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Prime numbers:

Emergence and victories
of bilinear forms decomposition

Olivier Ramaré (CNRS, Lille, France)

1 Towards a proper question: Before 1800

Historical papers on primes often start with a line like: “The

quest for the primes has a long history that begins in ancient

Greece with Euclid at least 2300 years ago.” This is funda-

mentally true ... or is there a catch?

Let us change the lens to see better: there are primes in the
ring Q[X] of polynomials in one variable over Q, though no
one asks whether one “knows” them. They are, they exist and
we have a definition and sound algorithms to recognise them.
When pushed further, we may answer: “Yes. There are many
of them, infinitely many in fact” And a question emerges: can
you find an irreducible polynomial for any given degree?

This is a completely different problem! This question
mixes multiplicative properties together with some size ques-
tions! It is not about primes as such but about their sizes. And
the problem gets even more entangled in the case of integers,
for the size structure is closely linked with addition.

The reader can now understand why questions about primes
are often difficult: they are couched in a simple language that
hides their difficulty. Take some of the early “observations”
of the period:!

1742: Exchanges initiated by Christian Goldbach with Leon-
hard Euler led, on 7 June 1742, to the statement: every
even integer > 4 is a sum of two primes.”

1752: C. Goldbach tells the same L. Euler that every odd in-
teger can be written in the form p + 2a*> where p is a
prime number and a an integer.’

1775: L. Euler writes that every arithmetic progression start-
ing with 1 contains infinitely many primes.

1792: Carl Friedrich Gauss gives an argument showing that
there are approximately x/log x prime numbers below
x, when x becomes large.*

1839: Johann Dirichlet proves (in today’s terminology!) that
every arithmetic progression without any constant fac-
tor has infinitely many primes.

1845: Joseph Bertand announces that, for each integern > 1,
there exists at least one prime p that satisfies n < p <
2n3

1849: Alphonse de Polignac announces in an equally vague
manner that every even integer £ is the difference of two
primes. The case 4 = 2 is known (since Paul Stickel)
as the “prime twin conjecture”, according to Heinrich
Tietze in 1959 [56].

As the reader can check, all these questions mix both the

additive structure and the multiplicative structure. Individu-

ally, we understand each structure perfectly well but how do
they interact? An obvious interaction is given by distributiv-

ity: 2a + 2b = 2(a + b), which means that if you sum two even
numbers (and this latter property belongs to the multiplicative
realm), you still get something that has a multiplicative prop-
erty: itis ...even! The question 20th-century mathematicians
endeavoured to settle is: ‘Is this the only relation that exists?"®

There are many other, confusingly simple-looking ques-
tions, as well as far too many false proofs that keep roam-
ing the web every year, some by genuine beginners who just
missed a step and some by well-known difficult cases’ (some
of whom sadly occupy academic positions). I hope this paper
will help the beginners with some mathematical background
to understand where the difficulties lie and where the field
is open. The list above contains old questions but modern
work has shown deep ties between modular forms in various
senses and more classical problems, in particular via the use
of Kloosterman sums. Now, classical problems include the
evaluation of ) ,_x A(p) for cusps forms in the modular case,
or the Maass case, or the automorphic case, as well as that of
Y pex A(p)e P forany a € R/Z.

Recently, many impressive results concerning primes or
the Moebius function have been proved and the second aim
of this paper is to present a main tool to attack these prob-
lems. Indeed, these achievements are, of course, due to the
work of some tenacious individuals but have emerged after a
long toiling of a large community. As an outcome, a general
and flexible tool has been created, whose history will now
be recounted. If this tool is now fairly common knowledge
to specialists, this does not imply (by far!) that all the ques-
tions above have been answered. This tool is, however, a good
weapon, whose conception has reached an evolved enough
stage that it should be presented to a more general audience.
Some of the ideas here may be useful in other contexts and
other fields may also contribute. Such a crossing of borders
has, for instance, led ergodic theorists to add their own input,
including the impressive work of Ben Green, Terence Tao,
Peter Sarnak, Jean Bourgain and many others.

To be complete and before embarking on the storytelling,
it should be noted that several other tools have been invented.
Here we concentrate on the one that is the most specific to
prime numbers.

Now that we have underlined the difficulty of the diverse
questions asked, let us turn toward the strategy that has been
developed to tackle them. We start at the very beginning of
this trade: how to handle prime numbers? We make here the
first decision: instead of studying the set of prime numbers
P, we study its characteristic function 1p. We further assume
a positive (large) real number X be given and study Ly.p<ry
which takes value | on prime numbers p that are such that
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X < p < 2X, and 0 otherwise. Studying a set and its charac-

teristic function are of course equivalent but we are now ready

to express Ly.p<oy as a linear combination of functions that

do not have any special geometrical interpretation.

Historically, there have been two main lines of approach,

which converged in 1968:

— The first branch of this story can be nicknamed combinato-
rial and gave birth to the sieve.

— The second branch, which I call Eulerian, goes through
what is nowadays known as Dirichlet series.

In the rest of this paper, we shall present the characteristics

of both approaches, try to point out how they interacted in

history and see how they mingled to create the modern theory.

2 Dirichlet and Riemann: The early history

The Eulerian approach was really started by Bernhard Rie-
mann in his 1859 memoir [53] and came to the fore in 1896;
this is the path taken by Jacques Hadamard and a Charles
de la Vallée-Poussin [11] to prove the prime number theo-
rem. The next crucial moment was in 1968 when this method
hybridised with the combinatorial approach (but this is for
later!). The idea of Leonhard Euler was to consider the de-

composition
,z(s)=2nis=]_[(1—$)_l, M

nz1 p=2

where the variable p ranges over the prime numbers. On the
right side, one finds the primes, while on the left side, one
find only integers: we potentially have a machine to extract
information on the primes from information on the integers!
L. Euler used it in 1737 to prove that there are infinitely many
primes and, in 1796, C. E. Gauss refined the analysis to guess
the prime number theorem. It was only in 1837-39 that seri-
ous proofs started with G. Dirichlet (followed by B. Riemann
in 1859). In fact, L. Euler restricted the variable s above to in-
teger values (he even considered the case s = 1 and, in some
roundabout way, the case of negative values of s as well!).
G. Dirichlet applied the logarithm of both sides of the equa-
tion above to handle the product and considered s > 1 areal
number. Shortly after this work, B. Riemann simplified that
in his eight page, epoch defining memoir [53] and took the
logarithmic derivative of both members:

() _ Z:(Logc P N Loip N Lo‘gvp +)
{s) &S\ p P~ P
A(n)
=)= @)
nz2 n

where A(n) would — 50 years later! — be called the van Man-
goldt function. This formula still has the property of the Euler
formula: it is potentially a machine to extract knowledge on
the primes from information on the integers. The reader may
worry that the A-function does not only detect primes but also
their powers (but the latter are in negligible quantity).

B. Riemann considered complex values of s. The reader
may easily guess that an inversion formula (akin to the for-
mula that expresses the Fourier coefficients of a function in
terms of this function) using complex analysis links .y A(n)
with =’/ but, to make it work, one needs bounds for this

function. The difficulty lies there: the {(s) on the denomina-
tor tells us that the zeroes of this function are going to give
trouble. This is the beginning of the long and yet unfinished
chase for these zeroes!

To cut a long story short, when this method applies, it usu-
ally gives very precise results. Moreover, it has wide general-
isations (to number fields, to curves, be they elliptic or not,
to modular forms, etc.). But the weakness of available infor-
mation on the potential zeroes drastically reduces its range.
In modern times, computers have entered the arena and we
are now in a position to check numerically that large but fi-
nite regions do not contain any zeroes (but this is material for
another paper!).

3 Same problem, different tune:
The Moebius function

Before introducing the combinatorial approach, let me intro-
duce another player: the Moebius function, named after the
German mathematician August Ferdinand Moebius who in-
troduced it in 1832. This player is more discreet than the
primes, because it is less geometrical, but it is equally im-
portant. Its formal definition reads as follows:

_l r
pu(n) = {( )

whenn = py---p,, (pi # pj)
0 else.

This function appears in the inclusion-exclusion formula when
applied to the divisor set of an integer as we will see below. It
has been noticed, and this was put very formally in theorems
by E. Landau in the early 1900s, that studying this function is
equivalent to studying the prime numbers. However it is often
far from obvious how to translate a property of the Moebius
function into a property of the prime numbers: there is no di-
rect dictionary between these two worlds. Note that

() = ) um/n'. A3)
nzl
As stated above, the difficulty in (2) lies in the denominator.
With the Moebius function, we directly study this denomina-
tor!

4 The combinatorial approach as seen by
Legendre

Without further ado, let us embark on the combinatorial ap-
proach introduced far above!

The starting point is due to Erathosthenes and stems from
the following remark: an integer from the interval (X, 2X] is
prime if and only if it has no divisor strictly larger than 1 and
below V2X (assuming that V2X < X, i.e. that X is greater
than 2). From this remark, Erathosthenes deduced an efficient
algorithm to build tables of all the primes below some limit.
The question is how to use this algorithmic efficiency theoret-
ically?

Adrien Marie Legendre put this idea in a formula in 1808
but failed to turn it into anything efficient (though this miss
would be fruitful!). Let us inspect this approach on the prob-
lem of counting the number of primes between X and 2X. We
start with the number of integers between these two bounds,
that is X + O(1). From this number, and for each prime
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p < V2X, we remove the number of integers that are divisible
by p, i.e. we consider

X +0(1)
X X X
=30 =3 -0() -5 -0() =

Now we have removed twice the integers that are divisible by
a product of two primes, so we have to add

X

-+

6
This times integers divisible for instance by 2 x 3 x 5 are re-
moved three times (divisible by 2, by 3 and by 5), then added
three times (divisible by 2 x 3, by 2 x 5 and by 3 X 5), so we
still need to remove them ... The inclusion-exclusion princi-
ple is the modern way of rigorously and compactly express-
ing this idea but we will later need the pedestrian mechanism
just described. Indeed, the formula of A.-M. Legendre leads
to an enormous difficulty: the number of O(1) that appear is
about 2™ ‘/Z_X’, where m( \/ﬁ) is the number of primes below
V2X. The addition of all these error terms gives rise to a gi-
gantic and final O(2(1+0(1) V2X/ log V2X)) swallowing the main
term with no second thoughts! One has to face a sheer wall:
the combinatorial explosion. This phenomenon is often met
in complexity; here it spoils the efficiency of the formula.

But the Legendre formula also suffers from a congenital

disease: if we ignore the error terms, the supposed main term
it gives is incorrect in view of the prime number theorem!®

X X
O(l)+m+0(l)+E+0(l)+~-

5 Two earthquakes: V. Brun, 1919, and
I. M. Vinogradov, 1937

The Legendre formula was abandoned for more than 100
years, a period during which the Eulerian approach was de-
veloped. In 1910, the young Norwegian mathematician Viggo
Brun went to Gottingen, at the time one of the main cen-
tres of mathematics in Europe. Edmund Landau was devel-
oping and systematising the use of analysis in number theory
and, more often than not, in prime number theory. There, the
young Brun was introduced to classical problems in this field,
such as Goldbach’s conjecture (one of E. Landau’s 1912 ICM
list of problems). V. Brun wanted to use combinatorial meth-
ods but E. Landau was convinced such methods would never
yield anything of interest. E. Landau waited until 1921 before
reading V. Brun’s memoir! But this is jumping ahead: here we
briefly describe this revolutionary work.

The first idea of V. Brun [5] was to give up hope for an
equality in the Legendre formula. Since the error terms accu-
mulate too much, let us stop the process before the end. The
pedestrian approach described above gives the principle: af-
ter an even number of steps, one has a lower bound and after
an odd number of steps, an upper bound is produced! So, if
we aim only at inequalities, the process can be made to work!
Well, when counting the number of primes, this lower bound
is ... negative, but the upper bound is much stronger than what
was then known!

The Brun method (later called the Brun sieve) is excep-
tionally flexible and this first work was the source of a wealth
of activities. The technical side was extremely heavy, and one
had to go through page after page of evaluations.

For instance, the Brun sieve [6] gives a sharp upper bound
for the number of representations of the even integer N as
a sum of two primes. This upper bound is indeed sharp:
it is only a multiplicative constant larger than what is ex-
pected to be true! This is one of the main ingredients that
Lev Snirel'man used in 1933 [54] to show the existence of a
constant C such that every integer is a sum of at most C prime
numbers.

The second seismic move occurred in 1937: I. M. Vino-
gradov [59] proved that every large enough odd integer is a
sum of three primes.” This achievement relied on a magnif-
icent discovery: Vinogradov found a way to deal with prime
numbers! This method is based on the Brun sieve, which is
already very intricate, so an anachronical but much clearer
exposition is presented here.

When working for my thesis, I realised in 1991 [49], [50]
that one could consider that the Brun sieve produces a larger
sequence A that contains the sequence of primes. The se-
quence A envelops the primes: we lose in size but we gain
in control. In functional form, this means that, for any posi-
tive function f, we have

Y orms Y f@.

X<p<2X acA,
X<a<2X

What is expressed above is that the Brun sieve does not only
give an upper bound for a counting function but also provides
us with a local upper bound! In truth, the situation is some-
what more complicated, since the sequence A is maybe infi-
nite but only serves as an upper bound for the primes when the
variable is between X and 2X. Attle Selberg in 1947 extended
this setting some more: it is enough to find non-negative co-
efficients B(n) such that, for any non-negative function, one
has
DL fr< Y Bofm,
X<p<2X X<n<2X

where, here and everywhere else, the letter p always de-
notes a prime variable. A. Selberg provides a construction of
such good coefficients S(n), which one should think of as a
(weighted) sequence. It is easier to see on these coefficients 8
what has been gained by switching to an upper bound. There
exists a parameter D > 1 (say, something like X'/*; strictly
less than X anyway) and coefficients A}, such that

Bmy= > ;. 4)
din,
d<x'f
The major feature which renders this expression tractable is
that D is small enough. Furthermore, this parameter is at our
disposal. I developed fully this idea of an enveloping sieve
in [52], but let us go back to I. M. Vinogradov. He writes

Ix<pax = 1a—0.

Nothing has been done so far. I. M. Vinogradov’s crucial ob-
servation is that ® has a special shape, namely

—1i - (D) p (i)
®(n) = lin. comb. of Z a, b,/ (5)
{m=n
where the sequences (a([" ) and (b:,',’ ) vanish as soon as m or {
is either too large or too small; since we have constrained n

by X <n < 2X, ifa‘[') = (0 as soon as ¢ < L then the m’s with
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m > 2X/L do not intervene, so our conditions are somewhat
redundant. In practice, we will ensure that both a(,” and bY)
vanish when ¢ (or m) is small. This observation is a major
turning point. I. M. Vinogradov termed type I sums the sums
arising from (4) and type II sums the sums arising from (5).
Along with many others, I prefer to speak of bilinear sums for
(5) and, of course, to call (4) a linear sum! More will be said
later on this bilinear structure.

This step being crucial, let me enunciate a simple lemma
that shows the power of this bilinear structure.

Lemma 1 (Toy lemma) Given ¢, L > ¢, M > ¢* and two
sequences |a;|, by < 1,

2intm/qg
Z arby e la

{<L,
msM

< 2LM/g.

The condition |b,,| < 1 can be relaxed if the upper bound is re-
placed by 2L /M ¥, |b,|*/ 1/g. The bound L can be replaced
by L(m) < L depending on m, provided that, given £, the set
of m such that £ < L(m) is an interval.

The last condition is typically met by conditions like £ <
X/m for some X. An early general version of the toy lemma
is to be found in [59, Lemma 4] (see also [10, Lemma 8]).
The proof progresses simply by writing the sum to be studied
in the form ), _,, b,c(m) and using Cauchy’s inequality. In
the resulting sum ¥, _,, lc(m)[?, open the square and invert
summations and the result will follow readily. What has been
gained here? If one sets y(n) = 3, arb,, (ensure thata, = 0
when £ > L and similarly for b,, and m), we see that we are

studying
Z Y eZi}rn/q

nsN=LM

When the only information we have on v, is that it is bounded
above in absolute value by 1, the best possible upper bound
is Y, <n lyal, which can be as large as N = LM. The above
lemma uses the structure and saves a factor 2/ 1/g! Note the
discreet conditions L > g and M > ¢ that are, in fact, essen-
tial.

Here is what A. Ingham wrote in Zentralblatt on I. M. Vi-
nogradov’s paper:

This is a fairly simple deduction from Cauchy’s inequality, and
the essential basis of the result has been available since 1910. It is
hardly surprising, however, that its possibilities remained so long
unsuspected. For double sums occurring in (1) do not appear nat-
urally in the known treatments of the above problems, and in any
case a straightforward application is liable to give only crude re-
sults owing to the loss involved in the use of Cauchy’s inequality.
It is, in fact, in devising ways of adapting the lemma to the var-
ious problems, and in elaborating techniques for bringing it to a
successful conclusion, (...), that the author reveals his amazing
powers.

This is a flexible and powerful principle. Our presentation is
voluntarily naive; modern versions rely heavily on the under-
lying bilinear structure and on Bessel type inequalities for the
relevant quasi-orthogonal system. But, again, we are ahead of
the subject; let us go back to the beginning of the previous
century!

6 The Eulerian approach continued

While sieves and their derivatives occupied the fore, the Eu-
lerian approach was still under scrutiny. The main hurdle be-
ing the lack of information on the zeroes, Harald Bohr & Ed-
mund Landau [2] decided in 1914 (somewhat before Brun's
discovery) to look for regions that do not have many zeroes.'"
What they showed is a density estimate; for any 6 > 1/2, we
have

#p=p+iy.dp)=0.WM<T.B>6
#Hp=B+iy.l(p)=0,ly|<T.B >0}

This statement says that most of the zeroes have a real part
< @ for any € > 1/2 (and, in fact, by the functional equa-
tion, almost all zeroes with positive real part have a real
part close to 1/2). The Riemann hypothesis states that all
these zeroes have indeed a real part equal to 1/2; the above
statement is a statistical step in this direction. And this sta-
tistical step turns out to be a crucial one, since it started a
very fecund branch of investigation that delivered new re-
sults for the next 80 years (this theory has now somewhat
stalled).

H. Bohr & E. Landau studied the function (1 —((s)PD(s))z,
where P is a finite Euler product: Pp(s) = H,;go(l -p~ L
This is one of the striking features of analytic functions: it is
possible to bound from above the number of zeroes by bound-
ing from above some integral containing them. Here, H. Bohr
& E. Landau integrated |1 —~{(s)Pp(s)> ona square and proved
this quantity to be a multiplicative constant times larger than
the number of zeroes in a smaller region, a process later im-
proved upon by John Edensor Littlewood.

The Swedish mathematician Fritz Carlson in 1920 [8]
simply replaced the product Pp by a sum Mp(s) =
Su<pu(d)/d* and considered (1 — {Mp). He obtained in this
manner much better bounds for the number of zeroes with
real parts > 6. Many authors continued this line of work: J. E.
Littlewood, Alan Titchmarsh, Albert Ingham, Pal Turdn, Atle
Selberg, Askold Vinogradov and Enrico Bombieri, to name
but a few! Since A. I. Vinogradov a zero detection method
has been used instead of the method described above but this
is not the subject here! It is relevant to note that Hermitian
methods became more and more important and the large in-
equality (see (13) below) proved to be an essential tool. Yu
Linnik is the pioneer of the line of investigation [40] that be-
came understood as the use of Bessel type inequalities for
quasi-orthogonal systems ... More will be said on this sub-
ject later!

There are two main highpoints of the theory of density
estimates: the Y. Linnik theorem concerning primes in arith-
metic progressions in 1944 and the Bombieri-Vinogradov the-
orem in 1965. In essence, these authors proved statements
concerning density of zeroes and this is the major part of
their work. These statements were then converted into results
concerning the prime numbers, via some ad hoc explicit for-
mula.

The Linnik theorem [41], [42] says that there exist two
constants Cy and go so that, when ¢ is larger than ¢y, there
exists, for each residue class @ modulo ¢, a prime number
congruent to a modulo ¢ and below ¢©.
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The Bombieri-Vinogradov theorem [3], [58]'! says that,
for each positive constant A, we have

X
2 max IA(X; q,a)l < —
- 1<a<q. (]og x),q
qsﬁf‘? ged(a,g)=1

X
where A(X; q,a) = logp—- ——. (6)
! ,; & w(q)

p=algl

This theorem can be seen as a statistical Generalized Rie-
mann Hypothesis and it serves in many situations as a re-
placement. And we should also recall the Guido Hoheisel the-
orem from 1930 [34]:'2 there exist two constants Xy > 1 and
85 € (0, 1) such that every interval [X, x+ X% contains at least
a prime number when X > Xj. This proof created some tur-
moil when it was published, as the existence of such a §; < |
was only known under the hypothesis that no zero with real
part > §, existed (to be precise, a slightly stronger hypothesis
is needed) and seemed close to being equivalent to it. Nowa-
days, we term a Hoheisel theorem any theorem that proves a
similar statement with some definite value of 6>. The initial
value provided by Hoheisel was very close to 1."3

7 The ’68 generation

Patrick Gallagher [20] remarked in 1968 that the process
is abnormally convoluted: the proof starts from the series
> 1/n?, retrieves in some fashion information on its zeroes
and deduces from that information on the primes. Why not
use a shortcut and skip the zeroes? This is easier said than
done but P. X. Gallagher found such a shortcut. He simply
multiplied —¢'/{ by the kernel used for density estimates!
This amounts to writing

¢ R 4 2

?=2MD,[ -Mpl'{+ ?(l_fMD)a (7)
where M) is the Dirichlet polynomial we have defined above.
The difficult term is the last one: it is the only one that still has
a denominator. But this term is essentially of the shape identi-
fied by I. M. Vinogradov! A short dictionary is called for here:
one has to convert operations on Dirichlet series into opera-
tions on their coefficients. The main rule is that the (arith-
metic) convolution is trivialised when expressed in terms of
Dirichlet series, i.e.:

n = a b"l i & = ﬂ ﬁ‘
7 (;,::n ' ; n ; & mz1 m*
This equality is either formal or valid in the domain of ab-
solute convergence of the three series (lighter hypotheses are
possible!). It should be pointed out specifically that this im-
plies

v"

L(s)Mp(s) =1 = —.

5
n>D

The coefficients v, are not important, as we noted earlier; they
are bounded by a divisor function.'* What is really important
is that the variable d cannot be small.

The first two terms in (7) give rise to linear sums while
the last one gives rise to a bilinear one. This transformation
was completed by Robert Vaughan in 1975 [57] by removing

a finite polynomial to ' /; he introduced, for some parameter
y typically like X'/#, the finite Dirichlet polynomial

Fy(s)= ) A/’

nsy

so that

Z'(s) N —A(n)
Us) +h)= Z ns

Now, multiply together ({’/{) + F, and (1 —{Mp) and expand

as above. This product is a Dirichlet series whose coefficients

are a convolution product of two sequences that both vanish
when the variable is small: it is indeed of the special shape
highlighted by I. M. Vinogradov!

What has been gained in the process?

— The sieve part in I. M. Vinogradov's process was not in
most cases the main term, while the linear part is expected
to carry the main term. More will be said on this point later.

— The method is simple and flexible: one can change the ker-
nel; and it applies to other functions instead of the Riemann
zeta functions, like the Dedekind zeta functions or Hecke
L-series. Note that the multiplicativity is essential but not
the functional equation. The method also applies to the
Moebius function but so did I. M. Vinogradov’s method,
as already noticed by Harald Davenport [10]. However, H.
Davenport reduced the problem to the case of primes while
the present proof is direct.

On using this approach, P. X. Gallagher obtained in 1970 [21]

a major theorem that unifies the Linnik and the Bombieri-

Vinogradov theorems: the Gallagher prime number theorem,

which is still unsurpassed in strength.

Since there has recently been a flourish of works on the
Moebius function, and since many people have asked how
this theory handles this case, let me be more precise here. The
identity to use is a simplification of one I devised recently, as
explained later in this survey. It relies on the simpler kernel
(1 = {Mp). We consider the identity

n>y

1 1 2
;= (Z’ - MD)(I —{Mp) + 2Mp — (M),

It only remains to identify the coefficients! It is best for ap-
plications to express the result in functional form. For any
function f and provided D < X, we have:

Z S(mu(n) = Z Uy Z f(€m)

X<n<2X m<D? (=1,
X<tm<2X
+ E H(Ovm f(Em), (8)
{>D.m>D,
X<tm<2X

where v, has been defined above and where

Uy = — Z u(h)p(k).

hk=m,
hk<D

In the first summation on the right side of (8), we hope to
be able to evaluate the summation over £. For instance, in
the toy lemma case, one selects f(x) = exp(2irx/q) and the
sum over { is bounded by ¢, giving rise to a total contribution
bounded by O(¢D?). Concerning the second sum, we first note
that the variable m ranges (D, 2X/D). We cover this interval
by at most (log(2X/D?)/log2 disjoint intervals of the shape
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(M, M'] for some M’ < 2M. Our toy lemma applies provided
that D > ¢°. We note that 2 mel MM [vul? < M(log M)*. Col-
lecting our estimates, we have proved that

) X
Z p(tz)ez”'"/" < qu + (log Xyr=,
X<n<2X \/(7

provided D > ¢ and D < X. On selecting D = ¢ and assum-
ing that ¢ < X*'7 this gives our case study result:

Z p(rl)eZi""/" < (log X)S/Zi.

X<n<2X ‘/FI

This simple result is way beyond the power of the classical

Eulerian approach! But the proof we have given requires not
more than half a page!

There has recently been renewed activity around the Moe-
bius function, as in [25] and [26], and around a conjecture due
to Peter Sarnak.'® This subject is somewhat off our main road,
though we have to specify that getting to the Moebius func-
tion is done as above. Recently Jean Bourgain, Peter Sarnak
& Tamar Ziegler have given in [4] another way to handle the
Moebius function that follows a combinatorial path closer to
that of I. M. Vinogradov.

In short, we have reached a point where the Eulerian ap-
proach has evolved sufficiently to resemble the combinatorial
one! In both cases, the idea is to represent the characteristic
function of the primes as a linear combination of linear forms
and of bilinear forms. In fact, and this is most apparent in the
identity used by Hedi Daboussi in [9] or in the ones used by
John Friedlander and Henryk Iwaniec in [18, section 3], one
can start from the convolution identity A = y * Log and rear-
range terms therein, having the size of the variables in mind.

A bilinear decomposition for the primes is one of the main
ingredients of Christian Mauduit & Joél Rivat [44] in their
proof of the 40 year old conjecture of Gelfand: there exists up
to an error term as many prime numbers whose sum of digits
in base 2 is odd or even. It is at the heart of the proof of Ter-
ence Tao [55] that every odd integer # | is a sum of at most
five primes, and also at the heart of Harald Helfgott’s proof
that every odd integer # 1 [32], [33] is a sum of at most three
primes.'® The second paper has a final result better than the
first one, of course, but T. Tao’s paper develops ideas around
small intervals containing sums of two primes that are of inde-
pendent interest. H. A. Helfgott closed, after about 75 years,
the proof of I. M. Vinogradov: we knew that the statement was
true for large enough integers (and large enough meant really
large) and bringing this bound down was no small achieve-
ment.

9)

8 Sad news: There are limitations!
The main term problem

Let us resume our general analysis. The problem that will
be addressed in this section is that, in the initial Vinogradov
method, the sieve part does not yield the main term. To un-
derstand properly why, here is a simplified presentation of the
Vinogradov method I developed some years back. In the Brun
sieve, the sequence (A is the sequence of integers that do not
have any prime factors less than some given bound z. This pa-
rameter is typically between a high power of log X and X to a
power that tends very slowly to 0. To reach the primes from

the interval (X, 2X], we still need to remove all the integers
that have a prime factor between z and V2X. Say that p is
such a prime. The bad candidates have thus the form pm ...
and this is bilinear! Well, almost but not quite: m has to be
required to have no prime factors below p if we want the rep-
resentation pm to be unique and this ties p and m together . ..
Before continuing, it should be noted that the process used is
known as the Buchstab iteration [7]. I learned recently while
reading the notes of [48] that, in the late *70s, Hans-Egon
Richert had performed a similar analysis from the Selberg
sieve.

The problem encountered is well identified: to get a proper
bilinear form, one needs to separate both variables. This prob-
lem is serious but often not deadly. One can introduce here
the number w_ \sx(m) of prime factors of m that lie within

(z, V2X], and the representation pm has multiplicity w"(pm),
say, so it is enough to divide by this number. Now, though, p
and m are tied in w*(pm)! Well, yes, but less so. For most
m’s, i.e. for the ones that are not divisible by p, we have
w'(pm) = 1 + w'(m); the other ones correspond to integers
of the shape p’k and, since p is large enough, they are of a
(usually) negligible quantity.

Since the sequence A that comes from the Brun sieve is
larger than the primes, it leads to a larger main term! Hence
what we treat like an error term contains, in fact, part of the
main term. In the linear/bilinear approach, the linear part can
in usual problems be shown to have the proper size, at least
if believed conjectures do hold. But the way the bilinear form
is treated induces a loss of precision that can be deadly! On
our toy problem, for instance, (9) is a lot less than what is
expected, namely at least:

N X
Z #(n)e_mn/q < (]ng)l()()?l (10)

X<n<2X

for ¢ < X*/7. But, if we were to prove such a statement, we
would prove that there are no Siegel zeroes or, equivalently,
that the class number of the imaginary quadratic field Q( v/=¢)
is at least > ¢'%/(log ¢)*™. In fact “simply” improving the
power of ¢ from 1/2 to (1/2) + ¢ for any 6 > 0 would be a
major achievement. We will see below more as to where this
limitation comes from. The best result to date [51, Corollary
5]'7 reads

Z u(n) e « = (11)

X 1
| | 1+ —
X<n<2X ‘/(7 p|q( + /—p)

for ¢ < X' The last product is just an annoying blemish.
In the case of a prime modulus ¢, proving that the implied
constant is < | would prove that there are no Siegel zeroes!

J. Friedlander & H. Iwaniec managed in their awesome
work [18], [19] to overcome in some delicate cases this enor-
mous difficulty.

There is another major limitation. The toy lemma has been
presented with an additive character ¢*™"/¢ but what happens
with a multiplicative character? The bilinear form becomes
trivial and nothing can be gained anymore. A path could be to
express these multiplicative characters, modulo ¢ say, in terms
of additive ones modulo g. Such a process loses /g due to the
size of the Gauss sum, reducing the saving acquired to nil!
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9 Other identities and divisors:
The philosophy extends

It has been mentioned several times that this method offers
flexibility but the reader has only seen two identities so far.
In his state thesis in 1980, Etienne Fouvry used Vaughan's
identity recursively.'® At the time of writing the correspond-
ing paper [15], Roger Heath-Brown had published in [30]
and [29] a systematised version that E. Fouvry preferred to
use. This systematised version consists of selecting the kernel
(1-¢ Mp)* for an integer parameter k to be chosen (E. Fouvry
took k = 12, for instance, and later reduced to k = 7).

In 1961, Y. Linnik produced in [43] another kind of iden-
tity by considering log { = log(1l — (1 — ¢)) together with the
Taylor expansion of log(1 — z) around z = 1. We present the
modification due to Heath-Brown in [30, Lemma 3] in which
the zeta function is multiplied by the finite Euler product Pp
introduced above in F. Carlson’s proof. The function log({Pp)
is also the Dirichlet series Y, l’:;",: L, where the star means
that n has only prime factors > D; it is expedient here to intro-
duce the product I1;, of all the primes not more than D. The
condition on n is then simply that n and D are coprime. On the
other side the function (1-{Pp)* has for any positive integer k

the Dirichlet series representation (—1 )k Z:zl df (n)/n*, where
the summation is again restricted to integers n prime to I[1p
and where dg(n) is the number of ways of writing the integer
n as a product of k integers, all strictly larger than 1. We get,
when n is prime to Ip,

A(n)

logn

-1 k+1
-y ¢ k) d'(n). (12)
=

k

On restricting n to the range (X, 2X] and assuming that DX*! >
2X, the summation above can be truncated at k < K. More-
over, if we abort the summation at an odd (or even) number of
steps, we get an upper (or lower) bound, as in the inclusion-
exclusion principle!

But a closer look at Linnik’s identity is called for: it trans-
poses problems for primes into problems for divisor functions.
This is what transpires from E. Fouvry’s work [15]: if one
knows well enough the divisor functions, up to products of six
divisors, then this implies an improved Bombieri-Vinogradov
theorem of the primes: the inequality ¢ < +/x/(logx)***
could be replaced by ¢ < x3*% for some positive d. Such
a theorem would be stronger than the Generalized Riemann
Hypothesis! The reader can see rapidly how modular forms
come into play here: the distribution of the divisor function is
linked with the distribution of Kloosterman sums, which are
in turn coefficients of modular forms.

This feature of Y. Linnik’s identity can be found again in
R. Heath-Brown's identity if one forces k to be so large that
D* > X. In this manner, the bilinear part does not come into
play for integers below X! In functional form, this reads:

k )
D Amfm =3 ( )(—1)’“x
n<X 1<r<k r
Em) <o-p(ny)logna, f(ny -+ -nap).
ny-n, <D,
LS S [
ny--m,<X

This is all well and good but we already have difficulties treat-
ing products of three divisors (see the groundbreaking [36])

not to mention products of four of them, so it may be more
efficient to simply consider these divisor functions as convo-
lution products and resort to I. M. Vinogradov’s bilinear form
approach. In the above, one may tie some variables together,
say d) and d, in a single m = d,d> affected by the coefficient
un defined above!

The divisor angle can, however, be made to bear with
more efficiency if one aims at a result weaker than a Bombieri-
Vinogradov theorem. E. Fouvry put this philosophy into prac-
tice in [16]: the quantity considered is, for some fixed a and
some positive §:

D c@AX:q.a),

1
gsxI™

with the weights ¢(g) fairly general and, yet again, convolu-
tion products of special kinds (A is defined in (6)). This is
at the heart of the recent breakthrough of Ytang Zhang [60]:
there exist infinitely many pairs of primes p and p’ such that
|p = p’| <7-107. The argument follows the pathway opened
in 2006 by Daniel Goldston, Janés Pintz and Cem Yildirim
[23], [22] but the main novelty comes from the treatment of
the error term or, more precisely, in curbing the proof so that
it produces an error term of a special form, as already noted
by A. Ingham in his assessment of I. M. Vinogradov’s work.
Studying this error term is also no small task! Let us note that
this entails controlling bilinear terms of the form we have al-
ready seen but also some convolution of three divisors; or a
three-linear form; or, as Y. Zhang puts it, a type I1I sum.

10  The combinatorial approach, revival time

While the work on identities has been going strong, a different
line continued from I. M. Vinogradov’s approach. We have
seen that the correcting term from the sieve part contained part
of the main term and that a coarse treatment via Cauchy’s in-
equality was not enough. Some authors, however, developed
a gentler treatment in some cases; such a line started in [31]
where the authors obtained a strong improvement on the Ho-
heisel theorem (any 6> > 11/20 is accessible; compare with
Hoheisel’s initial value!). Combinatorial ideas are put into ef-
fect and show their teeth! This has been amplified, developed
and refined by Glyn Harman in several papers [27], [28], [1]
in what this author calls his adaptative sieve. This is surely a
very accomplished work and it led to the best results in many
problems (like 6, = 0.525).

In this section I should mention the development in [12,
Section 6] and, in particular, Theorem S thereof. This subtle
theorem ensures that the sequence of primes will be properly
distributed in some sequences, provided one knows how to
bound some linear sums as well as some bilinear ones. This
step is extremely difficult in this application, as the accessi-
ble information is not enough for a usual approach! A spe-
cial combinatorial treatment is required which is contained in
the Theorem S mentioned, in particular for handling products
of three divisors of about the same size.!” This falls within
the general philosophy we have developed so far. The nov-
elty here is that the bilinear form arising from I. M. Vino-
gradov’s approach is treated with more care and the main term
extracted from it.
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11 Treating the bilinear forms

This paper has covered at length that a bilinear structure was
involved in all these representations, whether directly via Eu-
lerian identities or after more work via combinatorial means
(and now both methods mix happily!) but the way to treat this
bilinear part has up to now remained extremely coarse, essen-
tially via the toy lemma above. Even at this level of coarse-
ness, the method yields impressive results but a better under-
standing is called for. And it will show again how the sieve
ideas and the Eulerian approach mingle together. In most of
the problems on primes, the treatment of the bilinear sum is
the most difficult part and, in return, what we are able to prove
at this level conditions the kind of identity one has to prove or
choose.

One way to start telling this part of the story is through the
Bombieri-Vinogradov theorem. In the initial proof, the one
that deals with density estimates of zeroes, a major role is
played by an inequality that finds its origin in the work of Y.
Linnik: the large sieve inequality. It was later discovered by
Hugh Montgomery [45] that this inequality could be used in
a sieve context and ... led to results as strong as the Selberg
sieve! In some sense, this inequality is dual to the Selberg
sieve [37] and this notion of duality has to be understood in
the usual sense, i.e. when a bilinear coupling is at stake. Let
me state a special case of this inequality in the strong form
given by H. L. Montgomery & R. C. Vaughan [46], and at the
same time by A. Selberg with a different proof:

SO b < Y blac+ 00 13)

g<Q l=asq, n=X n<X
ged(ag)=1

valid for any sequence of complex numbers (b,,). Such an in-
equality is of course reminiscent of our toy lemma above. It
should be looked upon as a Bessel type inequality for a quasi-
orthogonal system. From a practical viewpoint, if we were
given any single sum above, say ¥,y b,e?™"%/%_ Cauchy’s
inequality would give us the bound /Y, x |b,|*X and it is the
best possible at this level of generality. The above inequality
tells us that, for the same price, we can bound many more
sums! This is provided Q2 is less than X, which will be our
case of use. So the idea is to put as much as we can on the left
side and use this bound. The reader will not be surprised to
find an inequality of this type in H. A. Helfgott’s work.

When compared with our toy lemma result, the reader
may worry about the missing 1/4/7 ...and rightly so! But
we have a summation above of length about ¢ over @ modulo
q: in the toy lemma, simply split the variable ¢ according to
its residue class modulo g. There remains a slight difficulty,
as { is not guaranteed to be coprime with ¢ but this hurdle is
easily overcome.

This principle can be pushed very far and many more
sums incorporated on the left side! To prove (11), and elab-
orating on unpublished material by A. Selberg in 1972-73
and of Yoishi Motohashi [47], I developed in [51] a quasi-
orthogonal family of identities for the primes, where the poly-
nomial Mp, is replaced by a family Mg’. One of the first lem-
mas of the proof is the following (version of an) inequality

due to Y. Motohashi [47, Lemma 3], with R = \N/T:

5 3 [ < xS

l<a<q, * n<X
gediag)=1

1<R/q
ged(rg)=1

provided that b, vanishes as soon as n has a factor in common
with ¢g. Here ¢,(n) is the Ramanujan sum. The reader should
not be scared of such an inequality, for it is a gentle monster!
If wetake t = 0, @ = | and r = 1, the inner sum is sim-
ply X<y bne*™/4 as in the toy lemma case. But for the same
price, we have added an integration over f in a large range
(this part has been classical since P. X. Gallagher [21, Theo-
rem 3]), as well as a summation over » which comes from A.
Selberg.

The inequality above says that the three families of “char-
acters” (c,(n)),, (n"), and (e*™4/9), are quasi-orthogonal in
themselves but also when mixed one with the other.

How can one put that into practice? That’s more easily
said than done but here are some hints: when p is a prime
number prime to r, the Ramanujan function of order r takes
value —1 at p, i.e. ¢,(p) = —1. As a consequence, when r < X,
and for any function f, we have

Z f(p) = -

X<p<2X

Z f(p)e(p).

X<p<2X

We can use this fact to introduce an average over r and, for
instance, for any non-negative function g, we find that

EDXED) foem|
l Z f(p)l- _ r<X X<p<2X

X<p<2X Zg(r)

On using a bilinear form representation, this ¢,(p) will be-
come a ¢,(fm) and if we can prove a proper Bessel inequal-
ity, only one term on the right side will contribute: we will
save the denominator! A similar process is used in [14]. See
also [13] and [39] for more comments on amplification tech-
niques.

The summation over r can be regained by the process
above but a similar process does not apply to the other “char-
acters” and this is where the limitation comes from: we do
not know that the sequence (b,) does not conspire with some
e™0/4 [pi for instance to give rise to a large contribution.
We would be surprised if this were to happen, of course, but,
at this level, we do not know how to eliminate this possibil-
ity. We say in short that the diagonal contribution matters
most. There has been a good amount of work to try to dis-
pense with it. The general theme is to go back to the proof of
the large sieve type inequalities we use: in these proofs, the
Fourier transform has an important role, very often in con-
junction with the Poisson summation formula or spectral the-
ory (as for instance in [12]). So the idea is to introduce such a
Fourier transform where a smooth variable occurs and use the
Poisson summation formula. This is for instance what is used
in [17]. The Linnik dispersion method [43] is another similar
L?-mechanism that eliminates the diagonal contribution (see
for instance [ 15, Section 3]).
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12  This is not the end!

I hope the reader now has a proper idea of the flexible tool
praised so much in the introduction! There remain large parts
of unexplored territory, as well as some peaks in the dis-
tance ... A.-M. Legendre asked long ago whether every in-
terval (N2, (N + 1)) contains a prime when N is a positive
integer. This is roughly equivalent to showing that an interval
of length v/x around x contains a prime: the methods we have
give x"3% but, even after all the plausible refinements, reach-
ing x*3 will require a novel input. The sum ZpexH(p — 1) is
still a mysterious entity and there are many other problems on
primes that are unsolved, at present time just out of our grasp
but who knows what will happen tomorrow!

Notes

1. Such observations sometimes had the status of theorems and
sometimes the status of truth, or maybe “experimental truth”,
since the very notion of proof was shaky at the time.

2. Historians later discovered that René Descartes had stated this
property some 50 years before. One of the modern princes of
arithmetic Pal Erdos commented: “It is better that the conjec-
ture be named after Goldbach because, mathematically speaking,
Descartes was infinitely rich and Goldbach was very poor.”

3. He was wrong: 6077 is an exception but it seems to be the last
one!

4. This will become the “prime number theorem™.

5. This not-so-easy proof is very popular, the downside being that
few know that much more is accessible. For instance, there is a
prime p satisfying 2n < p < 3n provided n > 2.

6. 1 am skipping here the fascinating abc-conjecture, which is
known to hold in the case of Q[X] and has created some turmoil
recently in the case of Z ...

7. No. I won’t give you my list!

8. This “main” term is [ . oz (1- L)X, which is equivalent, by one
of Mertens’ theorems, to 2¢7X/log X. Wehave 2¢™7 = 1.122---
while the prime number theorem will, almost a century later,
show that it should be 1.

9. At the time, I. M. Vinogradov was also nearly drowned under
the administrative work he had to cope with as director of the
Steklov Institute!

10. By the way, Harald Bohr was the rising Danish star while V.
Brun, two years older, was the Norwegian rising star. Harald
Bohr was also an accomplished football player and was, together
with his teammates, responsible for the greatest defeat of the
French national team (17 to 1!).

11. The Russian mathematician Askold Ivanovich Vinogradov is not
to be confused with the other Russian mathematician (the mathe-
matical great-grandchild of Pafnuty Lvovich Chebyshev) whose
work is at the heart of this paper: Ivan Matveyevich Vinogradov

12. G. Hoheisel was the mathematical grandchild of David Hilbert.

13. Any 6, > 1 — (1/33 000) would do. This is really small!

14. We have v, = Z‘}”,,_ p(d) when n = 2 and 0 otherwise. And thus

<D

[val < d(n).

15. See also [35, (13.7)]; P. Sarnak’s conjecture somehow quantifies
this statement. See also [24].

16. Both papers have been submitted; there are good reasons to be-
lieve in their solidity but rules are rules and the checking should
be completed before the results are fully accepted!

17. As I said, rules are rules and the result I mention now has only
been submitted!

18. He iterated it 12 times! The formulas obtained were so long that

he printed them in landscape format ...
19. For the reader who wants to follow this proof in a gentler manner,
and who can read French, I recommend the book [38].
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