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Abstract

This aim of this short note is to try to clarify the links between different
version of the “Chowla conjecture”.

1 Historical setting

In Problem 57 of the book [1] (see equation (341) therein), S. Chowla formulated
the following conjecture, where, by “integer polynomial”, we understand “an
element of Z[X]”.

Conjecture (Chowla’s Conjecture for the Liouville function). For any integer
polynomial f(x) that is not of the form cg(x)2 for some integer polynomial g(x),
one has ∑

n≤x

λ(f(n)) = o(x)

where λ is the Liouville function.

This conjecture has then been stated and formulated in many different forms,
very often by restricting f to be a product of linear factors as by T. Tao in [5],
and even more often to be a product of monic linear factors. Furthermore, the
Liouville function λ is sometimes replaced by the Moebius function µ as by
P. Sarnak in [4]. The aim of this note is to establish some links between these
conjectures.

We should also mention that some authors, like A. Hildebrand in [2] or
K. Matomäki, M. Radziwi l l & T. Tao in [3], refer to another closely connected
conjecture of Chowla that states that the sequence (λ(n), λ(n+1), · · · , λ(n+k))
may take any value in {±1}k. This is indeed Problem 56 of [1].

Here are different forms that can be called “Chowla’s conjecture”.

Conjecture 1. For any finite tuple ((ai, bi))i∈I of positive integers such that
aibj − ajbi 6= 0 as soon as i 6= j, we have∑

n≤x

∏
i∈I

λ(ain+ bi) = o(x).

Remark 1. Note that when the condition of the ((ai, bi))i∈I is verified, it is also
verified for the coefficients after the subtitution n 7→ pn+ q.
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Conjecture 2. For any positive integer a and any strictly increasing finite
sequence (bi)i∈I of non-negative integers, we have∑

n≤x

∏
i∈I

λ(an+ bi) = o(x).

Conjecture 3. For any finite tuple ((ai, bi))i∈I of positive integers such that
aibj − ajbi 6= 0 as soon as i 6= j, we have∑

n≤x

∏
i∈I

µ(ain+ bi) = o(x).

Conjecture 4. For any positive integer a and any strictly increasing finite
sequence (bi)i∈I of non-negative integers, we have∑

n≤x

∏
i∈I

µ(an+ bi) = o(x).

Conjecture 5. For any finite tuple ((ai, bi))i∈I of positive integers such that
aibj − ajbi 6= 0 as soon as i 6= j, and any additional finite tuple ((ck, dk))k∈K
we have ∑

n≤x

∏
i∈I

µ(ain+ bi)
∏
k∈K

µ2(ckn+ dk) = o(x)

provided the set I be non-empty.

Conjecture 6. For any positive integer a and any strictly increasing finite
sequences (bi)i∈I and (dk)k∈K of non-negative integers, we have∑

n≤x

∏
i∈I

µ(an+ bi)
∏
k∈K

µ2(an+ dk) = o(x)

provided the set I be non-empty.

In the ergodic context, the hypothesis
∑

n≤x
∏

i∈I µ(n + bi)
∏

k∈K µ2(n +
dk) = o(x) is often seen, with some natural conditions on the parameters. Since
it is applied to powers T a of a same operator T , the proper statements are really
Conjectures 2, 4 and 6.

The reader may wonder whether the non-negativity condition concerning the
parameters bi is restrictive or not. It is not and we can reduce to this case by
a suitable shift of the variable n. This would implies discarding finitely many
terms is the diverse sums we consider and increase the initial bi by bi+(N0−1)ai,
assuming we replace n by n + N0 − 1; there clearly exists an N0 for which all
the bi + (N0 − 1)ai are positive.

Theorem 1.

• Conjecture 1 implies Conjecture 3.

• Conjecture 3 implies Conjecture 5.

• Conjecture 2 implies Conjecture 4.

• Conjecture 4 implies Conjecture 6.

• Conjecture 5 implies Conjecture 1.

Note that we have not been able to prove that Conjecture 6 implies Conjec-
ture 2.
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2 Lemmas

Lemma 2. Let (f(n))n be a complex sequence such that |f(n)| ≤ 1, let a and b
be fixed and assume that, for every u and w, one has∑

n≤y

λ(a(u2n+ w) + b)f(u2n+ w) = ou,w(y). (1)

Then
∑

n≤x µ(an+ b)f(n) = o(x).

Proof. We readily check on the Dirichlet series that

µ(m) =
∑

u2v=m

µ(u)λ(v) (2)

We define X = ax+ b. We infer from this identity that, for any positive integer
U , one has∑
n≤x

µ(an+ b)f(n) =
∑

m≤ax+b

µ(m)f
(m− b

a

)
11m≡b[a]

=
∑

u≤
√
ax+b

µ(u)
∑

v≤(ax+b)/u2

λ(v)f
(u2v − b

a

)
11u2v≡b[a]

=
∑
u≤U

µ(u)
∑

v≤(ax+b)/u2

λ(v)f
(u2v − b

a

)
11u2v≡b[a] +O∗(

∑
u>U

X/u2)

since ∣∣∣∣ ∑
v≤(ax+b)/u2

λ(v)f
(u2v − b

a

)
11u2v≡b[a]

∣∣∣∣ ≤ ∑
v≤X/u2

1 ≤ X/u2.

We next recall that a comparison to an integral ensures us that
∑

u>U u
−2 ≤

1/U (since U is an integer). Since we want the reader to follow as closely as
possible the argument, we also use the notation f = O∗(g) to mean that |f | ≤ g.
We have reached∑
n≤x

µ(an+ b)f(n) =
∑
u≤U

µ(u)
∑

v≤(ax+b)/u2

λ(u2v)f
(u2v − b

a

)
11u2v≡b[a] +O∗(X/U)

=
∑
u≤U

µ(u)
∑
m≤x,

am+b≡0[u2]

λ(am+ b)f(m) +O∗(X/U)

(with am = u2v − b) from which we infer that∣∣∣∣∑
n≤x

µ(an+ b)f(n)

∣∣∣∣ ≤∑
u≤U

∣∣∣∣ ∑
m≤x,

am+b≡0[u2]

λ(am+ b)f(m)

∣∣∣∣+
X

U
.

The set {m/am + b ≡ 0[u2]} is a finite union of arithmetic progressions mod-
ulo u2, say W, hence∑

m≤x,
am+b≡0[u2]

λ(am+ b)f(m) =
∑

0≤w<u2,
w∈W

∑
k≤ ax+b−w

u2

λ(a(u2k + w) + b)f(u2k + w).
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Our hypothesis applies to the inner sum. The remainder of the proof is me-
chanical. First note that X ≤ (a+ b)x. Let ε > 0 be fixed. We select

U =

[
2

(a+ b)ε

]
+ 1 ≤ 3

(a+ b)ε
.

There exists y0(a, b, ε) such that, for every u ≤ U , every w ∈ W and every
y ≥ y0(a, b, ε), one has ∣∣∣∑

n≤y

f(a2n)
∣∣∣ ≤ 1

6ε
2y.

We thus assume that x ≥ y0(a, b, ε)/(a+ b) and get, for such an x that∣∣∣∑
n≤x

µ(an+ b)f(n)
∣∣∣ ≤ x(1

6

3

ε
ε2 +

ε

2

)
≤ εx

(where we have bounded above |W| by u2) as required.

Lemma 3. Let (f(n))n be a sequence sur that |f(n)| ≤ 1, let a and b be fixed
and, assume that, for every u and w, one has∑

n≤y

f(u2n+ w) = ou,w(y). (3)

Then
∑

n≤x µ
2(an+ b)f(n) = o(x).

Proof. We use the identity

µ2(n) =
∑
d2|n

µ(d).

After this initial step, the proof runs as the one of Lemma 2.

Lemma 4. Let (f(n))n be a sequence sur that |f(n)| ≤ 1, let a and b be fixed
and, assume that, for every u and c such that cu2 ≡ b[a], one has∑

n≤y

µ(an+ c)f
(
u2n+

cu2 − b
a

)
= ou,w(y). (4)

Then
∑

n≤x λ(an+ b)f(n) = o(x).

Proof. We readily check on the Dirichlet series that

λ(m) =
∑

u2v=m

µ(v) (5)

We infer from this identity that, for any positive integer U , one has∑
n≤x

λ(an+ b)f(n) =
∑

m≤ax+b

λ(m)f
(m− b

a

)
11m≡b[a]

=
∑

u≤
√
ax+b

∑
v≤(ax+b)/u2

µ(v)f
(u2v − b

a

)
11u2v≡b[a]

=
∑
u≤U

∑
v≤(ax+b)/u2

µ(v)f
(u2v − b

a

)
11u2v≡b[a] +O∗(X/U)
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again with X = ax+ b. Once u is fixed, the set {v/u2v ≡ b[a]} is a finite union
of arithmetic progressions modulo a, say W, hence

∑
v≤(ax+b)/u2

µ(v)f
(u2v − b

a

)
11u2v≡b[a]

=
∑

0≤v0<a,
v0∈W

∑
k≤ ax+b

au2 −
v0
a

µ(ak + v0)f
(
u2k +

u2v0 − b
a

)
.

Our hypothesis applies to the inner sum. The remainder of the proof is me-
chanical.

3 Proof of the Theorem 1

Proof. To prove that Conjecture 1 implies Conjecture 3, we prove that, assuming
Conjecture 1 and following its notation and hypotheses, we have (with the
shortcut ai0 = a and bi0 = b)∑

n≤x

µ(an+ b)
∏
i∈I′

µ(ain+ bi)
∏

i∈I′′\{i0}

λ(ain+ bi) = o(x)

assuming that∑
n≤x

λ(an+ b)
∏
i∈I′

µ(Ain+Bi)
∏

i∈I′′\{i0}

λ(Ain+Bi) = o(x)

where none of the vectors (Ai, Bi) and (a, b) are colinear. We use a recursion
on the cardinality of I ′ to do so. Lemma 2 is tailored for this purpose, the
only part that needs checking is that no two vectors of new set of parameters
(au2, aw + b) and (aiu

2, aiw + bi) are colinear, which is immediate:∣∣∣∣ au2 aiu
2

aw + b aiw + bi

∣∣∣∣ = au2(aiw + bi)− aiu2(aw + b) = u2
∣∣∣∣a ai
b bi

∣∣∣∣ 6= 0.

The same proof shows that Conjecture 2 implies Conjecture 4: we simply have
to note that the required coefficients a and ai’s remain the same.

The same proof again shows that Conjecture 3 implies Conjecture 5, we
simply have to replace λ by 1, and Lemma 2 by Lemma 3, in its proof and
similarly that Conjecture 4 implies Conjecture 6.

Let us finally turn towards the proof that Conjecture 3 implies Conjecture 1,
a task for which we will use Lemma 4. We aim at proving that (again with the
shortcut ai0 = a and bi0 = b)∑

n≤x

λ(an+ b)
∏
i∈I′

λ(ain+ bi)
∏

i∈I′′\{i0}

µ(ain+ bi) = o(x)

assuming that∑
n≤x

µ(an+ b)
∏
i∈I′

λ(Ain+Bi)
∏

i∈I′′\{i0}

µ(Ain+Bi) = o(x)
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where none of the vectors (Ai, Bi) and (a, b) are colinear. We use a recursion
on the cardinality of I ′ to do so. The only part that needs checking is the
hypothesis in Lemma 4, namely that no two vectors of new set of parameters

(a, c) and (aiu
2, ai

cu2−b
a + bi) are colinear, which is immediate:∣∣∣∣a aiu
2

c ai
cu2−b

a + bi

∣∣∣∣ = a
(
ai
cu2 − b
a

+ bi

)
− aiu2c =

∣∣∣∣a ai
b bi

∣∣∣∣ 6= 0.

This concludes the proof of our Theorem.
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