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1. Introduction and results

Let D(s) =
∑
ann

−s be a function represented by a Dirichlet series, holomorphic
in a half-plane < s > σ0. A large class of Tauberian theorems deal with the question
of how one can recover the behaviour of

∑
n≤N an from the analytic behaviour of

D. Under suitable assumptions one finds that the limit s↘ σ0 gives a main term,
while the behaviour of D on the line < s = σ0 determines the error term. If one
is looking for more precise information, then the behaviour of D on the line can
be turned into oscillation type results. The first theorem of this type is Landau’s
theorem stating that if an is always positive, then D has a singularity at its abscissa
of convergence. This result translates into oscillation type results for arithmetical
functions, e.g. one immediately obtains Ψ(x) = x + Ω±(x1/2−ε) by exploiting the

fact that ζ′

ζ (s) is regular at 1/2. Landau’s original theorem can be used to prove

the existence of infinitely many sign changes of a function. However it is impossible
to deduce from it further information on the number of sign changes, the least sign
change, localisation of sign changes and so forth. Doing so would require more
information on D and the use of less elementary methods. For a more detailed
analysis of this problem we refer the reader to the introduction of [6], which could
be seen as the first example of the use of non-elementary methods in this area.

To prove an effective version of Landau’s theorem one requires more explicit
data for D. For the rest of this article we fix the following notation. Put F (s) =∫∞

1
B(x) dx/xs+1, where B is a real function satisfying

(1)

2U∫
U

B(x)2 dx� U2σ0+1η(U),

for some positive, increasing, continuous function η with η(U)� U ε. Clearly F is
holomorphic for < s > σ0. Assume that there exists a real number t0 6= 0 such that

(2) c = lim sup
σ↘σ0

(σ − σ0)|F (σ + it0)| > 0,

and

(3) a = lim sup
σ↘σ0

(σ − σ0)F (σ) <∞, b = lim inf
σ↘σ0

(σ − σ0)F (σ) > −∞.

We denote the Lebesgue measure of a set of real numbers by µ. Then Kaczorowski
& Szyd lo [5] proved the following
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Theorem 1. Let B be a real function satisfying (1). Define F as above, a and b
by (3), and assume that (2) holds true. Then for every ε > 0 we have

µ ({x ∈ [1, T ] : B(x) > (b+ c− ε)xσ0}) = Ω(
T

ηT
)

and

µ ({x ∈ [1, T ] : B(x) < (a− c+ ε)xσ0}) = Ω(
T

ηT
).

This theorem has the disadvantage that the points at which B is large may come
in large blocks, so we get no explicit information on the location or even the number
of sign changes. Here we prove the following.

Theorem 2. Let B be a real function satisfying (1). Define F as above, a and b
by (3), and assume that (2) holds true. Then we have, for every fixed ε > 0 and as
δ goes to 0,

(4)

∫ ∞
1

µ
(
{x ∈ [u, 2u] : B(x) > (c+ b− ε)xσ0}η(4u)du

u2+δ
= Ω(δ−1)

and

(5)

∫ ∞
1

µ
(
{x ∈ [u, 2u] : B(x) < (a− c+ ε)xσ0}η(4u)du

u2+δ
= Ω(δ−1).

As an application we consider the error term for the summatory function of the
number of representations of an integer as the sum of k primes. Put Gk(n) =∑
n1+···+nk=n Λ(n1) · · · · · Λ(nk), Hk(x) = −k

∑
ρ

xk−1+ρ

ρ(1+ρ)...(k−1+ρ) , where the sum-

mation runs over all non-trivial zeros of the Riemann ζ function and define the
error term ∆k(x) by means of the formula∑

n≤x

Gk(n) =
xk

k!
+Hk(x) + ∆k(x).

The function ∆k was first considered by Fujii[4] who showed that under RH we have
∆2(x) = O((x log x)4/3), which was later improved[3] to O(x log5 x) and finally by
Languasco & Zaccagnini [7] to O(x log3 x). On the other hand we have ∆2(x) =
Ω(x log log x) (confer [2]). The proof of the Ω-result used the fact that G2 gets
surprisingly large, in particular one would expect ∆2(x) to be much more regular
for most x. In fact we have the following.

Proposition 1. Assume RH. Then we have

lim
σ↘r

(σ − r)
∫ ∞

1

∆r(x)

xσ
dx = cr

for some constant cr. When r = 2, we have

c2 =
∑
ρ

π/ sinπρ

where the sum runs over all non-trivial zeros of ζ.

On the other hand we can apply Theorem 2 to show that the relation ∆r(x) �
crx

r−1 holds only in a very weak sense.
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Proposition 2. There exists a constant c′r > 0, such that, as δ goes to 0, we have∫ ∞
1

µ
(
{x ∈ [u, 2u] : ∆r(x) > (cr + c′r)x

σ0}
) (log u)6du

u2+δ
= Ω(δ−1)

and ∫ ∞
1

µ
(
{x ∈ [u, 2u] : ∆r(x) < (cr + c′r)x

σ0}
) (log u)6du

u2+δ
= Ω(δ−1).

Corollary 1. We have ∆2(x) = Ω±(x) and ∆r(x)−crxr−1 = Ω±(xr−1) for r ≥ 3.

We mention that the same result was obtained in [2] with Ω in place of Ω±.

2. Proof of Theorem 2

We first note that (5) corresponds to (4) applied to −B instead of B. We set
a′ = a− ε and consider the auxiliary functions

g(x) = B(x)− a′xθ, G(s) =

∫ ∞
1

g(x)dx

xs+1
= F (s)− a′

s− θ
.

We introduce the positive and negative parts of g:

g+(x) = max(g(x), 0), g−(x) = max(−g(x), 0), (x ≥ 1),

and the corresponding Mellin transforms

G+(s) =

∫ ∞
1

g+(x)dx

xs+1
, G−(s) =

∫ ∞
1

g−(x)dx

xs+1
.

The reader will readily check that the three transforms G, G+ and G− and abso-
lutely convergent when <s > θ. We have mechanically G(s) = G+(s)−G−(s). The
set we want to investigate is

A = {x ≥ 1 : g(x) > 0}.

We define the following function:

(6) m#(T ) = η(T )µ{T ≤ x ≤ 2T : g(x) > 0}/T.

Let us turn to the core of the proof. Let us assume that

(7)
∑
`≥0

m#(2`)

2δ`
= o(δ−1)

when δ > 0. Our aim is to obatin a contradiction. We will then convert the negation
of (7) into a “continuous” statement.

Let t be a real number and select σ = θ + δ for some δ > 0. We wantg to show
that (σ − θ)|G+(σ + it)| is small. In order to do so, we write

(σ − θ)|G+(σ + it)| ≤ δ G+(σ) = δ

∫
A

g(x)dx

xθ+δ+1

≤ δ
∑
k≥0

∫
A∩[2k,2k+1]

g(x)dx

xθ+δ+1

≤ δ
∑
k≥0

(
η(2k)

∫
A∩[2k,2k+1]

dx

x2δ+1

)1/2

.
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As a consequence, on simply using
∫
A∩[2k,2k+1]

dx
x2δ+1 ≤

∫
A∩[2k,2k+1]

dx
2(2δ+1)k , we have

reached

(8) (σ − θ)|G+(σ + it)| ≤ δ
∑
k≥0

√
m#(2k)

2kδ
≤ δ
(
δ−1

∑
k≥0

m#(2k)

2kδ

)1/2

= o(1).

We have thus established that

lim
σ→θ+

(σ − β)|G+(σ + it)| = 0.

Concerning G−(σ + it), we simply use

∀σ > θ, |G+(σ + it)| ≤ G−(σ).

We still have to use our hypothesis concerning the existence of a singularity There
exists a sequence of σ tending to θ by up, for which

c ≤ (σ − θ)|F (σ + it0)|+ o(1)

≤ (σ − θ)
∣∣∣G(σ + it0) +

a′

σ + it0 − θ

∣∣∣+ o(1) ≤ (σ − θ)|G(σ + it0)|+ o(1)

since t0 6= 0. We bound above |G(σ + it0)| by |G(σ)|, which is also −G(σ), up to
o(1/(σ − δ)). We then employ −G(σ) = −F (σ) + a′/(σ − θ). We finally reach

c ≤ a′ − lim inf
σ→θ+

(σ − θ)F (σ) + o(1)

which is in contradiction with our hypotheses.
We have established that

(9)
∑
`≥0

m#(2`)

2δ`
= Ω(δ−1)

and now we convert this to a ’continuous’ form.

(10)

∫ ∞
0

m#(et)e−δtdt = Ω(δ−1).

The proof of (10) follows from (9). We notice that∫ `

`−1

m#(2u)
η(2u+2)du

η(2u)
=

∫ `

`−1

∫
2u≤t≤2u+1,
g(t)>0

η(2u+2)dt

2u
du

= η(2`)

∫
2`−1≤t≤2`,
g(t)>0

∫
t/2≤2u≤t

du

2u
dt+ η(2`+1)

∫
2`≤t≤2`+1,
g(t)>0

∫
t/2≤2u≤t

du

2u
dt

≥ m#(2`) +m#(2`−1).

The conclusion is now easy.

3. Application to Goldbach numbers

Let us put Φk(s) =
∑
n≥1

Gk(n)
ns .

Lemma 1. Suppose RH. Then for any r ≥ 3 there exist rational functions f1,r(s), . . . , f4r(s),
such that

(11) Φr(s) = f1,r(s)ζ(s− r + 1) + f2,r(s)ζ(s− r + 2)

+ f3,r(s)
ζ ′

ζ
(s− r + 1) + f4,r(s)Φ2(s− r + 2) +R(s),
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where R(s) is holomorphic in the half-plane <s > r − 1 − 1/10, and all the poles
and zeros of the rational functions are real. Moreover, if we define A2

r(x) =∑
n≤xGr(n)(x− n), then there exist polynomials g1,r, . . . g4,r, such that

(12)
∑
n≥1

A2
r(n)n−s = g1,r(s)ζ(s− r − 1) + g2,r(s)ζ(s− r)

+ g3,r(s)
ζ ′

ζ
(s− r − 1) + g4,r(s)Φ2(s− r) + R̃(s),

where R̃ is holomorphic in the half-plane <s > r + 1− 1/10.

Proof. This is essentially[3, Theorem 4] together with the observation that the
polynomials in [3, Lemma 2] have only real roots. �

Lemma 2. We have

Φ2(s) = − 1

Γ(s)

∑
ρ,ρ′

Γ(s+ 1− ρ)Γ(ρ)

(s− ρ− ρ′)ρ′
+R(s),

where R is a function holomorphic in the entire complex plane.

We now prove the first half of Proporition 1 and Corollary 1.
Let γ0 = 14.134 . . . be the imaginary part of the first non-trivial zero of ζ. We

claim that taking t0 = 2γ0 Theorem 2 yields a non-trivial result. To do so we have
to check that the conditions (2) and (3) are satisfied. It follows from Stirling’s
formula that |Γ( 1

2 + it)| < e−π|t|/4. Hence if ρ, ρ′ are non-trivial zeros of ζ, and s is
a complex number with real part > 1 such that |s− ρ− ρ′| < |ρ′|/2 we have

Γ(s+ 1− ρ)Γ(ρ)

(s− ρ− ρ′)ρ′
≤ 1

< s− 1
e−π|ρ−1/2|/4,

whereas for |s− ρ− ρ′| ≥ |ρ′|/2 we have

Γ(s+ 1− ρ)Γ(ρ)

(s− ρ− ρ′)ρ′
≤ 2e−π|ρ−1/24

|ρ′|2
.

Clearly the sum over all ρ, ρ′ of the latter form converges absolutely. For each
fixed ρ there are O(|ρ| log |ρ|) pairs of the former type, hence after multiplying with
<s− 1 the sum over these pairs converges absolutely and uniformly as well, and we
obtain

lim
σ↘1

(σ − 1)
∑
ρ,ρ′

Γ(σ + it+ 1− ρ)Γ(ρ)

(σ + it− ρ− ρ′)ρ′
=
∑
ρ,ρ′

lim
σ↘1

(σ − 1)Γ(σ + it+ 1− ρ)Γ(ρ)

(σ + it− ρ− ρ′)ρ′

If ρ+ρ′ 6= 1+it, then the denominator is bounded away from 0, while the numerator
tends to 0, and we see that the limit is 0. If ρ+ρ′ = 1+it, then σ+it−ρ−ρ′ = σ−1,
and using the functional equation of the Γ-function we obtain

lim
σ↘1

(σ − 1)
∑
ρ,ρ′

Γ(σ + it+ 1− ρ)Γ(ρ)

(σ + it− ρ− ρ′)ρ′
=

∑
ρ+ρ′=1+it

Γ(ρ′)Γ(ρ)

Putting t = 0 we obtain

(σ − 1)Φ2(σ + it) ∼ 1

Γ(1)

∑
ρ

|Γ(ρ)|2 = 3.259 . . . · 10−19,

which implies the ”r = 2”-part of Proposition 1
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For t = 2γ the sum contains no pair ρ, ρ′ with |=ρ′| < 1000 different from
ρ = ρ′ = 1

2 + iγ0. To estimate the sum over zeros we use the estimates N(T + 1)−
N(T ) ≤ log T , where N(T ) denotes the number of zeros of ζ with imaginary part in
(0, T ], and |Γ(1/2 + it)| ≤ e−π4 t. This bound follows from the work of Backlund[1],
details have been given in [8, Lemma 3].

Hence∑
ρ+ρ′=1+2iγ0

ρ 6=ρ′

Γ(ρ)Γ(1 + 2γ1 − ρ) ≤
∑
=ρ>100

Γ(ρ)Γ(1 + 2γ1 − ρ) ≤
∑
γ>100

e−
π
2 (γ−γ1)

≤
∑
n≥100

e−
π(n−15)

2 log n ≤ e34
∑

103≤n≤104

e−
πn
2 +e24

∑
n>104

e−n ≤ e34−50π

1− e−π/2
+
e24−104

1− e−1
≤ e−122.

Hence
(13)

lim
σ↘1

(σ−1)Φ2(σ+2iγ0) =
Γ2( 1

2 + iγ0) + θe−122

Γ(1 + 2iγ0)
= 0.023049 . . .−0.47088 . . . i+θe−122.

where θ is a complex number satisfying |θ| ≤ 1. Hence (2) holds true with some
c ≥ 0.4713

We conclude that ∆2(x)− 3.259 · 10−19 is infinitely often larger than 0.4713 and
smaller then −0.4713. Since 0.4713 > 3.259 · 10−19, the first part of Corollary 1
follows.

For the general case of Proposition 1 we use (11) to see that there exists some
integer A, such that

(σ − r)
∫ ∞

1

∆r(x)

xσ logA x
dx = cr,

where A+1 equals the total order of the pole of the right hand side of (11). Strictly
speaking, Φ2 does not have a pole at 1, however, we have just seen that as σ ↘ 1,

Φ2(σ) behaves like 3.259...·10−19

(σ−1) , which is sufficiently pole-like. However, it then

follows from the fact that the functions gi,r are polynomials, that A = 0, thus the
general case of Proposition 1 follows.

To obtain Corollary 1 for r ≥ 3, we first note that Proposition 1 implies that
Condition (3) is satisfied, while (13) together with the fact that the zeros of the
functions fi,r are all real implies that Condition (2) is satisfied for σ0 = r − 1 and
t0 = 2γ. Hence we can apply Theorem 2, and our claim follows.
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