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Abstract. We provide explicit bounds for the number of integral ideals of

norms at most X is Q[
√
d] when d < 0 is a fundamendal discriminant with an

error term of size O(X1/3). In particular, we prove that, when χ is the non-

principal character modulo 3 and X ≥ 1, we have
∑

n≤X(11 ⋆ χ)(n) = πX
3
√
3
+

O∗(1.94X1/3), and that , when χ is the non-principal character modulo 4

and X ≥ 1, we have
∑

n≤X(11 ⋆ χ)(n) = πX
4

+O∗(1.4X1/3).

Résumé. Nous dénombrons de façon explicite avec un terme d’erreur O(X1/3)

le nombre d’idéaux entiers de norme au plus X du corps Q[
√
d] lorsque d < 0

est un discriminant fondamental. Nous montrons en particulier que, lorsque χ

est le caractère non principal modulo 3 etX ≥ 1, nous avons
∑

n≤X(11⋆χ)(n) =
πX
3
√
3
+O∗(1.94X1/3), et que , lorsque χ est le caractère non principal modulo 4

et X ≥ 1, nous avons
∑

n≤X(11 ⋆ χ)(n) = πX
4

+O∗(1.4X1/3).

1. Introduction and results

General context. Let K be a number field, of degree nK, discriminant ∆(K). Its
associated Dedekind zeta-function ζK has a simple pole at s = 1, with residue
denoted by κK. Counting the number of integral ideals of norm below some bound
is a fundamental question that has been addressed by numerous authors. The
explicit angle has been less popular and three pieces of works emerge: the paper
[3] by K. Debaene, the PhD memoir [10] by J. Sunley and its upgraded version [9]
by E.S. Lee. The first goes by lattice point counting, gets a dependence on the size
of order x1−1/nK and treats the dependence in the field very finely. This approach
is reused in [4] to enumerate integral ideals in ray classes. The second and third
approaches follow the analytic treatment proposed by E. Landau: they get a better
dependence on the size of order x1−2/(nK+1) but only rely on the discriminant of
the field, an invariant which can be notoriously large. The constants obtained have
the clear advantage of being explicit but they remain gigantic. For example, when
nK = 2, the error term in [9] reads

O∗
(
8.81 · 1011|∆K|

1
nK+1 (log |∆K|)nK−1x

1− 2
nK+1

)
where f = O∗(g) means that |f | ≤ g. We aim here at being less demanding in
generality but to gain in numerical precision.

Our results for imaginary quadratic number fields. Let d be a squarefree integer.
We associate to this integer its fundamental discriminant defined by

(1) ∆d =

{
d when d ≡ 1[4],

4d when d ≡ 2, 3[4].
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The associated character is given in terms of the Kronecker symbol by the for-
mula χ(n) = (∆d

n ). We refer to Chapter V, Section 4 of the book [?] by Z.I. Bore-
vitch & I.R. Chafarevitch for the link between this character and the decomposition
law of prime ideals in Q[

√
−d]. Let us mention here that ζQ[

√
d](s) = ζ(s)L(s, χ).

Theorem 1.1. When X ≥ max(|∆d|, 2c0(d)) and d is a negative squarefree integer,
we have∑

n≤X

(11 ⋆ χ)(n) = XL(1, χ) +
1

2|∆d|
∑

1≤r≤|∆d|

rχ(r) +O∗(0.76L(1, χ)c0(d)X1/3
)

where

(2) c0(d) = max(w(3/4),W (5/4))2/3,

and, the function w and W are respectively defined, when s ∈ (0, 1) for w by

(3) w(s) = max
M≥1

∑
m≤M

(11 ⋆ χ)(m)

msM1−sL(1, χ)
,

and when s > 1 for W by

(4) W (s) = max
M≥1

Ms−1

L(1, χ)

∑
m≥M

(11 ⋆ χ)(m)

ms
.

When X ≥ max(1302|∆d|, 10c0(d)), the constant 0.76 may be replaced by 0.67.

Lemmas 3.3 and 3.4 propose upper bounds for w(3/4) and W (5/4). It is in par-
ticular proved that min(w(3/4),W (5/4)) ≥ 4. Therefore imposing larger bounds
on X would reduce only marginally the final constant. It may still be of inter-
est for very small values of d, where the range in X can be completed by direct
computations.

Initial numerical data. We start by some numerical verification done with a GP-
Pari script.

Theorem 1.2. Let χ be the non principal character modulo 4. For X ∈ [1, 108],
we have ∑

n≤X

(11 ⋆ χ)(n) =
πX

4
+O∗(2.08X1/4

)
.

The constant in the big-O seems to increase slightly when X increases.

Theorem 1.3. Let χ be the non principal character modulo 3. For X ∈ [1, 108],
we have ∑

n≤X

(11 ⋆ χ)(n) =
πX

3
√
3
+O∗(1.63X1/4

)
.

Special cases. When we specialise Theorem 1.1 to −19 ≤ d ≤ −1 and incorporate
Theorem 1.3 and 1.2, we get the next results.

Corollary 1.4. Let χ be the non principal character modulo 4. For X ≥ 1, we
have ∑

n≤X

(11 ⋆ χ)(n) =
πX

4
+O∗(1.4X1/3

)
.

Corollary 1.5. Let χ be the non principal character modulo 3. For X ≥ 1, we
have ∑

n≤X

(11 ⋆ χ)(n) =
πX

3
√
3
+O∗(1.94X1/3

)
.
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Corollary 1.6. Let χ be the quadratic character of Q[
√
d], where −19 ≤ d ≤ −1.

For X ≥ 68, we have∑
n≤X

(11 ⋆ χ)(n) = XL(1, χ) +
1

2|∆|
∑

1≤r≤|∆d|

rχ(r) +O∗(3.4X1/3
)
.

Methodology. E. Landau’s approach in [7] (See also [8, Satz 210]) relies on several
ingredients, but the first and main one is the functional equation of the associated
Dedekind zeta function. E. Landau sends the line of integration to ℜs = −1/2, then
uses the functional equation to study the last integral. This Landau’s approach
is described in modern language in [9]. The process used has become known as
the Voronöı Summation Formula(s), based on [11, 12], though this latter is more
commonly used for the divisor function. In fact, though the papers of Voronöı
largely predates the ones of Landau, and it cannot be assumed that Landau did
not know of them, Landau does not mention the Voronöı approach, a surprising
fact as this author has most of the time been very prompt in explaining the genesis
of ideas. This absence may be due to the combination of two facts: Landau worked
in great generality, with intricate Gamma-factors, and a general view of the Voronöı
process was missing at the time. This process is now well understood and is for
instance well-documented in Chapter 10 of the book [2] by H. Cohen. The addition
of Voronöı is to recognize the involved Mellin transform as a Bessel function and to
consider a functional transform of the initial weight function, see Lemma 4.1 below.
We follow this approach here.

Two more ingredients are being used: a non-negative smoothing device and an
apriori trivial upper bound for the number of integral ideals below some bound to
avoid divisor functions of x in the remainder term, see Lemma 3.3 and 3.4 below.

We do not examine what happens for the small values of the size with respect
to the discriminant.

Generalization. The present method may be used for other fields, and this is cur-
rently being investigated. We aim at exploring here with precision this simplest
case. Moreover, this case is the only one where we have ζK(0) ̸= 0, introducing an
additional term in Lemma 4.1.

Notation. We use f = O∗(g) to mean that |f | ≤ g and, for a real number x, we
write x = [x]+{x} where [x] is the integer part of x while {x} denotes its fractional
part.

Thanks. Thanks are due to Olivier Bordellès for some helpful discussions on this
subject and to the referee for a careful read.

2. On the Bessel functions

We need in this work the J-Bessel functions of the first kind. They are the subject
of several treatises, of which we only cite the reference book [1] by M. Abramowitz
& I.A. Stegun. We shall use explicit estimates due to Krasikov in [6] and only for
J0, J1 and J2.

Lemma 2.1. When a > 0, we have∫ X

0

J0(a
√
t)dt =

2
√
X

a
J1(a

√
X)

and ∫ X

0

tJ0(a
√
t)dt =

4X

a2
J2(a

√
X) +

2X3/2

a
J1(a

√
X).
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Proof. Indeed, when ν ≥ 1, we have Jν(t)
′ = Jν−1(t)− Jν(t)ν/t. Hence

(
√
tJ1(a

√
t))′ =

1

2
√
t
J1(a

√
t) +

a

2

(
J0(a

√
t)− 1

a
√
t
J1(a

√
t)

)
=

a

2
J0(a

√
t)

which proves the first formula. For the second one, we notice similarly that

(t3/2J1(a
√
t))′ =

3
√
t

2
J1(a

√
t) +

at

2

(
J0(a

√
t)− 1

a
√
t
J1(a

√
t)

)
=

a

2
tJ0(a

√
t)−

√
tJ1(a

√
t)

and

(tJ2(a
√
t))′ = J2(a

√
t) +

a
√
t

2

(
J1(a

√
t)− 2

a
√
t
J2(a

√
t)

)
=

a
√
t

2
J1(a

√
t)

and therefore

d

dx

(
at3/2

2
J1(a

√
t) + tJ2(a

√
t)

)
=

a2

4
tJ0(a

√
t)

□

Lemma 2.2. When ν > 0 and x ≥ 0, we have∣∣∣∣Jν(x)−
√

2

πx
cos(x− (2ν + 1)π4 )

∣∣∣∣ ≤ 4|ν2 − 1/4|
5x3/2

.

When ν > 1/2 and x ≥ 0, we have |x2 − ν2 + 1
4 |

1/4|Jν(x)| ≤
√

2/π.

Proof. The first inequality is given in a consequence of [6, Theorem 4] by Krasikov
while the second one comes from [6, Theorem 3]. □

Lemma 2.3. With

(5) T (z; a) =
(1 + z)J2(a

√
1 + z)− J2(a)

z

we have, when a ≥ 4π and z ∈ (0, 1/3]:

|T (z, a)| ≤ min

(
0.53

√
a,

7

3z
√
a

)
.

When a ≥ 130 · 4π and z ∈ (0, 1/10):

|T (z, a)| ≤ min

(
0.4

√
a,

2.1

z
√
a

)
.

Proof. By the mean value theorem and when z > 0, we find that

|T (z; a)| ≤ a(
√
1 + z − 1)

z
max

a≤t≤a
√
1+z

|J ′
2(t)|+ |J2(a

√
1 + z)|

≤ a

2
max

a≤t≤a
√
1+z

(
|J1(t)|+

2

t
|J2(t)|

)
+ |J2(a

√
1 + z)|.

The map x 7→ |x2 − 3/4|1/4 is non-decreasing when x ≥
√
3/2 and the map x 7→

|x2 − 7/4|1/4 is also non-decreasing when x ≥
√
7/2. On assuming that a ≥

√
7/2,

Lemma 2.2 thus gives us that√
π/2|T (z; a)| ≤ a

2|a2 − 3/4|1/4
+

2

|a2 − 7/4|1/4
.
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When a ≥ 4π, a rapid plot shows that
√
π/2|T (z; a)| ≤ 0.66

√
a, while, when

a ≥ 130 · 4π, we find that
√
π/2|T (z; a)| ≤ 0.5013

√
a. This establishes the first

bound. When a is large, it is better to simply use

|T (z; a)| ≤ |J2(a
√
1 + z)|+ |J2(a)|

z
+ |J2(a

√
1 + z)|

≤ 2

z|a2 − 7/4|1/4
+

1

|a2(1 + z)− 7/4|1/4
≤ 7

3z
√
a

which we prove first for z ≤ 1/4 by using |a2(1 + z) − 7/4|1/4 ≥ |a2 − 7/4|1/4
and then on discretizing the interval (such precision is not required, it only leads
to be better looking estimate). When z ≤ 1/10 and a ≥ 130 · 4π, we find that
|T (z; a)| ≤ 2.1/(z

√
a). □

3. Some a priori estimates

Let us start with two well-known estimates.

Lemma 3.1. When s is a positive real number, s ̸= 1 and M ≥ 1, we have∑
m≤M

1

ms
=

M1−s

1− s
+ ζ(s) +O∗(1/Ms).

When s ∈ [1/2, 1), we have
∑

m≤M 1/ms ≤ M1−s/(1− s).

Proof. Indeed, we find that∑
m≤M

1

ms
= s

∫ M

1

[t]
dt

ts+1
+

[M ]

Ms
=

s

s− 1
− s

∫ M

1

{t} dt

ts+1
+

M1−s

1− s
− {M}

Ms

=
s

s− 1
− s

∫ ∞

1

{t} dt

ts+1
+

M1−s

1− s
+ s

∫ ∞

M

{t} dt

ts+1
− {M}

Ms

= ζ(s) +
M1−s

1− s
+ s

∫ ∞

M

{t} dt

ts+1
− {M}

Ms
.

We finally check that

s

∫ ∞

M

{t} dt

ts+1
− {M}

Ms
= s

∫ ∞

M

({t} − {M}) dt

ts+1

and the first part of the lemma follows readily. For the second part, we notice
that ζ(s) is negative and decreasing over [0, 1). In 1/2, GP/Pari tells us that
ζ(1/2) = −1.460 354 · · · . The proof is complete. □

Lemma 3.2. When s is a positive real number, χ is any non-principal Dirichlet
character and L′ ≥ L ≥ 1, we have∑

L≤ℓ≤L′

χ(ℓ)

ℓs
= O∗(Ω(χ)/Ls)

where

(6) Ω(χ) = max
L′≥L≥1

∣∣∣∣ ∑
L≤ℓ≤L′

χ(ℓ)

∣∣∣∣.
We also have

∑
ℓ≤L

χ(ℓ)

ℓs
= L(s, χ) +O∗(Ω(χ)/Ls).
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Proof. The first estimate follows by Abel summation. It may also be proved by
using: ∑

L≤ℓ≤L′

χ(ℓ)

ℓs
= s

∫ L′

L

∑
L≤ℓ≤t

χ(ℓ)
dt

ts+1
.

The second part of the lemma is a trivial consequence of the first one together with
the expression L(s, χ) =

∑
ℓ≥1 χ(ℓ)/ℓ

s. □

The next lemma gives an upper bound as well as a mean to approximate w(s)
defined in (3).

Lemma 3.3. When s ∈ [1/2, 1) and χ is a non-principal quadratic Dirichlet char-
acter, we have∑

n≤N

(11 ⋆ χ)(n)

nsN1−s
≤ L(1, χ)

1− s
+

|ζ(s)L(s, χ)|
N1−s

+
( 14 + |ζ(s)|+ 2

1−s )Ω(χ)√
N

.

Moreover, the quantity considered is asymptotic to L(1, χ)/(1− s).

In this lemma as well as in the next one, we remember that (11⋆χ)(n) is real and
non-negative.

Proof. By using Lemma 3.1 and 3.2, and the Dirichlet hyperbola formula, we find
that the sum S to be computed equals (with parameters L ≥ 1 and M ≥ 1 such
that LM = N)

S =
∑
ℓ≤L

χ(ℓ)

ℓs

(
ζ(s) +

(N/ℓ)1−s

1− s
+O∗

(
ℓs

4Ns

))
+

∑
m≤M

1

ms
O∗(Ω(χ)/Ls

)
= ζ(s)

∑
ℓ≤L

χ(ℓ)

ℓs
+

N1−s

1− s

∑
ℓ≤L

χ(ℓ)

ℓ
+O∗

(
L

4Ns
+

Ω(χ)M1−s

(1− s)Ls

)

= ζ(s)L(s, χ) +
N1−sL(1, χ)

1− s

+O∗
(
N1−sΩ(χ)

(1− s)L
+

L

4Ns
+

Ω(χ)M1−s

(1− s)Ls
+ |ζ(s)|Ω(χ)

Ls

)
so that

S/N1−s ≤|ζ(s)L(s, χ)|
N1−s

+
L(1, χ)

1− s
+

Ω(χ)

(1− s)L
+

L

4N

+Ω(χ)
M1−s

(1− s)LsN1−s
+ |ζ(s)| Ω(χ)

LsN1−s
.

The simplistic choice L = M = N1/2 leads to

S/N1−s ≤ |ζ(s)L(s, χ)|
N1−s

+
L(1, χ)

1− s
+

2Ω(χ) + 1
4

(1− s)
√
N

+ |ζ(s)| Ω(χ)

N1−s/2

as we have announced. □

Our final tool in this section is the next lemma which gives an upper bound as
well as a mean to approximate W (s) defined in (4).

Lemma 3.4. When s > 1 and χ is a non-principal quadratic Dirichlet character,
we have

Ns−1
∑
n>N

(11 ⋆ χ)(n)

ns
≤ L(1, χ)

s− 1
+

(2ζ(s) + 1
s−1 )Ω(χ) +

1
4√

N
.

Moreover, the quantity considered is asymptotic to L(1, χ)/(s− 1).
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Proof. We proceed as in Lemma 3.3. On setting S =
∑

n≤N (11 ⋆ χ)(n)/ns, we find

that (with parameters L ≥ 1 and M ≥ 1 such that LM = N)

S =
∑
ℓ≤L

χ(ℓ)

ℓs

(
ζ(s)− (ℓ/N)s−1

s− 1
+O∗

(
ℓs

4Ns

))
+

∑
m≤M

1

ms
O∗(Ω(χ)/Ls

)
= ζ(s)

∑
ℓ≤L

χ(ℓ)

ℓs
− 1

(s− 1)Ns−1

∑
ℓ≤L

χ(ℓ)

ℓ
+O∗

(
L

4Ns
+Ω(χ)

ζ(s)

Ls

)

= ζ(s)L(s, χ)− L(1, χ)

(s− 1)Ns−1
+O∗

(
Ω(χ)

(s− 1)LN1−s
+

L

4Ns
+ 2Ω(χ)

ζ(s)

Ls

)
so that

(ζ(s)L(s, χ)− S)Ns−1 ≤ L(1, χ)

s− 1
+

Ω(χ)

(s− 1)L
+

L

4N
+ 2Ω(χ)

ζ(s)Ns−1

Ls
.

We take L = M = N1/2 and get

(ζ(s)L(s, χ)− S)Ns−1 ≤ L(1, χ)

s− 1
+

(2ζ(s) + 1
s−1 )Ω(χ) +

1
4√

N
.

We finally notice that

ζ(s)L(s, χ)− S =
∑
n>N

(1 ⋆ χ)(n)

ns
.

□

Notice that we could improve on Lemma 3.3 and 3.4 by using our final result!
This is not required as we shall use these two lemmas only when N is large to
reduce the maxima in the definitions of w and W by a finite bound.

4. Around the Voronöı Summation Formula

In [2, Theorem 10.2.17], H. Cohen proposes a functional approach to the Voronöı
Summation Formula: first prove the formula for smooth functions and then argue by
density. Convergence issues inherent to this method are well-known. In particular,
the paper [5] by Hardy & Landau investigates closely what happens when taking
for f in the next lemma to be the characteristic function of the initial interval. The
approach of [2] works however perfectly well is the restricted context that follows.

Lemma 4.1. Let f : [0,∞) 7→ C be a continuous function such that f(t) ≪
1/(1 + |t|2). We define F (f,m) =

∫∞
0

f(t)J0
(
4π

√
mt/|∆d|

)
dt. Assume that the

series
∑

m≥1(11 ⋆ χ)(m)F (f,m) converges. Then, we have∑
n≥1

(11 ⋆ χ)(n)f(n) =L(1, χ)f̌(0) +
f(0)

2|∆d|
∑

1≤r≤|∆d|

rχ(r)

+
2π√
|∆d|

∑
m≥1

(11 ⋆ χ)(m)F (f,m).

Proof. Let us denote by ζQ[
√
d](s) the Dedekind zeta-function of the imaginary

quadratic field Q[
√
d]. It satisfies the functional equation

(7) γd(1− s)ζQ[
√
d](s)(1− s) = γd(s)ζQ[

√
d](s) where γd(s) =

(√
|∆d|
2π

)s

Γ(s).
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We use [2, Theorem 10.2.17] by H. Cohen. The kernel to be considered is

Kd(x) =
1

2iπ

∫ 1
2+i∞

1
2−i∞

(√
|∆d|
2π

)s(√
|∆d|
2π

)s−1
Γ(s)

Γ(1− s)
x−sds

=
1

2iπ

2π√
|∆d|

∫ 1
2+i∞

1
2−i∞

4sΓ(s)

Γ(1− s)

(
16π2x

|∆d|

)−s

ds.

The formula

4s
Γ(s)

Γ(1− s)
=

∫ ∞

0

ts−1J0(
√
t)dt

gives us

Kd(x) =
2π√
|∆d|

J0
(
4π

√
x/|∆d|

)
.

Concerning the value at 0, we use ζ(0) = −1/2 and

(8) L(0, χ) =
−1

|∆d|
∑

1≤r≤|∆d|

rχ(r)

as per [2, Corollary 10.3.2]. □

Lemma 4.2. We have∑
n≤X

(
1− n

X

)
(11 ⋆ χ)(n) =

XL(1, χ)

2
+

1

2|∆d|
∑

1≤r≤|∆d|

rχ(r)

+

√
|∆d|
2π

∑
m≥1

(11 ⋆ χ)(m)

m
J2

(
4π

√
mX/|∆d|

)
.

Proof. By using Lemma 4.1, we readily find that∑
n≤X

(
1− n

X

)
(11 ⋆ χ)(n) =

XL(1, χ)

2
+

1

2|∆d|
∑

1≤r≤|∆d|

rχ(r)

+
2π√
|∆d|

∑
m≥1

(11 ⋆ χ)(m)

∫ X

0

(
1− t

X

)
J0

(
4π

√
mt/|∆d|

)
dt.

By using Lemma 2.1, we find that∑
n≤X

(
1− n

X

)
(11 ⋆ χ)(n) =

XL(1, χ)

2
+

1

2|∆d|
∑

1≤r≤|∆d|

rχ(r)

+
2π√
|∆d|

∑
m≥1

(11 ⋆ χ)(m)
|∆d|
4π2m

J2
(
4π

√
mX/|∆d|

)
.

Our lemma follows swiftly from this last expression. □

5. Main engine

Lemma 5.1. When Y ∈ [0, X/3] and X ≥ |∆d|, we have∑
n≤X

(11 ⋆ χ)(n) +
∑

X<n≤X+Y

X + Y − n

Y
(11 ⋆ χ)(n)

=
(2X + Y )L(1, χ)

2
+

1

2|∆d|
∑

1≤r≤|∆d|

rχ(r) +O∗
(
0.36C0(d)

√
X|∆d|/Y

)
where C0(d) = L(1, χ)c0(d). When Y ∈ [0, X/10] and X ≥ 1302|∆d|, the constant
0.36 may be reduced to 0.292.
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Proof. By using Lemma 4.2 twice, we find that

(1/Y )
∑
n≤X

[
(X + Y )

(
1− n

X + Y

)
−X

(
1− n

X

)]
(11 ⋆ χ)(n)

=
(2X + Y )L(1, χ)

2
+

1

2|∆d|
∑

1≤r≤|∆d|

rχ(r)

+

√
|∆d|
2π

∑
m≥1

(11 ⋆ χ)(m)

m
T (Y/X; 4π

√
mX/|∆d|).

We now majorize the last sum by appealing to Lemma 2.3. Recall that we assume
that X ≥ |∆d| (resp. X ≥ 1302|∆d|). We use the first estimate of Lemma 2.3 when

4π
√
mX/|∆d| ≤

7X

3Y · 0.53

(
resp. 4π

√
mX/|∆d| ≤

2.1X

Y · 0.4

)
i.e. when

m ≥ M =
49|∆d|X

144(0.53π)2Y 2

(
resp. m ≥ M =

2.12|∆d|X
16(0.4π)2Y 2

)
.

We thus get√
|∆d|
2π

∑
m≥1

(11 ⋆ χ)(m)

m
|T (Y/X; 4π

√
mX/|∆d|)|

≤ 0.53
|∆d|1/4X1/4

√
π

∑
m≤M

(11 ⋆ χ)(m)

m3/4
+

7X3/4

3Y

|∆d|3/4

4π3/2

∑
m>M

(11 ⋆ χ)(m)

m5/4
.

We recall that C0(d) = L(1, χ)c0(d) where c0(d) is being defined in (2). On appeal-
ing to Lemmas 3.3 and 3.4, this leads to√

|∆d|
2π

∑
m≥1

(11 ⋆ χ)(m)

m
|T (Y/X; 4π

√
mX/|∆d|)|

≤ 0.53C0(d)
|∆d|1/4X1/4

√
π

M1/4 + C0(d)
7X3/4

3Y

|∆d|3/4

4π3/2M1/4

≤ C0(d)
X1/2

√
0.53

√
7/3

Y 1/2π
|∆d|1/2 ≤ 0.36C0(d)

√
X|∆d|/Y .

When Y ∈ [0, X/10] and X ≥ 1302|∆d|, the constant 0.36 can be replaced by an

upper bound for
√
2.1 · 0.4/π, e.g. 0.292. The proof is complete. □

Proof of Theorem 1.1. We use Lemma 5.1 with X − Y + Y and X + Y . Thus

−Y

2
L(1, χ)− 0.36C0(d)

√
(X − Y )|∆d|/Y ≤ S −XL(1, χ) +

1

2|∆d|
∑

1≤r≤|∆d|

rχ(r)

≤ Y

2
L(1, χ) + 0.36C0(d)

√
X|∆d|/Y .

We select

(9) Y =

(
0.36C0(d)

√
X

L(1, χ)

)2/3

getting the error term

X1/3C0(d)
2/3L(1, χ)1/3

(
0.362/3

2
+ 0.362/3

)
.



10 OLIVIER RAMARÉ

We readily find that Y/X =
(
0.36 c0(d)/X

)2/3
. Therefore, when X ≥ 2c0(d),

we find that Y ≤ X/3. The theorem follows readily in that case. The case X ≥
max(10c0(d), 130

2|∆d|) is treated similarly as we get the hypothesis on Y is ensured

by the inequality Y/X ≤
(
0.292 c0(d)/X

)2/3 ≤ 0.095. □

6. Computing C0(d)

We use the script ConvolutionAndVoronoi-01.gp and the function run(1000000, d)

therein to build the next table. We compute the maxima in w(3/4) and W (5/4)
exactly until M = 106, and then rely on Lemma 3.3 and 3.4. The last column with
title “best” is the best constant we could hope to reach if we were to compute up
to M = ∞.

d ∆d Ω(χ) L(1, χ)c0(d) ≤ best
−1 −4 1 2.02 2.01
−2 −8 2 2.86 2.84
−3 −3 1 1.56 1.56
−5 −20 4 3.63 3.58
−6 −24 4 3.32 3.26
−7 −7 2 3.06 3.05
−10 −40 4 2.58 2.56
−11 −11 3 2.45 2.44
−13 −52 6 2.27 2.25
−14 −56 8 4.37 4.26
−15 −15 3 4.19 4.16
−17 −68 8 3.97 3.90
−19 −19 4 1.87 1.87
−21 −84 8 3.57 3.49
−22 −88 8 1.76 1.72
−23 −23 5 5.08 5.04
−26 −104 12 4.83 4.69
−29 −116 12 4.57 4.45
−30 −120 8 3.00 2.93
−31 −31 6 4.39 4.32
−33 −132 8 2.86 2.79
−34 −136 8 2.82 2.75
−35 −35 6 2.76 2.75
−37 −148 10 1.38 1.34
−38 −152 12 4.00 3.90
−39 −39 6 5.21 5.13
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