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Abstract
Given a primitive, non-CM, holomorphic cusp form f with normalized Fourier coef-
ficients a(n) and given an interval I ⊂ [−2, 2], we study the least prime p such
that a(p) ∈ I . This can be viewed as a modular form analogue of Vinogradov’s
problem on the least quadratic non-residue. We obtain strong explicit bounds on p,
depending on the analytic conductor of f for some specific choices of I .

Keywords Vinogradov’s conjecture · Modular forms · Moebius function · Sato–Tate
law

Mathematics Subject Classification 11M06 · 11N56 · 11N80

1 Introduction

The present article is concerned with understanding the distribution of the initial
Fourier coefficients of primitive holomorphic cusp forms at primes. Suppose f is
such a form of weight k for the group �0(N ). We further assume that f is non-CM
and has trivial nebentypus. The normalized Fourier coefficients of f at infinity are
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denoted by (a(n))n≥1, so that a(1) = 1 and

f (z) =
∞∑

n=1

a(n)n
k−1
2 e(nz),

where, as usual, e(z) denotes e2π i z and with this normalization, the Ramanujan bound
(proved by Deligne [6]) says −2 ≤ a(p) ≤ 2 for primes p. Furthermore, the func-
tion n �→ a(n) is real-valued and multiplicative.We refer the reader to the text [12] for
background information on holomorphicmodular forms. The Sato–Tate conjecture for
distribution of the angles θp, defined by a(p) = 2 cos θp, as p runs over primes, which
is now a theorem of Clozel, Harris, Shepherd-Barron and Taylor [3, 9, 31], implies,
in particular, that any interval of positive measure within [−2, 2] contains infinitely
many values of a(p). The goal of this article is to obtain bounds for the least prime
p such that a(p) lies in a fixed interval I ⊂ [−2, 2]. This can be considered as an
analogue of Vinogradov’s problem of estimating, given a modulus q ≥ 1, the size of
the least quadratic non-residue modulo q (see [2, 32]). The quality of our bounds will
be measured in terms of the analytic conductor q( f ) = Nk2 of the form f (see Sect.
2.1), and also separately in term of the weight k of the form, considering the level N to
be fixed and in terms of the level N , considering the weight k to be fixed. We restrict
our attention to forms with trivial nebentypus in order to clarify the presentation but
the methods presented here can be extended to a more general setting.

Let I ⊂ [−2, 2]. Theorem 1.6 of the paper [22] of Lemke-Oliver and Thorner
implies that there exists a constant A depending only on I such that a(p) ∈ I for
some prime p ≤ q A. Their method relies on effective log-free zero density estimates
for the L-function associated with f , and the Turán power-sum method. The value of
the constant A is not stated explicitly in their paper but it is not hard to see that the
constant is effective and can be worked out explicitly. However, the method is likely
to produce quite large values of A. Our aim in the present work is to make the value
of A as small as possible for some specific intervals.

We define, when κ is positive and x ∈ [0, 1]:

F (x; κ) =
∫ x/(1+x)

0

hκ−1dh

1 − h
=

∑

k≥0

1

κ + k

( x

1 + x

)κ+k
. (1.1)

Note that F (·; κ) is increasing between F (0; κ) = 0 and F (1; κ) = ∫ 1/2
0

hκ−1dh
1−h .

We thus define a function G (·; κ) with value in [0, 1] by
G (y; κ) = max{x ∈ [0, 1] : F (x; κ) ≤ 1/y}. (1.2)

The function G is non-increasing and we have G (y; κ) = 1 when y ≤ 1/F (1; κ) and
by convention G (∞; κ) = 0.

We now state our main results which depend crucially on knowledge about the
analytic properties of the symmetric power L functions associated to f (see Sect. 2.1
for definition). This is likely to change in future; only small changes would be required
in our proofs to reflect any such improvement. Here is the assumption we rely on.
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Hypothesis H�: The L-function L(s, sym�( f )) has analytic continuation to the
entire complex plane and it satisfies the bound

L(1/2 + i t, sym�( f )) 	ε q(sym�( f ), s)λ�+ε

for any ε > 0.
For holomorphic forms, the automorphy of L(s, sym� f ) has been known for � ≤ 8

by [4, 5, 7, 16–18], and has recently been proved for all � when N is squarefree by
Newton–Thorne [28]. As a result, these L-functions admit holomorphic continuation
to the entire complex plane and by the convexity principle, H� holds with λ� = 1/4
(known as the convexity bound) for � ≤ 8 unconditionally and for all � when N is
squarefree.

Our results are the following.

Theorem 1.1 For any δ ∈ (0, 2], let θ1(δ) = G (2+δ; δ). The function θ1 is increasing
and we have θ1(0+) = 0 and θ1(1) = 0.3956 · · · . Suppose λ1 > 0 is an exponent
that satisfies the hypothesisH� above for � = 1, and let ε > 0. Then for q = N or k2

sufficiently large, there exists a prime

p 	ε q
2λ1

1+θ1(δ)
+ε

with a(p) ≤ δ.

Remark 1.2 The convexity bound (Phragmén–Lindelöf principle) allows taking λ1 =
1
4 but better exponents, called subconvex exponents are known in both the weight and
the level aspects. For example, one may take λ1 = 1

6 when N = 1 by a result of Jutila
and Motohashi [15].

Theorem 1.3 For any δ ∈ (0, 1], let θ2(δ) = G ((1 + δ)2; 2δ + δ2). The function
θ2 is increasing when δ ≤ 0.5305 · · · , and constant equal to 1 afterwards. We have
θ2(0+) = 0, θ2(1/2) = 0.9093 · · · , θ2(1) = 1. Suppose λ2 > 0 is an exponent that
satisfies the hypothesisH� above for � = 2, and let ε > 0. For any δ ∈ [0, 1], and for
q = N or k2 sufficiently large, there exists a prime

p 	ε q
4λ2

1+θ2(δ)
+ε

with |a(p)| ≤ 1 + δ.

Remark 1.4 The convexity bound allows the choice λ2 = 1
4 and currently this is the

best known exponent. Obtaining a subconvex estimate for the symmetric square L-
function in the level or the weight aspect is a challenging problem.

It turns out that showing the existence of primes p of small size in terms of the
conductor (i.e., weight and level) such that a(p) ≥ 0 is rather difficult. By utilizing
the fact that hypothesesH� hold true for 1 ≤ � ≤ 5, we are able to show the following
result:
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Theorem 1.5 There is a prime p 	 k24N 21 such that a(p) ≥ 0.

The results above are all obtained using a similar strategy and this is summarized
in Theorem 1.11 below. For some specific intervals, however, we obtain better bounds
by employing ad hoc techniques using L-functions as we now describe.

Theorem 1.6 For any ε > 0, there is a prime p = Oε(kN )1+ε such that a(p) < 0.

Corollary The least prime such that a(p) 
= 0 is 	ε (kN )1+ε, for any ε > 0.

Remark 1.7 As the proof of the above theorem shows, the exponent 1 can be replaced
by 4λ2 and any subconvex estimate λ2 < 1/4 for the symmetric square L-function
will lead to an improvement of the above result.

The next result relates the possibility of the initial coefficients at primes assuming
extreme values with the size of L(1, f ). For q = Nk2, let

γ − := lim inf
q→∞

log L(1, f )

log log q
, γ + := lim sup

q→∞
log L(1, f )

log log q
.

From the zero-free region of L(s, f ) (See [11]), the standard techniques yield

− 2 ≤ γ − ≤ γ + ≤ 2. (1.3)

Theorem 1.8 For any δ, ε > 0, the least prime p such that a(p) > γ − − δ is O(qε).
Similarly, the least prime p such that a(p) < γ + + δ is O(qε).

Remark 1.9 The bounds (1.3) seem to be the best known, and any improvement would
yield a non-trivial result in Theorem 1.8. The quality of the upper-bound on p,
namelyO(qε), compared to the above results, suggests that improving the bounds (1.3)
is a difficult task. Under the Riemann Hypothesis for L(s, f ), one has the bounds

(log log q)−2 	 L(1, f ) 	 (log log q)2,

at least in the case N = 1 (see [23, Thm. 3] for a precise and stronger statement),
which yields conjecturally γ − = γ + = 0. Furthermore, it is known that these bounds
hold for almost all forms (see [24, Cor. 2] for a precise statement).

Several authors investigated the smallest integer n such that a(n) < 0, see for
instance [13, 19, 21] or [25]. It follows from [25] that the least such n is O(q3/8),
where q = Nk2. A closer scrutiny of their proofs reveals that the integer n they
produce is either a prime or the square of a prime. Indeed, all the above works make
use of the contrast between the sizes of a(p) and a(p2) forced by the Hecke relation
a(p)2−1 = a(p2) for primes p. Sinceweaimat localizingonlya(p)’s, the coefficients
at primes, we cannot rely on such procedures. In fact, the two methods we propose are
reverse: from a localization on a(p), we show that some polynomial in a(p) has to
be large for many primes p. This polynomial defines the value at p of a new function
whose Dirichlet series we approximate with products of L(s, sym� f ) and it is by

123



Amodular analogue of a problem of Vinogradov

using the analytic properties of these latter that we reach a contradiction. To find an
integer n such that a(n) < 0, only the analytic properties of L(s, f ) are required.

Regarding bounds conditional on the Riemann Hypothesis, Ankeny [1] has proved
that for any non-trivial character χ mod q, if the Riemann hypothesis is true
for L(s, χ), then the least n such that χ(n) 
= 1 is O((log q)2). It is not difficult
to show that the analogous phenomenon holds in our setting:

Theorem 1.10 Assume that for all � ≥ 1, the function L(s, sym� f ) is entire and sat-
isfies the Riemann hypothesis. Then for any interval I ⊆ [−2, 2] of positive measure,
the least prime p such that a(p) ∈ I satisfies p 	I (log q)2.

Let us now state our general theorem depending on the hypothesis H�. Note that
this result implies Theorems 1.1, 1.3 and 1.5.

Theorem 1.11 (Generic theorem) Let (b�)1≤�≤L be non-negative integers, Let κ > 0
and F be real, and let I ⊂ [−2, 2] be such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀x ∈ [−2, 2] � I ,
∑

1≤�≤L

b�U�(x/2) ≥ κ > 0,

∀x ∈ [−2, 2],
∑

1≤�≤L

b�U�(x/2) ≥ F,
(1.4)

where U� are the Chebyshev polynomials of the second kind. Then, on assuming
(H�)�≤L , the least prime p such that a(p) ∈ I satisfies

log p

log N
≤ 2

∑
� �b�λ�

1 + G (κ − F; κ)
+ ε, (1.5)

for any ε > 0 and N large enough with respect to the weight k and ε; and

log p

log k
≤ 2

∑
�(� + ε(�))b�λ�

1 + G (κ − F; κ)
+ ε. (1.6)

for any ε > 0 and k large enough with respect to the level N and ε. Here ε(�) =
1−(−1)�

2 ∈ {0, 1} is the parity of �.
The intervals [α, β] for which there is a linear combination with non-negative

coefficients of U1, . . . ,U8 which takes positive values outside [α, β] delimit a curve
in (α, β), whose exact determination is an interesting question (without the non-
negativity condition, the analogue forU1, . . . ,U4 was solved in Appendix A of [22]).
Between this curve and the diagonal α = β, Theorem 1.11 yields an upper-bound
on log p

log q , which gets smaller as one moves away from the diagonal. This is represented
in Figure 1, which was obtained by case-by-case analysis of all linear combinations
with

∑
�≤8 �b� ≤ 42. On the left, darker colors indicate a larger upper-bound.

Theorem 1.11 should be compared with Theorem 1.8 of [22]. In both cases, we
are given an interval I ⊂ [−2, 2], and we are looking for the least prime p such
that a(p) ∈ I . In Theorem 1.8 of [22], the authors obtain an exponent depending on the
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Fig. 1 Upper-bound on log p
log N in Theorem 1.11 for I = [α, β]

quality with which the indicator function 1I can be minorized by a linear combination
ofU0,U1,U2, . . . . In Theorem 1.11, we obtain an exponent depending on the quality
with which the complementary indicator function 1[−2,2]�I is minorized by a linear
combination with non-negative coefficients of U1,U2, . . . . An inconvenient of our
method is that there is no clear description of the allowable intervals I . Theorems 1.1–
1.5 indicate that, when it can be applied, the method described here yields non-trivial
numerical results.

1.1 Notation

Our notation is quite standard. We follow the usual practice of denoting by p an
arbitrary prime and by ε an arbitrarily small positive real number which need not
be the same in every occurrence. For any set X ⊂ R and maps F : X �→ C and
G : X �→ [0,∞), we write

F(x) 	 G(x) or F(x) = O(G(x))

if there exists a C > 0 such that |F(x)| ≤ CG(x) for all x ∈ X . Sometimes, the
implied constant C depends on some parameters and this dependence is shown in
the subscript. For example, often the implied constant depends on the parameter ε,
an arbitrarily small positive real number, and we display this dependence by writing
	ε orOε. Sometimes, the dependence is not shown when it is clear from the context
in order to avoid making the notation too cumbersome. By η̌, we denote the Mellin
transform of a function η:

η̌(s) =
∫ ∞

0
η(t)t s−1dt . (1.7)
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2 Background onmodular forms and L-functions

2.1 Symmetric power L-functions

For a primitive form f , as in the introduction, its normalized coefficientsa f (p) = a(p)
can be written as

a(p) = α f (p) + β f (p)

where, for p � N , α f (p) = 1/β f (p) and both are complex numbers of absolute
value 1. For each � ∈ N, the �th symmetric power L-function of f is defined, for

s > 1, by

L(s, sym� f ) =
∏

p

∏

0≤ j≤�

(
1 − α f (p)

�− jβ f (p)
j/ps

)−1 =:
∑

n≥1

asym� f (n)

ns
. (2.1)

We have sym1 f = f and it is convenient to set sym0 f = 1 so that L(s, sym0 f ) =
ζ(s). It is expected from a general conjecture of Langlands [20] that for every �,
there is a cuspidal automorphic representation of GL�+1(AQ) that corresponds to the
L-function L(s, sym� f ). For 1 ≤ � ≤ 8, this was shown in [7] (for � = 2), [17]
(for � = 3), [16, 18] (for � = 4) and [4, 5] (for 5 ≤ � ≤ 8). When N is squarefree,
this has been announced for all � ≥ 0 in [28].

Following [14, Eq.(5.5)]), we define the analytic conductor of L(s, sym� f ) as

q(s, sym�( f )) = N �(|t | + 2)�+1k�+ε(�), (2.2)

with ε(�) = 1−(−1)�

2 being 1 or 0 according to whether � is odd or even, as in the
statement of Theorem 1.11.

Once we know that a symmetric power L-function comes from an automorphic
representation, the analytic continuation and functional for that L-function follows
from [8] and thus the Phragmén–Lindelöf convexity principle (or the approximate
functional equation [14, eq. (5.20)]) implies that for 1 ≤ � ≤ 8, the hypothesis H�

holds with the value λ = 1/4. This is known as the convexity bound. Giving a bound
on an L-function that is stronger than the convexity bound is a challenging problem
which has been solved in a few cases (see [27] and the references therein) and this is
known as the subconvexity problem. Sometimes we are interested in the size of the
L-functions in terms of only the size of the variable t , or the weight k or the level N .
A result of Jutila and Motohashi [15] says that taking λ1 = 1/6 is permissible in the
weight and the t-aspect. We further define

q(sym�( f )) := N �k�+ε(�). (2.3)

In particular, q( f ) = Nk2 and q(sym2( f )) = N 2k2. Note that in the weight aspect,
q( f ) and q(sym2( f )) are of the same order.
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For the coefficients of the symmetric �th power L-function of f , we have the
following relation for every prime p:

asym� f (p) = a
(
p�

) = U�(cos θ(p)) = U�(a(p)/2) = sin((� + 1)θ(p))

sin θ(p)
, (2.4)

where U� is the Chebyshev polynomial of second kind, whose properties we recall
next.

2.2 Chebyshev polynomials of the second kind

We recall that the Chebyshev polynomials of second kind (U�)�≥0 are defined by

U0 = 1, U1 = 2x, U�+1 − 2xU� +U�−1 = 0. (2.5)

These polynomials form an orthonormal basis in the space of polynomials on the
interval [−1, 1] relative to the Hermitian product

〈 f , g〉 =
∫ 1

−1
f (x)g(x) 2

π

√
1 − x2dx . (2.6)

The first few are given by

U2 = 4x2 − 1,

U3 = 8x3 − 4x,

U4 = 16x4 − 12x2 + 1,

U5 = 32x5 − 32x3 + 6x,

U6 = 64x6 − 80x4 + 24x2 − 1,

U7 = 128x7 − 192x5 + 80x3 − 8x,

U8 = 256x8 − 448x6 + 240x4 − 40x2 + 1.

The last equality in Eq. (2.4) comes from the relation

Un(cos θ) = sin((n + 1)θ)

sin θ
.

3 Auxiliary lemmas

3.1 Convolutions

Lemma 3.1 Assume (H�)1≤�≤L . Let L ≥ 1 be an integer and let (b�)0≤�≤L be a
collection of non-negative integers. Then, we have the equality
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∏

p

(
1 +

∑
� b�a(p�)

ps

)
=

∏

0≤�≤L

L(s, sym� f )b� H(s),

where H is a function that is holomorphic and bounded by a constant in the region

s ≥ 1

2 + ε for any ε > 0.

Proof This follows easily by comparing the pth Euler factors. ��

We recall that, in the half-plane of absolute convergence, we have

L(s, f ) =
∏

p

(
1 − a(p)

ps
+ 1

p2s

)−1

=
∏

p

(
1 − α(p)

ps

)−1(
1 − β(p)

ps

)−1

(3.1)

as well as

L(s, sym2 f ) =
∏

p

(
1 − a(p)2 − 1

ps
+ a(p)2 − 1

p2s
− 1

p3s

)−1

. (3.2)

3.2 Averages of multiplicative functions

We quote Theorem 21.2 of [29] which follows an idea of Wirsing [33].

Lemma 3.2 Let f be a non-negative multiplicative function and κ be a non-negative
real parameter such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

p≥2,ν≥1
pν≤Q

f
(
pν

)
log

(
pν

) = κQ + O(Q/ log(2Q)) (Q ≥ 1),

∑

p≥2

∑

ν,�≥1,
pν+�≤Q

f
(
p�

)
f
(
pν

)
log

(
pν

) 	 √
Q,

then we have

∑

d≤D

f (d) = κ C · D (log D)κ−1 (1 + o(1)),

where

C = 1

�(κ + 1)

∏

p

{(
1 − 1

p

)κ ∑

ν≥0

f
(
pν

)}
. (3.3)
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Lemma 3.3 Under the same hypotheses of Lemma 3.2 we have, for any continuously
differentiable function η with

∫ 1
0 η(u)du 
= 0:

∑

d≤D

f (d)η(d/D) = κC(1 + o(1))
∫ D

2
(log u)κ−1η(u/D)du

as D −→ ∞.

The condition on η is obviously satisfied if, as will be the case for us, η is non-negative
with support inside the interval [0, 1].
Proof Using Lemma 3.2, we find that

∑

d≤D

f (d)η(d/D) =
∑

d≤D

f (d)η(1) −
∑

d≤D

f (d)

∫ 1

d/D
η′(t)dt

=
∑

d≤D

f (d)η(1) −
∫ 1

0

∑

d≤t D

f (d)η′(t)dt

= κη(1)C · D (log D)κ−1

−
∫ D

2
κCu(log u)κ−1η′(u/D)du/D + o(D(log D)κ−1)

as D → ∞. Hence, by partial summation,

∑

d≤D

f (d)η(d/D)(κC)−1

=
∫ D

2
(κ − 1 + log u)(log u)κ−2η(u/D)du + o(D(log D)κ−1)

=
∫ D

2
(log u)κ−1η(u/D)du + o(D(log D)κ−1).

However, we also have

∫ D

2
(log u)κ−1η(u/D)du

= O
( ∫ D/ log D

2
(log u)κ−1du

)
+

∫ D

D/ log D
(log u)κ−1η(u/D)du

= O (
D(log D)κ−2) + D(log D)κ−1

∫ 1

1/ log D

(
1 + log v

log D

)κ−1
η(v)dv

= O (
D(log D)κ−2) + D(log D)κ−1

∫ 1

1/ log D
η(v)dv

∼
( ∫ 1

0
η(v)dv

)
D(log D)κ−1
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as D → ∞, since
∫ 1
0 η(u)du 
= 0. In the third line we have used the uniform esti-

mate (1+(log v)/ log D)κ−1 = 1+O(log(1/v)/ log D) for 1/ log D < v < 1. Hence
our claimed estimate

∑

d≤D

f (d)η(d/D) = κC(1 + o(1))
∫ D

2
(log u)κ−1η(u/D)du

follows. ��

4 A general average bound

Lemma 4.1 Let L ∈ N>0, and assume (H�)1≤�≤L . Let (b�)0≤�≤L be a collection
of non-negative integers. Given a primitive form f (z) = ∑

n≥1 a(n)e(nz) as in the
introduction, let us define a multiplicative function h f by the equality

∑

n

h f (n)

ns
=

∏

p

(
1 +

∑
� b�a(p�)

ps

)

Then h f is supported on squarefree integers and there exists a polynomial PL of degree
at most b0 − 1 such that, for any ε > 0, we have

∑

n≥1

h f (n)η(n/X) = X PL(log X) + O
⎛

⎝X
1
2+ε

∏

1≤�≤L

q(sym�( f ))b�λ�+ε

⎞

⎠ (4.1)

for any compactly supported twice continuously differentiable non-negative function
η.

Proof Let us denote by S the left-hand side of (4.1). By taking Mellin transforms (e.g.
p.90 of [14]), we get

S = 1

2iπ

∫ 2+i∞

2−i∞
Xs η̌(s)s

∑

n≥1

h f (n)

ns
ds.

The fact that η is twice continuously differentiable ensures us that its Mellin transform
verifies η̌(s) 	 1/(1 + |s|2) uniformly in any closed vertical strip in the half plane

s > 0. Lemma 3.1 gives us an expression for the Dirichlet series

∑
n≥1 h f (n)/ns

from which we see that we can shift the line of integration to 
s = 1
2 + ε obtaining

that the error term is at most

O
⎛

⎝X
1
2+ε

∏

1≤�≤L

q(sym�( f ))b�λ�+ε

⎞

⎠ ,
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by our hypothesis (H�)1≤�≤L and the convexity principle. The residue at 1 gives the
claimed main term, and the lemma follows readily. ��

5 A general Lemma around Vinogradov’s trick

Lemma 5.1 Let g be a real-valued multiplicative function supported on the squarefree
integers. We assume further that g(p) ≥ F for every prime p, and that for every prime
p ≤ P, we have g(p) ≥ κ > 0. Let η be a non-negative, continuously differentiable
function with support within [0, 1] such that

∫ 1
0 η(v)dv = 1. We have, for M = Pθ

for some θ ∈ [0, 1],
∑

n≥1

μ2(n)g(n)η

(
n

PM

)
≥ (1 + o(1))κ CMP(logMP)κ−1(1 − (κ − F)F (θ; κ)

)
,

where C is given by (3.3) and F is defined in (1.1)

The factor μ2(n) is only here to remind the reader that the variable n is restricted to
squarefree values. It can be omitted!

Proof We set

S =
∑

n≥1

g(n)η

(
n

PM

)
. (5.1)

By our hypotheses, we find that

S =
∑

n≤PM,
P+(n)≤P

g(n)η

(
n

PM

)
+

∑

P<p≤PM

g(p)
∑

n≤PM/p

g(n)η

(
pn

PM

)

≥
∑

n≤PM,
P+(n)≤P

g(n)η

(
n

PM

)
+ F

∑

P<p≤PM

∑

n≤PM/p

μ2(n)κω(n)η

(
pn

PM

)

≥
∑

n≤PM

μ2(n)κω(n)η

(
n

PM

)
+ (F − κ)

∑

P<p≤PM

∑

n≤PM/p

μ2(n)κω(n)η

(
pn

PM

)
.

Here P+(n) denotes the greatest prime divisor of n and ω(n) the number of prime
divisors of n. We appeal to Lemma 3.3 with f (n) = μ2(n)κω(n) and get

S/(Cκ) ≥ (1 + o(1))
∫ PM

2
(log u)κ−1η

( u

PM

)
du

+(F − κ + o(1))
∑

N<p≤PM

∫ PM/p

2
(log u)κ−1η

( up

PM

)
du.
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Note that the change of variable vPM = u shows that

∫ PM

2
(log u)κ−1η

( u

PM

)
du = PM(log PM)κ−1

∫ 1

0
η(v)dv(1 + o(1)).

We use this estimate with M replaced by M/t and the prime number theorem to infer
that

∑

N<p≤PM

∫ PM/p

2
(log u)κ−1η

( up

PM

)
du

= PM(1 + o(1))
∫ 1

0
η(v)dv

∫ PM

N

(
log

PM

t

)κ−1 dt

t log t

while this last integral equals, with the change of variable v = (PM)h and M = N θ ,

∫ M

1

(log v)κ−1dv

v(log(PM) − log v)
= (log PM)κ−1

∫ θ/(1+θ)

0

hκ−1dh

1 − h
.

Recall that
∫ 1
0 η(v)dv = 1. We thus find that

(1 + o(1))S

CκPM(log PM)κ−1 ≥ 1 + (F − κ)

∫ θ/(1+θ)

0

hκ−1dh

1 − h

= 1 − (κ − F)F (θ, κ).

��

6 Proof of Theorems 1.11, 1.1, 1.3, 1.5

Suppose a(p) /∈ I for every p ≤ P . Under the assumptions of Theorem 1.11, let
θ ∈ [0, 1] be such that

1

κ − F
> F (θ; κ); (6.1)

for instance, we may take θ = max(G (κ − F; κ) − ε, 0). Consider the sum

S =
∑

n≥1

h f (n)η(n/PM),

where M ∈ [1, P]. From the upper and the lower bound of S as given by Lemma 4.1
and 5.1, respectively, and noting that b0 = 0, we obtain,

(PM)
1
2+ε

∏

1≤�≤L

q(sym�( f ))b�λ�+ε � PM .
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Therefore, with M = Pθ for some θ ∈ [0, 1] satisfying (6.1), we have

P 	k N
2

∑
� �b�λ�
1+θ

+ε.

This leads to the estimate (1.5) and the other estimate (1.6) is proved in a similar
manner.

Let us inspect what this gives to us under the convexity bound for λ� = 1/4. Since
the quantity 2

∑
�≥1 �b�λ� takes all the values that are half-positive integers, we may

inspect the first of them one by one. As we did above, we focus on the level N .

6.1 First case (1/2)
∑

�≥1 �b� = 1/2

This is only possible with the choice b1 = 1, all other b�’s being 0. We have∑
1≤�≤L b�U�(x/2) = x which is positive when x = a(p) > 0. On assuming

a(p) ≥ δ when p ≤ P , we see that we may take κ = δ and F = −2 and get,
for N ≥ N0(ε),

log P

log N
≤ 2λ1

1 + G (2 + δ; δ)
+ ε. (6.2)

Hence Theorem 1.1.

6.2 Second case (1/2)
∑

�≥1 �b� = 1

This is only possible with the choice b2 = 1, all other b�’s being 0. We have∑
1≤�≤L b�U�(x/2) = x2 − 1 which is positive when x = a(p) /∈ [−1, 1]. On

assuming |a(p)| ≥ 1 + δ when p ≤ P , we see that we may take κ = 2δ + δ2 and
F = −1 and get, for N ≥ N0(ε),

log P

log N
≤ 4λ2

1 + G (1 + 2δ + δ2; 2δ + δ2)
+ ε. (6.3)

Hence Theorem 1.3.

6.3 Finding non-negative values

Let I = [0, 2]. A numerical computation found the coefficients (b�)0≤�≤5 =
(0, 0, 3, 5, 4, 1), which satisfy (1.4) with κ ≥ 1/3 and F = −10. Then Theorem 1.5
follows from the bounds (1.5) and (1.6).
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7 Proof of Theorem 1.6

Let η : R+ → R+ be smooth, compactly supported and such that 1[0,1] ≥ η ≥
1[1/3,2/3], let ε > 0, and consider

T (X) =
∑

n

μ2(n)a(n)η(n/X) (X ≥ 1).

By Lemma 4.1, we get

T (X) 	 X1/2(k2N )1/4+ε. (7.1)

Suppose that a(p) ≥ 0 for all primes p ≤ X . If the inequality

∑

n:
a(n)≥1

μ2(n)a(n)η(n/X) ≥ X1−ε (7.2)

holds then we easily have

T (X) ≥ X1−ε. (7.3)

Otherwise, suppose that (7.2) does not hold. We write

T (X) =
∑

n:
0≤a(n)<1

μ2(n)a(n)η(n/X) +
∑

n:
a(n)≥1

μ2(n)a(n)η(n/X)

≥
∑

n:
0≤a(n)<1

μ2(n)a(n)2η(n/X) +
∑

n:
a(n)≥1

μ2(n)a(n)η(n/X)

=
∑

n

μ2(n)a(n)2η(n/X) +
∑

n:
a(n)≥1

μ2(n)a(n)(1 − a(n))η(n/X).

Now the last sum is O(X1−ε/2) by Deligne’s bound |a(p)| ≤ 2 and the negation
of (7.2). The first sum can be handled by Rankin–Selberg method (Lemma 4.1) and
is � L(1, sym2 f )X + O(X1/2(k2N 2)1/4+ε). Thus we have, using the lower bound
L(1, sym2 f ) � 1/ log(kN ) due to Hoffstein and Lockhart [10],

T (X) � X/ log(kN ) + O(X1/2(k2N 2)1/4+ε) + O(X1−ε/2). (7.4)

One of the equations (7.3) and (7.4) must hold and either, in conjunction with
equation (7.1), implies the theorem.
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8 Proof of Theorem 1.8

By equation (3) of [30], the Deligne bound |a(p)| ≤ 2 andMertens’ theorem (see [14,
Eq. (2.15)]), we have

log L(1, f ) = Oε(1) +
∑

p≤qε

a(p)

p
,

and therefore

∑

p≤qε

1

p

(
a(p) − log L(1, f )

log log q

)
= Oε(1).

However, if we had a(p) < γ − − δ for p ≤ qε, then we would also have

∑

p≤qε

1

p

(
a(p) − log L(1, f )

log log q

)
≤ Oε,δ(1) − δ

2
log log q,

which is a contradiction for q large enough, and therefore theremust be a prime p ≤ qε

such that a(p) ≥ γ− − δ. An identical argument shows the existence of p ≤ qε such
that a(p) ≤ γ+ + δ.

9 Conditional bounds: proof of Theorem 1.10

By the Stone-Weierstrass theorem, the fact that (U�) forms a basis of R[X ], and the
relation (2.4), we may find L ≥ 1 and real coefficients b0, . . . , bL depending on I ,
with b0 > 0, such that

∑

p≤x

1(a(p) ∈ I )(1 − p
x ) log p ≥

L∑

�=0

b�

∑

p≤x

asym� f (p)(1 − p
x ) log p. (9.1)

By Chebyshev’s estimate, the contribution of the term � = 0 is

b0
∑

p≤x

(1 − p
x ) log p �I x

with an absolute constant. To show that the right-hand side of (9.1) is positive for
some x = O I ((log q)2), it therefore suffices to show that for all integer � ≥ 1 and all
real x ≥ 1, we have

∑

p≤x

asym� f (p)(1 − p
x ) log p = O�(x

1/2 log q).
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This is an immediate consequence of the explicit formula [14, eq. (5.33)] (with an
additional smoothing, as in [26, eq. (13.28)]) alongwith classical zerodensity estimates
[14, Theorem 5.8].
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