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IMS Leture Notes Series no 12
Preface

This book is an elaboration on lectures given at the
Institute of Mathematical Science in 2011. There
was at that time a special year in number theory
at IMSc and the courses were designed for students
with limited knowledge of the theory at hand, but
who were ready to invest enough energy. In this pre-
cise volume, the trek is roughly as follows. The first
landmark is Mertens Theorem; from there we show
how to compute averages of non-negative multiplica-
tive functions; the next landmark we reach is the
Brun-Titchmarsh Theorem via the Selberg sieve; af-
ter exploring the area, we move forward and derive a
family of envelopping sieves that we hitherto employ
to obtain results on the prime κ-tuple conjecture. In
eight lectures, the reader is thus supposed to go from
sea level to proving that, for each admissible 8-tuple
(h1, h2, · · · , h8), there are infinitely many integers n
such that the product (n + h1)(n + h2) · · · (n + h8)
has at most 24 prime factors. It is somewhat illu-
sory to believe this journey to be a refreshing stroll!
The reader may however quit at anytime and, hope-
fully, will have acquired some bases in this aspect
of analytic number theory. We have further tried to
manage some more less demanding steps.Olivier Ramar�e
A video of this course can be found at

http://www.imsc.res.in/conference_videos
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Introduction

We will cover rapidly the ground from elementary number theory to
the theory of the weighted sieve based on the Selberg sieve.

Here is an idea of the order different subjects will be introduced. The
first four lectures are to be acquainted with the sieve in general. The last
four ones present things in a more involved setting and present a weighted
sieve.

(1) General sums : smooth summands, multiplicative summands,
prime summands.

(2) Inversion formulae, van Lint & Richert Theorem, the Brun-
Tichmarsh via the Selberg sieve.

(3) The Levin-Fainleib Theorem and remarks on primes in arith-
metic progressions. The Brun-Titchmarsh inequality via her-
mitian inequalities.

(4) Computing G-functions and exercise session.
(5) Compact sets, inversion formulae. A general Selberg sieve bound.

λd, λ
♯
d, a general van Lint-Richert Lemma, λd, λ

♯
d. Some prob-

lems as examples.
(6) The prime κ-tuple problem and an identity of Bombieri.
(7) A smoothed version of the Selberg λd. A general van Lint-

Richert Lemma. The prime κ-tuple problem: the first two re-
duction steps.

(8) Final proof.

Theorem 0.1 (Diamond & Halberstam, 2008) There are infinitely many
integers n for which the product n(n + 2)(n + 6) has at most 8 prime
factors.

The reader will find this result in table 11.1 of [19]. [check [18]].

Theorem 0.2 There are infinitely many integers n for which the product

∏

ℓ∈{0,1,3,4,6,9,10,14}
(n+ 2ℓ)

has at most 24 prime factors.

7



8 Introduction

This result is contained in the course the author gave at HRI in
january 2009, and is not yet published. As it turns out, C. Franze has
recently improved on this result and the bound 23 is now available.

The appendix should contain a translation of a paper exposing the
convolution method as well as the use of (convergent) Dirichlet series as
generating series for multiplicative functions.



CHAPTER 1

Setting the background

The main objects in analytic number theory often look like
∑

n≤X

a(n)

for some function of ”arithmetical” nature a(n), where the adjective
”arithmetical” needs to be defined. We review in this first lecture what
the reader ought to know, and some more!

1.1. Smooth summands

This is the case when a is C1. A hidden hypothesis we will comment
later on is that a′ is bounded. A first example of this situation is

(1.1)
∑

n≤X

1

n
= LogX + γ +O(1/X), (X ≥ 1).

An even simpler example is given by

(1.2)
∑

n≤X

1 = X +O(1), (X ≥ 1).

We leave (1.1) to the reader and prove here that

(1.3)
∑

n≤X

Logn

n
= 1

2 Log
2X + γ1 +O(Log(2X)/X), (X ≥ 1)

for some constant γ1 that is called the Laurent-Stieltjes constant of in-
dex 1.

A preliminary remark on uniformity: In all three previous estimates, we
have written “X ≥ 1” while the estimate is most interesting when X is
large. However, we need an estimate that is uniform in some range, and,
for instance here, there exists a constant C such that, for any X ≥ 1, we
have

∣

∣

∣

∣

∣

∣

∑

n≤X

Logn

n
− 1

2 Log
2X − γ1

∣

∣

∣

∣

∣

∣

≤ C Log(2X)/X.

This would be false if we had written +O((LogX)/X) in (1.3), for it
cannot hold when X = 1. Such problems are usually trivial to sort, but a

9



10 Setting the background

slip at this level may lead to mighty mistakes later on. There is nothing
magic in the “Log(2X)” and we may as well have written “1 + LogX”
or “Log(3X)”.

Proof We simply write

Logn

n
=

LogX

X
+

∫ X

n

Log t− 1

t2
dt.

This gives us

∑

n≤X

Logn

n
= [X ]

LogX

X
+
∑

n≤X

∫ X

n

Log t− 1

t2
dt

= [X ]
LogX

X
+

∫ X

1

(

∑

n≤t

1
)Log t− 1

t2
dt

where [X ] denotes the integer part of X . We continue by using (1.2) in
the form [t] = t− {t} ({t} being the fractionnal part of t):

∑

n≤X

Logn

n
=

∫ X

1

Log t− 1

t
dt+LogX−

∫ ∞

1

{t}Log t− 1

t2
dt+O

(Log(2X)

X

)

.

and (1.3) follows readily. �

The technique we have developped in the above proof is known as
summation by parts. The reader will find different versions of this, usu-
ally more intricate than the one above, relying either on Abel summation
process or on Stieltjes integration. We have relied on (1.2), but see ex-
ercise 1.6 for a more general usage. We recommend to the reader the
following two exercises.

Exercise 1.1 Show that
∑

n≤X

Logn = X LogX −X +O(Log(3X)), (X ≥ 1).

Exercise 1.2 Show that
∑

n≤X

(

Log
X

n

)2

≪ X, (X →∞).

This case is thus well-understood. If we want to gain precision in the
error term, then we appeal to the Euler-MacLaurin summation formula,
but as the reader will see by analysing the example we treated, there is
no way one can avoid fractionnal parts in the development. Note however
that

• We do not know how to evaluate
∑

n≤X nit with enough preci-
sion when t is large with respect to X .



Multiplicative summands 11

• The error term in (1.2) (i.e. the fractionnal part) is much more
important than it looks. In our proofs, we want very often to
show that the resulting error term is very small but, if it simply
did not exist, then we would have ζ(s) = 1/(s−1). This implies
that this error term is responsible for the functionnal equation
of the Riemann zeta function as well as for its Euler-product!

1.2. Multiplicative summands

Let us start with a definition.

Definition 1.3 A function a on the positive integers is said to be mul-
tiplicative when a(1) = 1 and a(mn) = a(m)a(n) whenever m and n are
coprime positive integers.

As a result, if we decompose the integer n in prime powers, n =
∏

i p
ℓi
i

say, then a(n) =
∏

i a
(

pℓii
)

. Reciproqually, given any (double) sequence
of values b(p, ℓ), the function defined by

a(n) =
∏

i

b(pi, ℓi)

is indeed multiplicative. For example the function a(n) = φ(n)/n is
multiplicative and we have

φ(n)

n
=
∏

p|n

(

1− 1

p

)

.

The function a(n) = 1 is also multiplicative! Slightly more difficult: the
function a(n) = µ2(n) that takes the value 1 when n is squarefree (i.e.
the only positive integer square that divides n is 1) and 0 otherwise is
multiplicative. It is denoted by µ2 because it is indeed the square of the
Moebius function defined as follows:
(1.4)

µ(n) =











1 when n = 1,

(−1)r when n = p1 · · · pr, all the pi being prime and distinct,

0 otherwise.

This Moebius function is also multiplicative. The reader may want to
show that the functions a(n) = n/φ(n) and a(n) = 2ω(n) (where ω(n)
denotes the number of prime factors of n counted without multiplicity)
are also multiplicative.

When dealing with multiplicativity, the following Lemma is often
useful.

Lemma 1.4 For any positive integer d, we denote by D(d) the set of
all its (positive) divisors. When d1 and d2 are positive integers that are



12 Setting the background

coprime, the map
D(d1)×D(d2)→ D(d1d2),

(q1, q2) 7→ q1q2
is one-to-one and onto.

Proof We simply mention that the map

D(d1d2)→ D(d1)×D(d2),
q 7→ (gcd(q, d1), gcd(q, d2))

is the inverse of the one given in the Lemma. �

Let us proceed to evaluate
∑

n≤X

φ(n)

n

We write
φ(n)

n
=
∑

d|n

µ(d)

d
.

Indeed the RHS is easily proved to be multiplicative on using Lemma 1.4
and equals the LHS on prime powers. Once one has obtained this ex-
pression, the computations are straightforward:

∑

n≤X

φ(n)

n
=
∑

n≤X

∑

d|n

µ(d)

d
=
∑

d≤X

µ(d)

d

∑

n≤X,
d|n

1.

This is a step you will see very often in analytic number theory: the
exchange of summation. The inner sum is most easily estimated as
(X/d) +O(1), and since |µ(d)| ≤ 1, this gives us

∑

n≤X

φ(n)

n
= X

∑

d≤X

µ(d)

d2
+O(Log(2X)) = X

∑

d≥1

µ(d)

d2
+O(Log(2X))

which amounts to

(1.5)
∑

n≤X

φ(n)

n
= 6

π2X +O(Log(2X)).

This result is most satisfying, since the error term is very small. Deter-
mining whether this remainder term can or not be improved upon is a
difficult task that we leave to the reader, and to which we do not know the
answer. Here are some references concerning this very precise problem:
[92, chapter 4], [67],[68], [58]

The technique we have developped in the above proof is by no means
accidental and is called the convolution method. We detail it in the ap-
pendix. We will present later a more general result to handle sums of
positive multiplicative function, but that is far from the precision one can
attain by using the convolution method.
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Exercise 1.5 Show that

µ2(n) =
∑

d2|n
µ(d)

and deduce an estimation of
∑

n≤X µ2(n) with an error term of order√
X.

Exercise 1.6 On using the proof of (1.3) but replacing (1.2) by (A.15),
show that

∑

n≤X

φ(n)

n

Logn

n
= C1 Log

2X + C2 LogX + C3 +O
(

(Log(2X))2

X

)

for some constants C1, C2 and C3.

Let us end this section by commenting on why the study of averages of
multiplicative functions is central in analytic number theory. Multiplica-
tive functions are one of the main way to characterize the multiplicative
structure. Our main problem is not the multiplicative structure but its
link with the additive one and

1.3. Summing over primes

We consider here some simple sums over prime summands, in the
spirit of Mertens in 1897. We will see in the next chapter that general
Theorems on averages of multiplicative functions require such estimates.
We prove first that

Theorem 1.7 (Mertens)

∑

p≤X

Log p

p
= LogX +O(1).

The proof uses two ingredient. We define first the van Mangoldt
function by

(1.6) Λ(n) =

{

Log p when n = pν with ν ≥ 1,

0 otherwise.

This function has in fact already been introduced by Riemann in his
famous 1859 report [78], but has been named after van Mangoldt. This
latter mathematician was working on trying to decipher Riemann’s work
and on providing proof to all his claims. The fundamental property we
will use reads as follows:

(1.7) Logn =
∑

d|n
Λ(d).
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Proof We do not provide any proof by verify it on n = p21p2. On the
one hand, we have

Logn = 2Log p1 + Log p2

while on the other hand:
∑

d|n
Λ(d) = Log p1 +Log p1 +Log p2

d = p1, d = p21, d = p2

Log p1

�

We first prove rapidly a Tchebyschef estimate.

Theorem 1.8 (Tchebyschef) We have
∑

n≤X

Λ(n)≪ X, (X ≥ 1).

Proof Indeed, on using (1.7), we find that (recall that [t] is the frac-
tionnal part of t)

∑

n≤X

Logn =
∑

m≤X

Λ(m)[X/m].

We use that for X/2 and find that
∑

n≤X

Logn− 2
∑

n≤X/2

Logn =
∑

m≤X

Λ(m)
(

[X/m]− 2[X/(2m)]
)

which we now analyse. The result of exercise 1.1 tells us that the LHS
equals X Log 2 + O(Log(2X)). On the RHS, the function y 7→ [y] −
2[y/2] is in fact periodical of period 2, and moreover non-negative. More
precisely, it takes the value 0 on [0, 1) and the value 1 on [1, 2). As a
consequence,

∑

X/2<m≤X

Λ(m) ≤ X Log 2 +O(Log(2X)).

Thus there exists a constant C such that, for any X ≥ 1 we have
∑

X/2<m≤X

Λ(m) ≤ C X.

We use that forX , then X/2, then X/4, etc, until X/2k, whereX/2k+1 <
1. This gives us

∑

m≤X

Λ(m) ≤ C
(

X +
X

2
+
X

4
+ · · ·

)

≤ 2CX.

The Lemma is proved. �

Exercise 1.9 Prove that
∑

p≤X Log p≪ X for X ≥ 1.

Exercise 1.10 Prove that
∑

p≤X 1≪ X/Log(2X) for X ≥ 1.
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Here is what we wanted to prove.

Theorem 1.11 (Mertens) We have

∑

p≤X

Log p

p
= LogX +O(1), (X ≥ 1).

Proof Let us use again directly the result of exercise 1.1, namely
∑

n≤X

Logn = X LogX −X +O(Log(3X)).

On the other side, on introducing (1.7), we find that

∑

n≤X

Logn =
∑

ℓm≤X

Λ(m) =
∑

m≤X

Λ(m)

(

X

m
+O(1)

)

= X
∑

m≤X

Λ(m)

m
+O(X)

by Theorem 1.8. The Theorem follows, once the reader has checked that
∑

m≤X
Λ(m)
m and

∑

p≤X
Log p

p differ by at most O(1). �

Exercise 1.12 Deduce from the above Theorem that there exists two
positive constants c1 and c2 such that

∑

c1X<p≤X 1 ≥ c2X for X ≥ 2.

This deduction is also due to Mertens in 1897 in [?].

1.4. Handling coprimality conditions

1.5. A Lemma of van Lint & Richert

We have seen in the previous section how to handle coprimality con-
ditions. The condition (n, d) = 1 may be somewhat difficult when d is
large with respect to n and we prove here a general Lemma due to [90].
This Lemma will be the ground of several generalizations later on.

Let h be a multiplicative and non-negative function. We consider

(1.8) Hd(D) =
∑

n≤D,
(n,d)=1

µ2(n)h(n)

and we abreviate H1 in H .

Lemma 1.13 For every positive integer d and any positive real number
D, we have

H(dD) ≥
∑

δ|d
µ2(δ)h(δ)Hd(D) ≥ H(D).
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Proof We write

H(D) =
∑

δ|d

∑

n≤D,
(n,d)=δ

µ2(n)h(n) =
∑

δ|d
µ2(δ)h(δ)

∑

m≤D/δ,
(m,d)=1

µ2(m)h(m)

=
∑

δ|d
µ2(δ)h(δ)Hd(D/δ).

We use Hd(D/δ) ≥ Hd(D/d) to get the first inequality and Hd(D/δ) ≤
Hd(D) for the second one. �



CHAPTER 2

Introducing the Selberg sieve

2.1. An initial estimate

We prove here in an elementary manner that, for any D ≥ 1, we have

(2.1)
∑

d≤D

µ2(d)

φ(d)
≥ LogD.

Proof Let us introduce the concept of squarefree kernel k(n) of the
integer n: it is simply the product of all the prime divisors of n.

When d is a squarefree integer, we find that

1

φ(d)
=

1

d

∏

p|d

1

1− 1
p

=
1

d

∏

p|d

(

1 +
1

p
+

1

p2
+ · · ·

)

=
∑

m≥1,
k(m)=d

1

m
.

As a consequence, we find that

∑

d≤D

µ2(d)

φ(d)
=
∑

d≤D

∑

m≥1,
k(m)=d

1

m
≥
∑

m≤D

1

m
≥ LogD

and the Lemma readily follows. �

2.2. Inversion formulas

The Moebius function is very combinatorial in nature. It appears
in several inversion formulae and we discuss here one that will be of use
later. All these formulae stem from the identity:

(2.2)
∑

d|n
µ(d) =

{

1 when n = 1,

0 when n > 1

whcih we prove in two steps: both sides define multiplicative functions,
and these multiplicative functions are equal on any prime power.

17



18 Introducing the Selberg sieve

Let us assume we are given a function f on the positive integers and
a parameter X . We look at the function F defined over the positive
integers by

(2.3) F (δ) =
∑

n≤X,
δ|n

f(n)

with the idea of recovering f from F . It is possible because, when seen as
a linear system, it is diagonal, with coefficients equal to 1 on the diagonal.
This easy argument shows that F determines f uniquely. We want an
explicit formula. We have

(2.4) f(n) =
∑

ℓ≤X,
n|ℓ

µ(ℓ/n)F (ℓ)

Proof Indeed, let us call g(d) the RHS above. We have
∑

n≤X,
δ|n

g(n) =
∑

n≤X,
δ|n

∑

ℓ≤X,
n|ℓ

µ(ℓ/n)F (ℓ) =
∑

ℓ≤X

F (ℓ)
∑

n|ℓ,
δ|n

µ(ℓ/n).

The last sum equals also
∑

m|ℓ/δ
µ((ℓ/δ)/m).

It vanishes when δ 6= ℓ and takes value 1 otherwise. We thus have
∑

n≤X,
δ|n

g(n) = F (δ).

We have however seen that this equation defines f uniquely, and thus
g = f . �

Another form of this inversion comes when we want to determine the
function f from

(2.5) F (q) =
∑

d|q
f(d).

Here also, solving for the values (F (q)) leads to a diagonal system with
coefficients 1 on the diagonal, but we rather have an explicit expression
for f . This is provided to us by the following formula:

(2.6) f(d) =
∑

q|d
µ(q/d)F (q)

which can be established as above.

Exercise 2.1
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1. Show that, when d is squarefree, the number of couples (d1, d2) solu-
tion of [d1, d2] = d is 3ω(d).

2. Let f(q) be the number of couples (q1, q2) solution of [q1, q2] = q.
Show that f is a multiplicative function.

3. Show that
∑

q|n f(q) is the number of couples (q1, q2) such that [q1, q2]|n
and that this latter number is τ(n)2, the square of the number of di-
visors of n.

4. Deduce from the above a general expression for f(q).

2.3. The Brun-Titchmarsh inequality

This Theorem reads as follows:

Theorem 2.2 Let M ≥ 0 and N > q ≥ 1 be given and let a be an
invertible residue class modulo q. The number Z of primes in the interval
[M + 1,M +N ] lying in the residue class a modulo q verifies

Z ≤ 2N

φ(q) Log(N/q)
.

This neat and effective version is due to [63]. Earlier versions essen-
tially had 2 + o(1) instead of simply 2. The name “Brun-Titchmarsh”
Theorem stems from [61]. Indeed, Titchmarsh proved such a theorem
for q = 1 with a Log Log(N/q) term instead of the 2 to establish the
asymptotic for the number of divisors of the p+1, p ranging through the
primes, and he used the method of Brun. The constant 2 (with a o(1))
appeared for the first time in [82]. See Theorem 5.1 for some further
comments.

Proof As already mentioned, we restruct our attention to the case q =
1. Let z be a parameter that we will choose later. Let us take an arbitrary
sequence (λd)d≤z where we however specify that λ1 = 1. We start with
the following inequality

∑

M+1≤p≤M+N

1 ≤
∑

M+1≤n≤M+N

(

∑

d|n
λd

)2

+ z.

Why is it so? If p is a prime number from the interval [M + 1,M + N ]

and > z, then the coefficient β(n) =
(

∑

d|n λd
)2

is simply equal to 1.

Otherwise it is non-negative. We take vare of the primes ≤ z by adding
z, since this is surely an upper bound for their number. Let us define

Z =
∑

M+1≤p≤M+N

1.
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On expanding the square above and denoting the lcm of d1 and d2 by
[d1, d2], we find that

Z ≤
∑

d1,d2≤z

λd1λd2

∑

n∈[M+1,M+N ],
[d1,d2]|n

1 + z.

The inner summation over n is readily evaluated:

∑

n∈[M+1,M+N ],
[d1,d2]|n

1 =
N

[d1, d2]
+O(1).

As a conclusion of our first step, we find that

Z ≤ NZ0 +O
(

(

∑

d≤z

|λd|
)2
)

+ z

where

(2.7) Z0 =
∑

d1,d2≤z

λd1λd2

[d1, d2]

is asking to be evaluated. We forget the term containing
∑

d≤z |λd| for
the time being. Our choice of λd will ensure that |λd| ≤ 1 and this will
be enough to control our error term.

The quantity Z0 is a bilinear form in the variables λd and we seek
its minimum under the condition λ1 = 1. This could be difficult but
we have Selberg diagonalization at our disposal, which we explain now.
First note that

1

[d1, d2]
=

(d1, d2)

d1d2

and we now have to separate d1 and d2 in the main term. We do so via
the identity

q =
∑

δ|q
φ(δ)

(to check this one, verify that both sides are multiplicative functions and
compute that they take a same value on prime powers). We thus get

1

[d1, d2]
=

1

d1d2

∑

δ|d1,
δ|d2

φ(δ)

where we have split the condition δ|(d1, d2) in δ|d1 and δ|d2. We have
thus reach the expression

(2.8) Z0 =
∑

δ≤z

φ(δ)y2δ , yδ =
∑

d≤z,
δ|d

λd/d.
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We can use the previous section to recover λd from yδ:

λd
d

=
∑

δ≤z,
d|δ

µ(δ/d)yδ.

In particular, the variables yδ are linked by the condition

1 =
∑

δ≤z

µ(δ)yδ.

Our aim is now to minimize the quadratic form given in (2.8). There are
several ways to do it and we use Lagrange multipliers here. We consider
the function

H(y1, . . . , yz, u) =
∑

δ≤z

φ(δ)y2δ − u
(

∑

δ≤z

µ(δ)yδ − 1
)

and we say that the minimum will be reached when

∂H

∂y1
=
∂H

∂y2
= · · · = ∂H

∂u
= 0.

We readily discover that this yields

yδ =
µ(δ)

φ(δ)Y
, Y =

∑

d≤z

µ2(d)

φ(d)
.

Let us note that we have not assumed at the beginning that λd vanishes
when d is not squarefree, but the proof tells us to take yδ = 0 when δ is
not squarefree, and this implies that λd shares this same property. Let
us compute λd. We find that

λd = d
∑

δ≤z,
d|δ

µ(δ/d)
µ(δ)

φ(δ)Y
= µ(d)

d

φ(d)Y

∑

q≤z/d,
(q,d)=1

µ2(q)

φ(q)
.

Note that Lemma 1.13 implies the neat bound |λd| ≤ 1 that we have
already announced. As a conclusion, we find that

Z ≤ N

Y
+O(z2) ≤ N

Log z
+O(z2)

by (2.1). We finally select z =
√
N/LogN . �

Exercise 2.3 Show that
∑

m,n≤N,
(m,n)=1

1 =
6

π2
N2 +O(N LogN).
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Exercise 2.4 Show that
∑

m,n≤N

(m,n) = CN2 LogN +O(N2).

for a constant C.

Exercise 2.5 Show that
∑

m,n≤N

(m,n)2 =

(

2ζ(2)

3ζ(3)
− 1

3

)

N3 +O(N2).

This last exercise is more difficult.



CHAPTER 3

The Levin-Fainleib Theorem et alia

We essentially encounters two different cases when studying the aver-
age of non-negative multiplicative functions: either the function we sum
is roughly speaking of size of order 1/p at prime p, or it is of constant
size on primes. Let us say for short that the first is case I and the latter
is case II.

We first prove a Theorem that enables one to compute the average
in case I. Then we prove a very general Theorem that bound above the
mean value of a case II function by a mean value of a case I function. We
finally handle the average of cases II functions.

3.1. The Levin-Fainleib Theorem

Here is a theorem inspired by [36] but where we take care of the
values of our multiplicative function on powers of primes as well. The
reader will find in [62] an appendix with a similar result. Moreover,
we present a completely explicit estimate, which complicates the proof
somewhat. In [11], the reader will find, inter alia, a presentation of many
results in the area, a somewhat different exposition as well as a modified
proof: the authors achieve there a better treatment of the error term by
appealing to a preliminary sieving.

Theorem 3.1 Let g be a non-negative multiplicative function. Let κ, L
and A be three non-negative real parameters such that



















∑

p≥2,ν≥1
pν≤Q

g
(

pν
)

Log
(

pν
)

= κLogQ+O∗(L) (Q ≥ 1),

∑

p≥2

∑

ν,k≥1

g
(

pk
)

g
(

pν
)

Log
(

pν
)

≤ A.

Then, when D ≥ exp(2(L+A)), we have
∑

d≤D

g(d) = C (LogD)κ (1 +O∗(B/LogD))

where C is a positive constant and

B = 2(L+A)
(

1 + 2(κ+ 1)eκ+1
)

.
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Furthermore, if

(3.1)
∑

p≤Q

∑

k≥(LogQ)/Log p

g(pk) = o(1)

as Q goes to infinity, then C is given by

C =
1

Γ(κ+ 1)

∏

p≥2

{(

1− 1

p

)κ
∑

ν≥0

g
(

pν
)

}

.

If in many applications the dependence in L is important, the one
in A is most often irrelevant. In the context of the sieve, κ is called the
dimension of the sieve: it is the parameter that determines the size of
the average we are to compute and is, of course, of foremost importance.
Let us mention in this direction that [75] obtains a one-sided result from
one-sided hypothesis, following a path already thread in [46]. We show
below the first two hypothesis do not imply that the LHS of (3.1) is even
bounded. The same Theorem can be found in [72, Theorem 21.1] but
where the condition (3.1) has been wrongly forgotten.

Proof Let us start with the idea of [60]:

G(D) LogD =
∑

d≤D

g(d) Log
D

d
+
∑

d≤D

g(d) Log d

=
∑

d≤D

g(d) Log
D

d
+

∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

g(ℓ).

It is useful to introduce two functions:

(3.2)























Gp(X) =
∑

ℓ≤X
(ℓ,p)=1

g(ℓ)

T (D) =
∑

d≤D

g(d) Log
D

d
=

∫ D

1

G(t)
dt

t
,

so that we can rewrite the above as

G(D) Log(D) = T (D) +
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

Gp(D/p
ν).

The functions Gp and G are related by the following identity:

Gp(X) = G(X)−
∑

k≥1

g
(

pk
)

Gp(X/p
k).
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This identity, when combined with our hypothesis, enables us to eliminate
Gp:

G(D) Log(D) = T (D) +
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

G(D/pν) +O∗(AG(D))

= T (D) +
∑

d≤D

g(d)
∑

p≥2,ν≥1
pν≤D/d

g
(

pν
)

Log
(

pν
)

+O∗(AG(D))

= T (D)(κ+ 1) +O∗((L +A)G(D)).

We rewrite the conclusion as

(κ+ 1)T (D) = G(D) LogD (1 + r(D))

with r(D) = O∗
(

L+A

LogD

)

.

We see the previous equation as a differential equation. We set

expE(D) =
(κ+ 1)T (D)

(LogD)κ+1
=

G(D)

(LogD)κ
(1 + r(D))

getting for D ≥ D0 = exp(2(L+A))

E′(D) =
T ′(D)

T (D)
− (κ+ 1)

D LogD
=

−r(D)(κ + 1)

(1 + r(D))D LogD

= O∗
(

2(L+A)(κ+ 1)

D(LogD)2

)

since |r(D)| ≤ 1/2 when D ≥ D0 and on computing T ′(D) through (3.2).
Now, still for D ≥ D0, we have

E(∞)− E(D) =

∫ ∞

D

E′(t)dt = O∗
(

2(L+A)(κ+ 1)

LogD

)

.

Gathering our results, and using exp(x) ≤ 1 + x exp(x) valid for x ≥ 0,
we infer that

G(D)

(LogD)κ
=

expE(D)

1 + r(D)
=

eE(∞)

1 + r(D)

(

1 +O∗
(

2(L+A)

LogD
(κ+ 1)eκ+1

))

.

We next use 1/(1+x) ≤ 1+2x valid when 0 ≤ x ≤ 1
2 and (1+x)(1+y) ≤

(1 + 2x+ y) valid for x, y ≥ 0 and y ≤ 1 to infer

G(D)

(LogD)κ
= eE(∞)

(

1 +O∗
(

2(L+A)

LogD

(

1 + 2(κ+ 1)eκ+1
)

))

.

This ends the main part of the proof. We are to identify eE(∞) = C.
Note that the above proof is apriori wrong since T ′(D) 6= G(D)/D at
the discontinuity points of G, but we simply have to restrict our attention
to non integer D’s and then proceed by continuity.
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An expression for C. We start by noticing that summation by parts
immediately yields that there exists a constant c0 such that:

(3.3)
∑

pk≤P

g(pk) = κLog LogP + c0 +O
(

1/Log(3P )
)

.

We then note that our second condition implies the convergence, for each
prime p, of the series

∑

k≥0 g(p
k); it even implies that

∑

k≥(LogQ)/Log p g(p
k) ≤

√

A/LogQ which has the consequence that these sums are uniformly
bounded.

∑

p>Q

∣

∣

∣

∣

Log
∑

k≥0

g(pk)−
∑

k≥1

g(pk)

∣

∣

∣

∣

≪ 1/Log(2Q).

This follows from the inequality

Log
∑

k≥0

g(pk)−
∑

k≥1

g(pk)≪
(

∑

ν≥1

g(pν)
)2

.

On summing over p > Q, we get that the sum above is

≪
∑

p>Q

∑

ν,k≥1

g(pν)g(pk)
Log p

LogQ
≪ A/Log(2Q)

as announced. On using the identity

Log
∏

p≤Q

{(

1− 1

p

)κ
∑

ν≥0

g
(

pν
)

}

= −κ
∑

p≤Q

1

p
+
∑

p≤Q,
k≥1

g(pk)

+
∑

p≤Q

(

κLog(1 − p−1) +
κ

p
+ Log

∑

k≥0

g(pk)−
∑

k≥1

g(pk)

)

.

On gathering some of the estimates above, we see that the last summand
converges to a constant (with error term O(1/Log(2Q))). This finally
gives us that there exists a constant c2 such that

Log
∏

p≤Q

{(

1− 1

p

)κ
∑

ν≥0

g
(

pν
)

}

= c2 +
∑

p≤Q,k≥1,

pk>Q

g(pk) +O(1/Log(2Q)).

Condition (3.1) tells us that the LHS indeed converges. This preliminary
discussion tells us that the Eulerian product

(3.4)
∏

p≥2

{(

1− 1

p

)κ
∑

ν≥0

g
(

pν
)

}

is convergent.
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We define, for s a positive real number,

D(g, s) =
∑

d≥1

g(d)

ds
= s

∫ ∞

1

G(D)
dD

Ds+1

= sC

∫ ∞

1

(LogD)κ
dD

Ds+1
+O

(

sC

∫ ∞

1

(LogD)κ−1 dD

Ds+1

)

= C
(

s−κΓ(κ+ 1) +O(s1−κΓ(κ))
)

and consequently

C = lim
s→0+

D(g, s)sκΓ(κ+ 1)−1

= lim
s→0+

D(g, s)ζ(1 + s)−κΓ(κ+ 1)−1.

The absolute convergence of the Euler product (3.4) enables us to con-
clude easily. �

We now study an example that shows that (3.1) cannot be infered
from the other hypothesis. We consider the multiplicative function g
defined, for each prime p by g(pk) = 0 except when k = kp = [Log p]+np

where np is one of 0, 1 or 2 and is chosen so that
∑

p≤Q

g(pk) Log(pk) = 1
2 LogQ+O(1).

This is possible because
∑

p≤P (Log p)
2/p = 1

2 Log
2 P +O(1). If we take

np = 0, we essentially would have to evaluate
∑

p≤P [Log p](Log p)/p;

this sum is asymptotic to 1
2 Log

2 P , but the error term may be of size
LogP . One can show that it is possible to correct that with some mild
modification np. We however have that

∑

p≤Q

∑

k/pk>Q

g(pk) ∼
∑

exp
√
LogQ<p≤Q

1/p ∼ 1
2 Log LogQ

violating strongly (3.1). The reader will get a milder violation on taking
kp = 2. In this latter case, the Euler product expression is still valid,
while in the former one, the Euler product does not converge.

Exercise 3.2 Show that

∑

d≤D

µ2(d)3ω(d)

φ(d)
=

1 + o(1)

6

∏

p≥2

(

1− 3

p2
+

2

p4

)

Log3D.

Exercise 3.3 Show that

∑

d≤D

µ2(d)

φ(d)
= LogD +O(1).
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Exercise 3.4 Let w be a function that belongs to C1[0, 1]. Show that

∑

d≤D

µ2(d)

φ(d)
w
( Log d

LogD

)

=

∫ 1

0

w(t)dt LogD +O(1).

Exercise 3.5 Show that
∑

n≤N

d(n)

n
= 1

2 Log
2N +O(LogN)

where d(n) denotes the number of divisors of n.

3.2. A simple general inequality

We prove the following theorem that relies on a theme initially de-
veloped in [40]. The best result in this direction is in [38]. Of course, we
also extend it to encompass values at powers of primes. The starting idea
is still taken from the celebrated [60] proved in the preceding section.

Theorem 3.6 Let D ≥ 2 be a real parameter. Assume g is a multiplica-
tive non-negative function such that

∑

p≥2,ν≥1
pν≤Q

g
(

pν
)

Log
(

pν
)

≤ KQ+K ′ (∀Q ∈ [1, D])

for some constants K,K ′ ≥ 0. Then for D > exp(K ′ − 1), we have

∑

d≤D

g(d) ≤ (K + 1)D

LogD −K ′ + 1

∑

d≤D

g(d)/d.

Proof Let us set G̃(D) =
∑

d≤D g(d)/d. Using Log D
d ≤ D

d − 1, we get

G(D) LogD =
∑

d≤D

g(d) Log
D

d
+
∑

d≤D

g(d) Log d

≤ DG̃(D)−G(D) +
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

g(ℓ)

where we get the second summand by writing Log d =
∑

pν‖d Log
(

pν
)

.

Finally
∑

p≥2,ν≥1
pν≤D

g
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

g(ℓ) =
∑

ℓ≤D

g(ℓ)
∑

p≥2,ν≥1
pν≤D/ℓ
(p,ℓ)=1

g
(

pν
)

Log
(

pν
)

≤
∑

ℓ≤D

g(ℓ)
(KD

ℓ
+K ′

)

from which the theorem follows readily. �
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3.3. A further consequence

It is not difficult by following [93] to derive a stronger mean value re-
sult from Theorem 3.1. Since it will be required in one of the applications
below, and since all the necessary material has been already exposed, we
include one such result.

Theorem 3.7 Let f be a non-negative multiplicative function and κ be
non-negative real parameter such that



























∑

p≥2,ν≥1
pν≤Q

f
(

pν
)

Log
(

pν
)

= κQ+O(Q/Log(2Q)) (Q ≥ 1),

∑

p≥2

∑

ν,k≥1,

pν+k≤Q

f
(

pk
)

f
(

pν
)

Log
(

pν
)

≪
√

Q,

then we have
∑

d≤D

f(d) = κC ·D (LogD)κ−1 (1 + o(1))

where C is as in Theorem 3.1.

Proof We proceed as in Theorem 3.1. Write

S(D) =
∑

d≤D

f(d).

By using Theorem 3.6 followed by an application of Theorem 3.1, we
readily obtain the following apriori bound

(3.5) S(D)≪ D(Log(2D))κ−1.

Consider now S∗(D) =
∑

d≤D f(d) Log d. Proceeding as in the proof of
Theorem 3.1, we get

S∗(D) =
∑

p≥2,ν≥1
pν≤D

f
(

pν
)

Log
(

pν
)

∑

ℓ≤D/pν

(ℓ,p)=1

f(ℓ)

=
∑

ℓ≤D

f(ℓ)
∑

p≥2,ν≥1
pν≤D/ℓ,
(p,ℓ)=1

f
(

pν
)

Log
(

pν
)

so that S∗(D) equals
∑

ℓ≤D

f(ℓ)
∑

p≥2,ν≥1
pν≤D/ℓ

f
(

pν
)

Log
(

pν
)

−
∑

ℓ≤D

f(ℓ)
∑

p≥2,ν,k≥1

pν+k≤D/ℓ,
(p,ℓ)=1

f
(

pν
)

f
(

pk
)

Log
(

pν
)
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We use our hypothesis on this expression and conclude that

S∗(D) = κD
∑

ℓ≤D

f(ℓ)/ℓ+O
(

Q
∑

ℓ≤D

f(ℓ)

ℓLog(2Q/ℓ)

)

+O
(

√

Q
∑

ℓ≤D

f(ℓ)√
ℓ

)

.

Both error terms are shown to be O(QLog(2Q)κ−1) by appealing to (3.5)
while the main term is evaluated via Theorem 3.1. We finally use an
integration by parts:

S(D) = 1 +

∫ D

2

S∗(t)
dt

tLog2 t
+
S∗(D)

LogD

to get the claimed asymptotic. �



CHAPTER 4

Some more exercises

For exercises, the reader should consult [1]. More elaborate and often
more difficult ones are to be found in [64].

Exercise 4.1

1. Show that, when m and n are squarefree and distinct, then

φ(m)

m
6= φ(n)

n
.

2. Show that the same holds for the function ℓ 7→ σ(ℓ)/ℓ.
3. Does the function ℓ 7→ σ(ℓ)/φ(ℓ) verify also this property?
4. Investigate similarly the function ℓ 7→∏

p|ℓ(p+2)/(p+1) with respect

to this property.

Exercise 4.2

1. Show that, for every prime number p and any positive integer a, one
has

σ(pa) =
pa+1 − 1

p− 1

where σ(d) is the sum of the divisors of d.
2. Prove the following identity, valid for any positive integer n:

σ(n)2 = n
∑

d|n
σ(d2)/d.

Exercise 4.3 Show that the function that associates to every integer n >
1 the double of the sum of the integers belonging to [1, n] that are coprime
to n, and that associates the value 1 at the integer 1, is multiplicative.

Exercise 4.4 We define

T (N) =
∑

y<(N/8)1/3

Log(N − 8y3).

1. Show that

T (N) = (N/8)1/3 LogN + c0N
1/3 +O(Log(2N))

for some constant c0.

31
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2. Show that

T (N) = 1
3 (N/8)

1/3 LogN +
∑

(N/2)1/3<m≤N,

∃y≤(N/2)1/3,m|N−8y3

Λ(m) +O(N1/3).

3. Deduce from the above that there exists infinitely many integers n
of the shape n = N − 8y3, where y is a positive integer verifying
8y3 ≤ N/2, that have a prime factor large than n1/6.

Exercise 4.5

1. Find an asymptotical formula for
∑

n≤N

∑

d|n
µ2(n/d)3−ω(d)/n.

2. Find an asymptotical formula for
∑

n≤N

∑

d|n
µ2(n/d)3−ω(d)/(n+ 1).

Exercise 4.6 Show that
∑

d≤D

9ω(d)/φ(d) ∼ C(LogD)9

for a positive constant C that is to be made explicit.

Exercise 4.7

1. Show that
n

φ(n)
=
∑

d|n

µ2(d)

φ(d)
.

2. Show that
∑

n≤N

n

φ(n)
=
ζ(2)ζ(3)

ζ(6)
N +O(Log(2N)).

3. Show that there exists a constant C such that

(4.1)
∑

n≤N

1

φ(n)
=
ζ(2)ζ(3)

ζ(6)
LogN + C +O(Log(2N)/N).

4. Show that the constant C from the previous question is given by

C =
ζ(2)ζ(3)

ζ(6)

(

γ −
∑

p≥2

Log p

p2 − p+ 1

)

.

5. Show that the error term in (4.1) cannot be any better than Log Log(4N)/N .

Exercise 4.8 We denote by τ(m) the number of (positive) divisors of
m. Let D be the set of integers having only prime factors ≤ D where D
is a parameter ≥ 1.
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1. Show that
∑

d∈D
1/d≪ Log(2D).

2. Show that, for every q ≥ 1, we have

τ(m)q ≤
∑

dk=m

τ(d)q−1τ(k)q−1.

3. Show that, for every integer positive parameter q, we have
∑

m∈D
τ(m)q/m≪ (Log(2D))2

q

.

4. Let D ≥ 1 be a fixed parameter and let τ(n;D) be the number of
divisors of n that are below D. Let q be a positive integer parameter.
Show that

∑

n≤X

τ(n;D)q ≪ X(Log(2D))2
q

.

The reader may want to consider the largest divisor t(n) of n in D.
Exercise 4.9 We denote by τr(n) the number of r-tuples of (positive)
integers (n1, n2, · · · , nr) that are such that n1n2 · · ·nr = n.

1. Show that

τr(p
a) =

(

r − 1 + a

r − 1

)

.

2. Show that τr(n1n2 · · ·nr) ≤ τr(n1)τr(n2) · · · τr(nr) and deduce from
it that

∑

n≤N

τr(n)
2/n ≤ (LogN + 1)r

2

.

3. Show that
∑

n≤N

τr(n)
2 ≪r N(LogN + 1)r

2−1

where the symbol ≪r means “less or equal to a constant that may
depend on r times ...”.





CHAPTER 5

Introducing the large sieve

This chapter is an introduction to the arithmetical aspects of the
large inequality. We are going to reprove here a weak version of the
Brun-Titchmarsh Theorem (stated as Theorem 2.2).

Theorem 5.1 Let M and N be two positive real numbers, N being fur-
ther assumed to be > 1. There are at most 2N/LogN prime numbers in
the interval.

WhenM = 1, the prime number Theorem gives a better result, since
it replaces this 2 by a 1 + o(1) (and the inequality sign by an equality).
The strength of this bound lies in its abscence of conditions linking M
and N . It for instance tells us that, between 10100 and 10100 + 10 000,
there are not more than 2 200 prime numbers. See Theorem 2.2 for some
further commemts

The factor 2 in the statement is crucial, and any improvement on it
would have momentous consequences on our knowledge of prime numbers.

We simplify the exposition below and prove the Theorem with a
factor 4+ o(1) instead of 2; We further assume thatM ≥ N1/4. However
some more care in the coming proof would yield the required 2 + o(1)
with nonconditions on M . Removing this last o(1) is a difficult task.
The road we take is far from the concepts of divisibility and sieve theory.
There exists a way from this approach to the Selberg sieve one, but it
would too long for us to indicate it.

We set

(5.1) Q =
{

q ≤ Q, q squarefree
}

where Q is a parameter at our disposal.
Let us mention finally that, in case the reader has a grasp on the

french language, [71] proposes a french version of this exposition, with
some more motivating material aimed at early students.

5.1. A hermitian tool

Our first Lemma has actors in a Hilbert space H.
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Lemma 5.2 (Approximate Parseval) Let (ϕq)q∈Q be a family of points
in H. Let f be another of H. Then we have

∑

q∈Q
|[f |ϕq]|2/Mq ≤ ‖f‖2

where Mq is an upper bound for
∑

q′∈Q |[ϕq|ϕq′ ]|.
See [72, Chapter 1] for more details.
In order to understand this Lemma, the best thing is to consider the

case when the ϕq are two by two orthogonal. In that case, we can simply
take Mq = ‖ϕq‖2 and the proposed inequality is nothing more than the
Parseval inequality. Our Lemma, which is due to Selberg in the early
seventies, rids us of the hypothesis of strict orthogonality, but it is strong
only when the system we apply it to is “nearly orthogonal”, i.e. Mq can
be taken to be “almost” ‖ϕq‖2.

The hungarian mathematician Hálasz had introduced earlier general
hermitian inequalities in this area (see [35, Hilfsatz 1]) but the general
paternity of things is unclear.

Proof Let us consider the inequality

∥

∥

∥

∥

f −
∑

q∈Q
ξqϕq

∥

∥

∥

∥

2

≥ 0

where (ξq) is a family of parameters that we may choose to the best of
our interest. We would like

∑

q∈Q ξqϕq to be the orthogonal projection

of f on the space generated by (ϕq), but we do not know how to compute
these coefficients ξq. We thus restrain ourselves to what we believe is only
a close approximation, but that we know how to express. On developping
the norm, we get

‖f‖2 − 2ℜ
∑

q∈Q
ξq[f |ϕq] +

∑

q,q′∈Q
ξqξq′ [ϕq|ϕq′ ] ≥ 0,

where we separate q from q′ by appealing to |ξq||ξq′ | ≤ 1
2 (|ξq|2 + |ξq′ |2).

We shuffle the terms and inject Mq in the resulting inequality. We get

(5.2) ‖f‖2 − 2ℜ
∑

q∈Q
ξq[f |ϕq] +

∑

q∈Q
|ξq|2Mq ≥ 0.

The quadratic form in (ξq) has now been replaced by a diagonal one, for
which getting the coefficients ξq that minise it is an easy task:

ξq = [f |ϕq]/Mq.

The Lemma follows by plug these values in (5.2). �
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5.2. A pinch of number theory

Our second Lemma has to do with the Ramanujan sums:

(5.3) cq(n) =
∑

1≤a≤q,
(a,q)=1

exp(2iπan/q).

It is obvious that cq(n) depends only on the residue class of n modulo
q. Let us notice already that the summation carries over φ(q) integers a,
where φ(q) is the Euler function, since φ(q) is mprecisely the number of
integers not more that q and coprime to it.

When q = p is a prime number, the condition (a, p) = 1 reduces to
a 6= p and

(5.4) cp(n) =
∑

1≤a≤p

exp(2iπan/p)− 1 =

{

p− 1 when p|n,
−1 when p ∤ n.

On using the chinese remainder Theorem, we show the following multi-
plicativity rule:

(5.5) cq1q2(n) = cq1(n) cq2(n) when (q1, q2) = 1.

In our proof, q will be squarefree, and thus, the combination of (5.4) and
of (5.5) is enough to compute cq(n). Here is the property we will require:

Lemma 5.3 When q is squarefree and n is prime to q, we have cq(n) =
µ(q).

In particular, this value is independant of n amd its modulus is 1. The
assumption that q be squarefree is in fact not required for this Lemma.

Our third Lemma has already been proved in (2.1). It reads:

Lemma 5.4 We have that
∑

q≤Q

µ2(q)/φ(q) ≥ LogQ.

Exercise 5.5 Show that

cq(n) =
∑

d|q,
d|n

µ(q/d)d.

5.3. Proof of the Brun-Titchmarsh inequality

We select for ϕq the following function:

(5.6) ϕq(n) =

{

cq(n) when M + 1 ≤ n ≤M +N

0 else,

for q squarefree and of size at most Q.
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The Hilbert space we consider is simply the space of functions over
the integers in the interval [M + 1,M +N ] equipped with the standard
hermitiam product:

(5.7) [g|h] =
∑

M+1≤n≤M+N

f(n)g(n).

Our last Lemma gives a measure of the “almost orthogonality” of the
family (ϕq)q∈Q.

Lemma 5.6
∑

q′∈Q
|[ϕq|ϕq′ ]| ≤Mq = φ(q)(N +Q4).

Proof We have

[ϕq|ϕq′ ] =
∑

M+1≤n≤M+N

(

∑

1≤a≤q,
(a,q)=1

e(na/q)

)(

∑

1≤a′≤q′,
(a′,q′)=1

e(−na′/q′)
)

.

By summing first over a and a′, we get

[ϕq|ϕq′ ] =
∑

1≤a≤q,
(a,q)=1

∑

1≤a′≤q′,
(a′,q′)=1

∑

M+1≤n≤M+N

e

(

n

(

a

q
− a′

q′

))

.

The inner summation is in fact the sum of a geometric progression. When
a/q 6= a′/q′, it is at most, in modulus,

1
/

∣

∣

∣

∣

sin

(

π

(

a

q
− a′

q′

))
∣

∣

∣

∣

≤ qq′/2

by using the classical inequality sinx ≥ 2x/π when 0 ≤ x ≤ π/2. �

Exercise 5.7 In the proof above, fix a and take advantage on the summa-
tion over a′ to show that one may take Mq = φ(q)(N +O(Q3 Log(2Q)),
.

Exercise 5.8 On using the fact that any two distinct points of the set
{a/q, (a, q) = 1, q ≤ Q} are distant by at least 1/Q2, show that one can
take Mq/φ(q) = N +O(Q2 LogQ).

Proof of Theorem 5.1 We simply look at the characteristic function
f of those prime numbers that lie inside the interval [M +1,M +N ]; we
assume for simplicity that Q is not more than M . In this case, we get
directly

(5.8) [f |ϕq] =
∑

M+1≤n≤M+N

f(n)ϕq(n) = µ(q)
∑

M+1≤n≤M+N

f(n)
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simply because ϕq(n) = µ(q) for every prime numbers in our interval. On
calling Z the number of these primes, we can rewrite the above equality
as

(5.9) [f |ϕq] = µ(q)Z.

Our hermitain Lemma gives us
∑

q∈Q

∣

∣(−1)ω(q)Z
∣

∣

2
/φ(q) ≤ Z(N +Q4),

i.e.

(5.10) Z
∑

q≤Q

µ2(q)/φ(q) ≤ N +Q4.

Lemma 5.4 leads to the upper bound Z ≤ (N + Q4)/LogQ where the
only thing left is to optimize Q. We select

(5.11) Q = N1/4/LogN

and the Theorem follows readily. �

We have used in the proof the condition Q ≤M . It is easy to remove
it by taking for f the characteristic function of those primes tat lie within
[M+1,M+N ] and are moreover strictly larger than Q. As a consequence
of this change,

∑

n f(n) does not qnymore equals to Z but to Z +O(Q),
which is more than enough.

5.4. Some historical comments and two open problems

This proof shows clearly the sieving effect (in a somewhat vague
sense) of the factor cr(m). The reader will find in [23] a very same use
of this factor. It is also a main feature of earlier unpublished work of
Selberg on pseudo-characters, a trace of which the reader will find in [6],
[50], [65], [66] as well as in [47, chapter 18]. See further [55] and [72,
chapter 11].

This way of proving the Brun-Titchmarsh inequality is fairly recent
and is the basis of [74] where we prove that

Theorem 5.9 There exists an N0 such that for all N ≥ N0 and all
M ≥ 1 we have

π(M +N)− π(M) ≤ 2N

LogN + 3.53
.

The possibility of such an inequality, though with an unspecified
value instead of 3.53 is due to [90]. [82] also mentions such a result
without presenting any proof. [5] has the first value with the upper
bound Z ≤ 2N/(LogN − 3 + o(1)). [63] refined this −3 in a 5/6 and,
in [85, section 22], the reader will find a proof leading to 2.81.

Here are two open problems:
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Open Problem no I. Determine

lim sup
N→∞

max
M≥0

π(M +N)− π(M)

N/LogN
.

We have shown that this maximum is ≤ 2, while the prime number
Theorem shows that it is ≥ 1. I tend to believe that this maximum is
indeed equal to 2, but this is shear guess since I do not even have a
heuristical argument at my disposal.

Open Problem no II. Determine

lim sup
M→∞

π(M +N)− π(M)

N/LogN
.

We know that this limit lies between 0 and 2, but we do not even
know whether it is > 0 or not. We explain roughly in next section why
the Hardy & Littlewood conjecture concerning prime κ-tuples implies
that this limit is, when N becomes large, ≥ 1 + o(1)

It would already be extremely interesting to find intervals [M+1,M+
N ] where the number of primes within divided by N/LogN is > 1 and
where, say, M ≥ 2N . Here are some examples :

M + 1 M +N N Z ratio
5 639 5 659 21 7 1.0148 . . .

113 143 113 177 35 10 1.0158 . . .
21 817 283 854 511 261 21 817 283 854 511 311 51 14 1.0793 . . .

See [22], [44], [81] and [80]. In order to explore this problem some more,
we need to define admissible tuples.

5.5. Admissible tuples

A common problem is to look at pairs (n, n + 2) for which each
component is prime. Extending the problem to κ-tuples means looking for
infinitely many integers n for which all the components of (n+h1, . . . , n+
hκ) are simultaneously prime. Determining which tuples (h1, . . . , hκ)
should have this property is a non trivial problem; Notice first that (0, 1)
is clearly not a good choice! Here the obstruction comes from what
happens modulo 2. In general the conjecture known as the prime κ-tuples
conjecture, first stated by [42] is that obtructions can only be local. This
warrants a definition:

Definition 5.10 A κ-tuple s = (h1, . . . , hκ) of increasing integers is said
to be a κ-tuple of admissible shifts if the set {h1, . . . , hκ} does not cover
all of Z/pZ for any prime p. We further impose h1 = 0.

The length L(s) of such tuple of admissible shifts being hκ−h1+1, it
is enough to restrict p to be not more than this length in the statement.
For example (0, 2, 6, 9, 12) is admissible of length 13.
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An interesting problem is to find as dense κ-tuples as possible, where
the density is best quantified in terms of the length L = hκ − h1 + 1
compared to the number of primes less than L, i.e. π(L). [44] proved
that there exist κ-tuples of admissible shifts of size

κ ≥ π(L) + (Log 2− ε) L

Log2 L

for every ε > 0 and provided N is large enough in terms of ε. Note that
the Brun-Titchmarsh Theorem says that κ is bounded by 2L/LogL.
If one is ready to believe the prime κ-tuple conjecture, such extreme
examples of admissible shifts thus provides us with a lower bound for the
best possible upper bound in the Brun-Titchmarsh Theorem. In order
to avoid to appeal to the prime κ-tuple conjecture, it would be necessary
to indeed exhibit specific examples of such tuples, but this is still beyond
the power of nowadays algorithms and computers.

[26] contains conjectures and numerical computations related to this
problem. [22] has built a 1 415-uple of admissible shifts of length 11 763,
while π(11 763) = 1 409, but no one has been yet able to produce a
corresponding prime 1 415-uple.

[25] has pushed computations further and found a 224-uple of length
1 417, while π(1 417) = 223 The reader will find on the site of [27] a list
of long prime tuples, for instance:

1 906 230 835 046 648 293 290 043+0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60, 66, 70

due to J. Waldvogel & P. Leikauf in 2001. It contains 18 primes for a
length of 70, while π(70) = 19.





CHAPTER 6

Some geometric considerations

The reader will find in [72, chapter 2] a more complete presentation
of the notions detailled in this section.

6.1. Compact sets

We introduce in this section some vocabulary that allows us handle
modular arithmetic. All of it is trivial enough but will make life easier
later on.

◦◦ By a compact set K, we mean a sequence K = (Kd)d≥1 satisfying

(1) Kd ⊂ Z/dZ for all d ≥ 1.
(2) For any divisor d of q, we have σq→d(Kq) = Kd where σq→d is

the canonical surjection (also called the restriction map) fromZ/qZ to Z/dZ:
(6.1)

σq→d : Z/qZ→ Z/dZ
x mod q 7→ x mod d.

When K is not empty, we have K1 = Z/Z. As examples, we can take
Kd = Z/dZ for all d or Kd = Ud, where Ud is the set of invertible classes
modulo d. The intersection and union of compact sets is again a compact
set.

We can also consider K a subset of Ẑ = lim←−Z/dZ, in which case it is
indeed a compact set. Furthermore we shall sometimes consider Kd as a
subset of Z: the set of relative integers whose reduction modulo d falls
inside Kd.

◦◦ We say that the compact set K is multiplicatively split if for any d1
and d2 coprime positive integers, the Chinese remainder map

(6.2) Z/d1d2Z −→ Z/d1Z× Z/d2Z
sends Kd1d2 onto Kd1 × Kd2 . In this case, the sets Kpν for prime p and
ν ≥ 1 determine K completely. Notice that when K is multiplicatively
split:

(6.3) |K[d,d′]||K(d,d′)| = |Kd||Kd′ |
for any d and d′, where [d, d′] is the lcm and (d, d′) the gcd of d and d′.
Here |A| stands for the cardinality of a set A.
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◦◦ A compact set is said to be squarefree if

Kq = σ−1
q→d(Kd)

whenever d divides q and has the same prime factors. For instance, U is
squarefree since being prime to q or to its squarefree kernel is the same.

◦◦ A particularly successful hypothesis on K was introduced by [49] in
the context of polynomials over a finite field and used in the case of the
integers by [30] (see also [83]). It reads

∀d|q, ∀a ∈ Kd the quantity
∑

n≡a[d]
n∈Kq

1 is independent of a.

Another way to present this quantity would be to say it is the cardinality
of σ−1

pν→pν−1({a}). Since the introduction of this condition in our context

is due to [30], we shall refer to it as the Johnsen-Gallagher condition.
Note that this condition does not require K to be multiplicatively split,
although all our examples will also satisfy this additional hypothesis.

Any squarefree compact set automatically satisfies the Johnsen-Gall-
agher hypothesis. Since the sieve kept to such sets for a very long time
(the reason being that most classical problems fall within this framework),
and the combinatorial sieve still does, this condition does not show up in
classical expositions.

6.2. Examples of compact sets

The sequence (Z/qZ) is a compact set; it is indeed the largest one.
The reader will check with no difficulties that it is multiplicatively split
and squarefree.

We denote by Uq the set of invertible elements modulo q. This is
also the multiplicative group of Z/qZ when both sets are endowed with
the multiplication. The sequence (Uq)q is a compact set. It is again
multiplicatively split and squarefree.

The sequence (Uq
⋂

(Uq − 2))q again defines a multiplicatively split
squarefree compact set. In general, an additive shift of a compact set is
still a compact set, and the intersection of two compact set is still a com-
pact set. Both properties “being squarefree” and “being multiplicatively
split” are equally preserved by the above operations.

Let us denote, for every modulus q, by Kq the set of squares modulo
q. The sequence (Kq)q defines a multiplicatively split compact set, but
this compact set is not squarefree (look at what happens modulo 2 and 4).

Let us end this enumeration with the following example. When x
belongs to Z/qZ, we have access to gcd(x, q) which is simply the gcd of
q and y for any y belonging to the class of x modulo q (this is a proper
definition once one has shown that this gcd indeed does not depend on
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the choice of y. We leave this part to the reader). We take for Kq the set
of residue classes x for which gcd(x, q) is squarefree. The sequence (Kq)q
is a compact set. It is remarquable that every squarefree integer reduced
modulo any q falls inside Kq.

6.3. A family of arithmetical functions

Let us start with a multiplicatively split compact set K. We consider
the non-negative multiplicative function h defined by

(6.4) h(d) =
∏

pν‖d

(

pν

|Kpν | −
pν−1

|Kpν−1 |

)

≥ 0, h(1) = 1

where q‖d means that q divides d in such a way that q and d/q are
coprime. We shall say that q divides d exactly. Note that

(6.5)
d

|Kd|
=
∑

δ|d
h(δ).

We further define

(6.6) Gd(Q) =
∑

δ≤Q,
[d,δ]≤Q

h(δ)

which we also denote by Gd(K, Q) when mentioning the compact set K
is of any help. Let us note that in the extremal case Kd = Z/dZ, we have
h(d) = 0 except when d = 1 in which case we have h(1) = 1. This implies
that Gd(Q) = 1 for all d’s. These fairly unusual functions appear in the
following form:

Lemma 6.1 We have

Gd(Q) =
∑

q≤Q
d|q

(

∑

f/d|f |q
µ(q/f)f/|Kf |

)

.

Proof We plug (6.5) in the above RHS to get

S =
∑

q≤Q
d|q

(

∑

f/d|f |q
µ(q/f)

∑

δ|f
h(δ)

)

.

After some shuffling, we get

S =
∑

δ≤Q

h(δ)
∑

q,f≤Q
d|f |q,
δ|f

µ(q/f).
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It means that [d, δ]|q that has to be ≤ Q. Each summation over f equals
to 0 when q/[d, δ] is not equal to one. This ends the proof of S = Gd(Q).

�

Often, the set K is squarefree, in which case the above expression
simplifies and we recognize, up to a factor, the usual functions from the
Selberg sieve (see (6.7) below). In particular, we know how to evaluate
them. The reader should consult [60], [36] and [37] for the general
theory.

We conclude by a lemma that is in fact a generalization of Lemma 1.13
but which is trivial in our setting. It will be further generalized in
Lemma 10.3.

Lemma 6.2 We have Gℓ(Qℓ/d) ≤ Gd(Q) ≤ Gℓ(Q) for ℓ|d.

Proof Both inequalities are trivial consequences of the expression (6.6).
The condition [d, δ] ≤ Q implies that [ℓ, δ] ≤ Q, when ℓ|d, hence the
second inequality. Furthermore, we have [d, δ] ≤ [ℓ, δ]d/ℓ. Hence, when
[ℓ, δ] ≤ Qℓ/d, then [d, δ] ≤ Q and the first inequality follows readily. �

When the compact set is squarefree, the reader will check from (6.4)
that h(d) = 0 as soon as d is not squarefee. In that case, the summand

appearing in Lemma 6.1 vanishes whenever q/d and d are coprime. We

can thus write q = dℓ with (ℓ, d) = 1 in this Lemma, which leads to

Gd(Q) =
∑

δ/ [d,δ]≤Q

h(δ) =
∑

q,ℓ
(q,d)=1,ℓ|d,

q≤Q/d

h(ℓ)h(q)

i.e.

(6.7) Gd(Q) =
d

|Kd|
∑

ℓ≤Q/d
(ℓ,d)=1

h(ℓ).

Since in classical literature K is always squarefree, authors tend to call

Gd(Q) what is in fact |Kd|Gd(Q)/d in our notation. We had the option

of introducing another name, but we prefered to retain the same name

in these lectures, for the reason that the most important value G1(Q) is
unchanged. Note that it is usual to simply denote this latter value by

G(Q).

6.4. Bordering system associated to a compact set

We define here another sequence of sets (Ld)d≥1 complementary to
(Kd) : we set L1 = {1} and Lpν = Kpν−1 − Kpν , i.e. the set of elements
of x ∈ Z/pνZ such that σpν→pν−1(x) ∈ Kpν−1 but that do not belong
to Kpν . We further define Ld by “multiplicativity”. It is important to
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note, and that is different from what happens to K, that we do not have

Lℓ = Ld/ℓZ if ℓ|d. Using 1A to denote the characteristic function of A,
our definitions imply that

(6.8)















1Ld
=
∏

pν‖d

(1Kpν−1 − 1Kpν

)

= (−1)ω(d)
∑

δ|d
µ(d/δ)1Kδ1Kd

=
∏

pν‖d

(1− 1Lp − 1Lp2
− · · · − 1Lpν

)

=
∑

δ|d
(−1)ω(δ)1Lδ

.

A remark on why one should introduce L: to start with, let us note
that classical sieve expositions stress more on the classes that one excludes
modulo p, than on the classes that are retained, which in our setting
means that the sets Lp are defined first, and the sets Kp are usually not
specified. This is so because we usually exclude few classes, i.e. Lp is
small while Kp is large. This notion of small and large is in fact what
led to the nomenclature “large sieve”.

Introducing Kp allows us to get a geometrical setting, i.e. leads to
a natural definition of Kd – while that of Ld is much less natural – and,
in general, to smoother formulae for the main terms. However, when it
comes to computing error terms, the fact that Ld has small cardinality
in usual problems turns out to be extremely effective.

6.5. The compact relative to a κ-tuple of admissible shifts

We defined in definition 5.10 what is an admissible shift. Here is the
associated compact set:

K(s)d =
⋂

1≤i≤|s|

(

Ud − s(i)
)

(with Ud = (Z/dZ)∗)
for a k-tuple s of admissible shifts.

This compact set K(s) is multiplicatively split and squarefree. The
cardinality of K(s)p is p− L(s) when p ≥ L(s) + 1, since all members of
s fall in this case in different residue classes modulo p. The cardinality
of K(s)p is often larger for smaller p, but this has no impact whatsoever
on the dimension on the sieve which remains k = |s|. Furthermore its
associated bordering system is given by:

(6.9) L(s)p =
{

s(i) mod p, 1 ≤ i ≤ |s|
}

.





CHAPTER 7

The Selberg sieve

The notion of sieving process goes back to Erathostenos, but its for-
malisation started only with the work of Legendre, and it is really Viggo
Brun who started the modern line in [9]. This line of approach is said
to be comobinatorial. Atle Selberg has later introduced another sieving
process which we present below. The third branch in sieves has been
initiated by Yu Linnik ate about the same time (1940-1945), but it will
emerge as a full-fledged sieve process only from the seventies onward.
Chapter 5 somehow is linked wityh this later line of thoughts.

The reader should also have a look at the excellent presentation of
this material in [37]. The more advanced reader has to read fully [29].

7.1. A definition of sieve problems

To properly set the sieve problem, one needs two objects:

(1) A finite host sequence A; for instance, as was the case upto now
in these lectures, A = [M + 1,M +N ].

(2) A compact set K, i.e. a finite collection of well-behaved – see
chapter 6 – subsets Kd of Z/dZ.

The question is then to understand

(7.1) S = {n ∈ A / ∀d ≤ D, n ∈ Kd}
and, in particular, to evaluate its cardinality. We met this question al-
ready with Kd = (Z/dZ)∗ the set of invertible elements modulo d to reach
the prime numbers and prove the Brun-Titchmarsh Theorem.

Il s’agit là du problème classique du crible dans notre optique. Notre
présentation diffère des présentations que l’on peut trouver dans [7] ou
dans les lectures on sieves de [85] sur plusieurs points :

(1) L’approche usuelle consiste à regarder les classes que l’on ôte et
non celles que l’on garde. Ceci induit un manque de régularité
des expressions que l’on manipule. On trouve toutefois la trace
de notre façon de faire dans [8] où ils démontrent le théorème de
Brun-Titchmarsh de façon étonnante. Cet article est d’ailleurs
l’ancêtre de ce travail.
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(2) Nous regardons ce qui se passe modulo p, mais aussi modulo
p2, p3, . . . ce qui induit des complications notoires. [30] donne une
solution partielle à cette question dans le cas où la suite hôte est
un intervalle et [83] une solution plus complète, mais la complexité
des expressions l’oblige là encore à contrôler le terme d’erreur par
le grand crible ce qui limite l’utilisation à la suite hôte des entiers
dans un intervalle. Par ailleurs, l’exposition de cette solution de-
mande une dizaine de pages sans que la longueur contribue à la
clarté.

(3) On se ramène usuellement à la condition P (n) ≡ 0[q] pour un
certain polynôme P par différentes astuces, ce qui est inutile ici.

7.2. An extremal problem

In our presentation of the Selberg sieve, we consider the following
extremal problems

(7.2)











∑

d λ
♯
d = 1 , λ♯d = 0 if d ≥ D

Main term of
∑

M<n≤M+N

(

∑

d/n∈Kd

λ♯d

)2

minimal

and

(7.3)











λ1 = 1 , λd = 0 if d ≥ D

Main term of
∑

M<n≤M+N

(

∑

d/n∈Ld

λd

)2

minimal.

We switch from one problem to the other using (6.8) :

(7.4)















(−1)ω(d)λd =
∑

d|ℓ
λ♯ℓ , λ♯ℓ =

∑

ℓ|d
µ(d/ℓ)(−1)ω(d)λd,

∑

d/n∈Ld

λd =
∑

d/n∈Kd

λ♯d.

Solving the first problem is very easy because K is multiplicatively split,
and is performed via the diagonalization process of Selberg. Indeed, we
write

∑

M<n≤M+N

(

∑

d/n∈Kd

λ♯d

)2

=
∑

d1,d2≤D

λ♯d1
λ♯d2

∑

M<n≤M+N
n∈K[d1,d2]

1

=
∑

d1,d2≤D

λ♯d1
λ♯d2

|K[d1,d2]|
[d1, d2]

N + error term
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Set ρ(d) = |Kd|/d and let h be the solution of 1/ρ = 1 ⋆ h as in (6.4). We
then have

∑

d1,d2≤D

λ♯d1
λ♯d2

|K[d1,d2]|
[d1, d2]

=
∑

d1,d2≤D

λ♯d1
ρ(d1)λ

♯
d2
ρ(d2)(1 ⋆ h)((d1, d2))

=
∑

q≤D

h(q)

(

∑

q|d≤D

λ♯dρ(d)

)2

.

We comment on the above relations: first we note that any two randomly
chosen integers have a small gcd, so that we indeed reduce the difficulty
by exchanging lcm with gcd; the next problem is still the fact that d1
and d2 are linked and the introduction of h is a key idea to separate them
fully. Pursuing the proof, we define

(7.5) yq =
∑

q|d≤D

λ♯dρ(d)

and recover the λ♯d’s from the yq’s by
∗

(7.6) ρ(d)λ♯d =
∑

d|q≤D

µ(q/d)yq

which enables us to establish that

(7.7) 1 =
∑

d

λ♯d =
∑

q

h(q)yq.

We minimize the quadratic form
∑

h(q)y2q subject to the condition (7.7).

On using Lagrange multipliers, we see optimal† yq’s should all be equal
to 1/

∑

d h(d) i.e. 1/G1(D).
Gathering our results we infer

(7.8) λ♯d =
d

|Kd|
∑

q≤D/d

µ(q)/G1(D) and λd = (−1)ω(d)Gd(D)/G1(D).

Proof Equation (7.6) together with the fact that yq is constant with

value 1/G1(D) gives the value of λ♯d. We next use the first equation

∗Equation (7.5) may be seen as a linear system expressing the yq ’s in terms of

the (λ♯dρ(d))’s. This system being in triangular form, the (λ♯dρ(d))’s are uniquely
determined in terms of the yq ’s. The reader will check that the RHS of (7.6) verifies

this system, and hence, is equal to λ♯dρ(d).†When h(q) vanishes, the corresponding value of yq has no influence whatsoever;
the corresponding λq will always appear with coefficient h(q), The solution yq we
choose is the one that yields uniform formulae.
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of (7.4) to get

G1(D)(−1)ω(d)λd =
∑

d|ℓ
λ♯ℓ =

∑

d|ℓ

ℓ

|Kℓ|
∑

q≤D/ℓ

µ(q)

=
∑

k≤D

(

∑

k=qℓ,
d|ℓ

ℓ

|Kℓ|
µ(q)

)

= Gd(D)

by Lemma 6.1. �

From the information theory point of view, going from (λ♯d) to (λd)
may be explained by the following remark : when writing n ∈ Kpν , we
forget we already know that n ∈ Kpν−1 ; Removing this redundancy leads
to (Ld) and to (λd).

Note that Lemma 6.2 tells us simply that |λd| ≤ 1.
As for the cardinality of S (defined in (12.2)), we directly get

|S| ≤
∑

n≤N

(

∑

d/n∈Kd

λ♯d

)2

=
∑

n≤N

(

∑

d/n∈Ld

λd

)2

≤ N

G1(D)
+

(

∑

d

|Ld||λd|
)2

(7.9)

Going from (λ♯d) to (λd) is thus extremely important in reducing the error
term, thanks to Lemma 6.2. The reader should notice that this switching
of variables is fully mechanical and relies only the identities (7.4). This
fact will be used in section 9.2.

In [83] and [66], the reader will find another exposition and in [30]
closely related material.

7.3. A general expression

Let (un)n∈Z be a weighted sequence, the weights un being non-
negative and such that

∑

n un < +∞. Let K be a multiplicatively split
compact set. We assume that there exists a multiplicative function σ♯, a

parameter X and a function R♯
d such that

(7.10)
∑

n∈Kd

un = σ♯(d)X +R♯
d.

We assume further that σ♯ is non-negative and decreases on powers of
primes (a likely hypothesis if one conceives of σ♯(d) as being a density),
which translates into σ♯(q) ≥ σ♯(d) whenever q|d. Equivalently, we as-
sume the existence of σ and Rd such that

(7.11)
∑

n∈Ld

un = σ(d)X +Rd
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but the non-increasing property on chains of multiples is way less obvious
to state. Switching from (7.10) to (7.11) is readily done through (6.8).
There comes

(7.12)















(−1)ω(d)σ(d) =
∑

δ|d
µ(d/δ)σ♯(δ),

σ♯(d) =
∑

δ|d
(−1)ω(δ)σ(δ).

All the analysis of section 7.2 applies, except we are to change the defi-
nition of our G-functions. First, h is the solution of

(7.13)
1

σ♯(d)
=
∑

q|d
h(q)

(compare with (6.5)), that is to say

(7.14) h(d) =
∏

pν‖δ

(

1

σ♯(pν)
− 1

σ♯(pν−1)

)

≥ 0.

Proceeding as in section 7.2, but with ρ = σ♯, we get

(7.15)
∑

n∈S
un ≤

X

G1(z)
+
∑

d1,d2

λd1λd2R[d1,d2],

with S defined by (12.2). Notice that we still have |λd| ≤ 1 as in the
simpler case of intervals.

7.4. On the number of prime twins

We will give an upper bound for the number of prime twins up to
N , as N goes to infinity, by applying Selberg sieve. The compact set we
take is simply K = U ∩ (U −2) as was the case then. It is multiplicatively
split as well as squarefree. For the associated function h, we readily find
that

{

h(2) = 1 and h(2ν) = 0 if ν ≥ 2,

h(p) = 2/(p− 2) and h(pν) = 0 if p ≥ 3 and ν ≥ 2.

This gives us

(7.16) G1(Q) =
∑

q≤Q

µ2(q)
∏

p|q
p6=2

2

p− 2

to which we apply Theorem 3.1 with κ = 2 to get

(7.17) G1(Q) ∼ 1

4

∏

p≥3

(p− 1)2

p(p− 2)
(LogQ)2.
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We again choose Q =
√
N/LogN to find that

∣

∣

{

p ≤ N /p+ 2 is prime
}
∣

∣ ≤ 16(1 + o(1))
∏

p≥3

p(p− 2)

(p− 1)2
N/(LogN)2

a bound that is 8 times larger than its conjectured value. [86] establishes
the above inequality for all N > 1 with no o(1) term. If we were to use
the Bombieri-Vinogradov Theorem , we would get a bound only 4 times
off the expected one. Note that [95] reduces this constant to 3.3996; that
such an improvement holds only when we look at prime twins located on
the initial segment [1, N ], contrarily to the above bound which remains
valid for any interval of length N .

7.5. On a subset of prime twins

Our aim here is to give an upper bound for the number of primes p not
more than N that are such that p+2 is a prime, while p+1 is squarefree.
The compact set K we choose is defined by split multiplicativity: for
prime p, Kp is Up ∩ (Up + 2) while Kp2 is the set of invertibles that are
not congruent to −2 modulo p and not congruent to −1 modulo p2. For
higher powers of p, Kpν is defined by trivially lifting Kp2 , and so will be
of no interest. This yields

{ |K2| = 1, |K4| = 1,

|Kp| = p− 2, |Kp2 | = p(p− 2)− 1 = p2 − 2p− 1 if p ≥ 3.

But now the host sequence is that of primes p weighted with a Log p each
so that

(7.18) σ(d) = |Kd|/φ(d)
Of course Ld ∩Ud has at most one class (class −2 modulo p and class −1
modulo p2), implying that the error term

(7.19) Rd =
∑

p≤N
p∈Ld∩Ud

Log p− |Ld ∩ Ud|N
φ(d)

may be controlled by

Lemma 7.1 (Bombieri-Vinogradov) For any B ≥ 0, there exists an
A ≥ 0 such that

∑

q≤Q

max
y≤N

max
amod∗q

∣

∣

∣

∣

∑

p≤N
p≡a[q]

Log p− N

φ(q)

∣

∣

∣

∣

≪ N/(LogN)B

for Q =
√
N/(LogN)A.
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By taking B = 2, this yields
∑

d1,d2≤D

|λd1λd2R[d1,d2]| ≪ N/(LogN)2

provided D2 =
√
N/(LogN)A. As for the main term, we check that







h(2) = 0, h(4) = 1,

h(p) =
1

p− 2
, h(p2) =

p− 1

p3 − 4p2 + 3p+ 2
if p ≥ 3.

Theorem 3.1 applies with κ = 1. We finally get

Theorem 7.2 The number of primes p ≤ N that are such that p+ 1 is
squarefree and p+ 2 is prime does not exceed

4(1 + o(1))
∏

p≥3

p2 − 2p− 1

(p− 1)2
N

Log2N

as N goes to infinity.

This bound is 4 times larger than what is conjectured but the main
point here is that this bound is indeed smaller than the one one gets for
prime twins (see preceding section) by a large factor, namely

2
∏

p≥3

p(p− 2)

p2 − 2p− 1
= 3.426 . . .

7.6. Computing the G-functions in the case of the prime

κ-tuples

We want to compute the G-functions is the case of a κ-tuple s of
admissible shifts and when the host sequence is the one of primes.

Exercise 7.3 We want to bound above the number of integers n between
1 and N that are such that n2 + 1 is also a prime number. We set
T (X) = X2 + 1. We define Kq to be the set of classes x modulo q that
are such that T (x) = x2 + 1 is invertible modulo q, i.e.

x ∈ Kq ⇐⇒ T (x) ∈ Uq.
(1) Show that |K2| = 1, Kp = Z/pZ when p ≡ 3[4], and |Kp| = p−2

otherwise.
(2) Let p be a prime number and let α ≥ 2. We denote by σ

the canonical surjection from Z/pαZ to Z/pZ. Show that x ∈Z/pαZ lies inside Kpα if and only if σ(x) is in Kp. Show that
K = (Kq)q≥1 is multiplicatively split as well as squarefree.

(3) Show that g(q) =
∑

d|q µ(q/d)d/|Kd| is a positive multiplicative

function.
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(4) Show that there exists a positive constant C1 such that the num-
ber Z of integers n ≤ N such that n2 + 1 is a prime number
verifies that, for every N ≥ 2 :

Z ≤ C1N/LogN.



CHAPTER 8

Introduction to the weighted sieve

The theory of the weighted sieve can be developped in a general con-
text, but we will follow here the problem that is its usual application,
namely the one of twin primes. Primes p such that p+ 2 is also a prime
have been termed twins by the german mathematician P. Stäckel, or so
says the first chapter of [89]. The assertion claiming it to be a conjec-
ture of Euclid seems to be frivolous and the first mention of it I found
lies in [15]. The general problem of solving linear equations in prime
variables had of course already been addressed much earlier (in 1742)
by Goldbach and most of the early effort on primes concentrated on two
problems: showing that every plausible arithmetic progressions contained
infinitely many of them and proving the Goldbach conjecture. There is
no record of any progress on the problem of twin primes until [9] proved
that the sequence of such primes is much smaller than the sequence of
primes. Its method developped into the theory of sieves, which has now
several branches. The sieve is very efficient to determine upper bounds
but is much less powerful to provide us with lower bounds, let them be
extremely weak.

8.1. A beginner’s stroll with historical comments

Let us examin the twin prime problem more closely. We would like
to show that the sum

(8.1) S =
∑

n≤N

(

3−
∑

p|n(n+2),
p≤N+2

1
)

goes to infinity (where p runs through primes). Indeed this would imply
that there exist infinitely many integers n such that n(n+2) has at most
two prime factors p: these are bound to be n and n+ 2 who would thus
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be prime! Let us try to pursue this strategy. We develop (8.1) and get

S = 3
∑

n≤N+2

1−
∑

p≤N+2

∑

n≤N,
n(n+2)≡0[p]

1

= (3 + o(1))N −
∑

p≤N+2

2N

p
−

∑

p≤N+2

(

∑

n≤N,
n(n+2)≡0[p]

1− 2N

p

)

The last sum is at most O(N/LogN). However the second sum is readily
seen to be equivalent to −N Log LogN , since

∑

p≤N+2

1/p = LogLogN +O(1).

This ruins the whole argument since this implies that S tends to −∞ !
Let us try to see how to improve on the above trial. A first remark

consists in noticing that the host sequence from which we are trying to
detect prime twins is too large: indeed if n were restricted to range only
prime numbers p′ such that p′ + 2 is a prime, the approach would work!
Except that we do not know enough on this sequence... So the problem
becomes finding a larger sequence with which we can still work but for
which we have enough information. This will be provided to us by a
process akin to the Selberg sieve: we shall thus have a sequence of weights
β(n) at our disposal that takes value 1 on prime twins, is otherwise non-
negative and gives more weight to integers such that n(n + 2) has few
prime factors. This latter process is what we call the weighted sieve.

The second remark, which is connected to the previous one, is that

one could improve on the sieving coefficient
(

3−∑p|n(n+2),
p≤N+2

1
)

: indeed,

this coefficient becomes very negative when the integer n(n+2) has many
prime factors. We have tried in [73] to include divisors that have more
prime factors, but the fact that we do not know anymore that β(n) is
indeed 0 or 1 renders the combinatoric dificult, and a lower bound sieve
approach intractable (as far as I have been able to understand). We
got however stronger results on including such divisors, results that we
describe in [73].

The process consists thus then in adding a weight∗, as in (8.1), to a
sieve device, and this is how it appeared in history, somewhat contrarily
to the way we have motivated this method.

We find in [56] (and later in [57]) the first combination of an upper
bound sieve and a system of weights to prove the existence of integers
having few prime factors. In the aforementioned paper, Kuhn proves

∗The word “weight” is overloaded in this theory and we shall adopt a clearer
terminology at the end of this introduction.
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that the interval [X,X +
√
X] contains numbers having at most 4 prime

factors, provided X be large enough.
[76] (translated in [77]) proved that there exists a constant r such

that every large even integer N can be written as a prime and an integer
having at most r prime factors. We will say a Pr. This developped
in the main Theorem of [12] where the author proves that r = 2 is
possible. Concerning P2 in short interval, [13] proves that every interval
[X,X +X1/2] contains a P2, when X is large enough. [39] reduced this
exponent to 0.477, [48] to 0.45 while [94] reduced it further to 0.44.

8.2. Results to be proven

In these lectures, we will first prove the following basic result:

Theorem 8.1 Let s be a κ-tuple of admissible shifts. We can find infin-
itely many primes p such that

∏

2≤i≤|s|(p+s(i)) has at most κ(Log κ+4)

prime factors

Proving the κ-tuple conjecture amounts to replacing the κ(Log κ+4)
by κ in the above. This is largely out of reach of today’s techniques, but
the bound 2κ is a plausible goal. However the bound κLog κ has stayed
for a very long time. The reader will find in [73] some more material on
this question and we prove the existence of infinitely many κ-tuples with
exactly κLogκ+O(κ) prime factors. This can be extended to prove the
existence of infinitely many κ-tuples with exactly λκLog κ+O(κ) prime
factors for any chosen λ ≥ 1. On a slightly different note, Heath-Brown
in [43] developped an idea of Selberg on the twin prime conjecture, and
investigated the problem of bounding the number of prime factors of
each n + hi. He has obtained that, given any admissible κ-tuple, there
are infinitely many tuples (n, n + h2, · · · , n + hκ) such that each n + hi
has at most 2(1 + o(1)) Log κ/Log 2 prime factors.

It thus came as a surprise when Craig Franze proved in june 2010
in [28] a bound of the shape (1/2)κLogκ +O(κ). This is the first time
the barrier κLogκ is broken. He proves also precise bounds when κ ∈
{5, 6, 7, 8, 9, 10} that improve on the ones that were known before.

We are not going to detail here the main breakthrough that is Franze’s
result, but prove more modestly the following.

Theorem 8.2 Let s be a κ-tuple of admissible shifts. We can find infin-
itely many primes p such that

∏

1≤i≤|s|(n+s(i)) has at most n0(κ) prime

factors, where n0(κ) is given in the table below.

Prior to Franze’s result, the method we proposed led to the best
values known for every values of κ and improved on these values as soon
as κ was somewhat large (starting from κ = 8). Both methods can most
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probably be mixed, and there are already quite a number of issues that
are not optimaly resolved in the proof we present.

We included ine the table below results from [69], [96], [79], [43],
[18], [45], table 11.1 of [19]. It emerges from this table that the method
we propose equals the best of the others for small values of κ and start
showing its teeth when κ = 8. Even as it stands Franze bounds are
already better.

κ P
or
te
r

X
ie

Sa
le
rn
o

H
ea
th
-B
ro
w
n

D
ia
m
on
d

&
H
al
b
er
st
am

H
o
&
T
sa
ng

Fr
an
ze

n0(κ)
1 3 2
2 9 6 5 5 5 5
3 14 10 9 8 8 8
4 20 14 14 13 12 12 12
5 27 18 18 17 16 16 15 16
6 33 23 23 21 20 20 19 20
7 40 27 26 25 24 23 24
8 46 32 32 29 29 27 28
9 53 37 39 34 33 31 32
10 60 42 45 39 38 34 37
11 44 41
12 48 46
13 53 51
14 58 55
15 63 60
16 69 65
17 74 70
18 80 75
19 85 80
20 91 85
21 97 90
22 103 95

n0(κ)

Maybe we should explicitly state that the values shown are upper
bounds to what is accessible via the method developped here, though we
believe our choice of parameters to be very close to the optimal one.

Special values: [97] shows that there are infinitely many primes such
that (p+2)(p+6)(p+8) has less than 12 prime factors. The reader may
also consult [33], [34] and [52] with benefit. Finally, the papers [32] and
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[14] (also presented in [54]) are just outside the scope of this presentation
but use techniques and ideas very close to what is presented here.

Terminology

Our problem will consist in estimating a sum of the shape
∑

n

(

3−
∑

p|n(n+2),
p≤y

1
)

β(n).

We shall call the sequence β(n) in the above summation, which will come
from a process close to the (upper) Selberg sieve, the host sequence. They
are sometimes refered to in the litterature as the Selberg weights.

The coefficient (3 −∑p|n(n+2),
p≤y

1) or what will be placed there for a

similar effect the sieve coefficient . These coefficients will be extremely
linked with lower sieve procedures and in particular may well be negative.

There are of course some arbitrariness in how to split our coefficients
into two parts, but all that will become clear.

Two issues will make matters somewhat more complicated: the con-
struction of the Selberg coefficients depends on yet another sequence will
be at this level be called (and be treated as) an host sequence. Secondly,
we shall modify these Selberg coefficients, which will then be used as the
current host sequence by employing... some weights! The word “weight”
will be reserved for these, except in the expression “the weighted sieve”.





CHAPTER 9

The approach in the large

We restrict our attention in these lectures to the prime κ-tuple and
to sieving coefficients taking care of prime divisors only. It is however not
more difficult to accomodate a general setting. We follow the beginning
of [73] closely.

9.1. A general framework

For an admissible shift (h1, · · · , hκ), we define

(9.1) K(h1, · · · , hκ)d =
⋂

1≤i≤κ

(

Ud − hi
)

(with Ud = (Z/dZ)∗).
When n lies in K(h1, · · · , hκ)d, then n+ hi falls in Ud, i.e. is prime to d,
for all i from 1 to κ.

The definition (9.1) shows clearly that this compact set is multi-
plicatively split and square-free. We need another one, K∗, that will be
successively Ud−h1, Ud−h2, ..., Ud−hκ in [73] and which we will simply
take to be K here. In general we simply assume that

(H1) K is a multiplicatively split compact set;
(H2) K∗ is a square-free multiplicatively split compact set that con-

tains K.
We associate to K∗ (and to any multiplicatively split compact set) its
bordering system (L∗d)d≥1 as in section 6.4. Each L∗d is the subset ofZ/dZ defined by

• L∗1 = {1} and L∗d = ∅ when d is not square-free.
• When d1 and d2 are co-prime, L∗d1d2

is in bijection via the Chi-
nese remainder map to L∗d1

× L∗d2
.

• L∗p = Z/pZ \ K∗
p.

This may look complicated, but the situation clears when one looks at
characteristic functions, see (6.8). We will also use the bordering system
(Ld)d≥1 associated with K. Note that the condition K∗ ⊃ K has the
following consequence: when p is a prime number and a is a positive
integer, we have

(9.2) 1Kpa
· 1L∗

p
= 1Kpa

· (1− 1K∗

p
) = 0.
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Having this preparation at hand, we can present the main actor of this
paper, namely the sum

(9.3) S((ad∗)d∗ ;K,K∗) =
∑

n≤N

(

∑

d∗/n∈L∗

d∗

ad∗

)(

∑

d/n∈Kd

λ̃♯d

)2

.

We assume that ad∗ vanishes when d∗ > D∗. The coefficients (λ̃♯d)d are
completely free for us to choose. We simply assume that they vanish
when d > Q, for some parameter Q. We need some more material from
sieve theory. We define the coefficients (λ̃d)d by

(9.4) λ̃d = (−1)ω(d)
∑

d|ℓ
λ̃♯ℓ.

We have (see (7.4) or [72, (11.5)])

(9.5) λ̃♯d =
∑

d|ℓ
µ(ℓ/d)(−1)ω(ℓ)λ̃ℓ and

∑

d/n∈Kd

λ̃♯d =
∑

d/n∈Ld

λ̃d.

In practice, the condition n ∈ Kd leads to easier treatment of the main
term, while the λ̃d’s will be smaller, leading to a better treatment of the
error term. We finally introduce the multiplicative function

h(d) =
∏

pν‖d

( pν

|Kpν | −
pν−1

|Kpν−1 |
)

.

We need to handle averages of this function and we follow [37, Chapter 5]
(see also [36]). Condition (Ω1) therein is introduced in the fourth part of
the first chapter, page 49, but it is expedient to assume a much stronger
hypothesis, namely

(H4) h(p)≪ κ/p.

Our main hypothesis on h is a slight simplification of what is called
(Ω2(κ, L)) at the beginning of [37, Chapter 5]. It reads

(H3)
∑

p≤x

h(p) Log p

p
= κLog x+O(1).

This implies classically, via Theorem 3.1, that
∑

δ≤x

h(δ) = A(Log x)κ +O((Log(2x))κ−1)

when x ≤ Q, by using [37, Lemma 5.3, 5.4]. We deduce from (H3) and
(H4) the following weaker form which will be easier to use:

(9.6)
∑

δ≤x

h(δ) = A(Log x)κ +O(αY ). (1 ≤ x ≤ Q)

where we set

(9.7) Y = A(LogQ)κ.
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When K = K(h1, · · · , hκ), the constant A is equal to the constant C of
Theorem ??. It is > 0 when (h1, · · · , hκ) is admissible, or, and this is an
equivalent statement, when K(h1, · · · , hκ) is non-empty.

9.2. Generalisation of a formula of Bombieri

The quantity (9.3) has a summation over four variables (n, d∗, d and
d′). We take care here of the summation over n. We set

(9.8) γ(d∗) = |L∗d∗ |/d∗

as well as

(9.9) S0((ad∗)d∗ ;K,K∗) =
∑

d∗,δ

γ(d∗)ad∗h(δ)

(

∑

δ|d,
(d,d∗)=1

|Kd|λ̃♯d/d
)2

.

Lemma 9.1 We have

S((ad∗)d∗ ;K,K∗) = NS0((ad∗)d∗ ;K,K∗)+O
(

∑

d∗

1,d2,d3

|ad∗

1
||λ̃d2 ||λ̃d3 ||L∗d1

||Ld2 ||Ld3 |
)

.

Proof We first revert to (Ld) on invoking (9.5) and get

S((ad∗)d∗ ;K,K∗) =
∑

d∗

1,d2,d3

ad∗

1
λ̃d2 λ̃d3

∑

n≤N,
n∈L∗

d∗
1
∩Ld2

∩Ld3

1.

Note that L∗d∗

1
∩ Ld2 ∩ Ld3 vanishes when d∗1 is not square-free, or when

there is a prime p and two distinct powers a ≥ 1 and b ≥ 1 that divides
respectively d2 and d3. The reader will conclude that this set defines
modulo [d∗1, d2, d3] a subset of cardinality at most |L∗d1

||Ld2 ||Ld3 |. Con-
cerning the main term, we divide it by N and write it as

M =
∑

d∗

1,d2,d3

ad∗

1
λ̃d2 λ̃d3

|L∗d∗

1
∩ Ld2 ∩ Ld3 |

[d∗1, d2, d3]
.

It can be defined as the limit whenN goes to infinity of S((ad∗)d∗ ;K,K∗)/N .

To compute this limit we use (9.5) and switch to the λ̃♯d. This gives us

M =
∑

d∗

1,d2,d3

ad∗

1
λ̃♯d2

λ̃♯d3

|L∗d∗

1
∩ Kd2 ∩ Kd3 |
[d∗1, d2, d3]

.

Note that Kd2 ∩ Kd3 = K[d2,d3]. We use (9.2) to introduce the condition
(d∗1, d2d3) = 1. This gives us

|L∗d∗

1
∩ Kd2 ∩ Kd3 |
[d∗1, d2, d3]

=
|L∗d∗

1
|

d∗1

|Kd2 ∩ Kd3 |
[d2, d3]

.
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We complete the separation of d2 and d3 via the diagonalisation process
of Selberg, i.e. we write

|Kd2 ∩ Kd3 |
[d2, d3]

=
|Kd2 ||Kd3 |
d2d3

∑

δ|d1,
δ|d2

h(δ).

The Lemma follows readily. �

This Lemma generalizes [6, Theorem 18]. This same formula occurs
as [34, Section 7.3.1, Lemma 1]. This is also [84, (5.6’)]. Our proof is
much shorter than the initial one of Bombieri. Greaves’s proof is also
remarkably short and shares with the above one the fact of treating the
variable d∗1 in a distinct manner. Our switching between L and K as
usual enables us to extend the proof to the case when K is not assumed
to be square-free.



CHAPTER 10

Another family of Selberg coefficients

It is time to narrow our family of host sequences. But to do so, we
will first develop some material to motivate our choice.

10.1. Investigating the Selberg coefficients

Let M = lcm(d ≤ Q) and let us look at KM ⊂ Z/MZ. We as-
sume momentarily that the compact set satisfies the Johnsen-Gallagher
condition (6.4).

Let us expand the characteristic function of KM in Fourier series:1KM (n) =
∑

bmodM

(

1

M

∑

c∈KM

e(−bc/M)

)

e(bn/M)

=
∑

d|M

∑

amod ∗d

(

1

M

∑

c∈KM

e(−ac/d)
)

e(an/d)

=
∑

d|M

∑

amod ∗d

( |KM |
M |Kd|

∑

c∈Kd

e(−ac/d)
)

e(an/d)

where we have used the Johnsen-Gallagher condition (see (JG)). We
define

(10.1) ψ∗
d(n) =

∑

amod ∗d

(

1

|Kd|
∑

c∈Kd

e(−ac/d)
)

e(an/d).

These functions are, up to a multiplicative factor, the pseudo-characters
introduced by Selberg in 1973 (see [6], [65] as well as [53]). An L2

approximation of 1KM is thus given by

(10.2)
|KM |
M

∑

d≤Q

ψ∗
d(n).

It is also possible to define ψ∗
d(n) by Moebius inversion since we readily

verify that

(10.3)
∑

d|q
ψ∗
d =

q

|Kq|
1Kq .

67
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The coefficient q/|Kq| is somewhat mysterious and explained in [72, Sec-
tion 9.4]. Inverting the above equation leads to the definition

(10.4) ψ∗
d =

∑

q|d
µ(d/q)

q

|Kq|
1Kq .

This definition is valid whether K verifies condition (JG) or not, and is
thus the one we take in general. Note that ψ∗

d(n) = h(d) as soon as n
belongs to Kd. As a consequence, the function

(10.5)
∑

d≤Q

ψ∗
d

is constant over KM . This is the usual Selberg coefficient up to a nor-
malising multiplier. Indeed, we find that ..................................

10.1.1. An intermezzo: the sieve bound via local models.

Equation (10.1) can be rewritten in the form

(10.6) ψ∗
d(n) =

∑

amod ∗d

ψ̂∗(a/d)e(an/d).

with

(10.7) ψ̂∗(a/d) =
1

|Kd|
∑

c∈Kd

e(−ac/d)

In case Kd = Ud, we have ψ∗
d(n) = µ(d) cd(n)/φ(d) where cd(n) is the

Ramanujan sum defined in (5.3). Here is a preliminary Lemma:

Lemma 10.1 We have
∑

amod ∗d

|ψ̂∗(a/d)|2 = h(d).

Proof We have
∑

amod ∗d

|ψ̂∗(a/d)|2 =
1

|Kd|2
∑

c1,c2∈Kd

cd(c1 − c2) =
1

|Kd|2
∑

δ|d
δµ(d/δ)

∑

c1,c2∈Kd,
c1≡c2[δ]

1

=
1

|Kd|2
∑

δ|d
δµ(d/δ)

|Kd|2
|Kδ|

by the Jonhsen-Gallagher condition. �

We consider the following function ϕq:

(10.8) ϕq(n) =

{

ψ∗
q (n) when M + 1 ≤ n ≤M +N

0 else,

for q squarefree and of size at most Q.
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The Hilbert space we consider is simply the space of functions over
the integers in the interval [M + 1,M +N ] equipped with the standard
hermitiam product:

(10.9) [g|h] =
∑

M+1≤n≤M+N

f(n)g(n).

Our last Lemma gives a measure of the “almost orthogonality” of the
family (ϕq)q∈Q, where Q is given by (5.1).

Lemma 10.2
∑

q′∈Q
|[ϕq|ϕq′ ]| ≤Mq = φ(q)(N +Q4).

Proof We have

[ϕq|ϕq′ ] =
∑

M+1≤n≤M+N

ψ∗
q (n)ψ

∗
q′(n)

=
∑

M+1≤n≤M+N

∑

amod ∗q

ψ̂∗(a/q)e(an/q)
∑

a′ mod ∗q′

ψ̂∗(a′/q′)e(−a′n/q′).

By summing first over a and a′, we get

[ϕq|ϕq′ ] =
∑

1≤a≤q,
(a,q)=1

∑

1≤a′≤q′,
(a′,q′)=1

ψ̂∗(a/q)ψ̂∗(a′/q′)
∑

M+1≤n≤M+N

e

(

n

(

a

q
− a

′

q′

))

.

The inner summation is in fact the sum of a geometric progression. When
a/q 6= a′/q′, it is at most, in modulus,

1
/

∣

∣

∣

∣

sin

(

π

(

a

q
− a′

q′

))∣

∣

∣

∣

≤ qq′/2

by using the classical inequality sinx ≥ 2x/π when 0 ≤ x ≤ π/2. �

On taking

10.2. Modifying the Selberg coefficients

The expression (10.5) above calls immediately for a modification,
namely

(10.10)
∑

d≤Q

ζdψ
∗
d

for some arbitrary coefficients (ζd)d≤Q. We readily find that
∑

d≤Q

ζdψ
∗
d(n) =

∑

d≤Q

ζd
∑

q|d,
n∈Kq

µ(d/q)
q

|Kq|

=
∑

q/n∈Kq

q

|Kq|
∑

q|d≤Q

ζdµ(d/q)
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so that we take

(10.11) λ̃♯q =
q

|Kq|
∑

q|d≤Q

ζdµ(d/q)/Y

where Y is the size parameter defined in (9.7). This choice is not very
relevant here, since our quantities will all be homogenous in Y . Note
that, when d∗ is square-free and co-prime with δ,

Y
∑

δ|d,
(d,d∗)=1

|Kd|λ̃♯d/d =
∑

δ|d,
(d,d∗)=1

∑

d|q≤Q

ζqµ(q/d) =
∑

δ|q
ζq

∑

δ|d|q,
(d,d∗)=1

µ(q/d).

Let us write q = δℓ. It is obvious that every prime factor of ℓ divides d∗,
for otherwise the relevant contribution vanishes. Furthermore

∑

δ|d|δℓ,
(d,d∗)=1

µ(δℓ/d) = µ(ℓ)

(since only d = δ appears in this sum) which does not vanish only when
µ2(ℓ) 6= 0, which here implies that ℓ|d∗. We define

(10.12) Gd(Q) =
∑

f≤Q,
[f,d]≤Q

h(f)ζ[d,f ].

This leads to

(10.13) λ̃d = (−1)ω(d)Gd(Q)/Y

As already noted, the usual normalisation Y = G1(Q) is not required
here. The next Lemma in a generalisation of Lemma 1.13.

Lemma 10.3 When ζ ≥ 0 decreases on chains of multiples, the inequal-
ities Gℓ(Qℓ/d) ≤ Gd(Q) ≤ Gℓ(Q) hold whenever ℓ|d.

This has the nice consequence that |λd| ≤ G1(Q)/Y ≪ 1, while λ♯d
can be much bigger.

Proof The proof is a copy of the one of Lemma 6.2. The condition
[f, d] ≤ Q implies that [f, ℓ] ≤ Q, which proves the first claim (notice
that h ≥ 0). In the other direction, let f be such that [f, ℓ] ≤ Q. We
have [f, d] ≤ [f, ℓ](d/ℓ) and the Lemma follows readily. �

10.3. Resuming the main proof

With such a choice of the λ̃d’s, S0((ad∗)d∗ ;K,K∗) becomes

(10.14)

Y 2S0((ad∗)d∗ ;K,K∗) =
∑

d∗,δ,
(d∗,δ)=1

γ(d∗)ad∗h(δ)

(

∑

ℓ≤Q/δ,
ℓ|d∗

µ(ℓ)ζδℓ

)2

.
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To compare with earlier work, our family of parameters (ζd) has this
name in [6] and [79]. Salerno in [79] chooses for ζd a step function with
only two steps. Greaves in [34, Section 7.3.2, (2.4)] calls this parameter
y(d) and chooses a logarithmic smoothing of 1d≤Q. Selberg in [84, (7.6),
(7.9), (7.11)] uses weights that are similar to (10.15). The paper [31,
(3.14)] uses also a similar shape though the sum they study is somewhat

different. Heath-Brown in [43, (4)] determines his λ̃d directly, but the
sum he studies differs notably from ours.

We shall further restrict our attention to weights of shape

(10.15) ζd = w
( Log d

LogQ

)

= w(α Log d)

for some non-negative non-increasing function w on (0, 1]. We quote
explicitly:

(10.16) α = 1/LogQ.

We further assume that w is continuous with w(1) = 0, prolonged to
(0,∞) by setting w(t) = 0 when t ≥ 1, piecewise differentiable and such

that w′ is bounded. These hypothesis ensure that w(t) = −
∫ 1

t
w′(u)du

which is what we need. We thus have

(10.17) ζd = −
∫ 1

αLog d

w′(u)du.





CHAPTER 11

Two reduction steps

We continue in this chapter to develop the proof in a general context.
We first restrict d∗ to integers without any small prime factors. This step
may seem harmless and usual, but is in fact crucial; it will rid us of many
constant terms in asymptotic expressions and will enable us to disregard
most of the coprimality conditions. This introduces a parameter P0 which
should disappear from the main term. This will be most easily treated
when we will restrict the sieve coefficient to prime divisors, but it is a
difficult step in general.

To restrict d∗, we limit our investigation to integers with fairly few
divisors, as quantified by (H5) below. Our second step here will be to
remove the coprimality condition (d∗, δ) = 1 from (10.14).

Lemma 11.1 Let d∗ > 1 be an integer and p be its smallest prime factor.
We have, with the choice given by (10.17),

∣

∣

∣

∣

∑

ℓ′≤Q/δ,
ℓ′|d∗

µ(ℓ′)ζδℓ′

∣

∣

∣

∣

≤ τ(d∗)‖w′‖∞αLog p.

Proof Indeed, it is enough to consider the case when d∗ is square-free.
Let us set d∗ = pd∗0. We can dispense with the condition ℓ′ ≤ Q/δ since
it is included in w (for w(1) = 0). We thus find that

∑

ℓ′≤Q/δ,
ℓ′|d∗

µ(ℓ′)ζδℓ′ =
∑

ℓ′|d∗

0

µ(ℓ′)
(

ζδℓ′ − ζδpℓ′
)

which gets majorized as announced. �

We assume that

(H5)
∑

d∗

τ(d∗)2γ(d∗)|ad∗ | = o
(

LogQ
)

.

In case (ad∗) is simply the characteristic function of the primes ≤ D∗,
the upper bound is O(Log LogD∗).
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Removing the small prime factors of d∗. Getting rid of the small
prime factors of d∗ will simplify the computation of the main term, es-
sentially by removing constant terms. Let P0 be a parameter to be chosen
later. We set

(11.1) f0 =
∏

p≤P0

p.

We find that, on invoking (H5),

∣

∣

∣

∣

∑

δ,
(d∗,f0) 6=1

γ(d∗)h(δ)ad∗

(

∑

ℓ′≤Q/δ,
ℓ′|d∗

µ(ℓ′)ζδℓ′

)2∣
∣

∣

∣

≤ α2‖w′‖2∞Y (LogP0)
2
∑

d∗

τ(d∗)2γ(d∗)|ad∗ | ≪ ‖w′‖2∞αY (LogP0)
2.

This is more than enough. It is also O(α2‖w′‖2∞Y (Log LogP )(LogP0)
2)

when (ad∗) is simply the characteristic function of the primes ≤ D∗.
Removing the coprimality condition. We now remove the condition

(d∗, δ) = 1 in (10.14). Indeed on using (H4), we find that

∣

∣

∣

∣

∣

∑

d∗,δ,
(d∗,f0)=1,
(d∗,δ) 6=1

γ(d∗)h(δ)ad∗

(

∑

ℓ′≤Q/δ,
(d∗,f0)=1,

ℓ′|d∗

µ(ℓ′)ζδℓ′

)2
∣

∣

∣

∣

∣

≤ α2‖w′‖2∞
∑

P0<p≤P

Log2 p
∑

d∗,δ,
(d∗,f0)=1,
p|d∗,p|δ

γ(d∗)h(δ)|ad∗ |τ(d∗)2

≪ α2‖w′‖2∞
∑

P0<p≤P

Log2 p

p

∑

d∗,δ,
(d∗,f0)=1,
p|d∗,p|δ

γ(d∗)h(δ/p)|ad∗ |τ(d∗)2

≪ α2‖w′‖2∞Y
∑

d∗

(d∗,f0)=1

γ(d∗)|ad∗ |τ(d∗)2
∑

p|d∗

Log2 p

p
.

Note that d∗ has at most (LogD∗)/LogP0 prime factors and that we
have assumed that αLogD∗ ≪ 1. As a consequence, the bound above is

(11.2) ≪ ‖w′‖2∞Y 2α(LogP0)/P0.
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We set
(11.3)

Y 2S
(1)
0 ((ad∗)d∗≤D∗) =

∑

d∗,δ,
(d∗,f0)=1

γ(d∗)h(δ)ad∗

(

∑

ℓ′≤Q/δ,
ℓ′|d∗

µ(ℓ′)ζδℓ′

)2

and we can replace S0((ad∗)d∗≤D∗) by S
(1)
0 ((ad∗)d∗≤D∗) up to an error

term of size at most (up to a multiplicative constant)

(11.4) ‖w′‖2∞Y α
(

(LogP0)
2 + (LogP0)/P0

)

≪ ‖w′‖2∞Y α(LogP0)
2.





CHAPTER 12

Specialisation of the proof

In these lectures, we restrict our attention to the case when K is
defined in (9.1), K∗ = K and d∗ is 1 or a prime number. In such a case,
we have

(12.1) γ(1) = 1, γ(p) = κ/p

except for a finite number of primes p for which Lp collapses some-
what. But since P0 goes to infinity, we can discard such a case. We
see from (11.3) that

(12.2) Y 2S
(1)
0 (1d∗=1) = G(Q)

and that

Y 2S
(1)
0 ((ap)p≤D∗) = κ

∑

P0<p≤D∗,
δ≤Q

h(δ)

p

(

w
(

αLog(pδ)
)

− w
(

αLog δ
)

)2

= κ
∑

P0<p≤D∗,
δ≤Q

h(δ)

p

(

w
(

αLog(pδ)
)2−2w

(

αLog δ
)

w
(

αLog(pδ)
)

+w
(

αLog δ
)2
)

=M1 − 2M2 +M3

say. We assume that

(12.3) Q ≤ D∗

for we would otherwise reach trivial results. Estimation of M1, M2 and
M3 relies on the following simple Lemma:

Lemma 12.1 Let W be a C1-function over (0,∞) that vanishes when
its variable is larger than 1. We assume that ‖W ′‖1 is finite. We have

∑

δ≤Q

h(δ)W (αLog δ)/Y = κ

∫ 1

0

uκ−1W (u)du +O(α‖W ′‖1).

with α = 1/LogQ.
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Proof Indeed, we use summation by parts to write

∑

δ≤Q

h(δ)W (αLog δ) = −
∑

δ≤Q

h(δ)

∫ 1

αLog δ

W ′(u)du =

∫ 1

0

∑

δ≤Qu

h(δ) W ′(u)du

= A

∫ 1

0

Logκ(Qu)W ′(u)du+O(αY ‖W ′‖1)

on appealing to (9.6) and the Lemma follows readily. �

We use Lemma 12.1 with W (u) = w2(u + αLog p) for M1, with
W (u) = w(u)w(u + αLog p) for M2 and with W (u) = w2(u) for M3.
Their derivatives are bounded in terms in terms of w. Note that, in M1

and M2, the variable p can be bounded above by Q. We thus get

Y S
(1)
0 ((ap)p≤D∗)/κ2 =

∫ 1

0

∑

P0<p≤Q

(w(u) − w(u + αLog p))2

p
uκ−1du

+

∫ 1

0

w(u)2uκ−1duLog
LogD∗

LogQ
+O(αLogLogQ).

We deal with the sum over primes in the following Lemma.

Lemma 12.2 Let F be a C1-function over [0, 1] that vanishes at 0. We
assume that ‖F ′‖∞ is finite. We have

∑

P0<p≤Q

F (αLog p)

p
=

∫ 1

0

F (v)

v
dv +O(‖F ′‖∞(αLogP0 + 1/LogP0)).

Proof Indeed, on calling S the sum to be studied, partial summation
yields

S =
∑

P0<p≤Q

1

p

∫ αLog p

0

F ′(v)dv

=

∫ 1

ξ

(

−Log v +O(1/LogP0)
)

F ′(v)dv +

∫ ξ

0

(

−Log ξ +O(1/LogP0)
)

F ′(v)dv

=

∫ 1

ξ

F (v)

v
dv +O(1/LogP0) =

∫ 1

0

F (v)

v
dv +O(|F ′(0)|αLogP0 + ‖F ′‖1/LogP0)

with ξ = αLogP0. �

On using this Lemma, we reach

(12.4) Y S
(1)
0 ((ap)p≤D∗)/κ2 =

∫ 1

0

∫ 1

0

(w(u)− w(u + v))2

v
uκ−1dudv

+

∫ 1

0

w(u)2uκ−1duLog
LogD∗

LogQ
+O(αLog(P0 LogQ) + 1/LogP0).
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12.1. Final estimate

We find that, on collecting Lemma 9.1, (11.2), (11.4) and (12.4), we
get

(12.5)
∑

n≤N

(

b−
∑

p/n∈Lp

1

)(

∑

d/n∈Kd

λ̃♯d

)2

/
(

NG(Q)κ2
)

=
( b

κ
−Log LogD∗

LogQ

)

∫ 1

0

w(u)2uκ−1du−
∫ 1

0

∫ 1

0

(w(u) − w(u + v))2

v
uκ−1dudv

+O
(

α
LogP0

P0
+D∗Q2N−1+αLog2 P0+αLog(P0 LogQ)+1/LogP0

)

.

We select

(12.6) P0 = exp
√

LogQ

so that the error term above reduces toO
(

(Log LogQ)/
√
LogQ+D∗Q2N−1

)

.
It is high time to take some notation:

(12.7) I1(w, κ) =

∫ 1

0

w(u)2uκ−1du.

We set
∫ 1

0

∫ 1

0

(w(u)− w(u + v))2

v
uκ−1dudv = K1(w, κ) + I2(w, κ)

where

(12.8) K1(w, κ) = −
∫ 1

0

Log(1− u)w(u)2uκ−1du,

and

(12.9) I2(w, κ) =

∫ 1

0

∫ 1−u

0

(w(u) − w(u + v))2

v
uκ−1dudv.

These denominations may look somewhat obscure, but there are taken
in accordance to another sets of notes I have distributed on the subject.

12.2. Conclusion

We select some θ ≥ 1 and some ǫ ∈ (0, 1/2]. We choose D∗ = Qθ

and Q = N
1−ǫ
2+θ . When

(12.10)
b

κ
> Log θ +

K1(w, κ) + I2(w, κ)

I1(w, κ)

then there are infinitely many integers n such that

(12.11) b−
∑

p|(n+h1)(n+h2)...(n+hκ),
p≤D∗

1 > 0.
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This means that (n+h1)(n+h2) . . . (n+hκ) has at most [b] prime factors
less than D∗. Each n + hi can have at most [(1 + 2θ−1)/(1 − ǫ)] prime
factors strictly greater than D∗, so the total number of prime factors is

(12.12) κ[(1 + 2θ−1)/(1− ǫ)] +
[

κLog θ + κ
K1(w, κ) + I2(w, κ)

I1(w, κ)

]

.

We want θ to be as close to 1 as possible.

Extending the class of smoothings w. Our main problem is thus
to minimize of

(12.13)
K1(w, κ) + I2(w, κ)

I1(w, κ)
.

This minimisation should take place over functions w that are C1 over
[0,∞), and vanish from 1 onwards. An approximation argument readily
extends the class in such a way that the continuity in 1 is not required
anymore. In fact we can also dispense with the C1 condition: a continuous
function that is C1 per interval is enough, since (10.17) is the writing we
need. We have also used the fact that w was of bounded variations.
We further see that, on using an approximation argument, we can also
dispense with the condition that w be continuous in 1. We will not need
it, but we can also show that it is enough to assume that w is C1 per
interval, without being continuous. A step function would perfectly do.

12.3. A first choice. Proof of Theorem 8.1

We select w to be function equal to 1 over [0, 1] and 0 otherwise. The
quantity I2(w, κ) vanishes, and K1(w, κ) is computed in the following
Lemma:

Lemma 12.3 We have

−
∫ 1

0

Log(1− u)uκ−1du =
1

κ

(

1 +
1

2
+ · · ·+ 1

κ

)

.

Proof We use the development

−Log(1− u) =
∑

k≥1

uk/k

valid for |u| < 1 and use the Lebesgue dominated convergence Theorem
to infer that

−
∫ 1

0

Log(1− u)uκ−1du =
∑

k≥1

∫ 1

0

uk+κ−1du/k

=
∑

k≥1

1

k(κ+ k)
=

1

κ

∑

k≥1

(1

k
− 1

k + κ

)
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and the last summation amounts to a finite sum, due to a telescoping
effect. �

We select θ = 1, ǫ = 0.1 and use the classical bound

1 +
1

2
+ · · ·+ 1

κ
≤ Log κ+ 1.





CHAPTER 13

Special computations for bounded values

Since we are not able to get an explicit solution, if it exists, to the
optimization problem arising from (12.12), we do some direct optimiza-
tion for small values of κ. We look only at continuous and locally affine
functions. Note that they are Lipschitz so the definition of I2 does not
present any problem. Note furthermore that the functions we shall choose
at the end are non-increasing, indeed ensuring that |λ̃d| ≤ 1.

These choices are the one that enabled us to build tablein the in-
troduction. Note that in what follows we consider chunks of two func-
tions, one with parameters a, α, b, β and a second one with parameters
a′, α′, b′, β′. We will shorthen the first by calling it w and the latter by
calling it w′, which does not have anything to do with the derivative!

13.1. Decomposition in affine pieces

We select functions

(13.1) wa,α,b,β =

{

0 when t /∈ [a, b]
(β−α)t+αb−βa

b−a = γt+ η when t ∈ [a, b].

from which we build

(13.2) w =
∑

1≤i≤I

wai,αi,bi,βi

with 0 = a1 < b1 = a2 < b2 = a3 < · · · < bI = 1 and βi = αi+1. The
three functionnals I1, K1 and I2 are quadratic forms. The first two are
fo diagonals forms, so we have

I1(w, κ) =
∑

1≤i≤I

I1(wai,αi,bi,βi , κ)

and similarly for K1(w, κ). The problem is more complicated for I2, and
we get

I2(w, κ) =
∑

1≤i,j≤I

I2(wai,αi,bi,βi , waj ,αj ,bj ,βj , κ)
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where we have kept the notation I2 for the induced hermitian product
defined by

I2(w,w
′, κ) =

∫ 1

0

∫ 1−u

0

(w(u)− w(u + v))(w′(u)− w′(u+ v))

v
uκ−1dudv.

13.2. Formulae to evaluate of I1 and K1

We first see that

(13.3) I1(wa,α,b,β , κ) = γ2
bκ+2 − aκ+2

κ+ 2
+ 2γη

bκ+1 − aκ+1

κ+ 1
+ η2

bκ − aκ
κ

.

Then we set

(13.4) Σ(x, κ) =
∑

ℓ≥1

xκ+ℓ

ℓ(ℓ+ κ)
.

We readily find that

K1(wa,α,b,β , κ) = γ2(Σ(b, κ+2)−Σ(a, κ+2))+2γη(Σ(b, κ+1)−Σ(a, κ+1))+η2(Σ(b, κ)−Σ(a, κ)).

13.3. Formulae to evaluate of I2

Computing I2 leads to much more bulky formulaes. We first assume
that 0 ≤ a ≤ b ≤ a′ ≤ b′ ≤ 1. We have, by polarization,

I2(wa,α,b,β , wa′,α′,b′,β′ , κ) =

∫ b′

a

∫ b′

t

(w′(u)− w′(t))(w(u) − w(t))
u− t dutκ−1dt

=

∫ b

a

∫ b′

a′

(w′(u)− w′(t))(w(u) − w(t))
u− t dutκ−1dt

+

∫ b′

b

∫ b′

t

(w′(u)− w′(t))(w(u) − w(t))
u− t dutκ−1dt.

On examining the values of the functions w and w′ in the intervals of
integration, this expression simplifies into:

I2(wa,α,b,β , wa′,α′,b′,β′ , κ) = −
∫ b

a

∫ b′

a′

w′(u)w(t)

u− t dutκ−1dt

= −
∫ b

a

(

γ′(b′ − a′) + (γ′t+ η′) Log
b′ − t
a′ − t

)

w(t)tκ−1dt

= −γ′(b′ − a′)
(

γ(bκ+1 − aκ+1)

κ+ 1
+
η(bκ − aκ)

κ

)

− γ′γp(κ+ 2, a, b, a′b′)− (γη′ + ηγ′)p(κ, a, b, a′b′)− η′ηp(κ, a, b, a′b′)
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with

(13.5) p(κ, a, b, a′b′) =

∫ b

a

tκ−1 Log
b′ − t
a′ − tdt

=
bκ − aκ

κ
Log

b′

a′
−b′κ

(

Σ
(

κ,
b

b′

)

− Σ
(

κ,
a

b′

)

)

+a′κ
(

Σ
(

κ,
b

a′

)

− Σ
(

κ,
a

a′

)

)

.

We finally have to handle the case when wa,α,b,β = wa′,α′,b′,β′ . In that
case

I2(wa,α,b,β , wa,α,b,β , κ) =

∫ a

0

∫ b

a

w(u)2

u− t dut
κ−1dt

+

∫ b

a

∫ 1

t

(w(u) − w(t))(w(u) − w(t))
u− t dutκ−1dt+

∫ 1

b

∫ 1

t

(w(u)− w(t))w(u)
u− t dutκ−1dt

i.e. I2(wa,α,b,β , wa,α,b,β , κ) is equal to

W+

∫ b

a

∫ b

t

(w(u) − w(t))(w(u) − w(t))
u− t dutκ−1dt+

∫ b

a

∫ 1

b

w(t)w(t)

u− t dutκ−1dt

=W + γ2
∫ b

a

(b − t)2
2

tκ−1dt+

∫ b

a

w(t)2tκ−1 Log
1− t
b− t dt

=W +
γ2

2

(

b2(bκ − aκ)
κ

− 2
b(bκ+1 − aκ+1)

κ+ 1
+
bκ+2 − aκ+2

κ+ 2

)

+ γ2p(κ+ 2, a, b, b, 1) + 2γηp(κ+ 1, a, b, b, 1) + η2p(κ, a, b, b, 1)

where W is defined by

W =

∫ a

0

∫ b

a

w(u)2

u− t dut
κ−1dt

=

∫ a

0

(

γ2
b2 − a2

2
+ (γ2t+ 2γη)(b− a) + (γt+ eta)2 Log

b− t
a− t

)

tκ−1dt

=

(

γ2
b2 − a2

2

)

aκ

κ
+ γ2(b− a) a

κ+1

κ+ 1
+ 2γη(b− a)a

κ

κ

+γ2p(κ+ 2, 0, a, a, b) + 2ηγp(κ+ 1, 0, a, a, b) + η2p(κ, 0, a, a, b).(13.6)

13.4. Results

We ran the Pari/GP-script described in next chapter to get the re-
sults below. The process has been to optimize the resulting quadratic
form under the quadratic constraint I1(κ,w) = 1; this is a classical prob-
lem which is solved by getting the eigenvectors associated with the some
matrix. The script is detailled in next chapter, and the optimisation pro-
cess in coded in section 14.3. We then found rational coefficients close
enough to the optimal ones obtained and recomputed the resulting n0(κ).

Here are some more details for κ = 2 and κ = 8.
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We reach n0(2) ≤ 5 by using θ−1 = 0.38 and the simplest affine
function w that takes the values w(0) = 1 and w(1) = 61/500.

We reach n0(8) ≤ 28 by selecting θ−1 = 0.49

w(0) = 250, w(1/2) = 40, w(1) = 1.

We also plotted the different optimal solutions with a fixed κ and de-
creasing subdivisions. The optimal solution proposed by our script seems
to converge to some convex decreasing function that nearly vanishes at
t = 1. This last observation is not quite true when κ = 3.

κ 1/θ nb values (l) n0(κ)
1 0.28 1 [1000,272] 1 2
2 0.38 1 [1000,122] 1 5
3 0.48 1 [1000,68] 40 8
4 0.46 1 [1000,43] 30 12
5 0.46 1 [1000,30] 30 16
6 0.46 1 [1000,22] 40 20
7 0.48 1 [1000,16] 40 24
8 0.49 2 [250, 40, 1] 40 28
9 0.48 5 [100000, 45689, 19831, 7575, 2321, 226] 40 32
10 0.48 3 [10000, 2409, 437, 12] 40 37

11 0.48 5 [100000, 39706, 15070, 4978, 1275, 83] 40 41
12 0.48 5 [100000, 37037, 13157, 4051, 952, 51] 40 46
13 0.48 4 [100000, 26637, 6407, 1119, 28] 30 51
14 0.49 6 [1000000, 389243, 149816, 53062, 16236, 3824, 211] 30 55
15 0.48 8 [10000000, 4732626, 2252128, 1033725, 447270, 178197, 62553, 17622, 1525] 30 60
16 0.48 7 [10000000, 4034866, 1638226, 630749, 221735, 67486, 15914, 901] 30 65
17 0.49 5 [100000, 26256, 6739, 1475, 231, 4] 30 70
18 0.49 6 [1000000, 308342, 95709, 27254, 6586, 1169, 31] 30 75
19 0.49 6 [1000000, 290904, 85598, 23094, 5268, 873, 19] 30 80
20 0.49 7 [10000000, 3297711, 1114086, 357423, 103842, 25646, 4708, 139] 40 85

21 0.49 7 [10000000, 3134579, 1011485, 310121, 85960, 20173, 3486, 87] 30 90
22 0.49 8 [10000000, 3472269, 1247118, 434059, 141344, 41582, 10438, 1967, 64] 20 95

In this table, the column (l) indicates up to which level of precision
in the decomposition in w we went: we tried to divide the unit interval in
1 piece, then in 2 equal pieces, and so on, till the number indicated. The
column nb contains the number of equal subdivisions of the unit interval
we have used, and for instance 5 tells us we have used the subdivision
[0, 1/5, 2/5, 3/5, 4/5, 1].

We reproduce below the plot of the optimal functions got by subdi-
viding the unit interval in 5, then 15, then 30 and then 40 subintervals
of equal length, when κ = 3, 6, 12 and κ = 20 (except that with started
with 7 subdivisions in this last case and we increased the precision to 700
digits to compensate loss in precision):
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These numerical datas introduce the following question.

Open Problem no III. Show that the quantity (K1(w, 3)+I2(w, 3))/I1(w, 3)
reaches its minimum at some convex decreasing function w. Get an ex-

plicit expression for this minimum and, if possible, get an explicit expres-

sion of the optimal w0, or at least, compute w0(1).

Open Problem no IV.

Answer to the same questions for a general κ, or asymptotically in

κ.





CHAPTER 14

The GP-script

We take this opportunity to present a full script written for the sys-
tem Pari/GP, see [88]. This symbol denotes a collection of high level
computation tools developped and maintained by mathematicians. The
code is free to use and accessible to read, check and/or improve upon. It
is furthermore well adapted to number theory. The script we present be-
low is far from being optimized, our aim here being twofold: to introduce
the reader to PARI/GP and to explain the algorithm we have employed.
This script can be turned into a C-program and compiled by gp2c. The
procedure to do so is described on a specific problem in [3].

This script is stored in file GP/AffineHRIW.gp.

14.1. Precomputing Σ

The parameter κ being fixed, we store values of Σ (given by (13.4))
that have been already computed. To do so, we handle two lists, PrecomputedArgs
for the arguments and PrecomputedVals for the values taken. The in-
teger NbPrecomputedValUsed is here for statistical reasons: we increase
it by one each time we reuse an already computed value. The function
that computes Σ is called ... Sigmi for the name Sigma is protected in
Pari/GP.

global(PrecomputedArgs, PrecomputedVals, NbPrecomputedValUsed);

PrecomputedArgs = []; PrecomputedVals = [];

NbPrecomputedValUsed = 0;

{getvalue(uk)=

local(ell = 1);

while(ell <= length(PrecomputedArgs),

if(uk == PrecomputedArgs[ell],

NbPrecomputedValUsed++;

return(PrecomputedVals[ell]),

if(uk < PrecomputedArgs[ell], return(0), ell++)));

/* No precomputed values, return 0: */

return(0)}

{getindex(uk)= /* Sigmi(uk) has *not* been precomputed. */
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local(k = 1);

while(k <= length(PrecomputedArgs),

if(uk < PrecomputedArgs[k], return(k), k++));

return(k)}

{vecinsert(vec, what, where)=

forstep(k = length(vec), where+1, -1, vec[k] = vec[k-1]);

vec[where] = what; return(vec)}

{Sigmi(u, kappa)=

local(res, where);

if(u == 0, return(0),

res = getvalue(u + kappa);

if(res != 0, return(res),);

if(u == 1,

for(ell = 1, kappa, res += 1/ell);

res = res/kappa,

/* else: */

res = sumpos(ell = 1, u^ell/ell/(ell+kappa))*u^kappa);

where = getindex(u + kappa);

if(where <= length(PrecomputedArgs),

PrecomputedArgs = concat(PrecomputedArgs, [0]);

PrecomputedArgs = vecinsert(PrecomputedArgs, u + kappa, where);

PrecomputedVals = concat(PrecomputedVals, [0]);

PrecomputedVals = vecinsert(PrecomputedVals, res, where),

/* else: */

PrecomputedArgs = concat(PrecomputedArgs, [u+kappa]);

PrecomputedVals = concat(PrecomputedVals, [res]));

return(res))}

14.2. Computing I1, I2 and K1

We start the actual computations. The function Partial computes p
given by (13.5), while the function getW computesW given by (13.6). The
final functions of this part are getvectorI1, getvectorK1 and getvectorI2
which take κ as argument as well as the subdivision of the unit interval
we consider. Note that we use the indeterminates X, Y, Xp and Yp in the
getvectorI1|K1|I2 family of functions,

{getbaseI1(kappa, a, b, gammaa, etaa, ap, bp, gammaap, etaap)=

if(b <= ap, return(0),

return(gammaa^2*(b^(kappa+2)-a^(kappa+2))/(kappa+2)

+2*gammaa*etaa*(b^(kappa+1)-a^(kappa+1))/(kappa+1)

+etaa^2*(b^kappa-a^kappa)/kappa));}
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{getI1(kappa, a, b, gammaa, etaa, ap, bp, gammaap, etaap)=

if(a < ap,

getbaseI1(kappa, a, b, gammaa, etaa, ap, bp, gammaap, etaap),

getbaseI1(kappa, ap, bp, gammaap, etaap, a, b, gammaa, etaa))}

{Partial(kappa, a, b, ap, bp)=

if((u == 0)||(a == b)||(ap == bp), return(0),

return(log(bp/ap)*(b^kappa-a^kappa)/kappa

-bp^kappa*(Sigmi(b/bp, kappa)-Sigmi(a/bp, kappa))

+ap^kappa*(Sigmi(b/ap, kappa)-Sigmi(a/ap, kappa))))}

{getbaseK1(kappa, a, b, gammaa, etaa, ap, bp, gammaap, etaap)=

if(b <= ap, return(0),

return(gammaa^2*(Sigmi(b, kappa+2) - Sigmi(a, kappa+2))

+2*gammaa*etaa*(Sigmi(b, kappa+1) - Sigmi(a, kappa+1))

+etaa^2*(Sigmi(b, kappa) - Sigmi(a, kappa))));}

{getK1(kappa, a, b, gammaa, etaa, ap, bp, gammaap, etaap)=

if(a < ap,

getbaseK1(kappa, a, b, gammaa, etaa, ap, bp, gammaap, etaap),

getbaseK1(kappa, ap, bp, gammaap, etaap, a, b, gammaa, etaa))}

{getW(kappa, a,b, gammaa, etaa)=

return((gammaa^2*(b^2-a^2)/2+2*gammaa*etaa*(b-a))*a^kappa/kappa

+gammaa^2*(b-a)*a^(kappa+1)/(kappa+1)

+gammaa^2*Partial(kappa+2, 0, a, a, b)

+2*gammaa*etaa*Partial(kappa+1, 0, a, a, b)

+etaa^2*Partial(kappa, 0, a, a, b))}

{getbaseI2(kappa, a, b, gammaa, etaa, ap, bp, gammaap, etaap)=

if(b <= ap,

if(b == 0, return(0),

return(-gammaap*(bp-ap)*(gammaa*(b^(kappa+1)-a^(kappa+1))/(kappa+1)

+etaa*(b^(kappa)-a^(kappa))/(kappa))

-gammaap*gammaa*Partial(kappa+2, a, b, ap, bp)

-(gammaap*etaa+etaap*gammaa)*Partial(kappa+1, a, b, ap, bp)

-etaap*etaa*Partial(kappa, a, b, ap, bp))),

return( gammaa^2/2*(b^2*(b^(kappa)-a^(kappa))/(kappa)

-2*b*(b^(kappa+1)-a^(kappa+1))/(kappa+1)

+(b^(kappa+2)-a^(kappa+2))/(kappa+2))

+gammaa^2*Partial(kappa+2, a, b, b, 1)

+2*gammaa*etaa*Partial(kappa+1, a, b, b, 1)

+etaa^2*Partial(kappa, a, b, b, 1)
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+getW(kappa, a, b, gammaa, etaa)))}

{getI2(kappa, a, b, gammaa, etaa, ap, bp, gammaap, etaap)=

if(a < ap,

getbaseI2(kappa, a, b, gammaa, etaa, ap, bp, gammaap, etaap),

getbaseI2(kappa, ap, bp, gammaap, etaap, a, b, gammaa, etaa))}

{getgammaaetaa(a, b, alpha, beta) =

return([(beta-alpha)/(b-a), (b*alpha-a*beta)/(b-a)])}

{getvectorI1(kappa, endpoints)=

local( taille, var, a, b, mymat , aux, adder, auxbis);

taille = length(endpoints);

mymat = matrix( taille, taille);

for(k = 1, taille-1,

a = endpoints[k]; b = endpoints[k+1];

var = getgammaaetaa(a, b, X, Y);

aux = getI1(kappa, a, b, var[1], var[2], a, b, var[1], var[2]);

add = subst(subst(aux, X, 1), Y, 0);

mymat[k, k] += add;

auxbis = subst(subst(aux, X, 0), Y, 1);

mymat[k+1, k+1] += auxbis;

add += auxbis;

auxbis = (subst(subst(aux, X, 1), Y, 1) - add)/2;

mymat[k, k+1] += auxbis; mymat[k+1, k] += auxbis);

print("I1(", kappa, ") is ready.");

return(mymat)}

{getvectorK1(kappa, endpoints)=

local( taille, var, a, b, mymat, aux, adder, auxbis);

taille = length(endpoints);

mymat = matrix( taille, taille);

for(k = 1, taille-1,

a = endpoints[k]; b = endpoints[k+1];

var = getgammaaetaa(a, b, X, Y);

aux = getK1(kappa, a, b, var[1], var[2], a, b, var[1], var[2]);

add = subst(subst(aux, X, 1), Y, 0);

mymat[k, k] += add;

auxbis = subst(subst(aux, X, 0), Y, 1);

mymat[k+1, k+1] += auxbis;

add += auxbis;

auxbis = (subst(subst(aux, X, 1), Y, 1) - add)/2;

mymat[k, k+1] += auxbis; mymat[k+1, k] += auxbis);

print("K1 is ready.");
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return(mymat)}

{getvectorI2(kappa, endpoints)=

local( taille, var, a, b, ap, bp, varp, mymat, aux, adder, auxbis);

taille = length(endpoints);

mymat = matrix( taille, taille);

for(k = 1, taille-1,

a = endpoints[k]; b = endpoints[k+1];

var = getgammaaetaa(a, b, X, Y);

for(l = k, taille-1,

if(l > k,

ap = endpoints[l]; bp = endpoints[l+1];

varp = getgammaaetaa(ap, bp, Xp, Yp);

aux = getI2(kappa, a, b, var[1], var[2], ap, bp, varp[1], varp[2]);

add = subst(subst(subst(subst(aux, X, 1), Y, 0), Xp, 1), Yp, 0);

mymat[k, l] += add; mymat[l, k] += add;

auxbis = subst(subst(subst(subst(aux, X, 0), Y, 1), Xp, 0), Yp, 1);

add += auxbis;

mymat[k+1, l+1] += auxbis; mymat[l+1, k+1] += auxbis;

auxbis = subst(subst(subst(subst(aux, X, 1), Y, 0), Xp, 0), Yp, 1);

add += auxbis;

mymat[k, l+1] += auxbis; mymat[l+1, k] += auxbis;

auxbis = subst(subst(subst(subst(aux, X, 0), Y, 1), Xp, 1), Yp, 0);

add += auxbis;

mymat[k+1, l] += auxbis; mymat[l, k+1] += auxbis,

/* else: */

aux = getI2(kappa, a, b, var[1], var[2], a, b, var[1], var[2]);

add = subst(subst(aux, X, 1), Y, 0);

mymat[k, k] += add;

auxbis = subst(subst(aux, X, 0), Y, 1);

add += auxbis;

mymat[k+1, k+1] += auxbis;

auxbis = (subst(subst(aux, X, 1), Y, 1) - add)/2;

mymat[k, l+1] += auxbis; mymat[l+1, k] += auxbis;

)));

print("I2 is ready.");

return(mymat)}

14.3. Optimizing

This part is dedicated to the optimization process. The optimal
slopes for the step function are computed in OptimizeK1andI2surI1. We
then range over a selected set of values of τ = 1/θ and get the best one in



94 The GP-script

Optimizedfunction. The reader may then use Optimizedfunction(4,

regularpoints(10)) to get the result for a subdivision in 10 subintervals
of equal length and κ = 4. In order to check the computations, we only
take a rational approximation of the best slopes, and this is the work
done in abetterversionof.

{getlowerboundd0(kappa, val, tau)=

kappa*floor(2*tau+1)+ floor(kappa*(-log(tau)+ val));}

{abetterversionof(thekernel)=

local(thevector, maxelement = 0, minelement = 0, multiplier, finalden = 1);

thevector = vector(length(thekernel~));

multiplier = 10^(ceil(length(thekernel~)*2/3)+1);

for(k = 1, length(thekernel~),

thevector[k] = thekernel[k];

maxelement = max(thevector[k], maxelement);

minelement = min(thevector[k], minelement));

if(maxelement > -minelement,

coef = maxelement, coef = minelement);

for(k = 1, length(thekernel~),

thevector[k] = round(multiplier*thevector[k]/maxelement)/multiplier;

finalden = lcm(finalden, denominator(thevector[k]));

for(k = 1, length(thekernel~), thevector[k] *= finalden);

return(thevector)}

{localmateigen(mymat) =

local(res, realprecision_ini);

realprecision_ini = default(realprecision,,1);

default(realprecision, realprecision_ini-5);

res = mateigen(mymat);

default(realprecision, realprecision_ini);

return(res)}

{OptimizeK1andI2surI1(kappa, tau, I1K1I2vectordata, silent = 1)=

local(myeigenvectors, myvaleigenvectors, mymat1, mymat2, mymat,

goodindex, value, bestvalue = 0, taille, thevector, res, aux);

taille = length(I1K1I2vectordata[1]);

mymat1 = I1K1I2vectordata[1];

mymat2 = I1K1I2vectordata[2] + I1K1I2vectordata[3];

mymat = mymat1^(-1)*mymat2;

myeigenvectors = localmateigen(mymat);
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for(k = 1, taille,

myvaleigenvectors = mymat*(myeigenvectors[,k]);

value = 0;

for(l = 1, taille,

if((value == 0)&&(myeigenvectors[l,k] != 0),

value = myvaleigenvectors[l]/myeigenvectors[l,k],

if((value != 0)&&(myeigenvectors[l,k] != 0),

aux = myvaleigenvectors[l]/myeigenvectors[l,k];

if(abs(1-value/aux) > 0.00000001,

print("!!! Bad precision loss!!",)),)));

if((bestvalue == 0)||(value < bestvalue),

bestvalue = value; goodindex = k,););

thevector = abetterversionof(myeigenvectors[,goodindex]);

res = thevector*mymat2*(thevector~)/(thevector*mymat1*(thevector~));

if(res<0, silent = 0;

print("Value of tau = 1/theta = ", tau); print(thevector),);

if(silent == 0,

print("\nIn truth, minimum is ", bestvalue);

print(" and our simplified version yields ", res+0.0);

print(" Aux = ", (thevector)*mymat2*(thevector~));

print(" I1 = ", (thevector)*mymat1*(thevector~)),);

return([thevector, res, bestvalue])}

{Optimizedfunction(kappa, endpoints, lowertau = 0, uppertau = 1,

steptau = 0.02, UsePrecomputedVals = 0, I1K1I2vectordata = [])=

local(nb, nbbest = 10000, taubest, compteur = 0, nboptimal,

resstuff, bestcoefs);

if(UsePrecomputedVals == 0,

PrecomputedVals = []; PrecomputedArgs = [],);

NbPrecomputedValUsed = 0;

if(I1K1I2vectordata == [],

I1K1I2vectordata = [getvectorI1(kappa, endpoints),

getvectorK1(kappa, endpoints),

getvectorI2(kappa, endpoints)],);

if(lowertau == 0, lowertau = 1/15,);

resstuff = OptimizeK1andI2surI1(kappa, tau, I1K1I2vectordata, 0);

forstep(tau = min(1, uppertau), lowertau, -steptau,

compteur++ ;
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nboptimal = getlowerboundd0(kappa, resstuff[3], tau);

nb = getlowerboundd0(kappa, resstuff[2], tau);

if(nboptimal < nb,

print("!!! Truncation has induced a severe loss!!");

print("Increase multiplier in abetterversionof."),);

if(nb <= nbbest,

if(nb < nbbest,

print("\n[nb = ",nb,"] ",

"Best coefficients : ", resstuff[1]),);

nbbest = nb; bestcoefs = resstuff[1]; taubest = tau,);

if(compteur%20 == 1, print1("~[",nbbest,"]"),));

print1("\nWe have precomputed ", length(PrecomputedArgs), " values of Sigmi");

print(" and used them ", NbPrecomputedValUsed, " times.");

print("\n >> n_0(", kappa, ") = ", nbbest, " facteurs premiers. <<");

print(" with Log Q / Log P = tau = ", taubest);

print(" and the values: ", bestcoefs);

return([nbbest, taubest, endpoints, bestcoefs])}

{regularpoints(nb)= vector(nb+1, k, (k-1)/nb)}

14.4. Plots and other extraction of datas

Plotting is not a main issue, but we record the code below so that it
may be reused (almost) verbatim.

{rescaling(values)=

for(k = 2, length(values), values[k] = values[k]/values[1] + 0.0);

values[1] = 1; return(values)}

{InnerPlotFunction(kappa, n0, endpoints, values, WindowNumber = 1,

Color = 2, Comment = 0, Height = 0, OnFile = 0)=

local(s, HPadding = 0.02, VPadding = 0.02, PSoffset = 0.18,

NbVerticalPoints = 150, NbHorizontalPoints = 150);

s = plothsizes(); s = [s[1],s[2]];

plotinit(WindowNumber , s[1]-1, s[2]-1);

plotcolor(WindowNumber , Color);

values = rescaling(values);

if(OnFile != 1, PSoffset = 0,);

plotscale(WindowNumber, -HPadding, 1 + HPadding + PSoffset,

-VPadding - PSoffset, 1 + VPadding);

plotlines(WindowNumber, endpoints, values);

if(Comment == 0,,

/*--- Axis: ---*/

plotlines(WindowNumber, [-HPadding, 1 + HPadding], [0, 0]);



Plots and other extraction of datas 97

plotlines(WindowNumber, [0, 0], [-VPadding, 1 + VPadding]);

/*--- Horizontal ticks: ---*/

for(m = 1, 4,

plotlines(WindowNumber,

[-HPadding/3, HPadding/3], [m/4, m/4]);

plotmove(WindowNumber ,

-2*HPadding/3, m/4 + VPadding/3);

plotstring(WindowNumber , Str(m/4));

plotmove(WindowNumber , m/4, 0);

for(n = 1, NbVerticalPoints,

plotrpoint(WindowNumber, 0, 1/NbVerticalPoints)));

/*--- Vertical ticks: ---*/

for(m = 1, 4,

plotlines(WindowNumber,

[m/4,m/4], [-VPadding/3, VPadding/3]);

plotmove(WindowNumber , m/4 - 2*HPadding/3, -VPadding);

plotstring(WindowNumber , Str(m/4));

plotmove(WindowNumber , 0, m/4);

for(n = 1, NbHorizontalPoints,

plotrpoint(WindowNumber, 1/NbHorizontalPoints, 0)));

/*------------------------*/

plotmove(WindowNumber , 0.77, 1 - Height - VPadding);

plotstring(WindowNumber , Str("kappa = ", kappa));

plotmove(WindowNumber , 0.77, 1 - Height - 2*VPadding);

plotstring(WindowNumber , Str("n_0 = ", n0)));}

{PlotFunction(kappa, plots, OnFile, Prefix)=

local(listtodraw = [1, 1, 1], FileName = "Affine", olddefault);

FileName = concat(Prefix, FileName);

FileName = concat(FileName, Str(kappa));

InnerPlotFunction(kappa, plots[1][1], plots[1][2], plots[1][3],

1, 1, 1, 0, OnFile);

FileName = concat(concat(FileName, "-"), Str(length(plots[1][2])-1));

for(p = 2, length(plots),

InnerPlotFunction(kappa, plots[p][1], plots[p][2], plots[p][3],

p, p, 0, 0, OnFile);

FileName = concat(concat(FileName, "-"), Str(length(plots[p][2])-1));

listtodraw = concat(listtodraw, [p, 1 ,1]));

if(OnFile == 1,

olddefault = default(psfile);

FileName = concat(FileName, ".ps");

default(psfile, FileName);

psdraw(listtodraw);

default(psfile, olddefault), );
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plotdraw(listtodraw);}

{DoIt(kappa, listnbsub, OnFile = 0, Prefix = "")=

local (plots = [], res, lastn0 = 0);

res = Optimizedfunction(kappa, regularpoints(listnbsub[1]), 0, 1, 0.01, 0);

plots = [[res[1], res[3], res[4]]];

lastn0 = res[1];

for(n = 2, length(listnbsub),

/* We can reuse precomputed values: */

res = Optimizedfunction(kappa, regularpoints(listnbsub[n]), 0, 1, 0.01, 1);

if(res[1] != lastn0, print("!!!Warning!!! Varying n0!!!"));

plots = concat(plots, [[res[1], res[3], res[4]]]));

PlotAffineFunction(kappa, plots, OnFile, Prefix);}

The command DoIt(20,[7,15,30,40],1) produces the postcript
file Affine20-7-15-30-40.ps that we convert to the eps format by the
shell command ps2eps.



APPENDIX A

On the convolution method

Estimation of the average order of an arithmetic function by the
method of convolution. Perrine Berment and Olivier Ramaré

A.1. Introduction

The arithmetic functions are very often poorly understood, and posses
a behavior that appears irregular and inconsistent. More specifically, in
this article we focus on the study of the function

(A.1) f0(n) =
∏

p|n
(p− 2).

The values of f0 between 1 and 54 are as follows

1, 0, 1, 0, 3, 0, 5, 0, 1, 0, 9, 0, 11, 0, 3, 0, 15, 0, 17, 0, 5, 0, 21, 0, 3, 0, 1, 0, 27,

0, 29, 0, 9, 0, 15, 0, 35, 0, 11, 0, 39, 0, 41, 0, 3, 0, 45, 0, 5, 0, 15, 0, 51, 0.

This does not give us much informations even if we consider only the
values at odd integers of the same interval :

1, 1, 3, 5, 1, 9, 11, 3, 15, 17, 5, 21, 3, 1, 27, 29, 9, 15, 35, 11, 39, 41, 3, 45, 5, 15, 51.

For more informations, we can try to determine its average order, i.e. an
approximation of (1/X)

∑

n≤X f0(n). Here we find regularity. We will
in fact demonstrate that :

Theorem A.1 Let X be a positive real number. For all real numbers σ
in ]1/2, 1], we have

(1/X)
∑

n≤X

f0(n) = CX +O(Xσ)

where the implied constant in the O-symbol depends on σ and where

C = 1
2

∏

p≥2

(

1− 3

p(p+ 1)

)

= 0.14630 · · ·

Note that in this statement and from now onwards, the letter p de-
notes a prime number.

99
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The average order has the effect of concealing certain unusual values
taken by the function considered. Note that as is the case for equivalents,
we choose a well understood and quite simple function which allows one
in addition to have small error term. Now what constitutes for a fairly
simple function obviously depends on authors !

The method we explain here belongs to the folklore and did not ap-
pear in any systematic exposition as far as we know. It is very flexible in
its use and give rise to very good error terms. It took 50 years to build a
complete theory of average orders of multiplicative functions (see below
for a definition), but this was mainly oriented towards a maximum exten-
sion of the class in question rather than to the quality of the error term.
Note the theorem of Ikehara generalized by Delange [16], the theorem of
Wirsing [93], another result of Delange [17], and the outstanding work
of [35]. The reader will find exposition of these materials in the books
by Apostol [1] and Tenenbaum [?].

Also note that we could very easily replace the O-term in the theorem
by an explicit inequality. It is little more difficult to write down the first
few exact numeric digits of C, but we leave aside this issue here and move
forward.

Now we present an outline of the method of convolution. This is to
determine the average order of an arithmetic function f . For this, we
take a model function g which looks like f and of which we know the
average order. The model for f0 is the function that associates n to n,
of which we obviously know the average order. How does one know that
g is a model for f ? We will define convolution product ⋆ and show that
there exists a function h satisfying f = h ⋆ g, and where h is “smaller”
than f . The average order of f will be obtained by determining one of
the h, g, which will essentially be ruled by that of g.

Here is a word about the choice of the function f0. This function has
no prior geometric interpretation; it is not entirely true since its value at a
square-free integer, say q, is the number of primitive Dirichlet characters
modulo q. We have chosen f0 precisely for its arbitrariness; its particular
form allows us to simplify some parts of the exposition.

The proof itself is very short and is explained in section A.5, but we
detail here the concepts used.

We would like to thank Hervé Queffelec heartily for his suggestions
and remarks that have been essential to write this article.

A.2. Arithmetic functions

Arithmetic functions are frequently used in later parts, we begin
by recalling some definitions and properties. First of all, an arithmetic
function is defined on N∗ with values in C. We call it arithmetic if it has
any arithmetic meaning ..., precisely !
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Among these functions, the multiplicative functions play a special
role.
Definition A.2 We say that a function f : N∗ → C is multiplicative if
f(1) = 1, and also

f(nm) = f(n)f(m), when gcd(n,m) = 1.

The multiplicative arithmetic functions are of major interest since
their value at an integer is determined uniquely by the values at prime
powers involved in the composition of this integer. Indeed,

(A.2) f(n) =
∏

pα‖n
f(pα),

where the notation pα‖n means that pα|n and pα+1 ∤ n.
This in particular implies that a multiplicative function is completely

determined by its values on the powers of prime numbers.

A.2.1. Bestiary.

Here are some well-known multiplicative functions :

• ϕ(n) : the Euler indicator. It is equal to the number of integers
between 1 and n which are prime to n. The Chinese lemma
allows us to show that it is multiplicative and ϕ(pα) = pα−1(p−
1).
• d(n) : the number of divisors on n.
• σ(n) : the sum of the divisors of n.
• δn=k : the indicator function is 1 when n = k and 0 otherwise.
• θα(n) : the function which sends n to nα.
• 1 is a more common notation for θ0.
• µ(n) : the Mobius function. It is multiplicative and is −1 on
each prime number and 0 on all of their higher powers.
• µ2(n) : the indicator function of the square-free integers. It is
0 if n is divisible by any square greater than 1 and 1 otherwise.
• λ(n) : the Liouville function is multiplicative and is equal to
(−1)k on all pk.

A.2.2. Convolution Product.

We define the convolution product of arithmetic function f and g by
:

(A.3) (f ⋆ g)(n) =
∑

d|n
f(n/d)g(d).
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This product is associative and commutative. The function δn=1 is the
identity element, since for any arithmetic function g, we have

(δ1 ⋆ g)(n) =
∑

ℓm=n

δ1(ℓ)g(m) = g(n).

This product is also distributive with respect to the addition of two arith-
metic functions and both laws give the set of all arithmetic functions a
commutative algebra structure with unity over C. We could also enrich
this structure by considering the derivation

∂ : (f(n))n≥1 7→ (f(n) log n)n≥1

which is linear and satisfy the addition ∂(f ⋆ g) = (∂f) ⋆ g+ f ⋆ (∂g) but
we go out of scope here. The reader will find a fairly detailed exposition
of this structure in the book by Bateman & Diamond [2].

Exercise A.3 Show that, if D(f, s) converges absolutely, it is the same
for D(∂f, r) for r > s. What about the converse ? Is it possible to weaken
the condition by r ≥ s ?

Here is the main theorem on multiplicative functions :
Theorem A.4 If f and g are two multiplicative functions, then so is
f ⋆ g .

Let us start with a lemma.

Lemma A.5 Let m and n be two co-prime integers. For any function
F , we have

∑

d|mn

F (d) =
∑

d1|m

∑

d2|n
F (d1d2).

Proof Given an integer n, we denote by D(n) the set of all positive
divisors of n. For example, we have D(12) = {1, 2, 3, 4, 6, 12}. Consider
the following two functions :

Φ : D(m) ×D(n)→ D(mn),
(d1, d2) 7→ d1d2

Ψ : D(mn)→ D(m)×D(n),
d 7→ (gcd(d,m), gcd(d, n)).

The proof is to show that Ψ ◦Φ = Id and Φ ◦Ψ = Id and the statement
in the lemma is the functional translation of that.

Let (d1, d2) ∈ D(m) × D(n). We have gcd(d1d2,m) = d1 and, simi-
larly gcd(d1d2, n) = d2, which guarantees that Ψ ◦ Φ = Id. Then, if d is
a divisor of mn, we have

gcd(d,mn) = gcd(d,m) gcd(d, n)

which allows us to conclude that Φ ◦Ψ = Id. �

The proof of Theorem A.4 is a simple application of this lemma.
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Proof Clearly, we have (f ⋆ g)(1) = f(1)g(1) = 1. Let m and n be two
co-prime integers. Then, by definition :

(f ⋆ g)(mn) =
∑

d|mn

f

(

mn

d

)

g(d).

Here we recall lemma A.5, which gives us

(f ⋆ g)(mn) =
∑

d1|m

∑

d2|n
f

(

mn

d1d2

)

g(d1d2)

=
∑

d1|m

∑

d2|n
f(m/d2)f(n/d2)g(d1)g(d2) = (f ⋆ g)(m)(f ⋆ g)(n)

as desired. �

This allows us to obtain certain multiplicative function identities, as
for example, we have : d(n) = (1 ⋆ 1)(n). The reader will note that
Lemma A.5 is in fact equivalent to this multiplicativity !

Exercise A.6 Show that 1 ⋆ λ is the characteristic function of squares.

Exercise A.7 Let f and g be the functions defined by f(n) = d(n)2 and
g(n) = d(n2). Show that f = 1 ⋆ g.

Exercise A.8 Show that θ1 = 1 ⋆ ϕ.

A.3. Dirichlet series

We only talk about Dirichlet series with real arguments and restrict
ourselves in the area of absolute convergence which will suffice here. For
studying the complex case, see [87] and [24].

When we have an arithmetic function, say f , we can form its Dirichlet
series which is, for any real argument s :

(A.4) D(f, s) =
∑

n≥1

f(n)/ns.

A priori this definition is formal, since there might not even be an s for
which the series converges (it is the case when f(n) = en).

Corollary A.9 Let f be an arithmetic function such that D(f, s) con-
verges absolutely for some s. Then, for all r > s, the series D(f, r)
converges absolutely.

Proof We have

D(f, r) =
∑

n≥1

f(n)

ns

ns

nr
.

If r > s then ns/nr < 1, hence D(|f |, r) < D(|f |, s), i.e. the Dirichlet
series of f converge for all r > s. �
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This property introduces us the notion of abscissa of convergence.

Definition A.10 We call the abscissa of convergence of the function f ,
the smallest real number s such that the Dirichlet series D(f, s) converges.
If D(f, s) converge for all s, we then say that the abscissa of convergence
is −∞.

Note that it is not certain that the series in question converges on its
abscissa of convergence. By a theorem of Landau, see [21], it can never
happen if the abscissa is finite and f is non negative. We note that the
abscissa of convergence can be −∞ and the function f is non negative,
without implying that f has bounded support i.e. it vanishes everywhere
except on a finite set. The function f(n) = e−n is a counter-example.

Corollary A.11 Suppose that the Dirichlet series of a multiplicative
function f converge absolutely for some s. Then, D(f, s) has the following
Euler product expansion:

D(f, s) =
∏

p≥2

∑

k≥0

f(pk)

pks
.

Proof Write n as a product of prime powers and thanks to multiplica-
tivity of f , we get the result. For a complete proof, the reader can
consult [87]. �

We can associate to each arithmetic function f , a Dirichlet series and
this series converges at least at one point if the function grows reason-
ably. Such Dirichlet series defines the function as shown in the following
property. We will use it in future.

Corollary A.12 Let f and g be two arithmetic functions such that their
respective Dirichlet series converge absolutely for some s. Suppose further
that D(f, r) = D(g, r) pour tout r > s. Then f = g.

Proof If h1 = f − g, we have D(h1, r) = 0 for all r > s. Since this
series converges for r = s + 1, we deduce that the absolute value of
h2(n) = h1(n)/n

r+1 is bounded and D(h2, r) = 0 for all r > −1 and we
have to prove that h2 = 0. Suppose this is not the case and call n0 is
the smallest integer n such that h2(n) 6= 0. A direct comparison with an
integral gives us for r > 1 :

|nr
0D(h2, r)− h2(n0)| ≤ max

n
|h2(n)|

∑

n≥n0+1

nr
0

nr

≤ max
n
|h2(n)|nr

0

∫ ∞

n0

dt

tr
≤ max

n
|h2(n)|n0/(r − 1),
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which tends to 0 as r tends to infinity. ButD(h2, r) = 0, which guarantees
that h2(n0) = 0 contrary to our hypothesis. The reader can modify the
proof in two ways : first replace the method of contradiction by a proof
by induction. Then a small change gives us that

nr
0D(h2, r)− h2(n0) = O((1 + n−1

0 )−r)

whence we have O(1/r). �

A.3.1. The Riemann ζ function.

The function ζ is an important arithmetic function since it occurs in
Euler’s formula, it is therefore a link between natural numbers and prime
numbers. Its Dirichlet series is as simple as the one associated with the
constant function 1 (we denote this by θ0 and 1 in our bestiary). It is
defined for s > 1 by

ζ(s) =
∑

n≥1

n−s.

This Dirichlet series is the simplest and well known, however we still do
not know it enough. For further study of this function, the reader is refer
to [87] and [24]. By Proposition 2, the function ζ has an Euler product

(A.5) ζ(s) =
∏

p≥2

(1− p−s)−1,

which converges absolutely for s > 1.

A.3.2. Dirichlet series and convolution product.

The two operations of arithmetic functions translates very nicely in
terms of Dirichlet series :

• Regarding addition (+) : given two functions f and g whose
Dirichlet series converge absolutely for s, we have

D(f + g; s) = D(f ; s) +D(g; s).

• Regarding multiplication (⋆) : given two functions f and g
whose Dirichlet series converge absolutely for s, then so is true
for the Dirichlet series of f ⋆ g at s, and we have

D(f ⋆ g; s) = D(f ; s)D(g; s).

This equality of absolute convergent series is easily verified as we
can interchange the terms of the series whenever required. It shows in
particular that the operator which maps an arithmetic function to its
Dirichlet series trivializes the convolution in the same way the Fourier
transform trivializes the convolution of the functions of the real line.

The notion of abscissa of convergence leads us to define the size of
an arithmetic functions : the function f1 is bigger than the function f2 if



106 On the convolution method

its abscissa of convergence is more ! The convolution method consists in
writing f = g ⋆ h where g has the same abscissa convergence as f and h
has smaller abscissa of convergence. We will simply say that h is a small
perturbation and f is a perturbed version of g.

It is clear that the abscissa of convergence of the Dirichlet series
of f ⋆ g is bounded by the maximum abscissa of absolute convergence
Dirichlet series associated with f and g. This increase is often equal if
the two abscissas are not equal ... and none of the factors is zero !

Exercise A.13 Show that

(1) D(ϕ, s) = ζ(s− 1)/ζ(s),
(2) if f(n) = d(n)2, then D(f, s) = ζ(s)4/ζ(s),
(3) if f(n) = d(n2), then D(f, s) = ζ(s)3/ζ(s),
(4) D(λ, s) = ζ(2s)/ζ(s),
(5) D(µ2, s) = ζ(s)/ζ(2s).

Exercise A.14 Show that the Dirichlet series associated to the Mobius
function µ is 1/ζ(s) and deduce an example where the abscissa of absolute
convergence of a product can be strictly less than the greater of the two
factors abscissae (consider 1 ⋆ µ ).

A.4. Summation by parts

We make a detour here to address a very useful technique for the kind
of problem that concerns us here, but is surprisingly poorly understood.
This is the summation by parts, in our context, of course. We describe
this process by an example. Begin by recalling that, for all t ∈ R, we
have

∑

n≤t

1 = t+O(1).

Now suppose that we want to get an approximation of
∑

n≤X 1/n.
We need only to note that :

(A.6)
1

n
=

1

X
+

∫ X

n

dt

t2
.

We then have :
∑

n≤X

1

n
=

∑

n≤X 1

X
+

∫ X

1

∑

n≤t

1
dt

t2
= logX +O(1).

Similarly, we can, for example, evaluate the sum
∑

n≤X logn.
To further illustrate this technique, we prove of the following corollary

of Theorem A.1 :

Theorem A.15

We have
∑

n≤X f0(n)/n = 2CX +O(Xσ) for all real σ in ]1/2, 1].
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Proof Indeed, we use (A.6) to obtain :

∑

n≤X

f0(n)/n =
∑

n≤X

f0(n)
( 1

X
+

∫ X

n

dt

t2

)

=

∑

n≤X f0(n)

X
+

∫ X

1

∑

n≤t

f0(n)
dt

t2

= CX +O(Xσ) + C
∫ X

1

dt+O
(

∫ X

1

tσ−1dt
)

which gives us the required result. �

The reader may find similar theorems by the average order means of
f = g ⋆ h knowing that of g, as in [70, lemma 3.2].

A.5. Proof of Theorem A.1

First Step. Let’s start by considering the Dirichlet series of f0 and
its Euler product expansion. We have, by definition :

D(f0, s) =
∏

p≥2

∑

k≥0

∏

ℓ|pk(ℓ − 2)

pks
.

Take a closer look at each factor. In the sum over k, the contribution of
k = 0 is non-trivial and is 1 ; the Euler factor in p becomes :

1 +
∑

k≥1

∏

ℓ|pk(ℓ − 2)

pks
.

Since ℓ and p are prime numbers, this forces that ℓ = p. We have
∑

k≥1

(p− 2)/pks =
p− 2

ps − 1
.

Here the Dirichlet series associated to f0 is :

(A.7) D(f0, s) =
∏

p≥2

(

1 +
p− 2

ps − 1

)

.

We note that the product
∏

p≥2

(

1 + 1
ps−1−1

)

correspond to ζ(s − 1).

Therefore keep this factor out of our product. We write

D(f0, s) =
∏

p≥2

(

1 +
p− 2

ps − 1

)

=
∏

p≥2

(

1− 2ps−1 + p− 3

(ps − 1)ps−1

)(

1

1− 1/ps−1

)

= H(s)ζ(s− 1).(A.8)

The product defining H(s) converge absolutely for those s for which the

series
∑ 2ps−1+p−3

(ps−1)ps−1 converge absolutely, which takes place for s > 3/2 by

extending the sum to all integers. The abscissa of absolute convergence
of ζ(s − 1) is equal to 2, it is also possible for D(f0, s), so much so that
that the series H converge in a wider domain. If we write the series H
as a Dirichlet series of a function, then it will indeed be smaller than
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f0 in the sense defined in subsection A.3.2. We further comment on the
possibility of the above situation. Note first that we use this notion “size”
as a guide in our calculations and a rough heuristic will suffice. But we
can also show a posterior that the abscissa of convergence (and absolute
convergence here since f0 is non negative) is actually equal to 2. Indeed,
suppose the theorem A.1 is proved. A summation by parts gives us

∑

1≤n≤N

f0(n)/n
s =

∑

1≤n≤N

f0(n)
( 1

Ns
+ s

∫ N

n

dt

ts+1

)

=

∑

1≤n≤N f0(n)

Ns
+ s

∫ N

1

∑

1≤n≤t

f0(n)
dt

ts+1
(A.9)

= CN2−s + s C
∫ N

1

dt

ts−1
+O(N1+σ−s) +O

(

∫ N

1

dt/ts−σ
)

.

By taking σ = 0.6 for example, we see that the series defining D(f0, s)
converge for s > 2 and diverge for s < 2. We continue this discussion in
the last section of this article.

Second Step. We must now write the two functions H(s) and G(s) =
ζ(s − 1) as Dirichlet series. The case of G is easy since G(s) = D(θ1, s).
Let us now turn to H . We look for a function h such that

(A.10) H(s) =
∑

n≥1

h(n)/ns

and we restrict ourselves on multiplicative functions. We therefore look
for a function h such that :

(A.11)
∑

k≥0

h(pk)

pks
= 1− 2ps−1 + p− 3

(ps − 1)ps−1
.

The condition h(1) = 1 is used to settle the case k = 0. We just need to
take care of the sum corresponding to k ≥ 1. We set z = 1/ps, and get
the right hand side of (A.11) as a rational function in z as follows :

−
2
pz + p− 3

(1z − 1) 1
pz

=
2z + p2z2 − 3pz2

z − 1
= −2

∑

k≥1

zk − (p2 − 3p)
∑

k≥2

zk.

Identifying term by term, we see that the multiplicative function h is
defined by

(A.12)

{

h(p) = −2,
h(pk) = −(p2 − 3p+ 2) for k ≥ 2,

solves our problem.
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Third Step. Since D(f0, s) = H(s)ζ(s−1) and we know the Dirichlet
series expansion ofH(s) and ζ(s−1), D(f0, s) is a product of two Dirichlet
series and is therefore an arithmetic convolution product. Property 3
allows us to identify it term by term and conclude that f0 = θ1 ⋆ h.

Here we present another method which is more pedestrian. Consider
the multiplicative function h defined by (A.12) and recall that θ1 is a
function which maps n 7→ n. We note that : θ1 ⋆h is still a multiplicative
function which is therefore defined by its values on the prime powers.
Now, for prime p and natural number k ≥ 1:

(θ1 ⋆ h)(p
k) =

∑

ℓ/pk

θ1(
pk

ℓ
)h(ℓ) =

∑

ℓ/pk

pk

ℓ
h(ℓ)

= pk
(

1− 2

p
−
∑

2≤t≤k

p2 − 3p+ 2

pt

)

= f(pk).

By multiplicativity, this implies that f0(n) = (θ1 ⋆ h)(n). We write this
identity in an explicit form below for further use :

f0(n) =
∑

ℓm=n

h(ℓ)θ1(m) =
∑

ℓm=n

h(ℓ)m.

We are now beginning to calculate the average order of f0. The above
equality gives us

(A.13)
∑

n≤X

f0(n) =
∑

ℓm≤X

h(ℓ)m =
∑

ℓ≤X

h(ℓ)
∑

m≤X/ℓ

m.

Now, we know that, for all natural numbers N :
∑

n≤N

n = N(N + 1)/2,

which implies that for real numbers M ≥ 1, we have :

(A.14)
∑

m≤M

m = 1
2M(M + 1) +O(M) = 1

2M
2 +O(M).

First note that this estimate is valid as soon as M is non negative. It
turns out that the proposed method is much simplified if we are satisfied
with a weaker error term. The estimate (A.14) in fact implies also that

(A.15)
∑

m≤M

m = 1
2M

2 +O(Mσ)

for all σ ∈ [1, 2] and all M ≥ 0. We now have all the tools to conclude.
We take the proof of the equation (A.13) considered earlier and see that
the condition ℓ ≤ X is superfluous. It gives then directly

∑

n≤X

f0(n) =
X2

2

∑

ℓ≥1

h(ℓ)

ℓ2
+O

(

Xσ
∑

ℓ≥1

|h(ℓ)|
ℓσ

)

.
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Since H(s) converge absolutely for s > 3/2, the sum
∑

ℓ≥1 |h(ℓ)|/ℓσ is

finite for all σ > 3/2. The proof of the theorem A.1 is complete by
renaming σ.

By the same method . . .

The reader, following a method similar to that proposed in the proof
of theorem A.1, find the average order using the function ϕ.

A.6. Some digressions without proof

The Dirichlet series were introduced in [20] by P.G. Lejeune-Dirichlet
in 1937 to show the existence of infinitely many prime numbers in an
arithmetic progressions (of the form a+ nq where a and q are relatively
prime). Dedekind, first a student and then a friend of Dirichlet has
established several properties of these series enriching the book by [59].
The structure of the next step is due to the memoir of Cahen [10], which
is famous for the inaccuracy of its worth! The development of the theory
has gone well underway at this time and in 1915 appeared the splendid
little monograph [41] of Hardy & Riesz which to date remains the basis
work on the question. The reader can find a part of this material in [87].

Here we focus on two points :

(1) To what extent the average order and the abscissa of conver-
gence are related?

(2) Does writing D(f, s) = D(h, s)D(g, s) (established in (A.8))
allows one to conclude that the abscissa of absolute convergence
of the series D(f, s) is the same as that of D(g, s) ?

Regarding the first point, we have seen in section A.5 that knowledge
of the average order of the function f allowed us to deduce the abscissa
of absolute convergence of D(f, s). The converse is false simply because
it is quite possible that f has no average order. These two notions are
linked by the following theorem (due to Cahen [10]) :

Theorem A.16 If the abscissa of absolute convergence σ0 of D(f, s) is
strictly positive, it is given by

σ0 = lim sup
n→∞

log
∑

1≤n≤N |f(n)|
logN

.

There is an analogous theorem to determine the abscissa of conver-
gence (we did not establish its existence !), and it is also possible to treat
the case σ0 is non negative (but the formula is different). The reader will
note that this formula is the exact counterpart of the Hadamard formula
giving the radius of convergence of power series, subject to recall the
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identity we have (almost !) demonstrated in (A.9) :

D(|f |, s) = s

∫ ∞

1

(

∑

n≤t

|f(n)|
)

dt/ts+1.

Let us now turn to the second question. We assume that here we have
a decomposition of the form D(f, s) = D(h, s)D(g, s), where we know
the abscissa of absolute convergence, say σ0 of D(g, s) and where that of
D(h, s) is strictly smaller. Can we conclude that σ0 is still the abscissa
of absolute convergence σ′

0 of D(f, s) ? It is clear that σ′
0 ≤ σ0, but can

it be smaller ? This is obviously true if h = 0, is it so if h 6= 0 ? The
authors of this article do not know how to answer this general question,
but it is permissible in this case of application to add a hypothesis : we
assume that for all δ > 0, the modulus of D(h, s) is bounded below when
s is in the complex half-plane ℜs ≥ σ0+ δ. This hypothesis does not cost
us anything in practice since we get D(h, s) as an Euler product converge
since it is neither infinite nor zero. But we must now consider the s of
the complex field, we had manage to avoid till now ! Here is the theorem
we are interested :

Theorem A.17 Let D(h, s) be a Dirichlet series absolutely convergent
for ℜs ≥ σ and is bounded below by a constant > 0, then 1/D(h, s) is
still a Dirichlet series absolutely convergent for ℜs ≥ σ.

The result allows us to write D(g, s) = D(h, s)−1D(f, s) and to con-
clude that σ′

0 ≥ σ0, which gives us many σ0 = σ′
0.

Many studies compare the abscissa of simple or uniform absolute
convergence of the three equal components D(f, s) = D(h, s)D(g, s) ;
the reader will find a presentation and their extensions to the case of
several factors and the largest improvement (optimal) in [51].





Notation

Notation used throughout these notes is standard ... in one way or
the other! Here is a guideline:

— e(y) = exp(2iπy).
— The use of the letter p for a variable always implies this variable

is a prime number.
— [d, d′] stands for the lcm and (d, d′) for the gcd of d and d′, while

[t] denotes the integer part of the real number t. In this context
{t} denotes the fractionnal part of t.

— |A| stands for the cardinality of the set A while 1A stands for
its characteristic function.

— q‖d means that q divides d in such a way that q and d/q are
coprime. In words we shall say that q divides d exactly.

— The squarefree kernel of the integer d =
∏

i p
αi

i is
∏

i pi, the
product of all prime factors of d.

— ω(d) is the number of prime factors of d, counted without mul-
tiplicity.

— φ(d) is the Euler totient, i.e. the cardinality of the multiplicative
group of Z/dZ.

— σ(d) is the number of positive divisors of d, except in section 4
where it will denote a density.

— τ(d) is the number of positive divisors of d.
— τk(d) is the number of k-tuples of (positive) integers (d1, · · · , dk)

such that d1 · · · dk = d, so that τ2 = τ .
— µ(d) is the Moebius function, that is 0 when d is divisible by

a square > 1 and otherwise (−1)r otherwise, where r is the
number of prime factors of d.

— cq(n) is the Ramanujan sum. It is the sum of e(an/q) over all
a modulo q that are prime to q.

— Λ(n) is van Mangoldt function: which is Log p is n is a power
of the prime p and 0 otherwise.

— The notation f = OA(g) means that there exists a constant
B such that |f | ≤ B g but that this constant may depend on
A. When we put in several parameters as subscripts, it simply
means the implied constant depends on all of them.
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— The notation f = O∗(g) means that |f | ≤ g, that is a O-like
notation, but with an implied constant equal to 1.

— The notation f ⋆ g denotes the arithmetic convolution of f and
g, that is to say the function h on positive integers such that
h(d) =

∑

q|d f(q)g(d/q). exists for every real number x.

— U is the compact set (Ud)d where, for each d, Ud is the set of
invertible elements modulo d.

— π is ... the usual real number about 3.141 5 . . . ! But also identi-
fies the counting function of the primes: π(6) = 3 for instance.
We have tried to avoid this notation when not too awkward,
just as we did not use the Chebyshev ϑ and ψ functions except
in chapter 5. We also used the variations ϑ(x;χ), ϑ(x; q, a),
ψ(x, χ) and ψ(x; q, a).

— The letter ψ∗ is for local model in chapter 10, see (10.1).
— 1 denotes a characteristic function in one way or another. For

instance, 1Kd
is 1 if n ∈ Kd and 0 otherwise, but we could

also write it as 1n∈Kd
, closer to what is often called the Dirac

δ-symbol. We also use 1(n,d)=1 and 1q=q′ .
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der term in the divisor problem and two applications. Math. of Comp., pages
1–23, 2011.

[4] E. Bombieri. On the large sieve method. Mathematika, 12:201–225, 1965.
[5] E. Bombieri. A note on the large sieve. Acta Arith., 18:401–404, 1971.
[6] E. Bombieri. Le grand crible dans la théorie analytique des nombres. Astérisque,
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