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1. Introduction.

In a letter to Euler in 1742, Goldbach raised the problem of whether every even
integer (other than 2) could be written as a sum of at most two primes. Euler
noticed that this problem is equivalent to the fact that every integer larger than 5
can be expressed as a sum of three primes. Different approaches have since been
developed to attack this still unsolved problem. Let us briefly mention here the
sieve methods initiated by Brun in 1915, which were used by Chen Jing-run (1965)
in proving that every sufficiently large even integer can be represented as a sum
of a prime and an integer having at most two prime factors. The circle method
of Hardy-Littlewood and Ramanujan eventually led Vinogradov to show in 1937
that every sufficiently large odd integer is a sum of three primes ; Chen Jing-run
and Wang Tian-ze have shown in 1989 that this is indeed the case for odd integers
larger than exp(100 000).

This work follows the approach initiated by Snirel’man in 1930. By using an
upper bound sieve to show that the set of sums of two primes has a positive density
together with general results concerning addition of sequences (which he invented
for that purpose ), he proved that there exists an integer C such that every integer
larger than 1 is a sum of at most C' prime numbers. Klimov (1969) was the first
to actually exhibit an explicit value for such an admissible C, namely 6.10°. This
value has subsequently been reduced by different authors, the latest being Riesel
and Vaughan who showed in 1982 (cf [11]) that 19 is an admissible value. Here we
prove the following result :

Theorem 1.
Every even integer is a sum of at most 6 primes.

This immediately leads to the following corollary.

Corollary.
Every integer larger than 1 is a sum of at most 7 primes.

The crucial step involved in Theorem 1 is an effective lower bound for the density
of the sums of two primes.

Theorem 2. For X > exp(67), we have

X
Card{N €]X,2X],3 p1,p2 primes : N =py + pa} > =
Let us recall that Montgomery & Vaughan have been able to show that the above
cardinal is asymptotically equal to X/2 + O(X*'~?) for some positive J.
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The deduction of Theorem 1 from this result is performed in the last section.
Thanks to an effective version of Ostman’s additive Theorem due to Deshouillers
one easily deduces that Theorem 1 holds true for all integers larger than 103°. The
remaining values are dealt with by an ascent process that combines known effective
results on primes with a new one, which we proved in [9], concerning small effective
intervals containing primes.

We outline the proof of Theorem 2 in the next section. Let us briefly mention
here that it combines an enveloping sieve with effective results on primes in arith-
metic progressions that we deduced from Rumely’s computations [10] on zeroes of
Dirichlet L-functions associated with characters to small moduli.

We present below the organisation of this article :

1. Introduction.
2. The principle of the proof.

1. An enveloping sieve. 2. An upper bound for the number of representations
of an even integer as the sum of two primes. 3. Structure of the proof of Theorem
2.

3. Effective evaluations of averages of arithmetical functions.
4. Study of wy.

1. An explicit expression. 2. An asymptotic expression. 3. Three elementary
estimates. 4. Upper bounds. 5. A computational result. 6. About the computation
of wg.

5. Proof of Proposition 1.
6. The main term. Proof of Proposition 2.

1. Preliminary lemmas. 2. An estimate for Ri;. 3. An estimate for Riy. 4.
An estimate for Ris. 5. Conclusion.

7. An upper bound for the dispersion. Proof of Proposition 3.

1. Preliminary. 2. Dispersion and multiplicative characters. 3. End of the
proof of Proposition 3.

8. A weighted large sieve inequality. Proof of Proposition 4.

1. Lemmas concerning the polynomial T. 2. Other lemmas. 3. Proof of
Theorem 8.1 and small tmprovements.

9. An additive Theorem in addition of sequences. Proof of Theorem 1.
Table 1
References

Notations :

¢ is the Euler’s totient function, u is the M6bius’ indicator, v(n) is the number
of prime factors of n, (n,m) denotes the ged of n and m and [n,m| their lem. The
arithmetical convolution of two functions f and ¢ is noted f x g and defined by
(f*9)(n) = >4, f(d)g(n/d). If f and g are two functions then f(z) = O*(g(z))
means |f(z)| < g(z). We use the abbreviation e(a) = exp(2ira), and if S(a) =
>, ane(na) is a trigonometric polynomial, we let [|S]|3 =", |a, />

To denote a sum over all invertible residue classes a modulo g, we shall use the

symbol
>

amod*q

We further need some special functions and constants :



¢2 is defined by ¢2(d) = [[,4(p — 2),

€ is defined by £(d) = [],4(2p —3)/(p — 1).

It will be numerically interesting to take a special care of the parity of our
variables. To this end, we define the function k(a,.) by k(a,d) = a if 2|d and 1
otherwise. We denote by «y the Euler constant (y = 0.577 215 664 901 532 ...),

Sy = 2Hp23(1 —1/(p—1)?) with 1.320 322 < &5 < 1.320 323, and
D ={d >1,d odd, squarefree and ¢(d) < 60}.
The notations concerning prime numbers are usual : the letter p always stands

for a prime, 0(X) = 3_ . x Logp, 0(X) = 3" /x_,<x Logp, and

0(X;d,€) =3 p<x Logp.
p=¢[d]
The knowledge which we will require about the distribution of primes in arith-

metic progressions with a small modulus is contained in the following lemma (cf
[10]) :

Lemma?® 0. If X > exp(50), then for any d in D and £ prime to d, we have

_ Yy
¢(d)

X
| <€~

max 0(y; d, £) o)

for €4 given in table 1 at the end of this paper.
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2. The principle of the proof.

Here we present the proof of Theorem 2 (the key to Theorem 1) and at the end
of the paper we show how to deduce Theorem 1 from it.

In the first part we detail Selberg upper sieve for the primes and consider the
usual weights (Z dly )\d)2 as a weighted sequence which is an upper bound for the
characteristic function of the primes. Such a process has already been used by
Hooley [5]and has been called “enveloping sieve” by Linnik ([6], chapter 1).

In the second part we use this enveloping sieve in order to build an upper bound
for the number of representations of an even integer as the sum of two primes. We
conjecture this upper bound to be twice larger than what we expect for the primes,
a fact that we will be able only to establish on average.

We then state Propositions 1,2,3 and 4 and deduce Theorem 2 from them. Their
proofs are given in the forthcoming sections.

3Since first writing this paper, the values of €5 have been improved. However we only use the
ones given here.



2.1 An enveloping sieve.

Here we fix a real number X > 1 and want to build an upper bound S for the
characteristic function of the primes up to X with which we can work in a very
explicit way.

First let us recall that Selberg’s sieve provides such a function. We refer the
reader to Halberstam & Richert [3] for a full account on this subject.

We choose a real parameter z between 1 and X'/2 and define for every integer
d and every real number ¢ larger than 1 :

_ pk) _
Gd(t)—(k%:_l 0 d G(t) = Gi(t).

For fixed d and ¢ going to infinity, we have (cf Lemma 3.4)

(2.1) Gq4(t) ~ @ Logt.

Now we define )4, for all positive integers d, by

4 _G4(z/d
(22) A= u(d)d’(d)sz()/)

so that it is, by (2.1), a weighted version of the usual M&bius p(d). We see that
A1 =1 and Ay =0 if d > z. Finally we define 3(y) for all integers y, by

(2:3) Bly) = (Y 2a)”.

dly

The weights [(y) satisfy

(1) B(y) > 0 for every integer y and
(2) B(p) =1 for every prime p larger than z

and therefore, the weighted sequence f is a good candidate for solving our problem,
overlooking the anyway unimportant fact that we lose the primes less than z.
What are the advantages and drawbacks of this upper bound ?
(1) First of all, it can be easily checked that

2

X z

2
yx Log® =

Hence if we choose z such that Log z ~ % Log X as X goes to infinity, our sequence
will be on average twice as large as the sequence of primes.

(2) But now we find that for every positive integer d the weighted sequence 3 is
well-distributed in the progressions {a + kd, k € Z} for all a coprime to d. To see
this, define

Ads A\d

2.4 Wy = 1m=

24 - T
d|[d1,d2]




We can check that for any a coprime to d we have

wg = lim —Zﬁ e(ay/d),

T—oo T

which shows the equi-distribution since wg does not depend on a. We also have

2

(2.5) 3" By)elay/d) de+o(sz2 ).

y<X og” z

In fact, we will see in the next section that only the wy’s and no error term appear
in our problem. For these wy’s, we can prove in a very explicit way (see Lemma
4.3) that for all positive integers H :

1 p(d)

Wq ~ ——  uniformly for d < (Logz)¥
G old) (bos?)

which can be seen as proving a weak Brun-Titchmarsh inequality with the same
sieve for all moduli. This will enable us to avoid the Theorem of Siegel-Walfisz.

The idea of looking at the weights of the upper sieve as a weighted sequence,
which had seemed new to the author, was in fact already used by Hooley (see [5] ,
where he used Brun’s sieve instead of Selberg’s). In the Lemma 11 of Chapter 5 of
[5], Hooley proved a formula corresponding to (2.5) for his wg’s.

(2.6)

2.2 An upper bound for the number of representations of an even integer
as the sum of two primes.
Let N be an even integer.

We are looking for an upper bound of

p1+p2=N

This quantity is conjectured to be asymptotic, when N goes to infinity, to
G3(N)N/Log®> N where G3(N) is an arithmetical factor which takes care of lo-
cal obstructions. We have

p— . 1
(2.7) Sy H with &y =2]] (1- ——3)-
o P e (p—1)2
PF#2

In order to obtain an upper bound for p(IN) we replace the characteristic function
of the prime p; by the weighted sequence . For technical reasons we add some size
conditions which will be helpful later and do not change the arithmetical nature
of this quantity. Let us choose a real number X > 1 and assume that N lies in
] X,2X]. We consider

(2.8) ro(N) = Z Log ps.
p1+p2=N

VX<p1
p2<X
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ro(IN) is conjectured to be asymptotic to G2(NN)X/Log X. Then we consider

(2.9) Ry(N) = Z B(y) Log pe,

y+p2=N
p2<X

where [ is defined by (2.3) and depends on a parameter z which will be choosen
later. We have

and conjecture that Ry(IN) is asymptotic to G2(N)X/G(z) as N goes to infinity.
We will not be able to prove such a statement for every N but we show in the next
section that this is true in a suitable average sense. It is worthwhile to mention
that the individual upper bound is out of reach at present since even by using
Bombieri-Vinogradov’s Theorem the best we are able to get as an individual upper
bound is

X
while the conjecture R2(N) equivalent to G2(N)X/G(z) for the given choice of z
would permit us to replace the 4 by a 2 in the above bound.
Let us study R2(N) some more. We introduce

(2.11) T(a) = Z Logp e(pa)

and write (2.9) in a different way by expanding the square in §(y), reversing the
summations and using the identity :

Z Logp = — Z Z T(a/d)e(—Na/d).

p=N|q] d|q amod*d
p<X

We arrive at the expression

(2.12) Ry(N)= > wa » T(a/d)e(~Na/d)

which must be considered as one of the main steps in our proof. Now two remarks
have to be made :

(1) Our sieving process does not depend on N which is the most notable feature
of the “enveloping sieve”.

(2) According to (2.5), wq is also related to the value of a trigonometric poly-
nomial at a point a/d. That only wg appears is very convenient but also
shows that this method is not able to carry very precise information about
the distribution of primes.

Conjectural behaviour of Ro(N) :
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Let us see how the summands in (2.12) behave in the ideal case, that is to
say, when we replace wg by % and T'(a/d) by ¢E£0(X ). Then we get the
expression

0(X) ~ #2(d)
¢*(d)

(2.13) ca(N)

d<z2

where ¢4(N) is Ramanujan’s sum. This expression is equivalent to G2(N)X/G(z)
if z is large enough, but our series does not converge uniformly in N. Hence we
cannot take only, say, the first 60 terms and claim it is a good approximation to
R2(N). However, it is easily seen that this convergence is “almost everywhere”
uniform (for instance,

1 12 ( d —1/2
max — E | E 5 d —G2(N)| =0t /%) as t — o0).
X<N<2X d<t

We will retain from this discussion that on average over N the first terms of (2.12)
give a good approximation of Ry(N).

2.3 Structure of the proof of Theorem 2.

Let us make a comment on the content of Theorem 2. The number of even
integers in | X, 2X| is approximatively X /2, and according to Goldbach’s conjecture,
our cardinal should be X /2. By comparison, Riesel & Vaughan’s result corresponds
to the lower bound X/(2 x 9).

Now let us look at the principle of the proof. Following Shapiro & Warga [17],
we study

(2.14) R= Y &' (N)r(N).

Ne)X,2X]

By using effective numerical results on the distribution of the primes in arithmetic
progression we easily get the following lower bound (cf section 5) :

Proposition 1. For X > exp(67), we have

2

Log X

> & (N)ra(N) > 0.478
Ne)X,2X]

Note : We can prove that R ~ X2/(2Log X) as X — oo, and therefore our
result does not lose much.
Shapiro & Warga’s proof continues as follows :

(2.15) R<anlva<x2x{62 (Mr2(N)} D 1,
< NeX,2X]
ro(IN)#0

and it should be noted that the above inequality is conjectured to be an asymptotic
equality since ro(V) is expected to be asymptotic to S3(N )X/ Log X ; therefore all
the summands in R should be equal. Their proof continues by taking an individual
sieve upper bound for ro(N).



The previous section provides us with an upper bound for r2(IN), but we are
unable to compute it. However, we have seen that the first terms of (2.12) must
give, on average over N, the main contribution to Ry(/N). This is enough for our
purpose since in (2.15) we need only the maximum out of a set of small measure ,
up to a neglegible error term.

More precisely and following the previous section, we have

(2.16) R<R = Y ;' (N)Ry(N),
NelX,2X]
Tz(N)?éO

where R* is expected to be

X
Card{N €]X,2X],3 (p1,p2) € P* : N =p1 +pa}.

G(2)
Putting
(2.17) U= Y 6;'(Ne(Na),
N€|X,2X]
Tz(N)?fO

we get by using (2.12)

(2.18) =Y wa Y T(a/d)U(a/d).

d<z2 a mod*d

From this expression we see that we are dealing more with a ternary problem than
with a binary one, but we do not know much about U(«). For d not in D, we shall
control U(a/d) by using the large sieve inequality. A way of evaluating ||U||2 is
given at the end of section 3.

Let us recall the notation

(2.19) 0(X) = 0(X) — 0(VX),

which is asymptotic to X (even numerically, we can replace this function by X).

We split the summation over d into two parts, according to whether d is larger
or smaller than A = X3 and we evaluate the main term via a computation of
dispersion.

(2.20) R* =R} + RS+ R,

with

(2.21) Ri= Y 6 {Z 3 “Z Na/d)},

NelX,2X] d<A amod*d
7"2(N)¢0

(2.22) Ry=>_ > U(a/d){wd (T(a/d) — %é()@) }

d<\ amod*d



(2.23) Z wq Z T(a/d)U(a/d).

A<d<22 amod*d

We now study each of these three terms. From now on we have

X2
Huyp. X > x03 = —
(Hyp.) > exp(67) , A= and z* = 15000 Log X
We also define
1
(2.24) d=6(X)= YCard{N €]X,2X],3(p1,p2) € 732/N =p1+Dp2}.

Study of R} :
By using an asymptotic expansion (with respect to z) of the wy’s we get the

following proposition (cf section 6) :
Proposition 2. Under (Hyp.), we have

X2 0.232
* 5
Semtan

§%6/37 10.0008 6°/*° +0.0008}.

Study of R :

We apply Cauchy’s inequality to separate U(a/d) and wq(T(a/d) — 2%0( ))-
For the summation corresponding to the U’s we use the large sieve inequality, and
for the other one which is a dispersion, we express T'(a/d) in terms of multiplicative
characters ; this part of the proof is similar to the proof of Barban-Davenport-
Halberstam’s Theorem except that the weights wy enable us to avoid any appeal
to Siegel-Walfisz’s Theorem. We will get (cf section 7) :

Proposition 3. Under (Hyp.), we have

X2
IR5| < @{0.0309 59191,

Study of R3 : B
We apply Cauchy’s inequality to separate U(a/d) and T'(a/d) and use a weighted

version of the large sieve inequality for both summations. This weighted version
(our Theorem 8.1) requires some careful treatment of the wy’s (cf section 8) .

Proposition 4. Under (Hyp.), we have
X2
Ri| < ——~{0.0102 619},
| 3| — G(Z){ }
Remark : At this stage, we choose both z and .

Proof of Theorem 2.
We collect Propositions 1,2, 3, 4, (2.14), (2.16) and (2.20) to obtain

2

X 0 232
04785 = < G {5 536/37 +0.0419 69 4 0.0008}.

Now, we have 0.4683 Log X S G(z ) and 31.37 < G(z) (cf Lemma 3.4), thus
0 < §40.00740 §°%/37 4 0.0419 §%/'° — 0.2230.

This function of J is increasing as a sum of increasing functions and is negative for
0 =1/(2 x 2.48), hence the result. ¢ oo
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About the numerical orders of magnitude :

We will work with Log X > 67 and if possible with a smaller lower bound. For
z, (Hyp.) ensures that Logz > 30 but we will try as long as it is possible and not
too cumbersome to work with Logz > 18. In fact the bounds 67 and 30 could be
lowered a little and we would get an analog of Theorem 2 with a lower bound of the
shape ﬁ which would be enough for our purpose.

3. Effective evaluations of average of arithmetical functions.

This part is divided in two : first we state and prove a general useful lemma
which is a generalisation of a lemma of Riesel & Vaughan [11]and which provide
us with good asymptotic expressions for averages of arithmetical functions. This
lemma is followed by several applications we will require afterwards. Secondly, we
will see how to obtain an upper bound for

Y &;'(N) and > &7%(N)
X<N<2X X<N<L2X
NecA NecA

where A is a set of positive density, without losing the information that A has
positive density (i.e. without extending these summations to all integers). There
we will follow Ruzsa [16].

We will often use the following elementary lemma :

Lemma 3.1. Let f be a non-negative multiplicative real-valued function and let d
be a positive integer. For all x > 0, we have

S ) <[+ @) S w2mfm) < Y wn)fn).
n<zx pld n<z n<zd
(n,d)=1

Proof. We have

Yo fm)y =3 Y k(m)fn)=) w*(D)f(D) Y K(n)f(n),

n<z D|d n<lz D|d n<z/D
(n,d)=D (n,d)=1

and we conclude by using the non-negativity of f. ¢ ¢ ¢
Next, we prove the aforementionned useful lemma.

Lemma 3.2. Let (gn)n>1, (hn)n>1 and (kp)n>1 be three complex sequences. Let
H(s) =Y, hnn™*, and H(s) =Y, |hn|n™°. We assume that g = hxk, that H(s)
is convergent for R(s) > —1/3 and further that there exist four constants A, B, C
and D such that

Zk:n = ALog?t + BLogt + C + O*(Dt™'/3) for t>0;

n<t

Then we have for allt > 0 :

Zgn = uLog®t +vLogt +w + O*(Dt~Y/3H(-1/3))

n<t
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with w = AH(0), v=2AH'(0) + BH(0) and w = AH"(0) + BH'(0) + CH(0). We
have also o
> ngn =UtLogt + Vt+ W + 0*(2.5Dt*/*H(~1/3))

n<t

with

U=AH(0), V =—-2AH(0)+2AH’'(0)+ BH(0),
{ W =A(H"(0) — 2H'(0) + 2H(0)) + B(H'(0) — H(0)) + CH(0).

Proof. Write >y, 9¢ = >_,, hn D <4/m kin, and all the regularity of our expres-
sions comes from the fact that it is not necessary to impose n < ¢ in donkn. We
then complete the proof without any trouble.

In order to estimate ) ,_, £ge for t > 0, we write

t
D lgr=t) g —/ > gedu,
<t <t L g<u

and we conclude by using the asymptotic expansion of >, g¢. 00 ¢
In order to apply the preceeding lemma, we will require :

Lemma 3.3. For allt > 0, we have

>y % = Logt +y + 0*(0.9105t~*/3).

n<t

Denote by T(n) the number of divisors of n. For all t > 0, we have

1
Z ? =3 Log®t 4 2yLogt + % — v, + O* (1.64115_1/3),
n<t

with

. Logm Log®n
Y= nh_}rrgo <Z T ) .
(—0.072816 < y1 < —0.072815).

Proof. A proof of the second part of this lemma can be found in Riesel & Vaughan
([11],Lemma 1).
For the first part, we recall the classical

1 7
. Yo ] < > 1.
(3.1) |n<tn Logt —v| < 12 for t>1

For 0 < t < 1, we choose a > 0 such that Logt + v + a /3 > 0. This function
decreases from 0 to (a/3)% then increases. This gives us the minimal value a =
3exp(—y/3 —1) <0.9105. 000
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We will apply Lemma 3.2 with multiplicative sequences (g,) satisfying g, =
b/p+ O(1/p) with b =1 or 2. In such a situation we choose 3_ k,n~° = ((s + 1)°
and (h,) is multiplicative and determined by >~ h,n™° =3 g,n~°¢(s +1)7°

Except in (3.24), the sequence (g, ) will be 0 over non-squarefree integers, giving

D hempT ™ = (L gpp~®) (1= p~* )
m>0

thus enabling us to compute h,, and to show that the condition H(—1/3) < 4o is
met. The computations leading to (3.24) are similar.
Since in any case (h,) is multiplicative, we will have

(32) 7O = [J0+ X bye),

and

(3.3) I;(((()))) = Zp: E”g;hg:m (— Logp),
and also

H"(0) (H'0 S mhpm \? 5
3.4 n L .
@ T = (0 ) +Z{1+z - () frets
We now apply Lemma 3.2.

Lemma 3.4. For all X > 0 and all positive integers d, we have

Z u (d){LOgXHJFZ i ) ZLpgp}Jro*w 284X V3 f1(d))

n<X
(n,d)=1

thh 1/3 2/3
fi(d) =TI +p23) (1 + B2y
ol p(p—1)

Remark : The sum on the left is G4(X). The case d = 1 will be of special
interest. The associated Dirichlet series is

pin)  (s) 1
(3.5) zn: ¢(n)ns—1 - C(2s) pl;[2 (1 + (p — 1)(]?8 + 1))

and hence, we can see that the error term O(X~'/2) is admissible (in fact, our
method could give O(X /2 Log? X)), and that we can not expect anything better
than O(X ~3/4),

Rosser & Schoenfeld ([13],(2.11)) give us

(3.6) ot Z ng — 1.332 582 275 332 21...
p>2
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Proof. Let us define the multiplicative function hg by

1 -1
(3.7) (®) p(p—1) #) p(p—1)
if p is a prime which is not a prime factor of d, and by hg(p™) = % forallm > 1
if p is a prime factor of d.
Then we have

(3.8) 3 hd—(smg(s +)= Y “( (n)

s
n>1 n n>1 ¢’I’L)’I’L
(n,d)=1

ha(p™) =0 if m >3,

We now apply Lemma 3.2 and verify that

1/3 2/3
(3.9) I <1+ w) <3

5 p(p—1)

which concludes the proof.
000

Lemma 3.5.

(1) For z > 1, we have G(z) < Log z + 1.4709.
(2) For z > 6, we have 1.06 + Log z < G(z).
(3) For z > exp(18) and a > 1.1, we have G(z°) < aG(z).

Proof. The first part follows from our asymptotic expression for z > 146 050. We
could finish the proof by a hard computation but it would be very heavy. Instead,
remark that we can modify Lemma 3.2 and take the exponent 0.45 instead of 1/3.
Then we will have G(z) — Log z < 1.4708 as soon as

exp(—1 — 0.45y)
0.45(1.4708 — 1.332583)

(3.10) 1 Log (H(—0.45)

0.45 ) < Logz.

It is now a little difficult to compute H(—0.45), and we have to controle the error
of computation. We have
045 4 4,0.9

(3.11) [ a+%- 2

2<p<200 000 plp—1)

and with F(t) = (%45 +¢99)/[t(t — 1) Logt] and X = 200 000, we get

0.45 | 0.9

(312) Log [Ja+2 2
X plp—1)

since A(t) < 1.001 093¢ if ¢ > 0 (cf [18]). Hence our first point is proved for
z > 42 300. A direct verification shows that

(3.13) mgic(G(z) —Logz) = G(7) — Log 7 < 1.4709.

) < 20.26

o0

) < 1.001 093(XF(X) + / F(t)dt) < 0.266 47
X

The second assertion is to be found in Montgomery & Vaughan ([7],Lemma 7) with
a constant 1.07 instead of 1.06. We use only the slightly weakened form which
is stated in the Lemma. It is one of the numerous places throughout this paper
where results weaker than what is available are used. This looseness is introduced
so that should a slight numerical mistake occur the results would still hold. The
third assertion of our Lemma is an easy consequence of the two previous ones. ¢ ¢ ¢
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Lemma 3.6. Fory > 1, we have

p2(n)r(1/2, n) 3 Logp _ Log?2 « ~1/3
3 e ; Logy+7+z =5 6 + O*(4.280 y~1/3).

n<y

The following lower bound also holds :

Finally we have for A <y and y > exp(18)

Z s n);( 1/2:n) /1(4/3,A)%%(2L0gy+1.220).

n<y
(n,A)=1

Proof. For the first part, we consider the multiplicative function h defined as hy of
Lemma 3.4 on p™ if p # 2, and by

(3.14) h(2) =0, h(4)=—>, R2™) =0 if m>3,

and apply Lemma 3.2.

For the second part, let us denote the sum by G(y). Then G(y) = G(y) —
Gg(y/2)/2 and, with Lemma 3.1, G2(y/2) < G(y)/2, hence, for y > 6, we get
G(y) >3 5 Logy. For 6 >y > 1, a direct computation gives the result.

The thlrd estimate follows by using first Lemma 3.1 and then the first estimate.
SRS

We will also use the following weighted version of the previous lemma :

Lemma 3.7. Let A be a positive real number and y > A?. We have for £ <y and
y > exp(18)

n<y
(n,0)=1

Proof. Let us put

Z w3 (n)k(1/2,n)

(3.15) SN
3.15
pi(n)s(1/2,n) 1
ng% é(n) 1+ A/n’

We first prove that G (y) < G(y) — 3 Log A. We have

_ pi(n)s(1/2,n) 1 G(y)
Gly) - A;; é(n) n+A:Ay+A+A/‘(®@+@
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hence by Lemma 3.6

_ _ 3A(Logy —Logt.y /y dt 34 y 1+4
_ > —L —

G(y) G(y)— 4{y+A+[t+A]1+ 1 t(t‘l‘A) — 4 ©8 y+A 1

which proves our estimate. Now, by a reasoning similar to that in Lemma 3.1, we
get

n/i12n 1 n/i12n

n<ly
(n,0)=1

and an appeal to the previous result concludes the proof. ¢ ¢ ¢

Lemma 3.8. Fory > 0 and a in {1/2,2/3}, we have

> (n)g(n)';M = ko(a) Log® y + kio(a) Log y + k11 (a) + O* (1.641y~/3¢(a))

where £(n) = [],,(2p — 3)/(p — 1). The constants ko(a), k10(a), k11(a) and €(a)
satisfy the inequalies

0.0741 < ko(1/2) < 0.0742 | 0.0790 < ko(2/3) < 0.0791

0.650 < k10(1/2) < 0.651 |  0.687 < k10(2/3) < 0.689

0.725 < ky1(1/2) < 0.727 | 0.751 < k11(2/3) < 0.753

€(1/2) = 20 €(2/3) =21
Also
> 1 (n)é(n)k(a,n) = ks(a)y Logy + ka(a)y + ks(a) + O* (4.1025y*/3¢(a))
with

0.148 < k3(1/2) < 0.149 | 0.158 < k3(2/3) < 0.159

0.500 < kq(1/2) < 0.502 | 0.529 < k4(2/3) < 0.531

0.223 < k5(1/2) < 0.225 0.220 < k5(2/3) < 0.222

(kg(a,) = 2]459(&) ,k4(a) = —2]459(&) + klo(a) and k5(a) = 2]69((1) — kzm(a) + k’u(a)).
Proof. Let us define the multiplicative function h, for p prime not equal to 2 by

(3.17)
( J—
ha p) = ,
) p(p—1) , 1 1
—3p+5 - - 1
ha@?) = 5 ——, ha3(2) = o, hoy3(4) = —, and hg3(8) = —,
X ) p’(p—1)" and _33 12 1 12
ha(p®) = ﬂ’ hi/2(2) = T hi/2(4) =0, and hy/5(8) = R
pP(p—1)
| ha(p™) =0if m >4
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and hg(2™) =0 if m > 4.
Then

(3.18) Z K ns+1 ) _ 3 h‘;(s”) C2(s+1) = Ha(s)C2(s + 1).

and now we apply Lemma 3.2. 0o ¢
Lemma 3.9. Let f5 be the function defined by

f5(n) :H{?_—131+p7?;_1)},

pln

Then we have for y > exp(18)

3" 12 (n) f5(n)r(3/5,n) [ Log % +1.9709] < 0.5140y Logy + 2.0823y.

500<n<y
Proof. We first prove that for all y > 1, we have
Zu K(3/5,n) = keyLogy + kry + ks + O*(94.5y%/3),

n<y

with 0.207 < kg < 0.208, 0.623 < k7 < 0.625, and 0.123 < kg < 0.125
Let us define the multiplicative function A by, for p prime not equal to 2

(o y_  PP—4p+2 ) s
=B -4 —2p+1) =5
(3.19) 9 h') = pP’(p—1)(pP?>—p+1)’ and A h(4) = 16’
= T ) = 1
") plp—1)(P* —p+1)’ 10
LA(p™) =0 if m>4 | A(2™) =0 if m > 4.
Then (35 )
D PRGBSI _ 2y 41y 3

and Lemma 3.2 applies. From this we get

(3.20)
v k
x(3/5,n) Log < = / {ke Logt + k7 + 78 +O*(94.5 t71/3) }dt
1

> W (n

n<y
= k6yLogy — key + ke + kry — k7 + kg Logy
+ (9*( 94.5(y*/3 — 1)),
which is now equal to

2.4709kgy Log y + [0.5(k7 — ke) + 1.9709k;]y
+0.5ks Logy + 1.9709ks + 1.4709(ke — k7) + O* (258y%/3).
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The following points are easily checked :

(1)

E 12 (n) fs(n)x(3/5,1)(0.5 Log Yy 1.9709) > 289 Logy — 818.9 + 0.5ks Log y.
n
n<500

(2) 0.5(k7 — ke) + 1.9709k7 < 1.445.
(3) 1.9709kg + 1.4709(ks — k7) < 0.

By using these, we get an upper bound which is a non-decreasing function of z and
a simple computation concludes the proof. ¢ ¢ ¢

Lemma 3.10. For all Z > 0, we have

2 2
) 4 ) 8
= no(n) — Z = no(n) — 3Z
(n,2)=1
Proof. The identity
I R ()
By~ n e 40
implies that the sum we want to estimate is less than
2
u(0) 1 2 1
(3.21) iy O < 10+ ——=)
T 000 . T s, Pl

and this is now less than 4/Z. The proof of the second inequality is similar with
the condition (n,2) = 1 which we keep for the variable £ in (3.21) and drop for the
variable m. ¢ ¢ ¢

Average of a multiplicative function over a set of positive density

We study this general problem only in a special case we will need later on. We
refer the reader to Ruzsa [16]for a more detailled study.

We are looking at (cf (2.7))

Y &N,
X<N<2X
NecA

where a is 1 or 2 and A is the set of integers which are sums of two primes. We
put B = AN|X,2X] and apply Hélder’s inequality with an exponent o > 1 :

- 1/0
(3.22) ZG;“<N>S|B|1‘”"65“( > H(H)‘“’) -

NeB X<N<2X p|N

For any real number b > 1, we put g,(N) = leN (g%i)b. Following Lemma, 3.2,
we define the multiplicative function h by :

1
hs(p) Zz—)(gb(P) —1),
hy(p™) =0 for all m > 2.

(3.23)
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We denote by Hy its Dirichlet series and by H} the Dirichlet series associated with
|hp(n)|. Lemma 3.2 gives us

3:24) Y ][] 9ac(N) = Hao(0)X + O (2.277THao (—1/3)(1 + 2°/3) X?/3),
X<N<2X p|N

and it remains to choose the best value of 0. We want to minimize

1 Vo 1/o
5 * B 62( 3 gac,(N)) .

X<N<2X

And we want to do this minimisation with |B| = X/6. We then work for X >
exp(60), and compute several values. For each a, this function of o varies very
slowly. We obtain the following lemma :

Lemma 3.11. For X > exp(60), we have

Y G7NN) <071748%/57X, and Y 63%(N) < 0.51595'8/1°X.

X<N<2X X<N<2X
T2(N)#0 72 (N)#0

4. Study of the wy.

As is clear in (2.18), we are in need of information about the wg’s. We will first
get a more explicit formula for these wy’s by introducing the definition of the A\y’s
in (2.4). This expression has the defect of introducing localized divisors of d. Our
guess is that

(4.0) 0 < u(d)p(d)G(2)wa < 1,

which we are not able to prove.

For d small, we give an asymptotic expression as z goes to infinity which supports
(4.0).

For d prime, or twice a prime or 6 times a prime > 7, we prove (4.0) by using
elementary means.

For the medium d’s, we have upper bounds essentially of the shape
|p(d)G(2)wq| < 3¥(49), but the introduction of this divisor function will prove to be
numerically costly.

For the large d’s (i.e. close to z2), we use the fact that d has few decompositions
of the form d = [d;, d2] with dy,ds < z to avoid use of 3v(d).

The last part of this section is devoted to the study of a function built from the
wg’s and which will be of use in section 7.

4.1 An explicit expression.
By (2.2) and (2.4) and then substituting the definitions of G4,(z/d;) (i = 1,2),
we obtain at once

2( s — 5 0 12 (F)
(4.1) where L(d,0,k)= Y p(di)p(dz)(da,da).
dill , da|k
d|[dy,d2]

We now evaluate the function L.
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Lemma 4.1. For any positive squarefree integers d, k and ¢, we have

w(d)u((d, £, k) ([, k] /d) p2((d, £, k)
L(d, 6, k) = if d|[¢,k] and £/(¢,d) = k/(k, d),

0 otherwise.

Proof. We obviously have L(d,¢,k) = 0 if d J[¢, k], hence from now on, we suppose
d|[¢, k]. We first prove that L is multiplicative in the following sense : if d, £ and k
are squarefree integers, then

(4.2) L(d, ¢, k) = [[ L((d, p), (¢, p), (k,p))-

To do so, we introduce the function x(a,b) which takes the value 1 if a|b and 0
otherwise and its local version : for every prime p, we define x,(a, b) to be equal to
x((a,p), (b,p)). Let M be an integer divisible by k£ and £. For squarefree integers a
and b dividing M, we have

b) = H Xp(a, b).

p|M

Assuming d, ¢ and k squarefree, we thus get

L(d, &, k) = ) p(dr)p(dz)(da, da)x(da, k)x(da, O)x(d, [d1, da])

di|M
do| M

= > [I wt(@r,p) [T (@2 9) [] ((da.p), (d2,p))

di|M p|M p|M p|M
da|M

T xo(dn, ) T xe(d2, ©) T xo(d, [dr, da)),

p|M p|M p|M

_ H {ZM (dq)p(d2)(dr, d2)xp(d1, k, p)Xp(d2, €)X, (d, [dl,dﬂ)},
p|M  dilp
da|p
out of which (4.2) follows readily. We define L,(d, ¢, k) = L((d,p), (¢,p), (k,p)), and
find
(1) If p|d, then
(i) If p|(¢, k) then L,(d, £, k) =p—2;
(ii) If p|€ or p|k, but p [(¢, k), then Ly(d, ¢, k) = —1;
(2) If p fd, then
(i) If p|(¢, k) then Ly(d,l, k) =p—1;
(ii) If p|¢ or p|k, but p J(4, k), then Ly(d,£,k) =0 ;
We now have to find a global expression out of the local ones. Let us write
{= d1d38, with (S,d) = 1,
k = dsdst, with (t, d) =1
d = dydods.

Then, if L(d, ¢, k) # 0, the point (2.ii) above gives us s = ¢, that is to say ﬁ = (dkk)

[£:k]
d

and this last quantity is equal to . The proof follows readily. ¢ o ¢
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Using the notations £ = dydss, etc. from the proof of Lemma 4.1, we readily get

Lemma 4.2. If wy is given by (2.4) then

43 E: 1 > ud 92(da)
( ) Wq = “ ¢( ) dldzda_d/“’l’( 3) d)(d?’)
(_ d) 1 di1d3zs<z
d2d35§2

4.2 An asymptotic expression.

Lemma 4.3. For all z > 1 and all integers d, we have

_ M, e e T284
an  cwa= bl o (s f6<d>>)},
where
Ug = @ Lo
k>t
and

fo(d) = f1(d) Z ¢2(d3)max(d1,d2)1/3d1/3

didads=d ¢
f1 having been defined in Lemma 3.4.
Proof. We use section 3. First, (4.3) gives us

z

45)  wd(dG(Rwa= Y p(d )¢ d1d3 dads

E (d3)Gg(min(——
didads=d

We now use Lemma 3.4 to write

z _¢(d) z
ds max(dl,dg)) - d {Log(dgmax(dladz))

G

~1/3

+0*{8 x 0.9105( fi(d)}.

z
d3 max(dl, dz))

We collect all the error terms to get the claimed one. For the main term, we use:

o2 P2 v(d/ds) d
E ds)—(ds3) = E ds)—(ds3)2 =
d1d2d3:du( 3) ¢ ( 3) d3|du( 3) ¢ ( 3) ¢(d)

so that the expression

> N(d3)%(d3)(—Log(d3max(d1,dz)))+ d)ZLc;gp

didads=d ¢(d pld

is equal, by introducing n = dyds, to

> N(d?»)q; (d3)L0g ~+ > o %(dg)LOg dld:_), 4 ¢ 3 Logp

d
dslnld ds|nld o) g P
n?>dds n®<dds
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which is

dd
> (da) %2 (da) Log

ds|n|d
n>>dds
d 2 d Logp
———Logd d3)—(d L

and we check that the sum of the last three summands is zero, which ends the study
of the main term. ¢ ¢ ¢

Although I have not been able to prove that ug4 is small and often < 0, that is
what I expect, which would support (4.0). We can check that usgos > 0, and that
5005 and 17017 are the first two counter-examples. It is also worth mentioning that
numerical investigations seem to indicate that there are many cancellations in the
expression defining ug4.

4.3 Three elementary estimates.
By applying elementary means, we can prove the following lemma :

Lemma 4.4. Ifd is a prime, or 2 times a prime, or 6 times a prime different from
5, then, for all z > 1, we have

0 < pu(d)p(d)G(z)wg < 1.

Proof.
o When v(d) = 1, that is, d is prime, we check easily that, in Lemma 4.2, s < z/d
and that the inner sum equals d/¢(d). Hence, by (2.2),

A
G(z)¢(d)
Now it is well known that 0 < u(d)A\g < 1 (see for instance Halberstam & Richert
[3]), whence the result in this case.

o Next, suppose d = 2p, p > 2. In (4.3), D < z/p always. If s < z/(2p), the
inner sum is 2p/@(2p) ; and if 2/(2p) < s < z/p, the inner sum is 2. Hence

46 @l = 50 26 (D) +2(6n () - 6n(2)) |

wq = if I/(d) =1.

~ o(2p) L #(2p) " \2p
But 1 z 1 z 1 z
G(z) = Ggp(z) + MG%(ﬁ) + mGzp(E) + mGzp(Z_p)’
hence

2p z 1 1 z z
6(2) 2 S8 sGan() + (14 i+ o) (Ganl5) = Gl ) )

We conclude by noticing that (1 + ﬁ + ﬁ) > 2.
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o If d = 6p with p > 7, then the ordered chain of divisors of d is 1, 2, 3, 6, p, 2p,
3p, 6p (Note that the hypothesis p > 7 is required here). We get

2 _Hop) [ bp . 2z 2 2y o (2
(4.7) G@Jwep = ¢(6p){¢(6p)G6p(6p) - (3+p— 1)<G6p(3p) GG”(GP)>}'
On the other hand, we check that
6 2 500 Ganl) + (s = i) (Gorl) = Gonl5) )
~ ¢(6p) T 6p’  “¢(6p)  ¢(6p) Pi3p Plep’ )’

. . 6p—1 _ 5 2
and the miracle is that #(6p) — 3+ 2=1) >3+ o1 009

One could ask whether such an elementary approach could go any further, and
for instance take care of the case d = pg with 2 < p < g where one can check that
ug < 0. However for d = 15 (which is the first integer not covered by Lemma 4.4)
and z = 10, we have computed that p(d)¢(d)G(z)wg > 1.09 and for d = 35 and
z = 42, we have found that the above quantity (say p(d)) is greater than 1.05. This
last example shows that even the stronger condition d < z does not ensure p(d) < 1.
As to more positive answers, no counter-example to the guess pu(d)wg > 0 has been
found.

We finally give two identities easily derived from (2.4) that throw some light on
this question

Z p(d)wq = 1,

d<z2

() Y Hldywa = (2 md)) .

d<z? d<z

4.4 Upper bounds.
We derive from (4.3) two kinds of upper bounds.

Lemma 4.5. For z > 1 and any positive integer d, we have

|G(2)wa| <

G(2Vd) H 3p—4 _ G(zV/d) 30.31

G(z) pgple—1) = G(z) d7/10

Proof. We start with (4.3) and omit the size conditions on dj, d2 and d3. We then
use Lemma 3.1 to write G4(z/vd) < @G(Z\/E). To prove the second assertion,
we remark that the function p — (3p —4)/(p — 1)p'-3 is less than 1 if p > 41. 000

Lemma 4.6. For z > 1 and any positive integer d, |G(z)wq| is less than

Gal/Vd) €0 1 1_GEVa)
66 2=, sOmamn < G 2 (O

ESz,m?zSz d/ZSESZ
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with £(£) = [1,,(2p —3)/(p — 1).

Proof. We start with (4.3), put A = d;d3, insert absolute values inside, and ignore
the size conditions on d;. A simple computation gives the upper bound

Ga(z/Vd) &) 1
TGl lkzd o(1) p(k)"

1<z,k<z

To obtain the first inequality we use
k
ol Z

and to obtain the second one, we omit the size condition on k£ and use Lemma 3.1.
COO

4.5 A computational result.
In this section, the following assumptions and notations are used :

z is a real number > exp(30),
) is a real number such that Log A < 22 Logz

q always denotes a positive odd squarefree integer,

(4.8) ¢y |G ? wdl

AN
d=0[q]

First, let us note the following computational lemma which tells us that the
“conjecture” |G(z)p(d)wg| < 1 is not far from being true for small integers.
Define the deficiency Ag(z) by

12 (d) 2 1
A (z) ; 3a) mex(CEwe — 57, 0)
v(d)=k

Lemma 4.7. We have

A1(50 000) = A3(50 000) = Ag(50 000) = 0,
Ay(50 000) < 1.02.1071¢,
A4(50 000) < 1.54.107'2,
As5(50 000) < 1.14.10713.

Explanations of the computations may be found in the section 4.6.
We now introduce the following auxiliary notations :

— )
p—1" plp—1)

(4.9) f2(d) = T ](

pld
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(4.10) cs = [[(1+ f2(p)/p) < 3.027 251 641,
_ f2(p)
(4.11) f3(q) _g(1+f2(p)/p)’
1
(4.12) falg) = g (m),

Lemma 4.8. We have

(4.13) t(q) < (1.4)%csf3(a),
and
(4.14) t(g) <2.301f4(q) + 21072 + (14)*fa(q) (cs — Y. p*(d)f2(d)/d).
d<50 000/q
Proof. By using Lemma 4.5 and Lemma 3.5, we get
IG(2)wa| < 1. 4H 3p 4
Now for the t(g), we have
Z |G ’U}dlz
d<A
d=0[q]
2 2
p*(d) 3p—4 ., p*(d) 3p—4 .,
+q< > = aa]] )2 — 14]] )2,
iz 9@ o —1) = ¢(d) = o5 plp—1)
=0[q

where A is a parameter to be chosen later. With our notations, we get
(4 15)

<q Z |szd| (14)2f3(Q)(c3_H(1+f2(p)) Z N’2(d)f26(id)>

d<A plg d<A/q
d=0[g] (d,q)=1

To prove (4.13), we take A < 1 in the above expression. To prove (4.14), we use
our previous expression with A = 50 000 and

wd|2 (1 (d) Z 2 1
> | —max (0, 1G(2)wal> — —3),
d<50 [0?0 ¢( (d d<50 000 ¢(d)2
d=0][q

together with Lemma 4.7 . We then note that

o [0+ 20 3 w@lPca- S @k

plg p d<50 000/q d<50 000/q
(d,g)=1

and that 3, #?(d)/#(d)® < 2.301 to get (4.14). 000
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Lemma 4.9. If ¢(q) > 61 and g < 3 000, then t(q) < 0.001.
Proof. 1f ¢ < 3 000, then

cs— > pA(d) f 2((;1) < 0.089 55,

d<50 000/q

and a direct computation using (4.14) yields the result for ¢ > 285. If ¢ < 285,
we can replace 0.089 55 by 0.003 41 and a computation gives the result for the
remaining ¢’s. ¢ ¢

Lemma 4.10.

(1) For g > 14 000, we have t(g) < 0.000 3.
(2) If ¢(q) > 61, we have t(q) < 0.001.

(3)
2 2 2
ey G (@) (wal” + [waal") 4 500 000 .
d<2000 d)(d)
(4,2)=1

Proof. We break up the proof into several steps according to the size of q.
o By using (4.14) and since f3(p)p!-2° is less than 1 if p > 23, we get

38.1 227

(4.16) 1(a) < (14)° x 30213 x o < .

This yields immediately
(4.17) t(g) < 0.000 3 if ¢ > 51 000.
o If ¢ < 51 000 then v(q) < 5 and we easily check that
gv(9) ¢ gv(9)
< 2.607 for v(q) < 5.
¢ g~ ¢ (@
This upper bound combined with (4.13) ensures us that ¢(g) < 0.000 3 as soon as

q > 14 000 thus concluding the proof of the first part.
o If ¢ < 14 000 then v(q) < 4 and we get with (4.14) and (4.18)

(4.19) t(g) <0.001 if ¢>2 570.

(4.18) fs(g) <

o Lemma 4.9 concludes the proof of the first and second part of Lemma 4.10.
The proof of the third part of Lemma 4.10 follows the same line as the proof of
Lemma 4.8. We call F the set {d odd, d < 2000} U {2d, d odd,d < 2000}. Then

|G(z)wa|? de2 p*(d) (d) 1
2w ey T 2 e MO ICEmE  g)
dgF

ICEEDS ﬁ(d)@),
d<50 000
which is checked to be < 0.000 000 9 as required. We did this computation by
generating the d’s : first the primes, then the product of two primes, up to the
product of 6 primes, which is a bit annoying to program but very efficient since it
avoids the factorization of d. ¢ o ¢
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4.6. About the computation of w,.

Computing a “small” finite number of wy with a decent accuracy is no problem,
let us say if “small” is about 1000, and this by using the asymptotic expression.
But we have to verify that |G(z)wg| < 1 for a very large number of d’s. In order to
achieve this, we have worked with v(d) fixed and generated the integers d instead
of analysing their arithmetical structure. In practice, v(d) is between 1 and 6. Now
Lemma 4.4 tells us that we do not have to deal with some special cases. For the
other ones, we have to compute uy. The following remark enables us to implement
a very fast way of computing wy for v(d) = 2, 3, or 4. There will be few d’s with
v(d) =5 or 6 in our range of interest so that they can be computed directly.

Put

2
= > Log(mT) = —2”(t)_1Logt+2Log< 11 m> <0.

mt mlt

m</t m<\/t
The introduction of this quantity simplifies the expression of ug. We verify that
A(1) =0,  A(p) = —Logp,
A(pq) = —2Loggq if p < g,
— 2Log(pqr) if p < g < r < pg,
A(pqr):{—4Lorif <g<pg<r
g P<q<pq )
—8Logsifp<qg<r<pgr<s,
A(pgrs) = { — 8Log(pgrs) + 2Log(p*¢*r®s) if p< ¢ <r < s < pgr and gr < ps,
—4Log(grs)if p<g<r<s<ps<aqr
Let us prove the last of these.

Proof. The problem is to find the divisor m of d such that
(1) m < £ and (2) there are at least 8 divisors of d which are less than m.
If s > pgr, m = pqr is a convenient choice.
If s < pgr and gr < ps then gr is larger than 1, p, g, r, pq, pr and gr.
If s > qr, m = s is an admissible choice.
If s < gr, m = gr is an admissible choice.
If s < pgr and ps < qr then m = ps is larger than 1,p,q,r, s, pq,pr and ps,
and therefore is an admissible choice. ¢ ¢ ¢

5. Proof of Proposition 1
Recall that

(2.14) R= Y &W)r(N),

Ne|X,2X]

thus

= Y 6 ( ) Logpi— > Logp),

NelX,2X] p1+p2=N p1+p2=N
p1<X p1<X
p2<\/_
Z S5 Z Logp1) + O* (VX Log X).
Ne|X,2X] P1+p2 N

<X
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We want to obtain a lower bound for this quantity. By expanding the arithmetical
factor as a convolution product, we get, from (2.7),

Log p2
R+ O*(VXLogX L
+O0* (VX TLogX)> Y &;'(N) D OBPIT o
NelX,2X] p1+p2=N
p1<X
-1 N(d) *
> 6, Z m(Bd(X)"‘O (Ca(X))),
d<2X
(d,2)=1
where
- Y e
"Log2X’
Ne|X,2X] pi+p2=N
N=0[2d] P1<X
(5.1) (p1p2,d)=1
Log p2
L ez
- T (T ¥ )
amod*d *p;=ald p2=—ald]
p1<X X—p1<p2<2X—p;
and
Log®d
Cu(X) = 8 if d is prime, and 0 otherwise.

Log2X

We will study B4(X) according to the size of d.
For the small d’s, that is to say, those which are in D (see Notations), we have,
by Lemma 0,

1+ 0*(3¢q) X6(X)
¢(d)  Log2X’

Ba(X) =

and

Log X S 0.66025 — 0.00369
Log2X — 1.320323

> 0.4921.

1+0%&@)

o'y A

deD

¢2 x 0.9897,

For the lower medium range of d’s, we use the Brun-Titschmarch inequality of
Montgomery & Vaughan :

2 2
- p*(d) p(d)  6(X)
62 ! Bd( ) G2 2 Logd ’
d<4000 d)(d) Log d<4000 ¢ (d) - LoggX
gD agD
(d,2)=1 (d,2)=1
which is less than 0. 01288LX - Note that since we are only looking for a lower

bound of R, we could have dlscarded the d’s for which u(d) = 1 ; this process would
enable us to replace 0.01288 by 0.00651, but it is not required for our final result.
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For the upper medium range of d’s, we put ¢ = 4000 Log X and we have

-1 ,U X ( )
S X) < 62 Log2X 1 — g

4000<d<Q

p>3

2

Log X~

< 0.0002691

For the large d’s, we have

Zﬂd)Bd ZM

Q<d<2X Q<d<2X
(d,2)=1 (d,2)=1
8
< G N (XO(X )@ +0(X
2
< 0.
< 0.000 505L0gX’

by Lemma 3.10 and Lemma 0.

Putting all these estimates together, we obtain
2

R > 0.478 .
- Log X

6. The main term. Proof of Proposition 2.
Let us recall

(2.20) Ri= Y &; {Z 3y ”Z

Ne|X,2X] d<A amod*d
TZ(N)750

g D

2
g X 4000<d<Q ¢*(d)
(d,2)=1 (d,2)=

X X)) __ 1
2Log2X1 L°§Q6 <H(1+(p—1)2

(2 (d)

1

X

(X)(G +1)

)G(2X)),

N )}.

Y

Following the “Conjectural behaviour of Ry(N)” at the end of 2.2, we will see that
the first d’s lead to the main contribution. The other ones will be discarded in
a simple way. A little problem arises because G(z)wgy is not u(d)/#(d) but has

an asymptotic expression of the shape %( + v4/G(z)) where vy is numerically

comparable to -1. But G(z) is about 30 and, hence, we can not look at vy just as
an error term. We will also see how to take advantage of the sign of c4(N) to deal

with (B
We define

(6.1) G = {d <2000/ d odd and x*(d) = 1},
and F = GU2G. Then we split R} in three parts :

(6.2) Ri = Ri; +Ris + Ris,
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with
=0 *(d)
(6.3) L =0(X) S5 1(V) _ B o,
T9 N ;é(]

. _ 7 u_w_ pd
64  Rp=ix) Y & {2; A wa— D )ea)

Ne]x,2X]
Tz(N);AO
and (cf (2.17))
N ~ p(d)
(6.5) R} = 0(X) Z o) > U(a/d).
dg)\ amod*d
dgF

6.1. Preliminary lemmas.

The following lemma will be useful for dealing in an explicit way with incomplete
sums of multiplicative functions. The error terms which arise here will be in practice
very small.

A complex-valued function h is said to be strongly multiplicative if

(1) h(mn) = h(m)h(n) whenever m and n are coprime integers ;
(2) h(p*) = h(p) for every prime p and every positive integer k.

Lemma 6.1. Let X and Y be positive real numbers with X <Y . Let f and g be
complex-valued functions with compact support. Let h be a strongly multiplicative
function with the following property : if h1 is defined by h1 = h % u, then we have
(i) h1(p) > —p for all primes p,
(ii) there exists a real number c such that ), _,|hi1(€)|/ < ¢/Z for all
Z > 0.
Then the double sum

S hm)f(d)g((d,n

~—
~—

n€lX,Y]
d>1
0] ST hl;p) %gw)h(rw(d/r)}
0 (et1-3) Z—‘”Z i) lo(a/))
(Zv T (X ImO) X sl
pld 1T —p  e<va rld

Proof. Let us note first that hy(£) = 0 if u(£) = 0 because of the strong multiplica-
tivity of h and also that the hypothesis (ii) ensures the convergence of [[ -, (1+

hi (p)/p) .
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Let us call S our sum. We have

S=) @) gr) Y, hin

r|d n€lX,Y]
(n,d)=r

Let H(d,r) be the innermost sum. Then we put n = r#m with (m,r) = 1 and
[p|F = p|r]. We have h(n) = h(r7)h(m) = h(r)h(m) since h is strongly multi-
plicative. We then use h(m) = >_,,,, h1({) and write the condition £|m as {|n and
(¢,7) = 1. We thus get

H(dr)= )  h(r) Y h)

me|X/r,Y/r] Lim
(m,d/r)=1 (¢,r)=1

We see that even (¢,d) = 1. Hence

)Yl ),

(¢,d)=1 me|X/r,Y /7]
L<Y/r (m,d/r)=1
Z|m
X *
r) Y h(l $(d/r) + O*(¢(d/r))).
(¢,d)=1
L<Y/r

We then remark that

Yy ooy MO o),

(¢,d)=1 (¢,d)=1
L<Y/r

and from this the stated result follows in a straightforward manner. ¢ ¢ ¢

We will also require the following computational lemma :
Lemma 6.2. We have

H (1 - Iﬁ) = 0.74791 + (’)*(10—5) :

p>3

[T+ o _1 1)2) = 1.4132 + O*(107%) ;

p>3

2
IT+ Ty g) = L7668+ 0" (107 5
p>3

I+ > ) = 1.5801 + O*(10~%) ;
s =D -p-1)
and
2
> pi(d) H p_3 = 1.5789 + O*(10~%);
)p*—p—1)
d<2000 p|d
(d,2)=1

p’—p—1
S W) ] 57 = 43559+ 0*(107);
oa PP~

d<2000
(d,2)=1
2 2p -3 * —4
S w@]] 5 = 81512+ 0*(107%).
d<2000 pld plp—1)

(d,2)=1
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6.2. An estimate for R}

Define
r 2 d
= Y st S Ko m)),
N€)X,2X] 2000<d
) N even d odd
2
* d
r= Y &) Y e,
Ne€|X,2X] d<2000
\ N even d odd

Then, by using caq(N) = c4(N) for odd d and even N, and |c4(N)| < ¢((d, N)), we
get (cf (6.3))

1= @@X +20%(p)}.

Now p+ p* is easily evaluated and an estimation of p* is given by Lemmas 6.1, 3.10
and 6.2. In this way, we get an upper bound for p.

pto =6y L0 ,,_11)» O |

p>3 NelX,2X] p|N
Neven pF£2
X
—6211_[ Z H + O0*(1)).
p>3 (p— (d,2)=1 p|d p(p—2) +2 2d
Thus
p+p =261+ : 5) [ ( & )
27 5 (P17 55 el —2)+2)
1 2
+(’)*{6_1 1+ 1+
2 ,,1;13( (p 1)2)101;[,,( p(p(p 2)+2))

On the other hand, Lemma 6.1 gives us

X 1 2p—3
S = X0 3 w@]]
25 ple=1)7 S o P D@ —p=1)
(d,2)=1

o 4 2 p’—p—1 * 2 2p—3
O <5 Z,u,(d)H—2>+O (G(2000-2X) ZM(d)Hp(p_1)>.

d<2000 pld plp—1) d<2000 pld
(d,2)=1 (d,2)=1

From this and Lemma 6.2, we deduce that

6(X) )y
(6.6) Ril< & el X (6 4 0.000794).
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6.3. An estimate for Rj,.

Define
_ 2 p(d)
(6.7) va = p(d)(d)G" (2)(wa — W)’
and 2(g 24
H(N) = [;7: II;QEd; UdCd(N) = e Z2Ed§ (’Ud =+ ’Uzd)cd(N).
(d,2)=1
With this, we have
* __ N -1 H(N)
(68) RlZ - e(X) NE];ZX] 62 (N) G2 (Z) .
2 (N)£0

Let us comment on these definitions : vy depends also on z and, according to
Lemma 4.3, it has a limit as z goes to infinity. We have conjectured that v, is
“very often” negative and we have checked that this is true for small d’s, provided
z is greater than exp(30). Let us also recall that v; = 0.

In order to obtain an upper bound for Rj,, we want to find the maximum of
H(N). If we use |cq(N)| < ¢((d, N)), we will lose the fact that c¢4(N) and vq vary
in sign. Let us write H(NN) in another way :

U4 + Va4
(6.9) HN)= Y DuD) 3 wld=gm
D<2000 d<2000
(D,2)=1 (d,2)=1
D|N D|d
Now we define
(6.10) ap = Dp(D) Y. u(d)%,
d<2000
(d,2)=1
D|d

so we can simply write H(N) = > p, y ap. What can we say about the sign of
ap 7 Because the series which defines ap is convergent and the terms vy and vaq4
are conjectured to vary very slowly, we may think that ap is of the sign of its first
term, that is to say “probably negative”, except for a; because v; = 0. If such a
thing happens, it will be easy to get maxy even H(N). But verifying this requires
only a finite (reasonnably small) number of computations.

We have made the required computations and found that

0 < a; < 0.3209,
ap <0 for 1< D <2000 and D # 323 =17 x 19,

a7 + aig + aszzz < 0.

From this, we get
max H(N) = ay,

N even
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and, hence with (6.8) and Lemma 3.11,

O(X)X 0.2319 cq5/57

(6.11) 12 < Gl2) GQ)

Remark : In fact, here we have choosen the set F and it happens that, if we do
not impose that [d € F and d odd] implies that 2d is also in F, then we no longer
control the sign of the ap’s if D is too large.

6.4. An estimate for Ri;.
Let us recall that

_5 wd
(6.5) ;= 0(X ;qﬁd ar%;*d
dgF

We apply Cauchy’s inequality and the large sieve inequality to get

2 9( |G (2)wal? 2

d€.7:
Now o )
Y % < 0.000 000 9
= ¢(d)
d@F

by Lemma 4.10. By using Lemma 3.11, we get

XO0(X
RE,| < #(518/190.5159 x 0.000 000 9)'/2,
hence
\ X2 910
(6.12) |RI5| < 0.0008 67,

G(z)

6.5. Conclusion.
We have
Ri < |Ri1| + Riz + [Risl,

and, by using (6.6), (6.11), and (6.12), we obtain

X2 0.232
R* < 5+ 0.0008 + ——2§36/37 1 0.0008 §%/19
1S G0 00008+ Gy A )

which concludes the proof of Proposition 2.

7. An upper bound for the dispersion. Proof of Proposition 3.
Here we deal with R3 which is given by

(2.22) = ) { (a/d) —ﬁ (X)) |U(a/d).

d<X amod*d
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7.1. Preliminary.
First, it is nicer, as will be clear in a moment, to work with

(7.1) T(a) = Z Logp e(pa).
VX <p<X

This gives rise to a neglegible error term :

(7.2) Ry=, >, [wiTi(a/d)T(a/d)],

d<X amod*d

with Ty (a) = T(a) — T(c). We treat (7.2) by using Cauchy’s inequality

RuP<d Y WU@P Y Y wilia/d)f

d<)\ amod*d d<)\ amod*d

We apply the large sieve inequality to treat the first factor. As for the second, we use
|G(2)wq| < 60.62 d~7/1° proved by combining Lemma 4.6 and Lemma 3.5. Then
we integrate by parts the resulting expression and apply the large sieve inequality.
Thus

> Y wilTi(a/d) |2<606227/ > Y ITi(a/a)P t12/5

d<\X amod*d d<t a mod*d

LSS S mafa?

d<A amod*d

which is now not more than

60.622 10
P T VX + =035,
@02) T [(VX + 3/\ )

Collecting these estimates together with Lemma 3.11 and 6(t) < 1.002t for ¢ > 0
(cf [21]), we obtain

10 v —8/25
1+ 2x-8 X4 X+ .

|R3. |12 < 60.622 - 1.002 - 0.5159 <

7.2. Dispersion and multiplicative characters.
Now we study the main part of R3 which we call R3, :
(7.4) R3 =R3 —R3:.

Let us remark first that §(X) = T(0) and prove the following lemma which uses
well-known ideas :
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Lemma 7.1. Letd be a positive integer. If S(a) = ), ane(na) is such that a, =0
as soon as n and d have a common prime factor, then

pd) o |° 1 ,
ar%;*d S(a/d) — @5(0) = m X% d|7’(x)| ;anx(n) ’
X#Xo

where xo 1s the principal character modulo d, and

()= Y xlae(a/d).

a mod*d

We also have, if ¢ # 1,

2

q )
donuRed Y | Y an @

d|q bmod*d |n=b[d]

D

xmod*q

Y anx(n)| =

Proof. Let us recall that, if d is squarefree, |7(x)|? is equal to the conductor of x.
We have, for all b modulo d,

1
Z an = m Z X(b);anX(n)

n=b[d] xmod d

hence, for all a coprime with d :
1 _
S(a/d) = o) > x(@7(x) Y anx(n)
mod d n

Now we have 7(xo) = u(d) and the orthogonality of characters concludes the proof
of the first part.
For the second statement, we first note that Parseval’s identity gives us

2 2

d|qg xmod*d

@) > 1D anl

bmod*q n=b[q]

2 anx(n)

n

The latter sum is equal to

0 15(0)?
2 |Za"_ ¢(q) T ¢(q) ’

bmod*q n=b[q]

and Moébius’ inversion formula establishes our result. ¢ ¢ ¢
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We apply Cauchy’s inequality to R3, to obtain

(7.5) Ral” < [UIE(CX + A)BA, X),
where
(7.6) BOX) =Y lwal Y [Flafd) %T«W.

Because of the factor |wg|?, the terms with d small in (7.6) give a good approxima-
tion to B(A, X). But we can do better by using multiplicative characters and see
that the distribution modulo small d’s has an even greater influence. It is convenient

to introduce the notation ~
(T,x) =) anx(n).
n

By using Lemma 7.1, we get

& B0 = X g ¥ (TP,

17£g<X xmod*q
(g,2)=1
where G(2) |2
zZ)Wwq
tg)=q Y il
o o)
d=0[q]

which has already been studied. In (7.7), we have included a p?(q) to remind
the reader that t(q) vanishes when ¢ is not squarefree, and we have added the
condition (g,2) = 1 because otherwise, there are no primitive characters modulo ¢
(q is squarefree).

The large sieve inequality provides us with the following estimate (very good for
Q? near to X), valid for any positive real number Q,

(7.8) Y G@/a) Y KT.x)I*<ITIHX + Q).

q<Q xmod*q

We take Q = /X/10 in the previous inequality and substract from each side the
term corresponding to ¢ = 1. By Lemma 3.4, G(Q) > 1 Log X, whence

(7.9) > GQ/g) D> KT, x> <0.60(X)X Log X.

1#£9<Q xmod*q

Then, our upper bound for B(A, X) will follow from the two following facts : If g is
sufficiently large, ¢(q) is small, and hence the corresponding contribution is small;
if ¢ is small, Lemma 0 ensures that (T, X) is small, and hence the corresponding
contribution is small.

If ¢ is in D, we have, for every b coprime with ¢,

T(0) X
| Z Logp — —=| < eg——.
VR aaex $(q) ¢(q)

p=b[q]
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By using Lemma 4.6, (7.6) and (7.8), we get

BOX) € gy D i@t X (F0F
q€D xmod* q
q#1
(7.10) 0.001 — 0.0003
G*(2)
0.0003 =~
+ GQ—(Z)O.&J(X)X

Log X

0.69(X)X—G (G/14000)

Log X
G(Q/N)

and, for ¢ in D, we use the second part of Lemma 7.7 together with
t(q) < 2.301f4(q) +2.10712¢ + 0.00125 f3(q)

which is written with the notations of Lemma 4.8 and which follows from (4.14) by
noticing that 50 000/q > 50 000/105. We give now some partial computations

D tq) > [T, x)I* <0.000 001 1,

q€ED xmod*q
q71

G(Q/)\) > 0.2Log X,
G(Q/14000) > 0.443 Log X.

The fact that by using Lemma 7.1, €3 appears instead of €4 is a remarkable feature
of this proof.

We finally get

2

X
. < 0. —_.
(7.11) B(), X) < 0.00185 = ®

Rm : In order to see the strength of (7.10), it is worth saying that the involved
idea may be used for proving an effective Barban-Davenport-Halberstam Theorem
with a saving of a small constant over the trivial estimate (instead of saving any
power of Log X). This has been pointed to me by professor Iwaniec during some
valuable discussions.

7.3. End of the proof of Proposition 3.
By using (7.3), (7.5), (7.11) and Lemma 3.11, we get

X? 9/19
R%| < 0.0309 )
[Ral < G(z) ’

which concludes the proof of Proposition 3.
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8. A weighted large sieve inequality. Proof of Proposition 4.
The main result of this section lies in the following theorem :

Theorem 8.1. Let T'(a) = ), . x ane(na) be a trigonometric polynomial with
complez coefficients and such that

either {n/a, #0} C2N, or {n/a,#0}C 2N+ 1.

Then, for z > exp(18) satisfying 0.5Log X — 0.5 > Logz > 0.422Log X, and any
real number \ in [1, \/)_(], we have

S GRS IT(a/d))? <

A<d<22 amod*d

X '
T||2{ 52.9—— + 7.464(X z Log z) 23
2 \7/10

P

+0.3708v Xz Log? z + 0.1898; Log® = + 1.251z2}

Principle of the proof :
If |G(2)wg| < Ced™17€ for an € > 0 where C, is a constant which depends on e,
then an integration by parts and the usual large sieve inequality yield the bound

|73 {
G(z) )\1 €
The preceeding theorem is a more precise version of this, by using better upper

bounds for |wg|, one of the difficulties being to get z2 without any power of Log z
and with a small constant.

C 2(1+e)}

Before proving this theorem, we show how to deduce Proposition 4 from it. We
are working under (Hyp.). We apply Cauchy’s inequality to

Y lwal ) [TU(a/d)
A<d<L22 amod*d

in order to separate T" and U and apply Theorem 8.1 to each of the resulting sums;
a numerical application concludes the argument. We limit ourselves to the main

term : .
ITI31U13 2.4\’
———=(1.251
(Faigy s
which, by using Lemma 3.11, is less than

X2 4(X) , X2 \?
0.5159 7 (1.251 §9/19
< G2(z) X (1.251) 15000)

i.e. 0.0074X26%19 /G (z).
Throughout the next two sections, the following notations is used :
(8.5) W= >, |T(a/d)?,
amod*d

where T' is any trigonometric polynomial ) ane(na) such that {n/a, # 0} is
included either in 2N or in 2N+1, not identically zero and normalised by || T||3 = 1.
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8.1. Lemmas concerning the polynomial T'.

We prove here the inequalities which will contain our knowledge about the poly-
nomial 7. Our main tools are the large sieve inequality and its weighted version of
Montgomery & Vaughan, the latter with the refinement du to Preismann [8]. We
recall his result :

Lemma 8.1 (Preismann). If S(a) =) _y ape(na) is any trigonometric poly-
nomial, and Q is any positive real number, then we have

ZXWQ > ISta/a) < S|

amod*q

with p=1/1+ 2,/6/5( < 4/3).

Our second tool when dealing with 7" is a control of parity of the integers n such
that a, # 0. To achieve this, let us recall the definition of the function x(a, A)
which depends on a parameter a : k(a,A) =1if (A,2) =1 and = a otherwise.

Lemma 8.2. Let A be an integer not divisible by 4 and t a positive real number.
We have

Z k(1/2,A),
@A X + ptAd
<t
and
Z W (Ad) < k(1/2, A)(X + At?),
(d,A)=1
d<t

with p as in Lemma 8.1.
Remark : If we have no parity control, the factor x(1/2,A) disappears.

Proof. We shall suppose A to be even, otherwise both our inequalities are simple
if we remark that the set of points

{ (d,A)=1, d <t, amod*Ad}

is At?-well-spaced.

o First step :
We first show that, if 2|A then W(Ad) = W(Ad/2) if A/2 is odd and d any

integer. By the Chinese remainder Theorem, we have

> (gl = Z( > |T2(b+A;/2)|>

amod*Ad bmod*2 “cmod*Ad/2

But with our parity control,

b
(5 +

Ad/2)| = |T(Ad/2)|

hence our result.
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o Second step :
Let us write A = 2A’. Then

W(Ad) 1 W (Ad) W(A'd)
6) Y FoRimi( X Frmait X Xapind)
Sy X + ptAd 2 (@1 X + ptAd (A1 X + ptAd
d<t d<t d<t

Now, let d and d’ be two integers prime to A and < ¢, and and a and a’ be two
integers respectively prime to Ad and Ad’ ; then

1

a a a
| > —,
' Adt

(ll
| >|— =
|A’d A’d"_ Ad Ad
|i_ a’ > I |
Ad  A'd' T A2dt Adt

The conclusion follows from the large sieve inequality ( weighted or not). ¢ ¢ ¢

Lemma 8.3. Let A et B be two real positive constants such that A < B. Then,
for any integer A not divisible by 4, the following inequalities hold :

W (Ad) X
< —_— .
2 Ad _/1(1/2,A){AA+IOB},
A<d<B
Z W (Ad) X 1 2X 1 B
< ~ _— .
AZd<B

W(Ad) 22 X 22 22
Log ~— < r(1/2,A)d 2= TLog Z— + pB[TLog ~— +1
2. Taq Les g Sk ){AA o8 7z T B[ Log 5 +1]

Remark : If we use the large sieve inequality instead of its weighted version, we
have on the right of the first inequality the factor X/AA + 2B.

Proof. Let us put

1 W (Ad)
2 =
(d,A)=1
A<d<B

which can be rewritten as

5o % wad > ( W (Ad)

(d,A)=1 X +pBAd (A1 X + pBAd)pBAd
A<d<B A<d<B
and thus Wiad
< .
S<R1/28)+X 3 (X + pBAd)pBAd

(d,A)=1
A<d<B
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The last summation can be handled in two different ways.
(1) Define the decreasing function ¢ by

1
P = X+ pBADpBAL

By summation by parts, we get :

S<K(1/2,A)+ Xp(B) Y W(Ad) +X/ Y W(Ad)(—¢'(t))dt,
(d,A)=1 (d,A)=1
A<d<B A<d<t

and another appeal to Lemma 8.2 yields the bound
B
(8.3) S < k(1/2, A){l + X2p(A)(X + AA%) + 2XA/ tgo(t)dt}.
A

We finally get

X(X +AA?)  2XA X + pB2A
pBSﬁm(l/?,A){pB+ (X + A4 ( P )}

AA(X + pBAA) T pBA X 1 pABA
(2) We could have handled our sum in a different way :

dt

YA 2
pBA /4 Pl X+pBAd)t
A<d<t

X W(Ad) 1
Z( (Ad)

*BA X + pBAd) B

S <k(1/2,A)+ ——
(8.4)

(d,A)=1
A<d<B

which gives us

w(ad) | 1 X
< — —_ .
> ag SHGA{gg B}
(d,A)=1
A<d<B

(3) The last inequality follows from the latter one by writing :

W(Ad)
DRI L T
(d,A)=1 (d,A)=1
A<d<B A<d<B

and the result follows. ¢ ¢ ¢
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2. Other lemmas.
We introduce some further notations :

(8.5) V(A,B)= ) |G(z)waW(d).

A<d<B
We consider four parameters X < Qo < Q < 2% and assume Q/z > 500, z >

exp(18) and X > ez?.
c1 s an upper bound for G(z2y/Qo)/G(2), ca is an upper bound for G(2/Q)/G(z).

Finally p is the constant 4/ 1 + % 6/5.

Lemma 8.4.

V(A Qo) < 30.31c; { X A7/10 +1 Q13/10}

Proof. We use Lemma 4.5 to write
|G(2)wq| < 30.31d~7/10¢,
and get Lemma 8.4 by a simple integration by parts. ¢ ¢ ¢

Lemma 8.5.

V(Qo, Q) < ¢2{0.1917X 2z Q; ' Log z + 0.1452Q Log? z}.

Proof. We use Lemma 4.6 to write

Gwdl < = 3 60)

£ld
<z

where £(¢) = [T,1,(2p — 3)/(p — 1)

One has
Vo <e Y PO cowa

Qo<d<Q d ¢|d

hence, by using Lemma 8.3, first part,

(86) V(Qo,Q) <{X Qu" D 1> (OL(0)K(1/2,0) +pQ > u*(£) (g)

<z <z

K(1/2,0)}.

Now the result follows from Lemma 3.8 with a =1/2. oo ¢
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Now comes the more difficult

Lemma 8.6.

X 2
V(Q,2%) <1.566XQ 2~ [1.471 Log 6 +1.391 + (Log 2 + 0.610) Log %} +

X Log2 z 22

+0.3785 (1 + Log 5) +1.25122.

Proof. Tt is convenient to put k1 = 0.5 and ky = 1.4709. We have by Lemma 3.5(1):
G(y) < k1 Log(y?) + ks for all y > 1. We use Lemma 4.6 to write

G(z/Vd) ) 11
. < — —
(8.7) CEwd < =G0 2 T gy
(<omm<s
which gives us
(8.8)
2 OEO0 12 (m) k1 Log 720 + ko
V(Q,2* Z Z fen W (¢mn).
Q/z<€<z ¢( ) ¢(m) Q/(fm)<n<z/m tmn
(Jlnzg)i1 (n,fm)=1

For the innermost sum, we apply Lemma 8.3, part (3) to the part multiplied by kq,
and part (2) to the sum multiplied by k2 and get the upper bound :
(8.9)

k(1/2, Im) {%

{4
og Za)_{_,?On_Z (kl Log E-1-]614‘]'(32) }

Z2 k:g ] 2]{:2X
4

k1 Log —+
[ Q 1+p2%

1
ng (2+L

We also notice that 1/2+ Log(z1/Q) < 1/2+ Log(22/Q). We are thus left with the
question of finding upper bounds for

Sy =hy o Log 3y Za ( k(1/2,0) Z “ k(1/2,m),

Q Q/z<£<z (7;ne<)z .
kzX Z w2 (6)€ ,u k(1/2,m)
r(1/2,4) Z
o S0 REv=dio0)
(m Z) 1
2X (£)¢ ,u
S _k2—(— Q y O£ ¢()) k(1/2,0) Z k(1/2,m),
Q/z<tlz (m e) )
2(m)k(1/2,m
Yy =pz Z M (1/2,£)(k1L0g%+k1+k2) Z H ( Tr)L(b((’ni) )
Q/z<t<Llz (T'rrlneg)z:l

Now we have only to compute all these averages, which will be rather long (we have
to be precise ) but without any major difficulty.
The summation over m :
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Using Lemma 3.7 and 3.8, the identity

pAm)k(1/2,m) _ 5 1 p(p—1)
(510) 3 m¢( ) s 110 "o — 1)) 1l 1+p(p— 1)H(6/5’£)’

(m,0)=1 p>2 ple

and 500 < Q/z, we get the upper bounds
(8.11)

X 2
1 <k = Log = 3(2Logz+1.220) Y 42(0)E(0)r(2/3,8),
Q Q 500<£<z

S <288 (Log X2 L 1220) S w2000 (2/3,0),
Q pQ 500<£<z

92X 1 22 P2 (0)E(2)
Yo <kos— (= +Log =—)2 (2L 1.22 § T k(2
3 <ks 07 (2 + Log Q)4( og z + 0) W ; K}( /3,(),

2. <p23 [ (1 ) Y w00 ) (3/5,0) (kx Log% + oy + ko)
p>2 p 500<£<z2

p2
! fer)

ple

with

The summation over £ :
By using Lemma 3.8, we get

> wA( 1(2/3,¢) < 0.159z Log z + 0.531z + 0.222 + 86.22%/3,
<z

but we have 3,500 1% (£)E(€)K(2/3,£) > 9 400, whence
(8.12) > pA0OE(0)K(2/3,0) < 0.159zLog z + 0.74462.
500<£<z
Lemma 3.8 also gives us
0)K(2/3,¢
(8.13) >’ (ﬁ)% < 0.0791 Log? z 4 0.689 Log 2.
1<z
Lemma 3.9 gives us

(8.14) Z 12 () f5(£)k(3/5,€) [ Log% +1.9709] < 0.514z Log z + 2.0823z.
500<£<z

Gathering these results, we get that V(Q, 22)G(z) is less than
(8.15)
3Xz Xz
10 [k2(Log X} + 0.9455) + k1(2 Log z + 1.220) Log —][0 159 Log z + 0.7446]

3 X 2
+ 5~ “ky(2Log z + 1.220)(% + Log a)(0.0791 Log z + 0.689) Log z
Pz

+p3 H ) 22(0.514Log z + 2.0823)}.
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Last Reduction :
Keeping in mind that G(z) > Log z + 1.332 582 — 7.2842~'/3, we have

[0.159 Log z + 0.7446]

3 < 0.1566
4 G(z) B ’
2
3, (Log(z?) +1220)(0.0791 Log = +0.689) _ 0o
2 G(z)Log z

and
0.514 Log z + 2.0823)

5 1\
p2 1;[ (1+ o 1)) 60 < 1.251

and obtain Lemma 8.6. ¢ ¢ ¢

8.3. Proof of Theorem 8.1 and small improvements.
We are seeking for an upper bound for V() 2%). We write

V(X 2%) =V (X,Q0) +V(Qo,Q) +V(Q,2%)

and apply Lemmas 8.4, 8.5 and 8.6. We now have to choose the parameters )y and
Q. The term 0.3795X (1/2 + Log(2%/Q))/z is an error term and is not taken into
account in our choice.
We take
Q=VXz>27?

and verify that the sum of the two quantities which depend on (@) is less than
0.3708v X z Log? z.
We have Log z1/Q < 1.843 Log z, hence we take c; = 1.843 by Lemma 3.5. We then

choose 10/28
1 1.843
={—=0.1917——XzL .
o <60.620 N 7977 ng>
10/23
We have Qg < (0.00583Xz Log z) , thus
Log zv/Qo <14 5 Log(0.00583X z Log 2)

Logz — 23 Log z
LogL —5.144
< 17326 4 - oslogz =514 ) 4y
23 Log 2

hence, by Lemma 3.5, we take c; = 1.749. We then verify that the sum of the two
quantities which depend on Qg is less than
7.464(X2Togz) ™.

This concludes the proof of Theorem 8.1.

Small improvements.

Using z > exp(30) instead of z > exp(18) yields of course an improvement of our
constants. Also, we could have discussed in (8.7) whether mn is odd or even and
used in the latter case

Gemn(z/VEmn) < Ga(z/VEmn)

instead of the cruder

Gomn(2/VEmn) < G(z/VEmn).
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9. An additive theorem in addition of sequences. Proof of Theorem 1.

Our main tool is the following effective version of a theorem due to Ostmann.
This version has been obtained by J.-M. Deshouillers and we are happy to thank
him for this helpful result.

As a matter of notations, if A is a sequence of natural numbers, and z is any
real number, then A(z) is the number of elements of A which lie in [1,z] (usual
notation used in [4]). We also define A(n,m) to be A(m) — A(n —1).

One key of the proof of Theorem 9.1 is the following lemma which permits one
to “transfer” elements from one summand to the other.

Lemma 9.1 (Dyson’s transform). Let A= {a; <ax<...} andB={0=10b; <
by < ...} be two sequences of natural integers. For any e in A, we define

A'=Au{B+e} and B =Bn{A—e}.
We have

() A+B CA+B

(B8) {e} + B Cc A

(v)0eB

(0) A'(m) + B'(m —e) = A(m) + B(m —e)

Proof. See [4], Chap. 1. 0o

Theorem 9.1. Let A be a sequence of natural numbers containing 0. We assume
that there exist a real number o, integers H, K and ng such that

(a) For n > ng, one has A(n) > on + W(H - 1),

(b) {0,1,...,K} € A, and {ng,np+1,...,n0+ K} € A,

(c) (K+1)Ho > K+ H.

Then, every integer > Hng is a sum of at most H elements of A.

Rm : The hypothesis and conclusion are similar to the usual Theorem of Mann
with the two differences that only asymptotic results on A are available and that the
lower density o is > H~! (It is no restriction if o is not the inverse of an integer).
The assumption (a) is not enough to ensure the result, for we have to avoid the case

of an arithmetic progression. It is striking that only the weak assumption (b) is
enough to get rid of this case, just as in Mann’s Theorem, 0 and 1 in .4 are enough.

Proof. By induction, one defines Aﬁl for1<I<KH-1)and 1< < H. We
start with
A=A for 1<h<H.

We assume that (Al_1)1<h<H has been defined for some | < K(H — 1), write
I=(—-1)(H-1)+rwith1<r<H-1and1<k< K, and define
AL =AU {ALDT + kD
A’r—i—l _Ai—i—l U {All t— }a
AL =A1 if s#£1 and s# 741
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By the properties of Dyson’s transform, we have

(i) AL+ -+ Ay c AT 4 A

({01, k—1}+ AL C AL for r+1<s

(#) {{0,1,...,k}+AlSCAl1 for s<r+1

(iid) A\ (m) + AL 1 (m— k) = AT (m) + AL (m — k), Ym >0

() {0,no} c A\ NN Ay, {ng,no+1,...,n9+ K} C AL
From (iii), we deduce

At (m) 4+ -+ Ay(m) > AT o AN (m) — K

We finally define B;, = .Af(H_l), for 1 < h < H. We have

K+1

(9.1)Bl+"'+BHCHA
(9.2){0,1,...,K}+(32U”'UBH)CBl

K+ H
(9.3) For n > ng, one has By(n) +---+ Byg(n) > + n
(9.4)

{0,%0}C310"-QBH.

If the second inequality in (9.3) always holds, we define n; to be 1 ; otherwise,
we define n; to be the smallest n for which the second inequality in (9.3) holds.
Because of (9.2), n; € B;. For n > ny, we have

K+ H

(95) Bl(nl,n)-l—---—i-BH(nl,n) > K+1

(n—mng +1).

For h = 2,..., H, we let nj denote the smallest integer in B which is at least
equal to n;. With no loss of generality, we may assume that n; < ng < --- < ng,
and because of (4), that ng < ng. We then define

Ap =Bp —nyp, for h=1,2,... H.

We have
H H H H
(9.6) > An=> Bn—> np  with Y np< Hng
h=1 h=1 h=1 h=1

and the counting function Ap(n) satisfies

Ap(n) = Br(1 + np,n+ np) = Br(ny,n+np) — 1,
since np, is the only a € By, with n; < a < np + 1. We thus have
(9.7) Ap(n) > Bi(ny,n+nq) — 1.

We want to prove that S(n) = Ethl Ap(n) > n, for each n > 1, and we
distinguish three cases.
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A.np <ng+n<no.

H
S(n)ZAl(n)=B1(n1,n+n1)—1:ZBl(n1,n+n1)—1
h=1
K+ H
1) —1>n.
> K+1(n+ ) >n
B.no<n+n<ny+K+1
Because of (2), ng, n2 +1, ..., ny +n are in By, and so

S(n) > Ai1(n) = By(n1,mn1 +n) — 1
:Bl(nl,ng— 1)—{—n1—+—n—n2+1— 1

H
:ZBh(nl,n2_1)+n1+n—n2

h=1

K+ H
> K_:—l (ng —mn1) — (ng —n1) +n>n.

C.na+K+1<ni+n
We have {ni,n; +1,...,n1 + K} C By, so that S(n) > K, which is all right if
n < K. Otherwise, we have n > K + 1, and (7) and (5) lead to

K+ H K+1 n+1
> 1)— H = 1 -1 —
S(n) > K+1(n—|— )—H K+1(n+ )+ (H )K+1 H
H—-1
> 1+H-1 > n.
>n+1+ +K+1_n

For all n, we have S(n) > n, so that Dyson’s Theorem implies that N =
Zthl Ap, which implies that every integer > Zthl np, is in Zthl By, and so every
integer > Hng isin HA. oo o

Let us deduce our Theorem 1 from Theorem 2 and Theorem 9.1. First of all, A

is the sequence of all numbers (g — 6)/2 where g is a sum of two odd primes. We
choose H =3, K =39, 0 = % and 2ng¢ = 1.002.102°.

We have 2ng > 8exp(67) and , for Y > ny,

AY) =) [A(Y2T%) — A(Y27F )] 4+ A(Y/8),
k=0

hence

2
AY) > ] > 1-2] +10" -3
k=0 X 4+3<n<2(}+3)
7(n)#0
because A(Y/8) > A(10'2 —3) = 10'? — 3 by a result of Granville, te Riele and van
de Lune [2].
Hence, by Theorem 2, we get
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Now a direct computation shows that the assumption (b) holds and we conclude
that every integer larger than 6n¢ is a sum of at most 6 odd primes.

A greedy algorithm will complete the proof easily : Let N be an even integer
less than 6ng. Then by using [9], we find a function f; such that the interval
[((N —3)— f7(N —3), N — 3] contains at least one prime p;. A slight difficulty arises
because f; is not necessarily non-decreasing ; hence we build the non-decreasing
function fg which is the largest non-decreasing function less than f;. Then N — p;
is less than fs(N — 3) < fs(6ng). By repeating this process at most four times, we
get an integer M which is less than 2.10'°. Hence, either M is even and the sum of
at most 2 primes by [2], or M is odd, which implies that we have only used three
primes, and M is a sum of at most 3 primes.

Limit of the method :

We assume here that we are able to check the Riemann Hypothesis for any
modulus less than a given bound and up to an height arbitrarily large but also less
than a given bound (for instance, for all moduli less than 10 000 up to an height
of 108). Then following the method used in this paper, we can show that the lower
aymptotic density of the sums of two primes is not less than 1/(4 + ¢) for any fixed
positive e. Using the fact that the sequence of primes is an essential component
(since it is an asymptotic basis), we can show that the asymptotic lower density of
the sums of three primes is not less than 1/(4 —4/25+¢€’) where €’ is a function of €
going to 0 with € (cf Theorem 5 (chapter 1, section 3) of [4]). We can then conclude
that every large enough odd integer is a sum of at most 5 primes. The fact is that
the argument using essential components requires a very small € to work which can
not be reached by today’s computers.

REFERENCES

[1]. Chen Jingrun & Wang Tianze, On the odd Goldbach problem, Acta Math. Sin. 32 5 (1989),
702-718.
]. Granville, de Lune, te Riele, Number Theory and Applications, (Nato) Ed. Mollin (1989).
]. H.Halberstam & H.-E.Richert, Sieves methods, Academic Press, London (1974).
[4]. H.Halberstam & K.F.Roth, Sequences, Clarendon Press, Oxford (1966).
]. C.Hooley, Applications of sieves methods to the theory of numbers, Cambridge University
Press, no 70 (1976).
[6]. Yu.V.Linnik, The Dispersion Method in Binary Additive Problems, Translations of Mathe-
matical Monographs. A.M.S. 4 (1963).
[7]. H.Montgomery & R.C.Vaughan, The large sieve, Mathematika 20 no 2 (1973), 119-133.
[8]. E.Preissmann, Sur une inégalité de Montgomery & Vaughan, L’enseignement mathématique
30 (1984), 95-113.
[9]. O.Ramaré, Short effective intervals containing primes, submitted to J. Number Theory.
[10].0.Ramaré & R.Rumely, Primes in arithmetic progressions, Math.Comp. (to appear).
[11].H.Riesel & R.C.Vaughan, On sums of primes, Arkiv féor mathematik 21 (1983), 45-74.
[12].J.B.Rosser, Ezplicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941),
211-232.
[13].J.B.Rosser & L.Schoenfeld, Approzimate formulas for some functions of prime numbers,
Ilinois J. Math. 6 (1962), 64-94.
[14].J.B.Rosser & L.Schoenfeld, Sharper bounds for the Chebyshev functions v and 6. I, Math.
Comp. 29 129 (1975), 243-269.
[15].R.Rumely, Numerical Computations Concerning the ERH, To appear in Math. Comp..
[16].1.Z.Ruzsa, An additive property of squares and primes, Acta Arith. 49 4 (1987), 281-289.
[17].H.N.Shapiro & J.Warga, On the representation of large integers as sums of primes, Comm.
Pure Appl. Math. 3 (1950), 153-176.



50

[18].L.Schoenfeld, Sharper bounds for the Chebyshev functions ¢ and 6. II, Math. Comp. 30 no
134 (1976), 337-360.

[19].R.C.Vaughan, A note on Snirel’'man’s approach to Goldbach’s problem, Bull. London Math.
Soc. 8 (1976), 245-250.

R.C.Vaughan, On the estimation of Schnirelman’s constant, J. Reine Angew. Math.
20].R.C.Vaugh On th ; ) f Schnirel ’ J. Reine A Math. 290
(1977), 93-108.



Table 1

d €d d €d
1| 1.7285.107° 39 | 0.00913
3 0.00212 41 | 0.01037
5 0.00232 43 | 0.01043
7 0.00243 47 | 0.01053
11 0.00257 51 | 0.01006
13 0.00262 53 | 0.01066
15 0.00774 55 | 0.01004
17 0.00931 57 | 0.01021
19 0.00944 59 | 0.01079
21 0.00827 61 | 0.01083
23 0.00967 65 | 0.01027
29 0.00995 69 | 0.01044
31 0.01004 77 | 0.01059
33 0.00890 87 | 0.01071
35 0.00941 93 | 0.01079
37 0.01025 | 105 | 0.01037
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