,)E{£1}N n<N
$n, >0

by the multinomial theorem. The inner summand vanishes as soon as some s, is
odd, whence, by letting 2t,, = s,,, we get

2%k
N _ 2\tn
2N 5(2k) = > (2t1,2t2,--~ ’m) [T

tittot++tn=Fk, n<N
t,>0

k
k 2\t 2
SO Z <t17t27"'7tN> H(cn) :C<ch
titat--FtN=k, n<N
tn>0
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2k k -t
C:
Hax (2t1a2t27"' 72tN> (tlthu"' 7tN)

2k(2k —1)--- (k+1) k" k
< —_ = .
Iou@, -0 1) = e~ (0

where

< max

As S(p) is increasing, we simply choose k = [p/2] (the upper integer part of p/2).
This gives us 2k > p + 2 and thus

(k/2)F < (p+2)'1P/2 < (30 p)P/2.

This concludes the main part of the proof, except for the constant 30. We will not
continue the proof but simply refer to the paper [7] by U. Haagerup who shows that
best constant is (be careful: the abstract of this paper misses a closing parenthesis
for the value of By, but the value of B), displayed in the middle of page 232 misses
a squareroot-sign around the 7, as an inspection of the proof at the end the paper
rapidly reveals)

1 when 0 < p < 2,
1/
ﬂ(W) ! when 2 < p.

We readily check that this implies that the constant 1 rather than 30 is admissible.
O

3. AN UPPER EXPLICIT MARCINKIEWICZ-ZYGMUND INEQUALITY

Here is the main result of this section.

Theorem 3. Let (X, p) be a probability space. When p > 1, let (fu)n<n be a
system of functions such that [y fr(z)dp =0. We have

/( R SIS

1<n<N

d(wy,)

< (4p)*/? /

(xn)EXN

(> |fn<xn>2)p/2d<xn>.

1<n<N

The power of this inequality is that the implied constant does not depend on NV,
the effect of some orthogonality. Again, this is only half of the Marcinkiewicz-
Zygmund Inequality and in a special context, but the constants are explicit. This
will be enough for us. We followed [2, Chapter 10, Theorem 2, page 356] by
Y.S. Show & H. Teicher. The relevant constant is the subject of [12] by Y.-F. Ren
& H.-Y. Liang (their value is slightly worse than ours) and [6] by D. Ferger, where
the best constant is determined provided the f,,’s are “symmetric”.

Proof. We first notice that, since fol fn(x)dz = 0, we may introduce a symmetriza-
tion through

Z fn(xanl) - _/ Z (_]-)nfDL/Z'\ (xn)d(xQn)

n<N (wan)EXN [ oN
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Jensen’s inequality gives us that

—1)" frn/21 (2n)d(22y
/(wznl)eXN /(wzn)ex Z( )" frny21(@n)d(22n)

N n<aN

S
(Tan—1)EXN J(x2n)EXN

from which we deduce that the LP-norm of the symmetrization controls the one of
the initial sum:

p

d(l'anl)

P

Z (*1)nf(n/21 (»”Un) d($2n)d($2n—1)

n<2N

p
/ S fulezno)| dlesn) < / ST (1) o (@) o).
(172n I)EXN n<N (wn)EXQN n<2N
We next notice that, for any (g,) € {£1}", we have
p
/ Z €rny21(=1)" fny21(w0)| d(zn)
(zn)EX?N n<2N
p
-/ S (1" e ()| ).
(zn)EX2N

n<2N

Indeed, consider the indices n € {2k — 1,2k}. When ¢, = 1, we do not do anything
while, when e, = —1, we exchange n = 2k — 1 and n’ = 2k. This enables us to
introduce the Rademacher system:

WZN) Z /)eXZN <N5f”/21(_1)"f[n/z1(xn) d(zn)
Defrn Y @n =
p
:/(z Jexan Z (=1)" frny21(xn)| d(xn).

n<2N

We may now remove the symmetrization since:

_1 n
/<xn)exzw > eru2 (1" Frayz ()

n<2N

< / 2”—1(
(zn)EX2N
.
($2n)EXN nz:

<N

P

d(zy,)

p

Z Enfn(Tan)| +

n<N

Z Enfn(l?nfl)

n<N

o

p

d((ﬁgn)

Enfn(xQn)

The Khintchine Inequality from Theorem 2 finally gives us that

P p/2
(1/2N) Z Z gnfn(x%z) Spp/Z(Z |fn(1'2n)2) .

(en)E{£1}N 'n<N n<N

The proof is then complete. Concerning the constant 4 in the Theorem, the paper
[12] by Y.-F. Ren & H.-Y. Liang gives the upper bound 9/2, which is worse than
the above one. O

4. PROOF OF THEOREM 1

Proof. We define Q = {1,--- , K} which we equip with the probability measure
defined by v({k}) = |Mk|/|[AlJ1- It induces a product measure on Q¥ and, when
u = (up)n<r € QL. we shall simply write du when integrating with respect to this
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measure. Given a positive integer L, we consider the family of functions ¢, for
¢ < L given by

e ExX — C
(w,z) = AL, gu(2)
so that

_ | Ak | _f@)
|, ot = 2 T k@) = iy = folo)

say. We aim at showing that (1/L) " ,.; ¢¢(u, z) closely approximates fo for most
values of u = (up)n<r. Selecting one such value gives qualitatively our result. To

do so, we write
dudx = — / /
QL

/ /‘ > wi(u,z) = fo(w)
Qb JXTH <,
We apply the Marcinkiewicz-Zygmung Inequality, i.e. Theorem 3, to this latter
expression, getting for fixed u,

(e(u,z) = fo(z)) pdud:c.

(<L

p/2
L Z et = oo ae < G [ 1Sty - o[
(<L (<L
(4 p/2
< Lpp/Z/ S el 2) — folw)|"da,

(<L

the second step having been obtained through the Hoélder inequality. We next
integrate over u and notice that [, [¢¢(u,z) — fo(z)|Pdu is independent of £ to

infer that
p/2
dudx < / / |<p1 u,z) — folz | dudz.

/Q/X\ S () — fole) v

¢<L

Concerning the relevant p-norms, we make the following observations:

/X/QL‘%(u’x”pdudx:/m (/X’SDI(U,x)\pd:c)dug 1

on the one side while on the other side, by the triangle inequality, we have

eyl k|
k<K
Therefore

(o Az g =

(<L

1/p (4]))1/2
dudaz) < 7172 (14 1) = /16p/L.

We deduce from this inequality that the set of u for which

/X\ " el 2) — fola)

(<L

dx>€p

has measure at most 1/16p/(£2L) which is strictly less than 1 by our assumption
on L. The theorem follows readily. (]
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