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Abstract

In 1969 Webb & Parberry proved a startling trigonometric iden-
tity involving Fibonacci numbers. This identity has remained isolated
up to now, despite the amount of work on related polynomials. We
provide a wide generalization of this identity together with what we
believe (and hope!) to be its proper understanding.

1. Introduction

Fibonacci numbers satisfy a wealth of identities, see e.g. [5], [6], [7], [12].
By specifying x and y to 1 in Corollary 10 of [4], we get an intriguing one
which states that for n ≥ 1:

Fn =

[(n−1)/2]∏
k=1

(
1 + 4 cos2

kπ

n

)
, (1)

=

[(n−1)/2]∏
k=1

(
3 + 2 cos

2kπ

n

)
. (2)

Webb & Parberry’s paper [15] contains all the necessary material to write this
identity, but they do not state it explicitly. This formula is indeed intriguing:
the left hand side satisfies a second order recursion formula while no such
recursion arises from the right hand side expression. Indeed, how could we
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connect cos 2kπ
n

and cos 2kπ
n+1

? Taking a number theoretic point of view leads

to more dismay: Fibonacci numbers are linked with the arithmetic of Q(
√

5)
and not with that of Q(exp(2iπ/n)).

The mystery gets somewhat lifted by the proof of the above identity: we
introduce the second order Chebyshev polynomials Un by

U0(x) = 1, U1(x) = x, Un+1(x) = 2xUn(x)− Un−1(x) (3)

so that they verify

Un(cos θ) =
sin(n+ 1)θ

sin θ
. (4)

This last expression leads to the recursion above as well as to the formula

Un(x) = 2n
n∏
k=1

(
x− cos

kπ

n+ 1

)
. (5)

Since it is not difficult to discover that Fn = in−1Un−1(−i/2) we get the
result. This factorization has been noted and studied by [15], [4], [1], [16].
The main arguments of this proof are the recurrence relation (3) and the rule
of additions of sine. However this sheds no light on how the arithmetic of
Q(
√

5) and Q(exp(2iπ/n)) get entangled.
Elaborating on this argument, Webb & Parberry in [15] and Hoggatt &

Long in [4] defined a sequence of polynomials by

u0(x, y) = 0, u1(x, y) = 1, un+2(x, y) = xun+1(x, y) + yun(x, y). (6)

The case y = 1, the only one considered in [15], leads to what is sometimes
called Fibonacci polynomials. A further generalization led to Morgan-Voyce
polynomials in [14], [11] and [13], and more recently to Brahmagupta’s poly-
nomials in [9] and [10]. In particular, it is proved that

un(x, y) =
n∏
k=1

(
x− 2i

√
y cos

kπ

n

)
(7)

and this leads to amazing identities like:

Corollary 1. We have for n ≥ 3∏
1≤`≤n

(
1 + 4 sin2 2π`

n

)
= (1 + Fn − 2Fn+1 + (−1)n)2

where Fn is the n-th Fibonacci number, with F0 = 0 and F1 = 1.
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We also have 1 + Fn − 2Fn+1 + (−1)n = 1− Ln + (−1)n where Ln is the
nth Lucas number (Ln = Fn−1 + Fn+1).

This corollary does not appear as such in [4], but can be derived from the
material presented therein. We provide a simple proof later. Again the LHS
satisfies a linear recursion, which we now compute explicitly. First express
Fn in terms of φ and −1/φ where φ, the golden ratio, is the larger root of
x2−x−1 and expand the square: there comes a linear combination of terms
of the form pn, where all the p’s appearing are roots of (x2−3x+ 1)(x2−x−
1)(x+ 1)(x− 1) = x6− 4x5 + 2x4 + 6x3− 4x2− 2x+ 1 since φ2 and 1/φ2 are
the roots of x2 − 3x + 1. If we call g(n) the LHS of the quantity computed
in the above corollary, we have

g(n+ 6) = 2g(n+ 5) + 4g(n+ 4)− 6g(n+ 3)− 2g(n+ 2) + 4g(n+ 1)− g(n)

since each sequence (pn) satisfies it.
The next question is whether one can obtain such identities with three

homogeneous variables x, y and z. One path to such a generalization has
been to study the dynamics of the zeros of Fibonacci polynomials in [3],
getting interesting by-products but no trigonometric identity.

2. Results and proofs

We prove here such a trigonometric identity. Let us start with a simple
case.

Theorem 1. We have for n ≥ 3 and ξ = exp(2iπ/n)∏
1≤`≤n

(
1− xξ` − yξ2`

)
= 1−Gn + (−y)n

where Gn is defined by the recursion Gn = xGn−1 + yGn−2 for n ≥ 2 with
G0 = 2, G1 = x and G2 = x2 + 2y.

The polynomials Gn are a special case of Brahmagupta polynomials (take
t = 1) introduced and studied in [9], [10]. These are linked with Morgan-
Voyce polynomials, see [14] and are the Fibonacci polynomials when we fur-
ther specialize y to be equal to 1.

At this level, our proof was a mystery to us, we did in fact stumble
on it while studying a completely different problem. It was from then on-
wards tempting to prove such trigonometric relations with r terms instead
of 3. This led us to a very simple and direct proof of a general relation,
via considerations of circulant matrices. Most earlier connections between
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determinants and Fibonacci numbers, or Chebyshev polynomials, involved
continuants: determinant of a family of increasing size tridiagonal matrices
whose first elements are properly chosen while the later ones are fixed. See
[1], [2], see also exercise 24 page 85 of [5].

And while studying this proof, we discovered that the heart of such iden-
tities was a one-liner that is more than a hundred years old (see [8], para-
graph 136, formula (4)):

Fundamental Lemma. Let (xs)0≤s≤r be complex numbers and set ξ =
exp (2iπ/n). We have∏

0≤`≤n−1

∑
0≤s≤r

xsξ
s` = (−1)rnxnr

∏
ρ/P (ρ)=0

(ρn − 1)

where P (Y ) =
∑r

s=0 xsY
s.

Simply because the quantity to be computed is up to the sign of the
resultant of P (Y ) and Qn(Y ) = Y n − 1 for which we have

Res(P,Qn) = (−1)rn
∏

u/Qn(u)=0

P (u) = xnr
∏

ρ/P (ρ)=0

Qn(ρ). (8)

So, on one side, we have the roots of one polynomial, while on the other one
we have the roots of another polynomial. This identity being so fundamental,
we recall its one line proof: consider two polynomials A and B with respective
leading terms am and bn, degrees m and n and roots (αi)1≤i≤m and (βj)1≤j≤n
repeated with multiplicity. Then, and it can be taken as a definition

Res(A,B) = anmb
m
n

∏
1≤i≤m
1≤j≤n

(αi − βj), (9)

from which (8) follows trivially. There is an expression of this resultant as
a (Sylvester) determinant whose entries are the coefficients of A and B, as
well as some 0’s, but we will not invoke such an expression.

Let us use our fundamental lemma on an example. Taking P = Y 2−Y −1,
with roots the golden ratio φ = (1 +

√
5)/2 and −1/φ we get∏

0≤`≤n−1

(
1 + 2i sin

2π`

n

)
= 1− φn − (−φ)−n + (−1)n (10)

= 1 + Fn − 2Fn+1 + (−1)n

since φn = φ−1Fn+Fn+1 and (−φ)−n = −φFn+Fn+1, yielding an illuminating
proof of Corollary 1.
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We saw in this example how linear recurrent sequences can be introduced
and we now address the general case treated in the Theorem. The adaptation
is straightforward. To avoid denominators, we set P (Y ) = Y 2−xY − y with
roots ρ1 and ρ2 in C(x, y). By our fundamental lemma, we have∏

1≤`≤n

(
ξ2` − xξ` − y

)
= (ρ1ρ2)

n − ρn1 − ρn2 + 1

= (−y)n − ρn1 − ρn2 + 1.

We set Gn(x, y) = ρn1 + ρn2 , which yields G0 = 2, G1 = x and Gn+2 =
xGn+1 + yGn. We only need to factor ξ2` and exchange ` by −` to get our
Theorem!

Let us now treat the general case. Let x0, . . . , xr be r indeterminates.
Let ρ1, . . . , ρr be the r roots of P (Y ) =

∑
0≤s≤r xsY

s in an algebraic closure
of K(x0, . . . , xr). We set

Hn = (−1)rnxnr
∏

1≤s≤r

(ρns − 1) (11)

which in fact belongs to K[x0, . . . , xr] and

H (X) =
∑
n≥0

HnX
n =

∑
n≥0

∑
S⊂{1,...,r}

(−1)r−|S|
∏
s∈S

ρns ((−1)rxrX)n (12)

=
∑

S⊂{1,...,r}

(−1)r−|S|

1− (−1)r
∏

s∈S ρsxrX
. (13)

This shows that H (X) is a rational fraction with denominator of degree at
most 2r. As a consequence Hn verifies a linear recursion of degree at most
2r which we easily establish by writing H (X) = A (X)/B(X) with A (X)
and B(X) polynomials. When equating coefficients in the equation

B(X)
∑
n≥0

HnX
n = A (X)

we recover an explicit form of the required recursion. Summarizing, we get

Theorem 2. Let (xs)0≤s≤r be complex numbers and set ξ = exp (2iπ/n). We
have ∏

0≤`≤n−1

∑
0≤s≤r

xsξ
s` = Hn

where P (Y ) =
∑r

s=0 xsY
s and Hn defined by (11) satisfies a linear recursion

of degree at most 2r.

5



Since B(X) is fairly universal and determine the coefficients of the recur-
sion satisfied by Hn, it would be satisfactory to have a complete description of
it solely in terms of the xs’s. We have not been able to derive such a descrip-
tion. We can of course group together the products 1 − (−1)r

∏
s∈S ρsxrX

over S with a fixed cardinality. As symmetric expressions of the roots, each
can be expressed as a polynomial of C[x0, x1, . . . , xr]. For |S| = 0, we get
1− (−1)rxrX. For |S| = 1, we get (−xrX)rP ((−1)r/(xrX)).

We end this section with yet another identity:

Corollary 2. We have for m ≥ 1

m∏
k=1

(
5 + 4 sin2 kπ

2m+ 1

)
= F4m+2.

We achieve this by considering the polynomial P = Y 2−3Y +1 with roots
φ2 and (−φ)−2. We then follow the path described above with n = 2(2m+1):

n−1∏
k=0

(
1− 3ξk + ξ2k

)
= (−1)n−1

n−1∏
k=0

(
−3 + 2 cos

2πk

n

)
.

= −5
2m∏
k=1

(
−3 + 2 cos

2πk

n

)2

since n is even and by using the symmetry k 7→ n − k. We next use the
symmetry k 7→ (n/2)− k which sends [1 · · ·m] over [m+ 1 · · · 2m] to finally
find that

n−1∏
k=0

(
1− 3ξk + ξ2k

)
= −5

m∏
k=1

(
9− 4 cos2

2πk

n

)2

.

We proceed as in (10) to find that the above equals 2 + F2n − 2F2n+1. To
take its square-root, we note that (for instance by using Binet’s formula)

2F2`+1 − F2` − 2(−1)` = 5F 2
` (14)

and the Corollary follows readily.
We can prove (1) along these lines (with n = 2m in the proof above

and changing m by n to recover exactly (1)), starting with the polynomial
P = 1 + iY + Y 2. This leads after some manipulations to the square of the
right-hand side of (1). We simplify the square-root of the left-hand side by
using (14).

3. Extensions and limitations
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The above approach would work if we were to replace Y n−1 by Q(Y n) for
a fixed polynomial Q. It would also extend to the case when the coefficients
of Q are polynomials in n. The same remark holds for the coefficients of P .
In these cases, the roots do not depend on roots of unity, which means that
the rule of addition of sine does not in fact intervene. We can even handle
the more difficult case Qn = Y 2n + Y n+1 + 1.

However, we are not able to treat the case Y n2 − 1 or any other non sub-
sequence of Y n− 1 where the exponents would not be taken in an arithmetic
progression. No linear recursion in that case exists, for it would mean a linear
recursion for the values Hn2 , and their growth is too steep to allow such a
fact (once we specialize the xs’s).

Let us end this paper with a related problem. Restricting the product to
indices ` prime to n in our Theorem, one gets the norm of 1 − xξ − yξ2 in
Q(ξ):

Corollary 3. We have∏
1≤`≤n
(`,n)=1

(
1− xξ` − yξ2`

)
=
∏
d|n

(
1−Gd + (−y)d

)µ(n/d)
where µ denotes the Moebius function.

The question arose to decide whether this norm verifies a linear recursion
as above or not. Our approach via a resultant supports a negative answer;
We have ∏

1≤`≤n
(`,n)=1

(
1− xξ` − yξ2`

)
= (−1)(r−1)nyn

∏
ρ/P (ρ)=0

Φn(ρ)

where Φn is the n-th cyclotomic polynomial. This polynomial does not in
general have a finite number of monomes (for instance when n is prime),
which ruins the approach we used, but also make us believe no recursion
does indeed exist.

We end this paper with thanks to the referee for his/her careful reading.
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