Exercice K

Solution proposée par Khaddad Mahfoudh Moctar 5 décembre 2012

Exercice K. Montrer qu'il existe une infinité de nombres premiers de la forme 4m + 3.

Indication : On pourra montrer que l'entier $4 \cdot n! + 3$ admet au moins un facteur premier $\equiv 3[4]$.

Pour démontrer cet énoncé, on utilisera le lemme suivant : pour tout couple d'entiers m et m', on a (4m+1)(4m'+1)=4M+1 avec M=4mm'+m+m'. Par conséquent, un produit d'un nombre quelconque d'entiers $\equiv 1[4]$ est encore $\equiv 1[4]$.

Nous procédons par l'absurde. Supposons qu'il n'existe qu'un nombre fini de nombres premiers, c'est à dire qu'il existe p_k qui est le plus grand de nombres premiers qui sont de la forme $\equiv 3[4]$. Soit donc $4 \cdot p_k! + 3 = \prod_i q_i^{\alpha_i}$, sa décomposition en facteurs premiers. Le membre de gauche est de la forme 4m+3 et le second ne peut pas être un produit d'entiers de la forme 4m'+1 d'après le lemme du début. Il existe donc nécessairement un $q_r > 3$ de la forme 4n+3. Or l'existence d'un tel q_r est une contradiction : si $q_r \leq p_k$, alors $q_r|4 \cdot p_k!$ et donc $q_r|3$. Donc $q_r > p_k$ ce qui est contradictoire avec la définition de p_k .