
Chapter 4

The local method of Landau et alia

We shall require some facts on the analytic continuation of the Riemann zeta function and
most of them are recalled in the next chapter. As it turns out, the bound | − ζ ′/ζ(s)| ≪
Log |ℑs| valid when |ℑs| ≥ 2 and |1 − ℜs|Log |ℑs| is small enough will be of particular
importance. We take this opportunity to develop some material and to expand on the
historical side.

4.1 The Borel-Caratheodory Theorem

The Borel-Caratheodory Theorem which bounds the modulus of an analytic function in
term of a bound for its real part is of fundamental importance in what follows. Cara-
theodory did not publish it anywhere: Landau says he owns a series a results in this vein
from letters exchanged with him. See in particular (Landau, 1908, Satz I, section 5) and
(Landau, 1926, Lemma 1). (Titchmarsh, 1932, section 5.5) attributes this Theorem to
(Borel, 1897, page 365)∗ and to Caratheodory.

Theorem 4.1 (Borel-Caratheodory). Let F be an analytic function on |s− s0| ≤ R such
that ℜF (s) ≤ A in this disc. For any r < R, positive, we have

max
|s−s0|≤r

|F (s)− F (s0)| ≤
Ar

R− r

and, for any k ≥ 1,

max
|s−s0|≤r

|F (k)(s)| ≤ 2k!R

(R− r)k+1
(A−ℜF (s0)).

In fact (Landau, 1908, Satz I, section 5) has a slightly distinct version of the upper
bound. See also (Titchmarsh, 1932, section 5.51), where the author follows roughly Lan-
dau’s proof. This latter one relies on Schwarz’s Lemma, though Landau does not cite the
later (the proof is anyway quite obvious). I do not know whether Schwarz has anteriority
or not. The proof we follow here is essentially the one due Borel, and can be found in
(Tenenbaum, 1995, Theorem 11 and corollaries).

∗Note that this proof has to be somewhat modified to meet our needs.
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Proof. R We can assume with no loss of generality that s0 = 0 and that F (s0) = 0
(otherwise consider F (s)−F (s0)). Note that under these assumptions, the corresponding
A, namely A−ℜF (s0) is non-negative. We expand F is power series:

F (s) =
∑

n≥1

ans
n

and write an = |an|eiθn . We have

ℜF (Reiθ) =
∑

n≥1

|an|Rn cos(nθ + θn).

We multiply this expression by cos(mθ + θm) and integrate it termwise to get

π|am|Rm =

∫ 2π

0
ℜF (Reiθ) cos(mθ + θm)dθ.

When m = 0, this reads

0 =

∫ 2π

0
ℜF (Reiθ)dθ

which we combine with the above to obtain

π|am|Rm =

∫ 2π

0
ℜF (Reiθ)(1 + cos(mθ + θm))dθ ≤ 2π(A−ℜF (s0)).

This readily yields, when k ≥ 1,

|F (k)(reiθ)| ≤
∑

n≥k

n(n− 1) · · · (n− k + 1)|an|rn−k

≤ 2(A−ℜF (s0))

Rk

∑

n≥k

n(n− 1) · · · (n− k + 1)(r/R)n−k = 2
Rk!(A−ℜF (s0))

(R− r)k+1
.

When k = 0, we use the additional fact that a0 = 0 to get the claimed bound.

4.2 The Landau local method

The proof and the statement of the following Lemma has taken some years to find a proper
shape. One can find traces of it in (Landau, 1908), between equations (92) and (93), see
the definition of F . It will evolve until (Landau, 1926, Lemma 1) to yield a bound on
ζ ′/ζ(s) next to the line ℜs = 1. At the time, Gronwall and Landau were improving each
other’s bound. See also (Titchmarsh, 1951, section 3.9, Lemma α).

The circle of ideas we present below belongs to this realm.

Lemma 4.1. Let M be an upper bound for the holomorphic function F in |s − s0| ≤ R.
Assume we know of a lower bound m > 0 for |F (s0)|. Then

F ′(s)
F (s)

=
∑

|ρ−s0|≤R/2

1

s− ρ
+O∗

(
16

Log(M/m)

R

)

February 12, 2010



4.3 Consequence for the Riemann zeta function 27

for every s such that |s− s0| ≤ R/4 and where the summation variable ρ ranges the zeros
ρ of F in the region |ρ− s0| ≤ R/2, repeated according to multiplicity.

This Lemma will be our main tool in what follows. The reader should look at the
very interesting section 3 of (Heath-Brown, 1992a), and more precisely to (Heath-Brown,
1992a, Lemma 3.2). An expression for the real part of F ′(s)/F (s) in terms os the possible
zeros is obtained there. In fact, the proof therein contains an expression for F ′(s)/F (s),
but it seems necessary to take the real part to bound it solely in term of M/m (notations
as above). See however subsection 4.4.3 of this chapter.

See also (Heath-Brown, 1992b) as well as (Ford, 2000, Lemma 2.1 and Lemma 2.2).

Proof. Let us consider

G(s) =
F (s)∏

|ρ−s0|≤R/2(s− ρ)
.

When |s − s0| = R, we have |s − ρ| ≥ |s − s0| − |ρ − s0| ≥ R/2 ≥ |ρ − s0| for the zeros
under consideration, and thus, by the maximum principle, when |s− s0| ≤ R, we have

∣∣∣∣
G(s)

G(s0)

∣∣∣∣ =
∣∣∣∣
F (s)

F (s0)

∏

|ρ−s0|≤R/2

s0 − ρ

s− ρ

∣∣∣∣ ≤ M/m.

Since this function has no zeros inside |s− s0| ≤ R/2, we can write

G(s)/G(s0) = eH(s) (|s− s0| ≤ R/2)

for an analytic function H that verifies H(s0) = 0. Furthermore ℜH(s) ≤ Log(M/m). By
the Borel-Caratheodory Theorem, we deduce that

∣∣∣∣
G′(s)
G(s)

∣∣∣∣ = |H ′(s)| ≤ 8R

(R− 2r)2
Log(M/m) (|s− s0| ≤ r < R/2).

We have thus proved our assertion.

4.3 Consequence for the Riemann zeta function

Here is the main consequence of Lemma 4.1:

Lemma 4.2. Let t0 ≥ 4. We have

ζ ′(s)
ζ(s)

=
∑

|ρ−1−it0|≤1

1

s− ρ
+O(Log t0) (|s− 1− it0| ≤ 1/2) (4.1)

We use F = ζ, s0 = 1 + it0 and R = 2 We only have to get some polynomial upper
bound for |ζ(s)| when −1 ≤ ℜs ≤ 3 and ℑs ≥ 2, as well as a lower bound for |ζ(s0)|.
Concerning the upper bound, here is an expedient way to get one:

ζ(s) = s

∫ ∞

1
[t]

dt

ts+1
=

s

s− 1
− 1

2
− s

∫ ∞

1
B1(t)

dt

ts+1
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where [t] denotes the integer part of t, {t} its fractional part, and B1(t) is the first Bernoulli
function, defined by B1(t) = {t} − 1

2 . We consider the higher order Bernoulli functions,
B2 and B3:

1
2B2(t) =

∫ t

1
B1(u)du+

1

12
= 1

2{t}2 − 1
2{t}+

1

12
.

This function is periodical of period 1 when t ≥ 1 and has mean value 0 over a period (i.e.∫ 2
1 B2(u)du = 0). As a consequence

1
3B3(t) =

∫ t

1
B2(u)du = 1

3{t}3 − 1
2{t}2 + 1

6{t}

is bounded. As it turns out, it is also of zero mean value over a period. Here is why we
have introduced this set of functions:

ζ(s) =
s

s− 1
− 1

2
− s

∫ ∞

1
B1(t)

dt

ts+1

=
s

s− 1
− 1

2
+

s

12
+

s(s+ 1)

2

∫ ∞

1
B2(t)

dt

ts+2

=
s

s− 1
− 1

2
+

s

12
− s(s+ 1)(s+ 2)

6

∫ ∞

1
B3(t)

dt

ts+3

which gives us an expression of the continuation of ζ to ℜs > −2. In particular, when
|s| ≥ 2 and ℜs ≥ −1, we find that

|ζ(s)| ≤ 13
12 |s|+

1

2
+ 1

20

|s|3
2

≤ 2
5 |s|3.

Better bounds are available (in fact, |ζ(s)| ≪ |s|3/2 under our conditions), but this will be
enough for us.

We also need a lower bound for 1/|ζ(1 + it0)|. This is readily obtained as follows. We
can modify the above proof to show that

|ζ ′(s)| ≪ (Log t)2 (ℜs ≥ 1, t = ℑs ≥ 2).

We use this bound to shift ζ(1 + it0) to ζ(σ + it0) at a cost of O((σ − 1)(Log t0)
2). We

next recall the classical Mertens’s inequality∗:

1 ≤ |ζ(σ)|3|ζ(σ + it0)|4|ζ(σ + 2it0)|.
∗To prove it, notice that −ζ′/ζ has a Dirichlet expansion with non-negative coefficients. Since 3 +

4 cos θ + cos(2θ) = 2(1 + cos θ)2 ≥ 0, we find that

0 ≤ 3ℜ−ζ′

ζ
(σ) + 4ℜ−ζ′

ζ
(σ + it0) + ℜ−ζ′

ζ
(σ + 2it0).

Integrating this inequality in σ between σ0 and ∞ yields the desired result. Alternatively, one could use
directly the Dirichlet expansion of Log ζ, which also has non-negative coefficients.
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4.4 Bounding |ζ ′/ζ| next to the line ℜs = 1 29

Since |ζ(σ)| ≪ 1/(σ − 1) and |ζ(σ + 2it0)| ≪ Log t0, we get

(σ − 1)3/4(Log t0)
−1/4 ≪ |ζ(σ + it0)|.

We then take σ = 1 + C(Log t0)
−9 for a large enough constant C and get

|ζ(σ + it0)| ≫ 1/(Log t0)
7.

This is an apriori bound that is enough for our purpose, but much better is known.

The reader has now all the elements to end the proof of Lemma 4.2. Note that the
proof of

ζ ′(s)
ζ(s)

=
∑

|ρ−1−(Log t0)−1−it0|≤1

1

s− ρ
+O(Log t0) (|s− 1− it0| ≤ 1/2)

would have been slightly simpler since the bound

|ζ(1 + (Log t0)
−1 + it0)|−1 ≤ |ζ(1 + (Log t0)

−1)| ≪ (Log t0)

would have been enough. It is however simply easier to write down the expression we have
chosen!

4.4 Bounding |ζ ′/ζ| next to the line ℜs = 1

We do not reproduce here a proof of a zero-free region, though we have all the ingredients,
but we content ourselves with citing (Kadiri, 2005):

Theorem 4.2 (Kadiri). The Riemann ζ-function has no zeros in the region

ℜs ≥ 1− 1

R0 Log |ℑs|
, |ℑs| ≥ 2, with R0 = 5.69693.

The proof of this result is very intricate, but it is fairly easy to get a similar result with
a much larger value of R0, and even easier to prove it without specifying any admissible
value for R0.

Let s be in the region

ℜs ≥ 1− 1

2R0 Log(1 + |ℑs|) , |ℑs| ≥ 2. (4.2)

Lemma 4.3. We have ∣∣ζ ′/ζ(s)
∣∣ ≪ Log t

when ℜs ≥ 1− 1
2R0

(1+Log t)−1 where R0 > 0 is the constant of the zero free region given
in Theorem 4.2.
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There exists essentially three ways to bound ζ ′/ζ(s) when s = σ + it0 is well within
the zero free region, i.e. in the region given by (4.2). One is due to Landau, another one
to Linnik and a third one to Titchmarsh. We present the three of them. Let us set

s1 = 1 +
4

R0 Log(1 + t0)
.

We apply Lemma 4.2 to s and s1 and substract:

ζ ′

ζ
(s)− ζ ′

ζ
(s1) =

∑

ρ

s− s1
(s− ρ)(s1 − ρ)

+O(Log t0) (4.3)

When s in the region given by (4.2), we have, for any zero ρ = β+ iγ verifying |s−ρ| ≤ 1,

(1− 1
3)(1− β) ≥ 1− 1

3

R0 Log(1 + t0)
≥ 1

3(σ1 − 1) + (1− σ)

and thus σ − β ≥ (σ1 − β)/3. As a consequence

∣∣∣
∑

ρ

s− s1
(s− ρ)(s1 − ρ)

∣∣∣ ≪
∑

ρ

1/Log t0
|s1 − ρ|2 .

4.4.1 Landau’s way

(Landau, 1926, Hilfsatz 1) remarks that

∑

ρ

1/Log t0
|s1 − ρ|2 ≪

∑

ρ

σ1 − β

|s1 − ρ|2 =
∑

ρ

ℜ 1

s1 − ρ
= ℜζ ′

ζ
(s1) +O(Log t0).

Note that ℜ ζ′
ζ (s1) < 0 (a fact that Landau does not use). But to end the proof, we will

anyway have to use ∣∣∣ζ
′

ζ
(s1)

∣∣∣ ≤
∣∣∣ζ

′

ζ
(σ1)

∣∣∣ ≪ Log t0.

4.4.2 Linnik’s way

(Linnik, 1944a) proposes a different conclusion that shed some more lights as to what
happens. This is the one followed in (Ramaré, 2009). We first deduce from the above
Linnik’s density Lemma:

Lemma 4.4. Let n(t0; r) be the number of zeros ρ of ζ such that |ρ − 1 − it0| ≤ r. We
have

n(t0; r) ≪ 1 + r Log t0.

Proof. Assume r > 0. We use the formula (4.1) with s = 1 + r + it0 and take real part.
We get ∑

|ρ−1−it0|≤1

1 + r − β

|s− ρ|2 ≪ r−1 + Log t0
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4.4.3 Titchmarsh’s way 31

by using
|ζ ′/ζ(s)| ≤ −ζ ′/ζ(1 + r) ≪ r−1.

We can discard any zeros, by positivity, from the left and thus restrict the summation to
the zeros counted in n(t0; r). Note that

1 + r − β

|s− ρ|2 =
r

(1− β + r)2 + (γ − t0)2
≥ r

2(1− β)2 + 2r2 + (γ − t0)2
≥ r

4r2
=

1

4r
.

The Lemma follows readily.

Proof of Lemma 4.3 by Linnik. We again exploit (4.3) but we now remark that |s− ρ| ≫
|1 + it0 − ρ| and that |s1 − ρ| ≫ |1 + it0 − ρ|. Thus

(Log t0)

∣∣∣∣
ζ ′(s)
ζ(s)

− ζ ′(s1)
ζ(s1)

∣∣∣∣ ≪
∑

|ρ−1−it0|≤1

1

|1 + it0 − ρ|2 .

Let us use diadic decomposition on this last sum. Set rk = 2k/(R0 Log(t0 + 1)) when
k ≥ 0, so that:

∑

|ρ−1−it0|≤1

1

|1 + it0 − ρ|2 =
∑

k≥0

∑

rk<|ρ−1−it0|≤rk+1

1

|1 + it0 − ρ|2

≪
∑

k≥0

∑

rk<|ρ−1−it0|≤rk+1

1 + rk+1 Log t0
r2k

≪
∑

k≥0

(Log t0)
2

2k
≪ (Log t0)

2.

We conclude the proof as before.

4.4.3 Titchmarsh’s way

(Titchmarsh, 1951, Lemma γ, section 3.9) uses yet another way: first get an upper bound
for −ℜζ ′(s)/ζ(s) and then apply the Borel-Caratheodory Theorem to this function.

4.5 Bounding |1/ζ| next to the line ℜs = 1

The analytical upper bound we produce for the mean of the Barban & Vehov weights
relies on a lower bound for |ζ(s)| when s is in the vicinity of the line ℜs = 1. This is
again a consequence our upper bound for | − ζ ′/ζ(s)|. The reader will first notice that it
is obvious when ℜs ≥ 1 + 1/(Log 2 + |ℑs|). Otherwise, let s = σ0 + it0 be in the region
given by (4.2). We have

Log
ζ(σ0 + it0)

ζ(σ1 + it0)
=

∫ σ0

σ1

ζ ′

ζ
(σ + it0)dσ

with σ1 = 1+(Log t0)
−1+ it0. We bound the integrand by O(Log t0), and thus, on taking

real parts:
Log |ζ(σ0 + it0)| = Log |ζ(σ1 + it0)|+O(1). (t0 ≥ 2) (4.4)

Local models and pseudo-characters February 12, 2010
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The right-hand side is ≤ Log Log t0+O(1) in absolute value, hence our bound for 1/|ζ(σ0+
it0)|. Note that we could have taken real parts earlier and thus relied only on an upper
bound for −ℜζ ′/ζ(s)∗.

4.6 Some other consequences

As a matter of fact, (4.4) gives more information than just a lower bound. Let us start by
recalling the following Lemma, which is a direct consequence of (Montgomery & Vaughan,
1974, Corollary 2).

Lemma 4.5. ∫ T

0

∣∣∣
∑

n

ann
it
∣∣∣
2
dt =

∑

n

|an|2
(
T +O∗(3πn)

)
.

Lemma 4.5 together with (4.4) lead directly to:

Lemma 4.6. Let T ≥ 2 and σ ≥ 1− (12 Log(1 + T ))−1. We have

∫ T

1
|ζ(σ + it)|±1dt ≍ T,

∫ T

1
|ζ(σ + it)|±2dt ≍ T.

Proof. We use (4.4) with σ0 = σ and σ1. This leads immediately to

∫ T

0
|ζ(σ + it)|±1dt ≍

∫ T

0
|ζ(σ1 + it)|±1dt

and the same with ±2.† By Cauchy inequality, we have

∣∣∣∣
∫ T

0
|ζ(σ1 + it)|±1dt

∣∣∣∣
2

≤ T

∫ T

0
|ζ(σ1 + it)|±2dt = T

∑

n≥1

T +O(n)

n2σ1
≍ T 2

by appealing to Lemma 4.5 below. Furthermore

∣∣∣∣
∫ T

1
dt

∣∣∣∣
2

≤
∫ T

1
|ζ(σ + it)|dt

∫ T

1
|ζ(σ + it)|−1dt

hence the lower bounds.

4.7 Better bounds

Using Vinogradov-Korobov – Full-fledged density estimates –

∗The minus sign is here because σ0 ≤ σ1.
†Here ± means we choose a sign + or − and stick to it on both sides of the relation.
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