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Abstract

A step by step method to obtain a multiplicative function’s average
order (based on Dirichlet series identification).

Contents
1 Introduction 2

2 Arithmetical functions 4
2.1 Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Dirichlet convolution . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Dirichlet series 6
3.1 Abscissa of absolute convergence . . . . . . . . . . . . . . . . . . 7
3.2 Euler product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Uniqueness theorem . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Dirichlet series and convolution . . . . . . . . . . . . . . . . . . . 9

4 Results 10

5 The step-by-step guide to convolution method and proof of
Theorem 4.1 11

6 Second example of the convolution method, proof of Theorem
4.2 15
6.1 Determination of the average order of f2 . . . . . . . . . . . . . . 15
6.2 Summation by parts . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Third and last example, proof of Theorem 4.3 19

1



1 Introduction
Many arithmetical functions have an erratic behavior which makes their arith-
metic mean:

1

X

∑
n≤X

f(n)

a much better way to "know" them.
Thus, the average order of an arithmetic function is some simpler or better-

understood function which takes the same values "on average". We define an
average order of an arithmetic function f to be any function g of a real variable
such that ∑

n≤X

f(n) ∼
∑
n≤X

g(n)

By ∼ (equivalent), we mean asymptotically equivalent such that if the limit
limx→∞ F (x)/G(x) exists it is equal to 1 (for example ln(x) + 1 ∼ ln(x)).

In general we try and find a function g which is commonly known (usually
continuous and monotonic), and which asymptotic behavior is easy to determine.
It is this asymptotic equivalent that we usually call the average order.

There does not always exist an simpler average order than f , but for many
functions it does exist and it is a regular function. Through three examples,
this article will explain the convolution method that helps determine the average
order of some multiplicative functions.

We shall first consider the following function

f0(n) =
∏
p|n

(p+ 2), (1)

in which p represents a prime number, so we are considering here the product
for all prime numbers dividing n. We remind the reader than an empty product
is to be assigned the value 1. We will use the same conventions in the rest of
this document. Below are the values of f0(n) for n between 1 and 20:

1, 4, 5, 4, 7, 20, 9, 4, 5, 28, 13, 20, 15, 36, 45, 4, 19, 100, 21, 112.

This sequence does not give much information on the function’s behavior,
but we will prove the following theorem.

Theorem. For all σ real in ]1/2, 1],

1

X

∑
n≤X

f0(n) =
1

X

∑
n≤X

∏
p|n

(p+ 2) = C0X +O(Xσ) (2)

where
C0 =

1

2

∏
p≥2

(
1 +

1

p(p+ 1)

)
= 0.6842...
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We will then prove a second theorem that gives the average order of ϕ(n)
n ,

the function ϕ being Euler’s totient function defined in part 2.1.

Theorem. For all σ real in ]− 1, 0],

1

X

∑
n≤X

ϕ(n)

n
=

6

π2
+O(Xσ) (3)

And at last, we will consider average orders of fuctions involving the Möbius
function (defined in (2.1)) and prove the following theorem which shows that
the method works with non positive multiplicative functions.

Indeed if we consider

f3(n) =
µ(n)

ϕ(n)
and g3(n) =

µ(n)

n
(4)

we will find a function h3 such that f3 = g3 ? h3, as explained in the next
paragraph, and obtain the following result.

Theorem. For all X > 1,∣∣∣∣∣∣
∑
n≤X

µ(n)

ϕ(n)

∣∣∣∣∣∣ ≤ 0.082

logX
+

30

X1/3
(5)

This theorem is proved for all X > 100000 and we check it holds for any
X > 1 with GP calculator. We then easily use its proof to get a more general
theorem below.

Theorem. For all function f defined by f = g3 ? h where g3(n) = µ(n)
n and h

is such that D(|h|, s) is convergent for all s > −1, we have for all X > 100000,∣∣∣∣∣∣
∑
n≤X

f(n)

∣∣∣∣∣∣ ≤ C

logX
+

C ′

X1/3

where C = 2
69D(|h|, 0) and C ′ = D(|h|,−2/3) +D(|h|, 0).

The principle of the method is the following: we use the notion of abscissa of
convergence to define a concept of size of an arithmetical function: a function
f1 is greater than a function f2 if its abscissa of convergence is greater. The
idea of the convolution method is to express a function f for which we would
like to calculate the average order as a convolution f = g?h with the abscissa of
convergence of g and f being the same and the abscissa of convergence of h being
smaller. Hence we will consider h as being a slight perturbation and f being
a slightly modified version of g. The function g being a known multiplicative
function with a known average order.
The average order of f is then the average order of g ? h which is usually
dominated by the average order of g.
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The key of the convolution method is the uniqueness Theorem (Theorem
3.7). If D(f, s) = D(g, s)D(h, s) then f = g ? h. And f and g being multiplica-
tive, we will express their Dirichlet series with Euler products (Theorem 3.6).

Before we establish those average orders with a step-by-step guide, we shall
describe arithmetical functions and more precisely multiplicative functions, with
a few of their useful properties. A complete course can be found in [1], [2] or
[6] for example. We then shall define the Dirichlet series associated to an arith-
metical function as they are one of the most useful tools in analytic number
theory and specifically in the convolution method. These parts contain a few
exercises so they might be used as a lesson.

The convolution method is highly effective, and though it doesn’t work for
some multiplicative functions , it does for most of the usual ones, so we can
consider it as a great tool.

2 Arithmetical functions
An arithmetical function is a complex valued function defined on the positive
integers. In other words, an arithmetical function can be seen as a sequence of
complex values.

Multiplicative functions are a class of arithmetical functions that play an
important role in number theory.

Definition 2.1. An arithmetical function f : N∗ → C is called multiplicative if

f(1) = 1 and f(nm) = f(n)f(m), whenever gcd(n,m) = 1.

The main interest of multiplicative functions is that the image of an integer
is the product of the images of the prime powers of its primary decomposition.
If f is a multiplicative function:

f(n) =
∏
pα‖n

f(pα). (6)

We remind the reader that pα‖n means pα|n and pα+1 - n. This implies that
a multiplicative function is totally defined by its values on prime powers.

2.1 Inventory
In this section, and in the rest of this document, by divisor we mean positive
divisor. Below is a list of the most common multiplicative functions:

• ϕ(n) : Euler’s totient function. It gives the number of integers between 1
and n which are relatively prime to n. It has the following property for
every prime number p and α ≥ 1: ϕ(pα) = pα−1(p− 1).
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• τ(n) : the number of divisors of n.

• σ(n) : the sum of the divisors of n.

• θα(n) : the function that associates the number nα to n.

• 1 is the usual notation for θ0.

• µ(n) : the Moebius function. It is multiplicative and associates −1 to
every prime number and 0 to all higher powers of prime numbers.

• µ2(n) : This function indicates square free numbers. It associates 1 to any
square free number and 0 otherwise.

• λ(n): the Liouville function. It associates the number (−1)k to all pk.

The functions µ and λ can also be defined without using their multiplica-
tivity property with the omega functions: if ω(n) gives the number of distinct
prime factors of n and Ω(n) gives the number of prime factors of n counted
by multiplicities, then µ(n) = (−1)ω(n) if ω(n) = Ω(n) and 0 otherwise, and
λ(n) = (−1)Ω(n).

2.2 Dirichlet convolution
The Dirichlet convolution of two arithmetical functions f and g is defined by:

(f ? g)(n) =
∑
d|n

f(n/d)g(d). (7)

The function δn=1 also named δ1, defined by δ1(1) = 1 and δ(n) = 0 for
n 6= 1, is the identity element for this multiplication, as for all arithmetical
function g, we have

(δ1 ? g)(n) =
∑
`m=n

δ1(`)g(m) = g(n).

The reader can easily verify the two following properties:

Property 2.2. Dirichlet convolution is commutative and associative.

Property 2.3. Dirichlet convolution distributes over addition.

Thus, these two operations give the set of arithmetical functions the struc-
ture of an algebra over a commutative ring.

A very important theorem for multiplicative functions is:

Theorem 2.4. If f and g are multiplicative, so is their Dirichlet product f ? g.

To prove the theorem above, we use the following lemma:
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Lemma 2.5. Let m and n be two relatively prime integers. For all function F ,
we have ∑

d|mn

F (d) =
∑
d1|m

∑
d2|n

F (d1d2).

Proof. Let n be an integer, and let D(n) be the set of its positive divisors, for
example D(12) = {1, 2, 3, 4, 6, 12}. We consider the two following functions:

Φ : D(m)×D(n)→ D(mn),
(d1, d2) 7→ d1d2

Ψ : D(mn)→ D(m)×D(n),
d 7→ (gcd(d,m), gcd(d, n)).

We now prove that Ψ ◦ Φ = Id and Φ ◦Ψ = Id, hence the lemma is a direct
consequence of the equivalence d/mn⇔ d = d1d2 with d1/m and d2/n.

First, let (d1, d2) from D(m)×D(n).
We have gcd(d1d2,m) = d1 and gcd(d1d2, n) = d2, hence Ψ ◦ Φ = Id.
Conversely, if d divides mn, we have

gcd(d,mn) = gcd(d,m) gcd(d, n) therefore Φ ◦Ψ = Id.

Using this lemma, we can now prove Theorem 2.4 :

Proof : Clearly (f ? g)(1) = f(1)g(1) = 1. Then, given m and n two relatively
prime numbers,

(f ? g)(mn) =
∑
d|mn

f

(
mn

d

)
g(d).

Lemma 2.5 tells us that

(f ? g)(mn) =
∑
d1|m

∑
d2|n

f

(
mn

d1d2

)
g(d1d2)

=
∑
d1|m

∑
d2|n

f(m/d2)f(n/d2)g(d1)g(d2) = (f ? g)(m)(f ? g)(n)

�

Note that τ the function that gives the number of divisors is multiplicative,
as τ(n) = (1 ? 1)(n).

Exercise 1. Prove that 1 ? λ(n) = 1 if n is a square and 0 otherwise.

Exercise 2. Let f and g so that f(n) = τ(n)2 et g(n) = τ(n2). Prove that
f = 1 ? g.

Exercise 3. Prove that θ1 = 1 ? φ.

3 Dirichlet series
Definition 3.1. Let f be an arithmetical function. The Dirichlet series asso-
ciated with f is defined for all real number s for which the series is convergent
by:

D(f, s) =
∑
n≥1

f(n)n−s. (8)
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Note: There might not exist values of s for which the Dirichlet series is
defined, for example if f(n) = en .
Also, Dirichlet series are usually defined on C but in this article we only need
s to be a real number. More information about Dirichlet series can be found
in [4].

3.1 Abscissa of absolute convergence
Definition 3.2. The abscissa of convergence for a function f , is the smallest
real σc such as the Dirichlet series D(f, s) is convergent for all s > σc. If
D(f, s) is convergent for all s, we say that the abscissa of convergence is −∞.

Example 1. The abscissa of convergence is −∞ for f(n) = e−n.

Definition 3.3. The abscissa of absolute convergence for a function f , is the
smallest real σa such as the Dirichlet series D(|f |, s) is convergent for all s > σa.

Note: The series might not be convergent for s = σc (or σa). Landau’s
theorem stipulates that if f is positive and σc is finite, the Dirichlet series
associated with f diverges in σc (see [1] for example, Thm 11.13).

Property 3.4. Let f be an arithmetical function such as the associated Dirichlet
series is absolutely convergent for some s. Thus, for all r ≥ s, the series D(f, r)
is absolutely convergent.

Proof : We have
D(f, r) =

∑
n≥1

f(n)

ns
ns

nr
.

r ≥ s so ns/nr ≤ 1, hence D(|f |, r) ≤ D(|f |, s), i.e. the Dirichlet series associ-
ated with f is absolutely convergent for all r ≥ s. �

3.2 Euler product
Infinite sums of multiplicative functions can be expanded into infinite products
over prime numbers, with the same abscissa of absolute convergence. This is a
consequence of a theorem of Godement (see [3]):

Theorem 3.5. Considering a sequence (un) such that
∑
n≥1 |un| = M < ∞,

then

1. Pn =
∏

1≤j≤n

(1 + uj)→ P ∈ C.

2. If for all j, 1 + uj 6= 0 then P 6= 0.
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Proof : 1. We have Pn − Pn−1 = unPn−1 so

| Pn − Pn−1 |≤| un || Pn−1 |≤| un |
∏

1≤j≤n−1

e|uj | ≤| un | eM .

2. We find some product Q such that PQ = 1.
Indeed, for all j we define

vj =
1

1 + uj
− 1 = − uj

1 + uj

(vj) is well defined as for all j, 1 + uj 6= 0. And
∑
n≥1 |uj | < ∞ as |vj | ∼ |uj |.

So if Q =
∏
n≥1(1+vn) then, as we have for all j, (1+uj)(1+vj) = 1, we easily

deduce PQ = 1. �

We will say that a product is absolutely convergent in Godement’s criterion
if it can be writen

∏
(1 + uj) with

∑
|uj | bounded. And this can be applied

to Dirichlet series of multiplicative functions: if D(f, s) can be expanded into
a Euler product, it means that the product is zero if and only if it contains at
least one zero factor.

Property 3.6. Let f be a multiplicative function and assume that the Dirichlet
series associated with f is absolutely convergent for some s. Hence, D(f, s) is
expandable into the Euler product in Godement’s criterion:

D(f, s) =
∏
p≥2

∑
k≥0

f(pk)

pks
.

Proof : The idea is to express n as its product of prime numbers. Then, f
being multiplicative, this proves the theorem. A complete proof is in [6]. �

The Riemann zeta function is the Dirichlet series associates with the constant
function 1 which we named θ0 and 1 in the inventory. Thus it is the simplest
(and most famous) Dirichlet series. It is defined for all s > 1 by

ζ(s) =
∑
n≥1

n−s.

Note: Riemann considered complex values of s and connected the distribu-
tion of primes to analytic properties of the function ζ.

As the function 1 is multiplicative, the function ζ is expandable to the Euler
product :

ζ(s) =
∏
p≥2

(∑
k≥0

1

pks
)

=
∏
p≥2

(1− p−s)−1, (9)

which is absolutely convergent for s > 1.
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3.3 Uniqueness theorem
For every arithmetical function we can associate a Dirichlet series, as long as
the last is convergent for at least some s. We see below that a function f is
uniquely determined by its Dirichlet series.

Property 3.7. Given two functions f and g such that their Dirichlet series are
both absolutely convergent for some s and that D(f, r) = D(g, r) for all r > s,
then f = g.

Proof : Let h1 = f − g, we have D(h1, r) = 0 for all r > s. As the series is
convergent for r = s + 1, h2(n) = h1(n)/ns+1 is bounded (in absolute value)
and D(h2, r) = 0 for all r > −1. We will prove that h2 = 0.
Let’s assume that h2 6= 0. Let n0 be the smallest integer for which h2(n) 6= 0.
We have, for r > 1:

nr0D(h2, r)− h2(n0) =
∑
n≥n0

h2(n)
nr0
nr
− h2(n0) =

∑
n≥n0+1

h2(n)
nr0
nr

Hence, if comparing the sum to an integral we have:

|nr0D(h2, r)− h2(n0)| ≤ max
n
|h2(n)|

∑
n≥n0+1

nr0
nr

≤ max
n
|h2(n)|nr0

∫ ∞
n0

dt

tr
≤ n0 maxn |h2(n)|

(r − 1)
,

n0 maxn |h2(n)|/(r − 1) → 0 when r → +∞ . And as D(h2, r) = 0 (and so
nr0D(h2, r) = 0), we should have h2(n0) = 0, hence the contradiction.

�

3.4 Dirichlet series and convolution
The two operations defined in chapter 2.2 on the set of arithmetical functions
are precisely the ones involved when adding or multiplying two Dirichlet series.

• Addition (+): given two functions f and g which Dirichlet series are ab-
solutely convergent for some s, we have

D(f + g; s) = D(f ; s) +D(g; s).

• Multiplication (?): given two functions f and g which Dirichlet series are
absolutely convergent for some s, we have

D(f ? g; s) = D(f ; s)D(g; s).
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The last identity, which is easy to establish, means the Dirichlet series of
a convolution is the product of the Dirichlet series the same way the Fourier
transform of a convolution is the product of the Fourier transforms for real
values.

Note: the abscissa of convergence of the Dirichlet series associated with f ?g
is clearly less than or equal to the maximum of the abscissas of convergence
of f and g. There is usually equality when those abscissas of convergence are
distinct and none of the factors is nul.

Exercise 4. Show that

1. D(ϕ, s) = ζ(s− 1)/ζ(s),

2. if f(n) = τ2(n), then D(f, s) = ζ4(s)/ζ(2s),

3. if f(n) = τ(n2), then D(f, s) = ζ3(s)/ζ(2s),

4. D(λ, s) = ζ(2s)/ζ(s),

5. D(µ2, s) = ζ(s)/ζ(2s).

Exercise 5. Show that the Dirichlet series associated to the Moebius function
µ is 1/ζ(s) and exhibit an example that will prove that the abscissa of absolute
convergence of a convolution can be strictly smaller than the maximum of the
abscissas of convergence of the two functions involved. (consider 1 ? µ).

4 Results
As stated in the introduction, we now explain the convolution method in a
step-by-step guide with three examples. We remind the reader that the results
are:

Theorem 4.1. Let X be a positive real number. For all σ real in ]1/2, 1], we
have

1

X

∑
n≤X

f0(n) = C0X +O(Xσ)

where the O contains a constant number depending on σ and where

C0 = 1
2

∏
p≥2

(
1 +

1

p(p+ 1)

)
= 1.3684...

Then if

f1(n) =
ϕ(n)

n
, (10)

we have
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Theorem 4.2. Let X be a positive real number. For all σ real in ] − 1, 0], we
have

1

X

∑
n≤X

f1(n) =
6

π2
+O(Xσ)

where the O contains a constant number depending on σ.

At last if we consider

f3(n) =
µ(n)

ϕ(n)
and g3(n) =

µ(n)

n
(11)

we will find a function h3 such that f3 = g3 ?h3 and obtain the following result.

Theorem 4.3. For all X > 100000,∣∣∣∣∣∣
∑
n≤X

µ(n)

ϕ(n)

∣∣∣∣∣∣ ≤ 0.082

logX
+

30

X1/3

We let the reader quickly check that f0, f1 and f3 are indeed multiplicative
functions, f0 from its definition, f1 and f3 as quotients of two multiplicative
functions.

5 The step-by-step guide to convolution method
and proof of Theorem 4.1

Step one: finding Dirichlet series such that D(f0, s) = D(g, s)D(h, s)

Let us express the Dirichlet series associated with f0 as an Euler product, we
have:

D(f0, s) =
∑
n≥1

∏
p′|n(p′ + 2)

ns
=
∏
p≥2

(
1 +

∑
k≥1

∏
p′|pk(p′ + 2)

pks

)
.

But p′ and p being prime numbers, the only p′ that divides pk is p′ = p. So
what remains from the sum inside the brackets is:∑

k≥1

(p+ 2)

pks
= (p+ 2)

∑
k≥1

1

pks
=

p+ 2

ps − 1
.

The Dirichlet series associated with f0 is:

D(f0, s) =
∏
p≥2

(
1 +

p+ 2

ps − 1

)
. (12)

We now notice that this product is similar to∏
p≥2

(
1 +

1

ps−1 − 1

)
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which is equal to ζ(s− 1).

We remind the reader that our goal is to find a function g and a function
h such that f0 = g ? h. According to the property 3.7 and the fact that the
Dirichlet series of a convolution is the product of the Dirichlet series, we are
looking for a Dirichlet series H(s) = D(h, s) such that D(f0, s) = ζ(s− 1)H(s)
So our function g here would be the function θ1 that associates n to n and which
Dirichlet series is ζ(s− 1) we now need to find the function h, but first to find
H(s).

Let us "take" ζ(s− 1) "out" of our product:

D(f0, s) =
∏
p≥2

(
1 +

p+ 2

ps − 1

)
= ζ(s− 1)

∏
p≥2

(
1 +

p+ 2

ps − 1

)∏
p≥2

(
1− 1

ps−1

)

= ζ(s− 1)
∏
p≥2

(
1− 1

ps−1
+

p+ 2

ps − 1
− p+ 2

ps−1(ps − 1)

)

= ζ(s− 1)
∏
p≥2

(
1 +

2

ps − 1
− 1

ps−2(ps − 1)
− 1

ps−1(ps − 1)

)
= ζ(s− 1)H(s).

Step two: identifying the function h

We must now express H(s) as a Dirichlet series and at the same time consider
the values of s for which H(s) is absolutely convergent. We remind the reader
that we are looking for a function h such that:

H(s) = D(h, s) =
∑
n≥1

h(n)/ns (13)

And because we only consider multiplicative functions, the series can be ex-
panded into the Euler product

D(h, s) =
∏
p≥2

(
1 +

∑
k≥1

h(pk)

pks

)
.

Hence we have

1 +
∑
k≥1

h(pk)

pks
= 1 +

2

ps − 1
− 1

ps−2(ps − 1)
− 1

ps−1(ps − 1)
. (14)

Because h is multiplicative, the series H(s) will be absolutely convergent if
in the right member of this Euler product we have

∑
2

ns−1 ,
∑

1
ns−2(ns−1) and∑

1
ns−1(ns−1) that are convergent. Which means we must have at the same time

s > 1, 2s − 2 > 1 hence s > 3/2 and 2s − 1 > 1 hence s > 1 again. Thus, the
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abscissa of absolute convergence of h is at most 3/2.
This result is coherent with our goal which was to find a function h "smaller"
than f and g as defined in the introduction of this section. Indeed, the abscissa
of convergence of g = θ1 (associated with ζ(s − 1)) is 2, and so will be f0’s as
we can guess from the way we defined g and h and as we can verify when f0 is
determined.

Let us now explicit H(s):

1 +
∑
k≥1

h(pk)

pks
= 1 +

2

ps − 1
− 1

ps−2(ps − 1)
− 1

ps−1(ps − 1)
.

Let us modify the right hand member so that it can be identified with the
left one. We use the simple fact that

1

1− 1
ps

=
∑
k≥0

1

pks
(15)

Hence

1 +
2

ps − 1
− 1

ps−2(ps − 1)
− 1

ps−1(ps − 1)
= 1 +

2

ps

(
1

1− 1
ps

)
− 1

p2s−2

(
1

1− 1
ps

)
− 1

p2s−1

(
1

1− 1
ps

)
= 1 +

2

ps

∑
k≥0

1

pks
− 1

p2s−2

∑
k≥0

1

pks
− 1

p2s−1

∑
k≥0

1

pks

= 1 + 2
∑
k≥0

1

p(k+1)s
− p2

∑
k≥0

1

p(k+2)s
− p

∑
k≥0

1

p(k+2)s

= 1 +
2

ps
+
∑
k≥2

−p2 − p+ 2

pks

Identifying each term of these series, we define the multiplicative function h
by: {

h(p) = 2,
h(pk) = −p2 − p+ 2 for k ≥ 2,

(16)

which meets our requirements.

Step three: determination of the average order of f0
We will use the following lemma:

Lemma 5.1. For all α ∈ [1, 2] and all M ≥ 0.∑
m≤M

m = 1
2M

2 +O(Mα) (17)
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Proof : for all integer N we have:∑
n≤N

n = N(N + 1)/2,

thus, for M ≥ 1, M being real we have:∑
m≤M

m = 1
2M(M + 1) +O(M) = 1

2M
2 +O(M). (18)

This estimation is true for any M greater than or equal to 0, and obviously for
all α ∈ [1, 2], ∑

m≤M

m = 1
2M

2 +O(Mα)

�

As D(f0, s) = ζ(s − 1)H(s), we already explained in the first step why
f0 = θ1 ? h.

Let us express f0 as the convolution of θ1 by h.

f0(n) =
∑
`m=n

h(`)θ1(m) =
∑
`m=n

h(`)m.

We are now ready to calculate the average order of f0. We have∑
n≤X

f0(n) =
∑
`m≤X

h(`)m =
∑
`≤X

h(`)
∑

m≤X/`

m. (19)

The lemma 5.1 works as we actually need the error term to be less good be-
cause of the abscissa of absolute convergence of h which is 3/2, and this allows
us to easily finish our calculation.

∑
n≤X

f0(n) =
∑
`≤X

h(`)

(
1
2

X2

`2
+O(

Xα

`α
)

)
We conveniently notice that the condition ` ≤ X can be replaced with ` ≥ 1

as the identity (and estimation) remains true. And so:∑
n≤X

f0(n) =
X2

2

∑
`≥1

h(`)

`2
+O

(
Xα

∑
`≥1

|h(`)|
`α

)
.

We now understand better why we needed the error term power in (5.1) to be
greater than 1. H(s) is absolutely convergent for s > 3/2 so

∑
`≤1 |h(`)|/`α is

finite for all α > 3/2. And the error term only makes sense for α ≤ 2.
In conclusion, if we let σ = α− 1 we find that

1

X

∑
n≤X

f0(n) =
X

2

∑
`≥1

h(`)

`2
+O

(
Xσ

∑
`≥1

|h(`)|
`σ

)
.

for all σ ∈]1/2, 1[ which concludes the demonstration of Theorem 4.1.
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Expression of the constant C0

In Theorem 4.1 we stated that

1

X

∑
n≤X

f0(n) = C0X +O(Xσ) so C0 =
1

2

∑
`≥1

h(`)

`2
(20)

with ∑
`≥1

h(`)

`2
=
∏
p≥2

(
1 +

∑
k≥1

h(pk)

p2k

)

=
∏
p≥2

(
1 +

2

p2
+ (−p2 − p+ 2)

∑
k≥2

1

p2k

)

=
∏
p≥2

(
1 +

2

p2
+

(−p2 − p+ 2)

p2(p2 − 1)

)

=
∏
p≥2

(
1 +

(p2 − p)
p2(p2 − 1)

)
=
∏
p≥2

(
1 +

1

p(p+ 1)

)

Hence C0 = 1
2

∏
p≥2

(
1 + 1

p(p+1)

)
.

6 Second example of the convolution method, proof
of Theorem 4.2

In this part, we are considering the function below

f1(n) =
ϕ(n)

n

for which we cannot use directly use the convolution method to determine its
average order for divergence reasons. So we determine the average order of

f2(n) =
ϕ(n)

n2
(21)

and then use a summation by parts explained in the next section.

6.1 Determination of the average order of f2
Step one

Let us express the Dirichlet series of f2 as the product of two Dirichlet series.
f2 being multiplicative, we have

D(f2, s) =
∑
n≥1

ϕ(n)

ns+2
=
∏
p≥2

(
1 +

∑
k≥1

ϕ(pk)

p(s+2)k

)
(22)
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but for all k ≥ 1 we have ϕ(pk) = pk−1(p− 1) so

D(f2, s) =
∏
p≥2

(
1 +

∑
k≥1

pk−1(p− 1)

p(s+2)k

)
=
∏
p≥2

(
1 +

∑
k≥1

1

p(s+1)k
−
∑
k≥1

1

p

1

p(s+1)k

)

=
∏
p≥2

(
1 +

1

ps+1 − 1
− 1

p

1

ps+1 − 1

)
We notice that this product is similar to

∏
p≥2

(
1 +

1

ps+1 − 1

)
= ζ(s+ 1). (23)

So we now write

D(f2, s) = ζ(s+ 1)
∏
p≥2

(
1 +

1

ps+1 − 1
− 1

p(ps+1 − 1)

)(
1− 1

ps+1

)

= ζ(s+ 1)
∏
p≥2

(
1 +

1

ps+1 − 1
− 1

p(ps+1 − 1)
− 1

ps+1
− 1

ps+1(ps+1 − 1)
+

1

ps+2(ps+1 − 1)

)
.

Fortunately, a few simplifications occur here as

1

ps+1 − 1
− 1

ps+1
=

1

ps+1(ps+1 − 1)

so finally

D(f2, s) = ζ(s+ 1)
∏
p≥2

(
1− 1

p(ps+1 − 1)
+

1

ps+2(ps+1 − 1)

)
. (24)

Step two

Our goal is again to find a function g and a function h such that f2 = g ? h ans
so that D(f2, s) = D(g, s)D(h, s). So our function g here would be the function
that associates 1/n to n and which Dirichlet series is ζ(s + 1) we now need to
find the function h such that

D(h, s) =
∏
p≥2

(
1− 1

p(ps+1 − 1)
+

1

ps+2(ps+1 − 1)

)
=
∏
p≥2

(
1 +

∑
k≥1

h(pk)

pks

)
.

Note that the absolute convergence of this series (expressed as a Euler product
here) will be secured by having s+ 2 > 1 and 2s+ 3 > 1 hence s > −1. We now
need to identify the terms inside the Euler products

∑
k≥1

h(pk)

pks
= − 1

p(ps+1 − 1)
+

1

ps+2(ps+1 − 1)
= − 1

ps+2(1− 1
ps+1 )

+
1

p2s+3(1− 1
ps+1 )

16



As we have
1

1− 1
ps+1

=
∑
k≥0

1

pk(s+1)
, (25)

we can deduce that∑
k≥1

h(pk)

pks
= − 1

ps+2

∑
k≥0

1

pk(s+1)
+

1

p2s+3

∑
k≥0

1

pk(s+1)

= −1

p

∑
k≥0

1

p(k+1)s+k+1
+

1

p

∑
k≥0

1

p(k+2)s+k+2

= −1

p

1

ps+1
= − 1

p2

1

ps
.

And finally, if we define the multiplicative function h by{
h(p) = − 1

p2 ,

h(pk) = 0 for k ≥ 2,
(26)

it meets our requirements. We note that we have h(n) = µ(n)
n2 !

Step three

Let us calculate the average order of f2 using the convolution g ? h.

f2(n) =
∑
`m=n

h(`)
1

m
.

We have ∑
n≤X

f2(n) =
∑
`m≤X

h(`)
1

m
=
∑
`≤X

h(`)
∑

m≤X/`

1

m
, (27)

but for all real number M ≥ 1 we have∑
m≤M

1

n
= lnM + γ +O(1/M). (28)

Please note that we also have:∑
m≤M

1

n
= lnM + γ +O(Mσ) (29)

for all σ ∈ [−1, 0] and all M ≥ 1 and where γ is the Euler constant.

Here again we need the error term to be less good because of the abscissa of
absolute convergence of h which is -1.

∑
n≤X

f2(n) =
∑
`≤X

h(`)

(
ln
X

`
+ γ +O(

Xσ

`σ
)

)
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And here again, the condition ` ≤ X can be replaced with ` ≥ 1 as the
identity (and estimation) remains true. And so:∑

n≤X

f2(n) = lnX
∑
`≥1

h(`)−
∑
`≥1

h(`) ln `+ γ
∑
`≥1

h(`) +O
(
Xσ

∑
`≥1

|h(`)|
`σ

)
.

H(s) is absolutely convergent for s > −1 so
∑
`≤1 |h(`)|/`σ is finite for all

σ > −1. And the error term makes sense for σ ≤ 0 and so for all σ in ]− 1, 0],∑
n≤X

f2(n) = lnX
∑
`≥1

h(`)−
∑
`≥1

h(`) ln `+ γ
∑
`≥1

h(`) +O(Xσ).

Determination of the constants

First we have ∑
`≥1

h(`) =
∏
p≥2

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2
.

Then the series ∑
`≥1

h(`) ln ` =
∑
`≥1

µ(`) ln `

`2
(30)

is absolutely convergent, as
∑

ln `
`2 is convergent.

Note: if we define H(s) = D(h, s), the series (30) is actually the opposite of
H ′(0) where H ′ is the derivative of H.

6.2 Summation by parts
Lemma 6.1. If for some σ in ]− 1, 0],

∑
n≤X

ϕ(n)

n2
= a lnX + b+O(Xσ) (31)

where a and b are real numbers, then we have∑
n≤X

ϕ(n)

n
= aX +O(Xσ+1).

Proof : We consider that we have
∑
n≤X

ϕ(n)
n2 = a lnX+b+O(Xσ) and deduce∑

n≤X
ϕ(n)
n . There are two important things that we will use in this technique.

The first one being the simple fact that

n =

∫ n

0

dt

18



and the second one being that for all function f and for all positive real number
X we have ∑

n≤X

f(n)

∫ n

0

dt =

∫ X

0

∑
t≤n≤X

f(n)dt (32)

Let us name S the sum S(X) =
∑
n≤X

ϕ(n)
n2 = a lnX + b + O(Xσ), we then

have∑
n≤X

ϕ(n)

n
=
∑
n≤X

ϕ(n)

n2

∫ n

0

dt =

∫ X

0

∑
t≤n≤X

ϕ(n)

n2
dt

=

∫ X

0

(S(X)− S(t))dt = XS(X)−
∫ X

0

S(t)dt

= aX lnX + bX +O(Xσ+1)−
[
a(t ln t− t)

]X
0
− bX +O(Xσ+1)

= aX +O(Xσ+1).

�

6.3 Conclusion
So if we identify the constants used in the summation by parts in (31), we have
a = 1

ζ(2) and b = γ
ζ(2) +H ′(0).

From the above and the summation by parts, we deduce that for all σ in
]− 1, 0] we have

1

X

∑
n≤X

ϕ(n)

n
=

6

π2
+O(Xσ).

which concludes Theorem 4.2.

7 Third and last example, proof of Theorem 4.3

In this last example, f3(n) = µ(n)
ϕ(n) and g3(n) = µ(n)

n , we just want to find h3 so
that f3 = g3 ? h3, expressing their Dirichlet series with Euler products:

D(f3, s) =
∑
n≥1

µ(n)

ϕ(n)ns
=
∏
p≥2

1 +
∑
k≥1

µ(pk)

ϕ(pk)pks


=
∏
p≥2

(
1− 1

(p− 1)ps

)
As fo all k ≥ 2, µ(pk) = 0.

And on the other hand,

D(g3, s) =
∑
n≥1

µ(n)

ns+1
=
∏
p≥2

(
1− 1

ps+1

)
=

1

ζ(s+ 1)
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so

D(f3, s) = D(g3, s)
∏
p≥2

(
1− 1

(p− 1)ps

)(
1

1− 1
ps+1

)
.

So we need to identify:

∏
p≥2

(
1− 1

(p− 1)ps

)(
1

1− 1
ps+1

)
= D(h3, s) =

∏
p≥2

1 +
∑
k≥1

h3(pk)

pks

 . (33)

We have

∏
p≥2

(
1− 1

(p− 1)ps

)(
1

1− 1
ps+1

)
=
∏
p≥2

(
1− 1

(1− 1
p )ps+1

)1 +
∑
k≥1

1

p(s+1)k


=
∏
p≥2

1− 1

ps+1

∑
k≥0

1

pk

1 +
∑
k≥1

1

p(s+1)k


=
∏
p≥2

1−
∑
k≥1

1

pk+s

1 +
∑
k≥1

1

p(s+1)k


We expand the product and find that it is equal to

=
∏
p≥2

1−
∑
k≥1

1

pk+s
+
∑
k≥1

1

p(s+1)k
−
∑
k≥1
k′≥1

1

pk+s+(s+1)k′


=
∏
p≥2

1 +
1

ps

(
−
∑
k≥1

1

pk
+

1

p

)
+

1

p2s

(
1

p2
−
∑
k≥1

1

pk+1

)
+

1

p3s

(
1

p3
−
∑
k≥1

1

pk+2

)
+ ...


We can now define h3 with its value for prime powers as h3 is multiplicative:

h3(1) = 1
h3(p) = −

∑
k≥1

1
pk

+ 1
p = − 1

p(p−1)

h3(pα) = 1
pα −

∑
k≥1

1
pα+k−1 = 1

pα −
1

pα−1
1
p−1 for α ≥ 2

(34)

So h3(1) = 1 and for all prime p and for all integer α ≥ 1, h3(pα) = − 1
pα(p−1) =

− 1
pϕ(pα) . If we define h3 for all integer n, we have

h3(n) =
(−1)ω(n)

ϕ(n)F (n)

where
F (n) =

∏
pα|n

p
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F is the function that removes the multiciplity order to each prime factor of n.
And ω(n) =

∑
p|n 1.

Note: we expect to find the abscissa of absolute convergence of D(h3, s)
strictly less than the one of D(f3, s) (which is the same as D(g3, s)). Indeed,
the abscissa of absolute convergence ofD(g3, s) is 1 when the abscissa of absolute
convergence of D(h3, s) is −1. As for any real number s,

∑
α≥1

|h0(pα)|
pαs

= O

1 +
∑
α≥1

1

pαs+s+1

 (35)

And

1 +
∑
α≥1

1

pαs+s+1
= 1 +

1

p(s+1)+1

∑
β≥0

1

pβ(s+1)
= Cst×

(
1 +

1

ps+2

)
So D(|h3|, s) is convergent for all s+ 2 > 1 hence s > −1.
We now find that

Lemma 7.1. h3 being the function defined above,∑
`≥1

h3(`) = 0 and
∑
`≥1

|h3(`)| =
∏
p≥2

(
1 +

1

(p− 1)2

)
= 2.8264...

Proof : We use a Euler product:

∑
`≥1

h3(`) =
∏
p≥2

1 +
∑
k≥1

h3(pk)

 =
∏
p≥2

1−
∑
k≥1

1

pk(p− 1)


=
∏
p≥2

1− 1

p− 1

∑
k≥1

1

pk



hence ∑
`≥1

h3(`) =
∏
p≥2

(
1− 1

(p− 1)2

)
= 0.

And we deduce easily the second sum as it is equal to
∏
p≥2

(
1 +

∑
k≥1

1
pk(p−1)

)
.

�

We can now prove Theorem 4.3:

Theorem. For all X > 100000,∣∣∣∣∣∣
∑
n≤X

µ(n)

ϕ(n)

∣∣∣∣∣∣ ≤ 0.082

logX
+

30

X1/3
(36)
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Proof : We know from [5], Teorem 1.2 that for X > 100000∣∣∣∣∣∣
∑
n≤X

µ(n)

n

∣∣∣∣∣∣ < 1

69 logX
(37)

Using our identity f3 = g3 ? h3 where g3(n) = µ(n)
n , we have∑

n≤X

f3(n) =
∑
`≤X

h3(`)
∑
m≤X`

g3(m)

=
∑
`≤
√
X

h3(`)
∑
m≤X`

g3(m) +
∑

√
X≤`≤X

h3(`)
∑
m≤X`

g3(m)

In the first term, we use (37) as∣∣∣∣∣∣
∑
m≤X`

g3(m)

∣∣∣∣∣∣ < 1

69 log X
`

≤ 1

69 log
√
X

And so ∣∣∣∣∣∣
∑
`≤
√
X

h3(`)
∑
m≤X`

g3(m)

∣∣∣∣∣∣ ≤ 1

69 log
√
X

∑
`≤
√
X

|h3(`)|

≤ 2

69 logX

∑
`≥1

|h3(`)| = C3

logX

As
∑
|h3(n)| is convergent. And from Lemma 7.1 we decuce C3 = 0.0819....

For the second term, we use the Rankin method: for all a > 0 we have∑
√
X≤`≤X

|h3(`)| ≤
∑
√
X≤`

|h3(`)| ≤
∑
√
X≤`

|h3(`)|
(

`√
X

)a

≤
∑
1≤`

|h3(`)|
(

`√
X

)a
≤
∑
1≤`

|h3(`)|
`−a

(
1√
X

)a

But
∑

1≤`
|h3(`)|
`−a = D(|h3|,−a) and we know that the Dirichlet series D(|h3|, s)

is convergent for all s > −1, so here for all a such that −a > −1. We choose
a = 2

3 and so we find that

∑
√
X≤`≤X

|h3(`)| = O
(

1

X1/3

)
. (38)
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More precisely, we expand D(|h3|,−2/3) into a Euler product to calculate it,
the same way as we did in Lemma 7.1 and we obtain:

D(|h3|,−2/3) =
∑
1≤n

|h3(n)|n2/3 =
∏
p≥2

(
1 +

1

(p− 1)(p1/3 − 1)

)
≤ 27 (39)

Now because
∑
g3(n) is also convergent,

∣∣∣∑m≤X`
g3(m)

∣∣∣ is bounded by 1 (from
(37)). Hence ∣∣∣∣∣∣

∑
√
X≤`≤X

h3(`)
∑
m≤X`

g3(m)

∣∣∣∣∣∣ = O
(

1

X1/3

)
.

More precisely,
∑

1≤n |h3(n)| as estimated in Lemma 7.1,∣∣∣∣∣∣
∑

√
X≤`≤X

h3(`)
∑
m≤X`

g3(m)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
m≤X`

g3(m)

∣∣∣∣∣∣
∑
1≤n

|h3(n)| 1

X1/3

≤
∑
1≤n

|h3(n)| 1

X1/3
≤ 3

X1/3

�

The theorem holds for any X > 100000 but we can check it holds also for
2 ≤ X ≤ 100000 with GP PARI and the following script:

somme=1.0;
for(k = 2, 100000, somme += moebius(k)/eulerphi(k);
if(abs(somme)>0.082/log(k)+30/$k^{1/3}$,print("Problem at ", k)))

We can generalize this last result to any function f = g3 ? h where h is a
slight perturbation.

Theorem 7.2. For all function f defined by f = g3 ?h where g3(n) = µ(n)
n and

h is such that D(|h|, s) is convergent for all s > −1, we have∣∣∣∣∣∣
∑
n≤X

f(n)

∣∣∣∣∣∣ ≤ C

logX
+

C ′

X1/3

where C = 2
69D(|h|, 0) and C ′ = D(|h|,−2/3) +D(|h|, 0).

Proof : We follow exactly the method above, using the same bound (37), we
use the fact that D(g3, s) = 1

ζ(s+1) and we can find h from its Dirichlet series
which will be convergent for all s > −1. �
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Divertimento
The summation by part is such an interesting tool that we wish to use it again
to show its strength. Let us suppose we are interested in finding the average
order of f0/n, it will now be very simple!

This time the idea is to use the property:∑
n≤t

1 = t+O(1).

And to notice that:
1

n
=

1

X
+

∫ X

n

dt

t2
. (40)

And so: ∑
n≤X

1

n
=

∑
n≤X 1

X
+

∫ X

1

∑
n≤t

1
dt

t2
= lnX +O(1).

We use these properties to show that
∑
n≤X

f0(n)
n = 2C0X + O(Xσ) for all σ

real in ]1/2, 1].
Indeed, as in (40) we have:∑
n≤X

f0(n)

n
=
∑
n≤X

f0(n)
( 1

X
+

∫ X

n

dt

t2

)
=

∑
n≤X f0(n)

X
+

∫ X

1

∑
n≤t

f0(n)
dt

t2

= C0X +O(Xσ) + C0

∫ X

1

dt+O
(∫ X

1

tσ−1dt
)

= 2C0X +O(Xσ).

Et voilà !
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